@@ -43,7 +43,7 @@ Marchette, David J., and Jeffrey L. Solka. "Using data images for outlier detect
4343Computational Statistics & Data Analysis 43.4 (2003): 541-552.
4444"""
4545function euclideanDistances (dataMatrix:: AbstractMatrix{Float64} ):: AbstractMatrix{Float64}
46- n, _ = size (dataMatrix)
46+ n = size (dataMatrix, 1 )
4747 d = zeros (Float64, n, n)
4848 for i ∈ 1 : n
4949 for j ∈ i: n
5959
6060
6161function mahalanobisSquaredBetweenPairs (pairs:: AbstractMatrix{Float64} ; covmatrix = nothing ):: Union{Nothing, AbstractMatrix}
62- n, _ = size (pairs)
62+ n = size (pairs, 1 )
6363 newmat = zeros (Float64, n, n)
6464 if isnothing (covmatrix)
6565 covmatrix = cov (pairs)
@@ -103,7 +103,7 @@ Computational Statistics & Data Analysis 43.4 (2003): 541-552.
103103"""
104104function mahalanobisBetweenPairs (dataMatrix:: AbstractMatrix{Float64} ):: Union{Nothing, Matrix}
105105
106- n, _ = size (dataMatrix)
106+ n = size (dataMatrix, 1 )
107107
108108 d = zeros (Float64, n, n)
109109
@@ -153,7 +153,7 @@ julia> coordinatwisemedians(mat)
153153```
154154"""
155155function coordinatwisemedians (datamat:: AbstractMatrix{Float64} ):: AbstractVector{Float64}
156- _, p = size (datamat)
156+ p = size (datamat, 2 )
157157 meds = map (i -> median (datamat[:, i]), 1 : p)
158158 return meds
159159end
@@ -200,7 +200,7 @@ function dffit(setting::RegressionSetting, i::Int)::Float64
200200end
201201
202202function dffit (X:: AbstractMatrix{Float64} , y:: AbstractVector{Float64} , i:: Int ):: Float64
203- n, _ = size (X)
203+ n = size (X, 1 )
204204 indices = [j for j ∈ 1 : n if i != j]
205205 olsfull = ols (X, y)
206206 Xsub = X[indices, :]
@@ -256,13 +256,13 @@ Belsley, David A., Edwin Kuh, and Roy E. Welsch. Regression diagnostics:
256256Identifying influential data and sources of collinearity. Vol. 571. John Wiley & Sons, 2005.
257257"""
258258function dffits (setting:: RegressionSetting ):: AbstractVector{Float64}
259- n, _ = size (setting. data)
259+ n = size (setting. data, 1 )
260260 result = [dffit (setting, i) for i ∈ 1 : n]
261261 return result
262262end
263263
264264function dffits (X:: AbstractMatrix{Float64} , y:: AbstractVector{Float64} ):: AbstractVector{Float64}
265- n, _ = size (X)
265+ n = size (X, 1 )
266266 result = [dffit (X, y, i) for i ∈ 1 : n]
267267 return result
268268end
398398
399399function adjustedResiduals (X:: AbstractMatrix{Float64} , y:: AbstractVector{Float64} ):: AbstractVector{Float64}
400400 olsreg = ols (X, y)
401- n, _ = size (X)
401+ n = size (X, 1 )
402402 e = residuals (olsreg)
403403 hat = hatmatrix (X)
404404 stde = [e[i] / (sqrt (1 - hat[i, i])) for i ∈ 1 : n]
0 commit comments