@@ -44,7 +44,7 @@ Reserved Notation "<< k >>" (format "<< k >>").
4444Reserved Notation "g @_ k"
4545 (at level 3, k at level 2, left associativity, format "g @_ k").
4646Reserved Notation "c %:MP" (format "c %:MP").
47- Reserved Notation "''X_{1..' n '}'".
47+ Reserved Notation "''X_{1..' n '}'" (n at level 2) .
4848Reserved Notation "'U_(' n )" (format "'U_(' n )").
4949Reserved Notation "x ^[ f , g ]" (at level 1, format "x ^[ f , g ]").
5050
@@ -244,12 +244,13 @@ Definition mcoeff (x : K) (g : {malg G[K]}) : G := malg_val g x.
244244#[deprecated(since="multinomials 2.5.0", note="Use Malg instead")]
245245Definition mkmalg : {fsfun K -> G with 0} -> {malg G[K]} := @Malg K G.
246246
247- Definition mkmalgU (k : K) (x : G) := [malg y in [fset k] => x].
248-
249247Definition msupp (g : {malg G[K]}) : {fset K} := finsupp (malg_val g).
250248
251249End MalgBaseOp.
252250
251+ HB.lock Definition mkmalgU (K : choiceType) (G : nmodType) (k : K) (x : G) :=
252+ [malg y in [fset k] => x].
253+
253254Arguments mcoeff {K G} x%_monom_scope g%_ring_scope.
254255#[warning="-deprecated-reference"]
255256Arguments mkmalg {K G} _.
@@ -350,7 +351,7 @@ Lemma mcoeffD k : {morph mcoeff k: x y / x + y}. Proof. exact: raddfD. Qed.
350351Lemma mcoeffMn k n : {morph mcoeff k: x / x *+ n} . Proof . exact: raddfMn. Qed .
351352
352353Lemma mcoeffU k x k' : << x *g k >>@_k' = x *+ (k == k').
353- Proof . by rewrite [LHS]fsfunE inE mulrb eq_sym. Qed .
354+ Proof . by rewrite unlock [LHS]fsfunE inE mulrb eq_sym. Qed .
354355
355356Lemma mcoeffUU k x : << x *g k >>@_k = x.
356357Proof . by rewrite mcoeffU eqxx. Qed .
@@ -986,6 +987,9 @@ HB.instance Definition _ :=
986987HB.instance Definition _ :=
987988 GRing.LSemiModule_isLSemiAlgebra.Build R {malg R[K]} (@fgscaleAl K R).
988989
990+ (* FIXME: HB.saturate *)
991+ HB.instance Definition _ := GRing.RMorphism.on (mcoeff 1 : {malg R[K]} -> R).
992+
989993End MalgNzSemiRingTheory.
990994
991995(* -------------------------------------------------------------------- *)
@@ -1294,7 +1298,7 @@ Arguments monalgOver_pred _ _ _ _ /.
12941298
12951299(* -------------------------------------------------------------------- *)
12961300HB.mixin Record isMeasure (M : monomType) (mf : M -> nat) := {
1297- mf0 : mf 1%M = 0%N;
1301+ mf1 : mf 1%M = 0%N;
12981302 mfM : {morph mf : m1 m2 / (m1 * m2)%M >-> (m1 + m2)%N};
12991303 mf_eq0I : forall m, mf m = 0%N -> m = 1%M
13001304}.
@@ -1314,7 +1318,7 @@ Context (M : monomType) (G : nmodType) (mf : measure M).
13141318Implicit Types (g : {malg G[M]}).
13151319
13161320Lemma mf_eq0 m : (mf m == 0%N) = (m == 1%M).
1317- Proof . by apply/eqP/eqP=> [|->]; rewrite ?mf0 // => /mf_eq0I. Qed .
1321+ Proof . by apply/eqP/eqP=> [|->]; rewrite ?mf1 // => /mf_eq0I. Qed .
13181322
13191323Definition mmeasure g := (\max_(m <- msupp g) (mf m).+1)%N.
13201324
@@ -1336,7 +1340,7 @@ Proof. by apply/contraTN=> /mmeasure_mnm_lt; rewrite leqNgt ltnS. Qed.
13361340Lemma mmeasureC c : mmeasure c%:MP = (c != 0%R) :> nat.
13371341Proof .
13381342rewrite mmeasureE msuppC; case: (_ == 0)=> /=.
1339- by rewrite big_nil. by rewrite big_seq_fset1 mf0 .
1343+ by rewrite big_nil. by rewrite big_seq_fset1 mf1 .
13401344Qed .
13411345
13421346Lemma mmeasureD_le g1 g2 :
@@ -1395,6 +1399,9 @@ Canonical cmonom_unlockable k := [unlockable fun cmonom_of_fsfun k].
13951399
13961400End CmonomDef.
13971401
1402+ Arguments cmonom_val : simpl never.
1403+ Bind Scope monom_scope with cmonom.
1404+
13981405Notation "{ 'cmonom' I }" := (cmonom I) : type_scope.
13991406Notation "''X_{1..' n '}'" := (cmonom 'I_n) : type_scope.
14001407Notation "{ 'mpoly' R [ n ] }" := {malg R['X_{1..n}]} : type_scope.
@@ -1412,8 +1419,8 @@ Section CmonomCanonicals.
14121419
14131420Context (I : choiceType).
14141421
1415- HB.instance Definition _ := [isNew for @cmonom_val I].
1416- HB.instance Definition _ := [Choice of cmonom I by <:].
1422+ #[hnf] HB.instance Definition _ := [isNew for @cmonom_val I].
1423+ #[hnf] HB.instance Definition _ := [Choice of cmonom I by <:].
14171424
14181425(* -------------------------------------------------------------------- *)
14191426Implicit Types (m : cmonom I).
@@ -1426,7 +1433,7 @@ Proof.
14261433by rewrite [mkcmonom]unlock.
14271434Qed .
14281435
1429- Lemma cmP m1 m2 : reflect (forall i, m1 i = m2 i ) (m1 == m2).
1436+ Lemma cmP m1 m2 : reflect (m1 =1 m2) (m1 == m2).
14301437Proof . by apply: (iffP eqP) => [->//|eq]; apply/val_inj/fsfunP. Qed .
14311438
14321439Definition onecm : cmonom I := CMonom [fsfun of _ => 0%N].
@@ -1472,12 +1479,16 @@ move: m1 m2; have gen m1 m2 : mulcm m1 m2 = onecm -> m1 = onecm.
14721479by move=> m1 m2 h; split; move: h; last rewrite mulcmC; apply/gen.
14731480Qed .
14741481
1482+ #[hnf]
14751483HB.instance Definition _ := Choice_isMonomialDef.Build (cmonom I)
14761484 mulcmA mul0cm mulcm0 mulcm_eq0.
1485+ #[hnf]
14771486HB.instance Definition _ := MonomialDef_isConomialDef.Build (cmonom I) mulcmC.
14781487
14791488End CmonomCanonicals.
14801489
1490+ HB.instance Definition _ (I : countType) := [Countable of cmonom I by <:].
1491+
14811492(* -------------------------------------------------------------------- *)
14821493Definition mdeg {I : choiceType} (m : cmonom I) :=
14831494 (\sum_(k <- finsupp m) m k)%N.
@@ -1672,6 +1683,8 @@ Canonical fmonom_unlockable k := [unlockable fun fmonom_of_seq k].
16721683
16731684End FmonomDef.
16741685
1686+ Bind Scope monom_scope with fmonom.
1687+
16751688Notation "{ 'fmonom' I }" := (fmonom I) : type_scope.
16761689
16771690Local Notation mkfmonom s := (fmonom_of_seq fmonom_key s).
@@ -1728,6 +1741,8 @@ HB.instance Definition _ := Choice_isMonomialDef.Build (fmonom I)
17281741
17291742End FmonomCanonicals.
17301743
1744+ HB.instance Definition _ (I : countType) := [Countable of fmonom I by <:].
1745+
17311746(* -------------------------------------------------------------------- *)
17321747Definition fdeg (I : choiceType) (m : fmonom I) := size m.
17331748
0 commit comments