diff --git a/pyNN/nest/standardmodels/cells.py b/pyNN/nest/standardmodels/cells.py index b2a2150d..4bc357e1 100644 --- a/pyNN/nest/standardmodels/cells.py +++ b/pyNN/nest/standardmodels/cells.py @@ -397,6 +397,31 @@ class EIF_cond_exp_isfa_ista(cells.EIF_cond_exp_isfa_ista): standard_receptor_type = True +class Kobayashi(cells.Kobayashi): + + __doc__ = cells.Kobayashi.__doc__ + + translations = build_translations( + ('cm', 'C_m', 1000.0), # C_m is in pF, cm in nF + ('i_offset', 'I_e', 1000.0), # I_e is in pA, i_offset in nA + ('tau_m', 'tau_m'), + ('v_rest', 'E_L'), + ('tau_syn_E', 'tau_syn_ex'), + ('tau_syn_I', 'tau_syn_in'), + ('tau_refrac', 't_ref'), + ('tau_1', 'tau_1'), + ('tau_2', 'tau_2'), + ('alpha_1', 'alpha_1'), + ('alpha_2', 'alpha_2'), + ('v_thresh', 'omega'), + ) + variable_map = {'v': 'V_m', 'v_th': 'V_th'} + scale_factors = {'v': 1, 'v_th': 1} + nest_name = {"on_grid": "mat2_psc_exp", + "off_grid": "mat2_psc_exp"} + standard_receptor_type = True + + class Izhikevich(cells.Izhikevich): __doc__ = cells.Izhikevich.__doc__ diff --git a/pyNN/standardmodels/cells.py b/pyNN/standardmodels/cells.py index 608f213f..d09e2d9d 100644 --- a/pyNN/standardmodels/cells.py +++ b/pyNN/standardmodels/cells.py @@ -685,6 +685,50 @@ def computed_parameters_include(self, parameter_names): ) +class Kobayashi(StandardCellType): + """ + Leaky integrate-and-fire neuron model with exponential PSCs and adaptive threshold. + + Kobayashi, R., Tsubo, Y., & Shinomoto, S. (2009). Made-to-order + spiking neuron model equipped with a multi-timescale adaptive + threshold. Frontiers in computational neuroscience, 3, 9. + + """ + + default_parameters = { + 'cm': 0.1, + 'tau_m': 5.0, + 'tau_refrac': 0.1, + 'v_rest': -70.0, + 'i_offset': 0.0, + 'tau_syn_E': 1.0, + 'tau_syn_I': 3.0, + 'tau_1': 10.0, + 'tau_2': 200.0, + 'alpha_1': 37.0, + 'alpha_2': 2.0, + 'v_thresh': 19.0 + } + recordable = ['spikes', 'v', 'v_th'] + units = { + 'cm': 'nF', + 'tau_m': 'ms', + 'tau_refrac': 'ms', + 'v_rest': 'mV', + 'i_offset': 'nA', + 'tau_syn_E': 'ms', + 'tau_syn_I': 'ms', + 'tau_1': 'ms', + 'tau_2': 'ms', + 'alpha_1': 'mV', + 'alpha_2': 'mV', + 'v_thresh': 'mV', + 'v': 'mV', + 'v_th': 'mV', + 'v_reset': 'mV' + } + + class Izhikevich(StandardCellType): """ Izhikevich spiking model with a quadratic non-linearity according to: