|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +bench_groupby_regression.py — Single-file benchmark suite and reporter |
| 4 | +
|
| 5 | +Scenarios covered (configurable via CLI): |
| 6 | + 1) Clean baseline (serial & parallel) |
| 7 | + 2) Outliers: 5% @ 3σ, 10% @ 5σ, 10% @ 10σ |
| 8 | + 3) Group sizes: 5, 20, 100 rows/group |
| 9 | + 4) n_jobs: 1, 4, 10 |
| 10 | + 5) fitters: ols, robust, huber (if supported by implementation) |
| 11 | + 6) sigmaCut: 3, 5, 10, 100 |
| 12 | +
|
| 13 | +Outputs: |
| 14 | + - Pretty text report |
| 15 | + - JSON results (per scenario, with timing and configuration) |
| 16 | + - Optional CSV summary |
| 17 | +
|
| 18 | +Usage examples: |
| 19 | + python3 bench_groupby_regression.py --quick |
| 20 | + python3 bench_groupby_regression.py --rows 50000 --groups 10000 --out out_dir |
| 21 | + python3 bench_groupby_regression.py --emit-csv |
| 22 | +
|
| 23 | +Note: |
| 24 | + This script expects 'groupby_regression.py' in PYTHONPATH or next to it and |
| 25 | + uses GroupByRegressor.make_parallel_fit(...). See the wiring in _run_one(). |
| 26 | +""" |
| 27 | +from __future__ import annotations |
| 28 | +import argparse, json, math, os, sys, time |
| 29 | +from dataclasses import dataclass, asdict |
| 30 | +from pathlib import Path |
| 31 | +from typing import List, Dict, Any, Tuple |
| 32 | + |
| 33 | +import numpy as np |
| 34 | +import pandas as pd |
| 35 | + |
| 36 | +# --- Import the project module --- |
| 37 | +try: |
| 38 | + import groupby_regression as gr |
| 39 | + from groupby_regression import GroupByRegressor |
| 40 | +except Exception as e: |
| 41 | + print("[ERROR] Failed to import groupby_regression.py:", e, file=sys.stderr) |
| 42 | + raise |
| 43 | + |
| 44 | +# --- Data Generators (Phase 1) --- |
| 45 | +def _make_groups(n_rows: int, n_groups: int, rng: np.random.Generator) -> np.ndarray: |
| 46 | + base = np.repeat(np.arange(n_groups, dtype=np.int32), n_rows // n_groups) |
| 47 | + rem = n_rows - base.size |
| 48 | + if rem > 0: |
| 49 | + extra = rng.choice(n_groups, size=rem, replace=False) |
| 50 | + base = np.concatenate([base, extra.astype(np.int32, copy=False)]) |
| 51 | + rng.shuffle(base) |
| 52 | + return base |
| 53 | + |
| 54 | +def create_clean_data(n_rows: int, n_groups: int, *, seed: int = 42, noise_sigma: float = 1.0, x_corr: float = 0.0) -> pd.DataFrame: |
| 55 | + rng = np.random.default_rng(seed) |
| 56 | + group = _make_groups(n_rows, n_groups, rng) |
| 57 | + mean = np.array([0.0, 0.0]) |
| 58 | + cov = np.array([[1.0, x_corr], [x_corr, 1.0]]) |
| 59 | + x = rng.multivariate_normal(mean, cov, size=n_rows, method="cholesky") |
| 60 | + x1 = x[:, 0].astype(np.float32); x2 = x[:, 1].astype(np.float32) |
| 61 | + eps = rng.normal(0.0, noise_sigma, size=n_rows).astype(np.float32) |
| 62 | + y = (2.0 * x1 + 3.0 * x2 + eps).astype(np.float32) |
| 63 | + df = pd.DataFrame({"group": group, "x1": x1, "x2": x2, "y": y}) |
| 64 | + return df |
| 65 | + |
| 66 | +def create_data_with_outliers(n_rows: int, n_groups: int, *, outlier_pct: float = 0.10, outlier_magnitude: float = 5.0, |
| 67 | + seed: int = 42, noise_sigma: float = 1.0, x_corr: float = 0.0) -> pd.DataFrame: |
| 68 | + df = create_clean_data(n_rows, n_groups, seed=seed, noise_sigma=noise_sigma, x_corr=x_corr) |
| 69 | + rng = np.random.default_rng(seed + 1337) |
| 70 | + k = int(math.floor(outlier_pct * n_rows)) |
| 71 | + if k > 0: |
| 72 | + idx = rng.choice(n_rows, size=k, replace=False) |
| 73 | + signs = rng.choice(np.array([-1.0, 1.0], dtype=np.float32), size=k, replace=True) |
| 74 | + shift = (outlier_magnitude * noise_sigma * signs).astype(np.float32) |
| 75 | + y = df["y"].to_numpy(copy=True) |
| 76 | + y[idx] = (y[idx] + shift).astype(np.float32) |
| 77 | + df["y"] = y |
| 78 | + return df |
| 79 | + |
| 80 | +# --- Benchmark Plumbing --- |
| 81 | +@dataclass |
| 82 | +class Scenario: |
| 83 | + name: str |
| 84 | + outlier_pct: float |
| 85 | + outlier_mag: float |
| 86 | + rows_per_group: int |
| 87 | + n_groups: int |
| 88 | + n_jobs: int |
| 89 | + fitter: str |
| 90 | + sigmaCut: float |
| 91 | + |
| 92 | +def _run_one(df: pd.DataFrame, scenario: Scenario) -> Dict[str, Any]: |
| 93 | + # Workaround for module expecting tuple keys: duplicate group |
| 94 | + df = df.copy() |
| 95 | + df["group2"] = df["group"].astype(np.int32) |
| 96 | + df["weight"] = 1.0 |
| 97 | + selection = pd.Series(True, index=df.index) |
| 98 | + |
| 99 | + t0 = time.perf_counter() |
| 100 | + _, df_params = GroupByRegressor.make_parallel_fit( |
| 101 | + df, |
| 102 | + gb_columns=["group", "group2"], |
| 103 | + fit_columns=["y"], |
| 104 | + linear_columns=["x1", "x2"], |
| 105 | + median_columns=[], |
| 106 | + weights="weight", |
| 107 | + suffix="_fit", |
| 108 | + selection=selection, |
| 109 | + addPrediction=False, |
| 110 | + n_jobs=scenario.n_jobs, |
| 111 | + min_stat=[3, 4], |
| 112 | + sigmaCut=scenario.sigmaCut, |
| 113 | + fitter=scenario.fitter, |
| 114 | + batch_size="auto", |
| 115 | + ) |
| 116 | + dt = time.perf_counter() - t0 |
| 117 | + n_groups = int(df_params.shape[0]) |
| 118 | + per_1k = dt / (n_groups / 1000.0) if n_groups else float("nan") |
| 119 | + return { |
| 120 | + "scenario": scenario.name, |
| 121 | + "config": { |
| 122 | + "n_jobs": scenario.n_jobs, |
| 123 | + "sigmaCut": scenario.sigmaCut, |
| 124 | + "fitter": scenario.fitter, |
| 125 | + "rows_per_group": scenario.rows_per_group, |
| 126 | + "n_groups": scenario.n_groups, |
| 127 | + "outlier_pct": scenario.outlier_pct, |
| 128 | + "outlier_mag": scenario.outlier_mag, |
| 129 | + }, |
| 130 | + "result": { |
| 131 | + "total_sec": dt, |
| 132 | + "sec_per_1k_groups": per_1k, |
| 133 | + "n_groups_effective": n_groups, |
| 134 | + }, |
| 135 | + } |
| 136 | + |
| 137 | +def _make_df(s: Scenario, seed: int = 7) -> pd.DataFrame: |
| 138 | + n_rows = s.rows_per_group * s.n_groups |
| 139 | + if s.outlier_pct > 0.0: |
| 140 | + return create_data_with_outliers(n_rows, s.n_groups, outlier_pct=s.outlier_pct, outlier_magnitude=s.outlier_mag, seed=seed) |
| 141 | + else: |
| 142 | + return create_clean_data(n_rows, s.n_groups, seed=seed) |
| 143 | + |
| 144 | +def _format_report(rows: List[Dict[str, Any]]) -> str: |
| 145 | + lines = [] |
| 146 | + lines.append("=" * 64); lines.append("BENCHMARK: GroupBy Regression"); lines.append("=" * 64) |
| 147 | + for r in rows: |
| 148 | + cfg = r["config"]; res = r["result"] |
| 149 | + lines.append("") |
| 150 | + lines.append(f"Scenario: {r['scenario']}") |
| 151 | + lines.append(f" Config: n_jobs={cfg['n_jobs']}, sigmaCut={cfg['sigmaCut']}, fitter={cfg['fitter']}") |
| 152 | + lines.append(f" Data: {cfg['rows_per_group']*cfg['n_groups']:,} rows, {res['n_groups_effective']:,} groups (target {cfg['n_groups']:,}), ~{cfg['rows_per_group']} rows/group") |
| 153 | + if cfg['outlier_pct']>0: |
| 154 | + lines.append(f" Outliers: {cfg['outlier_pct']*100:.0f}% at {cfg['outlier_mag']}σ") |
| 155 | + lines.append(f" Result: {res['total_sec']:.2f}s ({res['sec_per_1k_groups']:.2f}s per 1k groups)") |
| 156 | + lines.append("") |
| 157 | + return "\n".join(lines) |
| 158 | + |
| 159 | +def run_suite(args) -> Tuple[List[Dict[str, Any]], str, str, str | None]: |
| 160 | + # Build scenarios |
| 161 | + scenarios: List[Scenario] = [] |
| 162 | + |
| 163 | + # Baselines |
| 164 | + scenarios.append(Scenario("Clean Data, Serial", 0.0, 0.0, args.rows_per_group, args.groups, 1, args.fitter, args.sigmaCut)) |
| 165 | + if not args.serial_only: |
| 166 | + scenarios.append(Scenario("Clean Data, Parallel", 0.0, 0.0, args.rows_per_group, args.groups, args.n_jobs, args.fitter, args.sigmaCut)) |
| 167 | + |
| 168 | + # Outlier sets |
| 169 | + scenarios.append(Scenario("5% Outliers (3σ), Serial", 0.05, 3.0, args.rows_per_group, args.groups, 1, args.fitter, args.sigmaCut)) |
| 170 | + scenarios.append(Scenario("10% Outliers (5σ), Serial", 0.10, 5.0, args.rows_per_group, args.groups, 1, args.fitter, args.sigmaCut)) |
| 171 | + if not args.serial_only: |
| 172 | + scenarios.append(Scenario("10% Outliers (5σ), Parallel", 0.10, 5.0, args.rows_per_group, args.groups, args.n_jobs, args.fitter, args.sigmaCut)) |
| 173 | + scenarios.append(Scenario("10% Outliers (10σ), Serial", 0.10, 10.0, args.rows_per_group, args.groups, 1, args.fitter, args.sigmaCut)) |
| 174 | + |
| 175 | + # Prepare output |
| 176 | + out_dir = Path(args.out).resolve() |
| 177 | + out_dir.mkdir(parents=True, exist_ok=True) |
| 178 | + |
| 179 | + # Run |
| 180 | + results: List[Dict[str, Any]] = [] |
| 181 | + for s in scenarios: |
| 182 | + df = _make_df(s, seed=args.seed) |
| 183 | + results.append(_run_one(df, s)) |
| 184 | + |
| 185 | + # Save |
| 186 | + txt_path = out_dir / "benchmark_report.txt" |
| 187 | + json_path = out_dir / "benchmark_results.json" |
| 188 | + with open(txt_path, "w") as f: |
| 189 | + f.write(_format_report(results)) |
| 190 | + with open(json_path, "w") as f: |
| 191 | + json.dump(results, f, indent=2) |
| 192 | + |
| 193 | + csv_path = None |
| 194 | + if args.emit_csv: |
| 195 | + import csv |
| 196 | + csv_path = out_dir / "benchmark_results.csv" |
| 197 | + with open(csv_path, "w", newline="") as f: |
| 198 | + w = csv.writer(f) |
| 199 | + w.writerow(["scenario","n_jobs","sigmaCut","fitter","rows_per_group","n_groups","outlier_pct","outlier_mag","total_sec","sec_per_1k_groups","n_groups_effective"]) |
| 200 | + for r in results: |
| 201 | + cfg = r["config"]; res = r["result"] |
| 202 | + w.writerow([r["scenario"], cfg["n_jobs"], cfg["sigmaCut"], cfg["fitter"], cfg["rows_per_group"], cfg["n_groups"], cfg["outlier_pct"], cfg["outlier_mag"], res["total_sec"], res["sec_per_1k_groups"], res["n_groups_effective"]]) |
| 203 | + |
| 204 | + return results, str(txt_path), str(json_path), (str(csv_path) if csv_path else None) |
| 205 | + |
| 206 | +def parse_args(): |
| 207 | + p = argparse.ArgumentParser(description="GroupBy Regression Benchmark Suite") |
| 208 | + p.add_argument("--rows-per-group", type=int, default=5, help="Rows per group.") |
| 209 | + p.add_argument("--groups", type=int, default=10000, help="Number of groups.") |
| 210 | + p.add_argument("--n-jobs", type=int, default=4, help="Workers for parallel scenarios.") |
| 211 | + p.add_argument("--sigmaCut", type=float, default=5.0, help="Sigma cut for robust fitting.") |
| 212 | + p.add_argument("--fitter", type=str, default="ols", help="Fitter: ols|robust|huber depending on implementation.") |
| 213 | + p.add_argument("--seed", type=int, default=7, help="Random seed.") |
| 214 | + p.add_argument("--out", type=str, default="bench_out", help="Output directory.") |
| 215 | + p.add_argument("--emit-csv", action="store_true", help="Also emit CSV summary.") |
| 216 | + p.add_argument("--serial-only", action="store_true", help="Skip parallel scenarios.") |
| 217 | + p.add_argument("--quick", action="store_true", help="Small quick run: groups=200.") |
| 218 | + args = p.parse_args() |
| 219 | + if args.quick: |
| 220 | + args.groups = min(args.groups, 200) |
| 221 | + return args |
| 222 | + |
| 223 | +def main(): |
| 224 | + args = parse_args() |
| 225 | + results, txt_path, json_path, csv_path = run_suite(args) |
| 226 | + print(_format_report(results)) |
| 227 | + print("\nSaved outputs:") |
| 228 | + print(" -", txt_path) |
| 229 | + print(" -", json_path) |
| 230 | + if csv_path: print(" -", csv_path) |
| 231 | + |
| 232 | +if __name__ == "__main__": |
| 233 | + main() |
0 commit comments