From ac5d8dec2b6303e5a473673754f6590710815f2b Mon Sep 17 00:00:00 2001 From: Jeff Shepherd Date: Thu, 15 Jan 2026 16:25:30 +0000 Subject: [PATCH 01/12] add Met Office example notebooks --- ...t-office-global-deterministic-height.ipynb | 138 +++++++++++++++++ ...ce-global-deterministic-near-surface.ipynb | 138 +++++++++++++++++ ...office-global-deterministic-pressure.ipynb | 138 +++++++++++++++++ ...lobal-deterministic-whole-atmosphere.ipynb | 139 ++++++++++++++++++ .../met-office-uk-deterministic-height.ipynb | 138 +++++++++++++++++ ...office-uk-deterministic-near-surface.ipynb | 138 +++++++++++++++++ ...met-office-uk-deterministic-pressure.ipynb | 138 +++++++++++++++++ ...ce-uk-deterministic-whole-atmosphere.ipynb | 139 ++++++++++++++++++ 8 files changed, 1106 insertions(+) create mode 100644 datasets/met-office/met-office-global-deterministic-height.ipynb create mode 100644 datasets/met-office/met-office-global-deterministic-near-surface.ipynb create mode 100644 datasets/met-office/met-office-global-deterministic-pressure.ipynb create mode 100644 datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb create mode 100644 datasets/met-office/met-office-uk-deterministic-height.ipynb create mode 100644 datasets/met-office/met-office-uk-deterministic-near-surface.ipynb create mode 100644 datasets/met-office/met-office-uk-deterministic-pressure.ipynb create mode 100644 datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb diff --git a/datasets/met-office/met-office-global-deterministic-height.ipynb b/datasets/met-office/met-office-global-deterministic-height.ipynb new file mode 100644 index 0000000..d179b1c --- /dev/null +++ b/datasets/met-office/met-office-global-deterministic-height.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing Global Height data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2132d393", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-global-deterministic-height\"]\n", + "asset_id = \"cloud_amount_on_height_levels\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2026-01-14T12:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0144H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "dec7c74b", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "ee73ba3d", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fbc72d2a", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"cloud_volume_fraction_in_atmosphere_layer\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb new file mode 100644 index 0000000..b188188 --- /dev/null +++ b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing Global Surface data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2132d393", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-global-deterministic-near-surface\"]\n", + "asset_id = \"temperature_at_surface\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T12:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0120H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "dec7c74b", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "ee73ba3d", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fbc72d2a", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"surface_temperature\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-global-deterministic-pressure.ipynb b/datasets/met-office/met-office-global-deterministic-pressure.ipynb new file mode 100644 index 0000000..1b2abfe --- /dev/null +++ b/datasets/met-office/met-office-global-deterministic-pressure.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing Global Pressure data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2132d393", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-global-deterministic-pressure\"]\n", + "asset_id = \"wind_speed_on_pressure_levels\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T12:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0135H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "dec7c74b", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "ee73ba3d", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fbc72d2a", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"cloud_volume_fraction_in_atmosphere_layer\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb new file mode 100644 index 0000000..812ea10 --- /dev/null +++ b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing Global Whole Atmosphere data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2132d393", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-global-deterministic-whole-atmosphere\"]\n", + "asset_id = \"CAPE_most_unstable_below_500hPa\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T12:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0081H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "dec7c74b", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "ee73ba3d", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fbc72d2a", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"atmosphere_convective_available_potential_energy\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-uk-deterministic-height.ipynb b/datasets/met-office/met-office-uk-deterministic-height.ipynb new file mode 100644 index 0000000..f248922 --- /dev/null +++ b/datasets/met-office/met-office-uk-deterministic-height.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing UK Model Height data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2cab8be1", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f95ecac", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-uk-deterministic-height\"]\n", + "asset_id = \"wind_speed_on_height_levels\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T18:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0032H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "56d27e19", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45613dda", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"wind_speed\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb new file mode 100644 index 0000000..84fbcaa --- /dev/null +++ b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing UK Model Surface data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2cab8be1", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f95ecac", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-uk-deterministic-near-surface\"]\n", + "asset_id = \"temperature_at_surface\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T18:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0001H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "56d27e19", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45613dda", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"surface_temperature\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb new file mode 100644 index 0000000..17d5ee7 --- /dev/null +++ b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing UK Model Pressure Level data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2cab8be1", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f95ecac", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-uk-deterministic-pressure\"]\n", + "asset_id = \"wet_bulb_potential_temperature_on_pressure_levels\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2026-01-14T12:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0052H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "56d27e19", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45613dda", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"wet_bulb_potential_temperature\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb new file mode 100644 index 0000000..f8bde1f --- /dev/null +++ b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fbf471b1", + "metadata": {}, + "source": [ + "# Accessing UK Model Whole Atmosphere data from Microsoft Planetary Computer" + ] + }, + { + "cell_type": "markdown", + "id": "941120d0", + "metadata": {}, + "source": [ + "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bafd899", + "metadata": {}, + "outputs": [], + "source": [ + "from pystac_client import Client\n", + "import planetary_computer\n", + "\n", + "catalog = Client.open(\n", + " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", + " modifier=planetary_computer.sign_inplace,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2cab8be1", + "metadata": {}, + "source": [ + "Define collection and assets to retrieve and construct [STAC API filters](https://github.com/stac-api-extensions/filter) for efficient query performance against Planetary Computer API" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f95ecac", + "metadata": {}, + "outputs": [], + "source": [ + "collections = [\"met-office-uk-deterministic-whole-atmosphere\"]\n", + "asset_id = \"lightning_flash_accumulation-PT01H\"\n", + "datacube_extension_filters = {\n", + " \"op\": \"and\",\n", + " \"args\": [\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T18:00:00Z\" ]\n", + " },\n", + " {\n", + " \"op\": \"=\",\n", + " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0037H00M\" ]\n", + " }\n", + " ]\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "b5a6a858", + "metadata": {}, + "source": [ + "Search Planetary Computer catalog for STAC items and retrieve STAC Asset URL" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb71afa", + "metadata": {}, + "outputs": [], + "source": [ + "search = catalog.search(\n", + " collections=collections,\n", + " filter_lang= \"cql2-json\",\n", + " filter=datacube_extension_filters\n", + ")\n", + "\n", + "items = search.item_collection()\n", + "asset_url = items.items[0].assets[asset_id].href" + ] + }, + { + "cell_type": "markdown", + "id": "56d27e19", + "metadata": {}, + "source": [ + "Example usage: Plot NetCDF data on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45613dda", + "metadata": {}, + "outputs": [], + "source": [ + "import fsspec\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "\n", + "plt.figure(figsize=(10, 5))\n", + "example_netcdf[\"number_of_lightning_flashes_per_unit_area\"].plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From e16b6dbda5cc4b3255d285f0a12f01a211c8ace1 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Thu, 22 Jan 2026 10:56:14 -0700 Subject: [PATCH 02/12] fix: variable names and lint Not complete b/c some of the queries don't return --- ...t-office-global-deterministic-height.ipynb | 65 +++++++++++++---- ...ce-global-deterministic-near-surface.ipynb | 63 +++++++++++----- ...office-global-deterministic-pressure.ipynb | 71 ++++++++++++++----- ...lobal-deterministic-whole-atmosphere.ipynb | 63 +++++++++++----- .../met-office-uk-deterministic-height.ipynb | 67 ++++++++++++----- ...office-uk-deterministic-near-surface.ipynb | 41 +++++++---- ...met-office-uk-deterministic-pressure.ipynb | 20 +++--- ...ce-uk-deterministic-whole-atmosphere.ipynb | 20 +++--- 8 files changed, 289 insertions(+), 121 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-height.ipynb b/datasets/met-office/met-office-global-deterministic-height.ipynb index d179b1c..e272b78 100644 --- a/datasets/met-office/met-office-global-deterministic-height.ipynb +++ b/datasets/met-office/met-office-global-deterministic-height.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -49,18 +49,18 @@ "source": [ "collections = [\"met-office-global-deterministic-height\"]\n", "asset_id = \"cloud_amount_on_height_levels\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2026-01-14T12:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2026-01-14T12:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0144H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0144H00M\"]},\n", + " ],\n", "}" ] }, @@ -80,9 +80,7 @@ "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -99,10 +97,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "fbc72d2a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_52053/4283676169.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", + "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", + "To opt-in to future behavior, set `decode_timedelta=False`.\n", + " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" + ] + }, + { + "data": { + "text/plain": [ + "(array([1.1830823e+08, 4.1727080e+06, 3.3227110e+06, 2.9464680e+06,\n", + " 2.9334310e+06, 3.5162350e+06, 3.6568460e+06, 3.9844160e+06,\n", + " 4.1094160e+06, 1.5251139e+07]),\n", + " array([0. , 0.1 , 0.2 , 0.30000001, 0.40000001,\n", + " 0.5 , 0.60000002, 0.69999999, 0.80000001, 0.90000004,\n", + " 1. ]),\n", + " )" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAHnCAYAAABwjihsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR/FJREFUeJzt3Qv8TVX+//GP+6VyS4iUUiT3iCSji5gyov6VUWFEuqhEF3RBqaiJNCWGSpdJlEnTLyKJJBrl0qjQyDXjWvIVIuz/471+v33mnON8v87he13f1/PxOOXssy9r77PP/u7PXmt9VoEgCAIDAAAAAI8UzOkCAAAAAEBmI9ABAAAA4B0CHQAAAADeIdABAAAA4B0CHQAAAADeIdABAAAA4B0CHQAAAADeIdABAAAA4B0CHQAAAADeIdABcoEvvvjCLrjgAjvuuOOsQIECtnTp0pwuEsxs7dq17vt45ZVXMu14DB482K3TB9WqVbM//elPOV0MZJMtW7bYNddcYyeeeKI7h0eOHMmxz2J//vOf7YwzzrBChQpZgwYNON5Aigh0gBz222+/2bXXXms//fSTPfPMM/b666/baaedZj6bMGECN0k54KOPPrJLLrnESpcubSeccII1atTIJk2aZD46dOiQPfXUU3b66adb8eLFrV69evbmm28mnHf58uX2+9//3o4//ngrV66cde7c2bZt25b0tn7++Wfr2bOnnXTSSe5hxcUXX2yLFy9OOO97771n5557rivTqaeeaoMGDbIDBw4kva1ky5rK/ierT58+NmPGDBswYIC7TqkcPps/f757MKHvNyd8+OGHdv/991vz5s1t/Pjx9sQTT+RIOYC8rHBOFwDI777//ntbt26djRs3znr06GH5gQKdr7/+2u6++27LzRRw7t2714oUKWJ5nW6Uunfvbpdddpm7YdIT4pUrV9qGDRvMRw8++KANGzbMbr75ZjvvvPPsH//4h11//fWuJuKPf/xjZL4ffvjBfve737ngT8fll19+saefftqWLVtmCxcutKJFi2a4HQUUbdu2ta+++sruu+8+K1++vL3wwgt20UUX2aJFi+yss86KzPvBBx9Yhw4d3GfPPfec28Zjjz1mW7dutdGjRx9xn1Ipa7L7n4qPP/7Y2rdvb/fee6/lBwp0HnnkEVdrWaZMmWzfvo53wYIF7aWXXjrieQggHQGAHPXJJ58E+im+/fbbmbbOX375JcjN2rZtG5x22mlBbvXbb78F+/bty5J1Dxo0yH3f2WnNmjVBiRIlgrvuuitT16vvsGvXrkFu88MPPwRFihQJevXqFZl26NChoEWLFsEpp5wSHDhwIDL9tttuc8dm3bp1kWkzZ85039Ff//rXI25r0qRJh/1+t27dGpQpUybo1KlTzLznnHNOUL9+fXd+hR588MGgQIECwfLly4+4rWTLmsr+p0LljF7nsdq7d29w8ODBILf685//7I6tfj85cV3u1q1bcNxxx2XKtoH8ikAHyEG6SdQf0uhXy5YtI5/PmjUruPDCC4OSJUsGpUuXDq688srg22+/TXjj/M0337gbK91gNWjQIPL566+/Hpx77rlB8eLFg7JlywYdO3YM1q9ff1hZPv/88+Dyyy93y2t7devWDUaOHBn5/KuvvnLlPf3004NixYoFFStWdH+It2/fHrOetLS0oHfv3u4muGjRosFJJ50UtGrVKli0aJH7XPsXv8+pBD2aV4HSjBkz3E2jylKrVq3g73//+2Hz7tixw5VFN3cqS/Xq1YNhw4bF3FzpJkZl0E3NM888E5xxxhlBwYIFgyVLlkQ+Gz9+fMx6k/le5NNPPw0aN27syqj1jhkzJkcCnX79+rn9//nnn937Xbt2uRvfZGneIUOGBFWqVHE32hdddFHw9ddfHxbo/Pjjj8E999wT1KlTx92gnXDCCcHvf//7YOnSpZF5tG0dt0RB14YNG9yxf+KJJ9z7/fv3B4MHDw7OPPNMdwzLlSsXNG/ePPjwww8zLO+oUaMiv4loEyZMcNP1vYQqVKgQXHvttYeto0aNGsGll14aM23VqlXuFU3L6rcQf8Pes2dPt5+//vqre6+yaNsqW7SNGze66Tq+Ie23Ap///Oc/MfMmW9ZU9j8ZOv/jf7PR5/D3338fXHPNNe76ovOjadOmwfvvvx+zjtmzZ7tl3nzzTRfcVa5c2QVO+o2G1582bdoEpUqVcuv43e9+F8ybN++wsiiIu+mmm4KTTz7ZndPVqlULbr311siDiWTOwdBf/vIXF3xqe7ruNWrUKHjjjTfcZ+HvNP6VbNCj34W2r/NF19Xjjz8+aN++vftM54quNdq2zmt9rzpffvrpp8jyibYdfx0CcGQ0XQNy0C233GJVqlRxzVDuuusu18SkYsWKkf4Ul19+ueuIqnbiakKl5i5qr632/+oIHk39fNRMRuv637+TZo8//rg9/PDDdt1117lmcWrLr3Wo+cuSJUsizTFmzpxpf/jDH+zkk0+23r17W6VKlVxfgPfff9+9D+dZvXq1devWzX3+zTff2NixY93/P//880gH+1tvvdUmT55sd9xxh51zzjn2448/2rx589z61DdBTWp27tzpmuGoT5Kov0Eq/v3vf1vHjh3dtrp27eqaZWn/p0+f7ppmyZ49e6xly5a2ceNGd5zVH0JNUdS/YNOmTYf1EdI6fv31V9fXolixYq7/g5olxUv2e1FzotatW7t+G5pP/TDUHyP8fo9E5dfrSNQErWzZshnOozKfffbZNm3aNNe8SsdEy/Tq1cs1zVHzmIwMHDjQNbG64oor3Ev7qX3bv39/zHw6P9599133XahviDqv//Wvf3Xfw7fffmuVK1d23/VVV13l+gaNGDHClT+kPiQ6d2+44Qb3Xsdt6NCh7txt0qSJpaWl2Zdffum2H37PiejcVl+ZWrVqxUzXOsLPL7zwQncc1GyscePGh61D8+p4Rbv00ksjSSqit6XzOv4Yann9Pr777jurW7eum0/it6Vjcsopp0Q+F5VLZde5HSbCSKWsye5/snS9UJ8c9QfSce/SpUvkM33HSqSic1XXMCUqePXVV+3KK6901wF919GGDBnimmGp+du+ffvcv9VES78p9RnTb0THUr9H9Sf79NNPI+X+z3/+4/4d9onSOa3jou1o+1pXMuegqKmwyqvkCrrG6bf/r3/9y/75z3+6Jn5XX321++50Tuo6pSaJot9zsvSbb9OmjTvWamJYsmRJN13XI32vupaqDGvWrLHnn3/efS+fffaZayqr463zR00SX3zxRbecjjOAFCURDAHIQuGTzvima6qV0ZM+PaGMrlXRE+8uXbpEpoVPHuObyaxduzYoVKhQ8Pjjj8dMX7ZsWVC4cOHIdDVjUS2Nns6HT1dD0U/99+zZc1jZ9XRW2547d25kmmo4jtS85Viarmk5bTO6Bmfnzp3uCW/Dhg0j0/SEXE9Uv/vuu5jl+/fv745LWKsV1troSbKaHEVLVKOT7PfSoUMHV4sW3cxItT7adjKX3vSeKB9NbZj2TU/b9fT44YcfDiZPnhxcf/31bnkdj4zomOjJub6z6PPhgQcecMtH1+io9iK+ZkPHUNt99NFHI9NUG6dlP/jgg5h569WrF1OjqRo7bTdVWkY1aPF2794ds89ffPGFe//aa68dNu99993nPgtrZETHOv546xxTDUO8qVOnuuWnT58e0wwqUW3qeeedF5x//vmHnXfRxzaVsia7/6nSsvG/7bvvvvuwWiLV2umaotqW8HwIr3MqV/S1ROfUWWed5Wpz4q83Wsdll10Wmabfl35nOhbxwmWTPQdVu1K7du0sa7oW1tbHH2sdJ00Pa45COk/ip4e1QgCOHlnXgFxINQ5KMa1OsKpZCClzkp6oxj9pFtVuRHvnnXdcjYRqc7Zv3x55qTZGNT+zZ8928+kpop4oKjFAfIfb6DTIJUqUiPxbTz+1rvPPP9+9j84wpXXoqaievmYVPZWNflJcqlQp95RZ+7J582Y37e2337YWLVq4movo/W/VqpUdPHjQ5s6dG7PO//f//t8Rn9Ym+71o/cpOpY7nqkkK6Qm7nvAmQ/ujWrQjvd54440jrkud1nfs2OFqbx599FG3r1pOWbOeffZZ27VrV4a1Qaq5ufPOO2POh0SJJFQTFtZs6BioNk81ODVr1ow5R/Qd6DuMLruSU+iJ+o033hhzLqnGUDV4qVAtm8oST9nHws+j/5/MvGFNTnRtTmZuK3o7qhVUXBGd1jyVsiZbpsygc161LNE1RPrOVeOiY6ValGiqpYq+luj3pO9XtSg6X8Lf6e7du10Nmn6nuo7ppZqadu3aJazVCs/NZM9BnVuqVVZq/6x02223xbzXdUnJJHS9iL4uqTZL5QyvywAyR55quqYLnnLKK5ONbjimTJnibiRSoZsPVY3rj6cu+qqSHz58+GHNgICcpCxsoj/O8XSzrPNYNwJqnhJSM41ounnQzVJ01qdoYSYxZX2TOnXqZFgmpb/WjfLEiRNdE5poaooWUkpb3cxUrVrV/fFWUyfdtKupV2Y588wzDxuLpkaNGu7/urlSMKf9141zesFL/D7EH79j+V4UOOhmMtGx17KJAtV4Ol6Zdcx0Y6lyderUKWa63qu5nwJEXQsz2uf4fdFxjW8yp5tRBU7KOqbgWTeaITVpCulGVM3TlGlMTY7UpEdBj67JanIUUlCmLF/6bnV+KjBT8ykFlkfaXzWLiqcAPfw8+v/JzJvV20pmO8mWNdkyZQadH02bNj1sethsTp9HX1sSXadE14z06PqiYFtNF490nUr2HOzXr58L4hWk6XqippgKttQENbMULlzYNUuM31/tT4UKFZK6LgHIR4GO/lDXr1/fbrrpJtd+NlW66OmPZt++fd0fVV1sNC6A1pXemAdAXhF/86I/+AoGlNI2uh9EKNV+MaoZUh8X9fHQwHVaXtvQzWd0XxbNp5oUPYjQOBB6OPHkk0+6Gia1w88uKpOemmocikTCwCiUmTd/mUG1MHodib7bI9VEqfZEN1jx/YPCmy3V9mQG9Q9TnzBdo9UXQ7VeCmpU+xPf30nBr84NPaVXwKWU4+onpqfdIQVfCsSVGlnnkvoqqL/EmDFjMkzFrr5mejKuQD86INYDsvB4hPNFT4+maSp/opqR+G2lt3x629JDgPh5w34oGW0n2bImu/+55TolOhfSGxBT1xo9aMnMc1CBmNKrqx+igv2///3vLjhSfzQ90MkM0bVLIZVBv7v0amJT6QMEwLNARzdJGd0o6QmWOjqr86A6K+rJj26wNGaBqCZIT3fUqTa8+KhDpIIfDdrow1gZ8EM4YKj+EMdbsWKF6xgbXZuTSPXq1d2Njp6gxt/Ux88XNh1Sk6JEdCM8a9YsdwOgG4FQek2KdKN1++23u5eeUKqzthIjhL/f+NqYVK1ateqwmzh1HJawdlb7pUAhvX3Kyu9FNRO6oUt0fBItm4g6Lydzw6UyxTeniqeaNZVFHbeja4nC5oUZ3VyF+6zlo5dVYov4AEmdwjVYpsb9iKbrcdiZO6Trc8OGDd0Nn556r1+/3iV1iKcbVXXa1kvfp4IfJSnIKNDRDbOCIiXAUEKMkJpUhp+LEoFo35XgIJ46gSczEr3mUYd53cBG39RqW6qpCn974bq0reigRt+BmlCpqVdGUilrsvufGXR+pPd7CD/PSHj9UfPTjH6r2nfNo+tURlI5B/VbVVITvVRjpIeeuk4pYYl+w8d6nUpvf1WTpJqj3PZwBfCRV310lOVpwYIFrmmNmqyoCYSeNoc3G/pjH2ZzUcCjGh1lNtHFlSAHuYkCBd2MKHtR9Kjc+iOvJ9tqDnYk+qOtp/26WQ6zsIX0Xm3XRUGIgiFlIYsfATxcLqwRil9PfOay8HcVTU8v9QQ5uimNbjDi50uFbg5VYxRSk5bXXnvNHTM1WwtrlnQ9UHOyeNrPVEajT/V70fFSXxzVVugGPqQbz0Tlyeo+OrqRk+ibP92Y61qoQELXxvSE10cFIdHff/x3H+53/DmiPgkKsBJRMzQdN61LzYriH2SF52j0k301M0rULCuaHl6pzHpCH1K5VBOkgCE6e5X6K+mpfvTAqQrqFThHN6MT1S6FTT1DytqlzF6qsQypz4X2W/1JwlqW2rVruyxhyqQV3ZxKzfd0Q631hPTgTYFCfO1NsmVNZf+Plc55BVr6rUW3vtB+6qFDdKCViM493fwrsE9Ug6mAWvS3W03V/+d//idhsBd9rUrmHIw/t5SxTWXVsjr+Ej5Mir8uHgtdl/T9q7Ypnq5JR9qWzovoa4rofRhYRp+DmpZM5kbAa0EepaJPmTIl8l6ZjZTNSGMSRNPYAgMGDIi8nzNnjsuYFGY+atas2WGZpoDckHVNAwEqO9rZZ5/tsv8oY5DGpFH2rNWrVx+WnWvbtm2HrXvo0KHuswsuuCB46qmngtGjRwf333+/y3KkdUZn/NEAg8oopXFLNPhgnz59gtatW0fm0bgWGhdEY2C88MILLquYsmJp/SqD6LekLEHKFjRixIhg7NixwXXXXefmGT58eGRdKoumaRsa2+O9995L+nipjBo3RONeKKORxqPQmD/KxhRmuAozTGn8IB3DHj16uH1/+umnI5mMwuMVPY5OvERZ15L9XpSJTVnXTj31VDd2z2OPPebGW1Fmsey+9Cojla6FGrdE43VonBVls0p2UExdQzXvFVdcETz//PNB9+7d3Tgo5cuXj8kMNnDgQDffn/70J/fd33nnnW7sG2Xais6mFtq8ebM7llpGg2HG07Va58+TTz4ZjBs3LrjlllvcPmi9RxJmItP+alllIkuU7UpZ0E488UQ3xpLGVdEYPvoudU5FZ1xLL+uashYqY5rGSXnkkUfcsVU2L43fsmLFiph5/+d//seV/5JLLnHHR2MJ6by9+eabY+ZLlHUt1bImu//hGDnJjNGSKOuavkOd18q2qIx++j0qM6H285133jnidS78LPyt6FqiY6P/65rzhz/8IWYMnUqVKrnrkLK96dzV9UrHO/w7nuw5qGuDzmdln3zxxRfd2DvKzNauXbvIPAsXLoyc98p2pyyTyQ76mVHGNJ3HWq/G19Hx0m9K433pNxV9fBKtI36steixyaKFfxd0bIH8zJtAR4OTaZouCtEv/RHVH0rZtGmTu8HTH4DFixe7Eel1gdANQCqD5wGZKaMbgI8++sgNkKgB7ZQiWH+E0xswNFGgI0rDrMEtw9+EbtB1s7Jy5cqY+TQ4n25+dYOm+XRD/txzz8XcZFx11VUuwNBNjQYu1ICG0YGOBu3T70sBULge/VuBUTTdLCi9sdZ1LAOGqoy6OdE+JTp+SnOrm3QNOKkUyboxV9CngEeDMh5NoJPs9yK6xmgQQm07JwcMDY+FbqZ0o6jy6Ob4b3/7W1LLKl2vbuKVwjujAUN1s60bxnA+HaMFCxa462yiQEd0E6njMX/+/MM+U3DYpEkTd55offqedWMafndHKrMCgXDgWt0Mp7e/2hcF9bqB1rZuuOEGdwMfL1GgIxroUcGfghCtQ/uaKAWy6O+WAgGdtxrI9qGHHjpsf9ILdFIpa7L7r994dBrsVAOd6AFDVR4FLPrO0hswNNHvVDRA79VXX+2OoY6Nyq2/3RqcN5oeairNtB4uhAPxqkzhgKHJnoMKkhRIhdtT8Khrl1LVRwsHylVAejQDhqZHQZiuDSqjrpX6PeohVPQgsQQ6wLEroP9YHqSq/uisaxp8Tll8lE0tvuO1mjuoOYs6KKrTYXQ6SbWNVsdQVbuHqXIB5F5qDqP+HWrCg7xPacI1uKr6XSH7qSmV+nip+RkA+CZPJSPIiDq1qt2rOj4r41MiaqsanwElDIoSjYAOAMg66oMydepUl0QG2U/POefMmWN/+9vfOPwAvJSnAh11VIx+6qd00RpsTJ1pldlGNTrqwKtxcRT4qBOjOmpqzIW2bdu6l1KTamwGpTPVWBcPPPCAywqj+QHkHP1eoztpx1Nn4ehBOpF36dr92Wefucxg6jR/yy235HSR8iW1jGDcltQoicqRBlwNE6IAyHl5KtBRphWljQxpPJxwoDGNIK0MQkodfc8997gMK0olqeZoGptBLrnkEjdWgwY01EupP5s1a+aas5HmEchZ5513XmRwykRatmzpnj4j7/vkk09cuuhTTz3VZbDjxhB5Re/evd05m5E82iMA8FKe7aMDwC96wp/Rk9KyZctmmAYZALLat99+Gxl/Kj2ZOXYXgGNDoAMAAADAO14NGAoAAAAAeaaPjjKiqar4hBNOcJ0nAQAAAORPQRC4pGKVK1c+LKNyngt0FORorBsAAAAAkA0bNtgpp5xieTrQUU1OuDOlSpXK6eIAAAAAyCFpaWmuEiSMEfJ0oBM2V1OQQ6ADAAAAoMARurSQjAAAAACAdwh0AAAAAHiHQAcAAACAdwh0AAAAAHiHQAcAAACAdwh0AAAAAHgn5UBn7ty51q5dOzcSqVK6vfvuuxnO/84779hll11mJ510kksN3axZM5sxY8axlBkAAAAAMjfQ2b17t9WvX99GjRqVdGCkQGfatGm2aNEiu/jii12gtGTJklQ3DQAAAABJKRAEQXDUCxcoYFOmTLEOHTqktFzt2rWtY8eONnDgwKRHPy1durTt3LmTAUMBAACAfCwtydigcLaWyswOHTpku3btsnLlyqU7z759+9wremcAAAAAINcmI3j66aftl19+seuuuy7deYYOHeqitPBVtWrVbC0jAAAAgLwtWwOdCRMm2COPPGJvvfWWVahQId35BgwY4KqiwteGDRuys5gAAAAA8rhsa7o2ceJE69Gjh7399tvWqlWrDOctVqyYewEAAABArq3RefPNN61bt27u/23bts2OTQIAAADIx1Ku0VH/mlWrVkXer1mzxpYuXeqSC5x66qmu2dnGjRvttddeizRX69q1qz377LPWtGlT27x5s5teokQJ1/8GAAAAAHK8RufLL7+0hg0bupf07dvX/TtMFb1p0yZbv359ZP6xY8fagQMHrFevXnbyySdHXr17987M/QAAAACAzBlHJ7vktnF0qvWfmtNFyJXWDqNZIgAAAHJHbJDt6aUBAAAAIKsR6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO+kHOjMnTvX2rVrZ5UrV7YCBQrYu+++e8Rl5syZY+eee64VK1bMzjzzTHvllVeOtrwAAAAAkPmBzu7du61+/fo2atSopOZfs2aNtW3b1i6++GJbunSp3X333dajRw+bMWNGqpsGAAAAgKQUthRdfvnl7pWsMWPG2Omnn27Dhw9372vVqmXz5s2zZ555xtq0aZPq5gEAAAAg5/voLFiwwFq1ahUzTQGOpqdn3759lpaWFvMCAAAAgFwT6GzevNkqVqwYM03vFbzs3bs34TJDhw610qVLR15Vq1bN6mICAAAA8EiuzLo2YMAA27lzZ+S1YcOGnC4SAAAAgDwk5T46qapUqZJt2bIlZprelypVykqUKJFwGWVn0wsAAAAAcmWNTrNmzWzWrFkx02bOnOmmAwAAAECuCHR++eUXlyZarzB9tP69fv36SLOzLl26ROa/9dZbbfXq1Xb//ffbihUr7IUXXrC33nrL+vTpk5n7AQAAAABHH+h8+eWX1rBhQ/eSvn37un8PHDjQvd+0aVMk6BGllp46daqrxdH4O0oz/eKLL5JaGgAAAECWKRAEQWC5nDK0KfuaEhOob09Oq9Z/ak4XIVdaO6xtThcBAAAAnktLMjbIlVnXAAAAAOBYEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvHFWgM2rUKKtWrZoVL17cmjZtagsXLsxw/pEjR1rNmjWtRIkSVrVqVevTp4/9+uuvR1tmAAAAAMjcQGfSpEnWt29fGzRokC1evNjq169vbdq0sa1btyacf8KECda/f383//Lly+2ll15y63jggQdS3TQAAAAAZE2gM2LECLv55putW7duds4559iYMWOsZMmS9vLLLyecf/78+da8eXO7/vrrXS1Q69atrVOnTkesBQIAAACAbAl09u/fb4sWLbJWrVr9dwUFC7r3CxYsSLjMBRdc4JYJA5vVq1fbtGnT7Iorrkh3O/v27bO0tLSYFwAAAAAkq3DSc5rZ9u3b7eDBg1axYsWY6Xq/YsWKhMuoJkfLXXjhhRYEgR04cMBuvfXWDJuuDR061B555JFUigYAAAAA2Zd1bc6cOfbEE0/YCy+84Pr0vPPOOzZ16lQbMmRIussMGDDAdu7cGXlt2LAhq4sJAAAAIL/W6JQvX94KFSpkW7ZsiZmu95UqVUq4zMMPP2ydO3e2Hj16uPd169a13bt3W8+ePe3BBx90Td/iFStWzL0AAAAAIMtrdIoWLWqNGjWyWbNmRaYdOnTIvW/WrFnCZfbs2XNYMKNgSdSUDQAAAABytEZHlFq6a9eu1rhxY2vSpIkbI0c1NMrCJl26dLEqVaq4fjbSrl07l6mtYcOGbsydVatWuVoeTQ8DHgAAAADI0UCnY8eOtm3bNhs4cKBt3rzZGjRoYNOnT48kKFi/fn1MDc5DDz1kBQoUcP/fuHGjnXTSSS7IefzxxzN1RwAAAAAgVCDIA+3HlF66dOnSLjFBqVKlcro4Vq3/1JwuQq60dljbnC4CAAAAPJeWZGyQ5VnXAAAAACC7EegAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvHFWgM2rUKKtWrZoVL17cmjZtagsXLsxw/p9//tl69eplJ598shUrVsxq1Khh06ZNO9oyAwAAAECGCqd6fCZNmmR9+/a1MWPGuCBn5MiR1qZNG1u5cqVVqFDhsPn3799vl112mfts8uTJVqVKFVu3bp2VKVOGrwYAAABA7gh0RowYYTfffLN169bNvVfAM3XqVHv55Zetf//+h82v6T/99JPNnz/fihQp4qapNggAAAAAckXTNdXOLFq0yFq1avXfFRQs6N4vWLAg4TLvvfeeNWvWzDVdq1ixotWpU8eeeOIJO3jwYLrb2bdvn6WlpcW8AAAAACBLAp3t27e7AEUBSzS937x5c8JlVq9e7ZqsaTn1y3n44Ydt+PDh9thjj6W7naFDh1rp0qUjr6pVq6ZSTAAAAAD5XJZnXTt06JDrnzN27Fhr1KiRdezY0R588EHX5C09AwYMsJ07d0ZeGzZsyOpiAgAAAMivfXTKly9vhQoVsi1btsRM1/tKlSolXEaZ1tQ3R8uFatWq5WqA1BSuaNGihy2jzGx6AQAAAECW1+goKFGtzKxZs2JqbPRe/XASad68ua1atcrNF/ruu+9cAJQoyAEAAACAbG+6ptTS48aNs1dffdWWL19ut912m+3evTuSha1Lly6u6VlInyvrWu/evV2AowxtSkag5AQAAAAAkCvSS6uPzbZt22zgwIGu+VmDBg1s+vTpkQQF69evd5nYQkokMGPGDOvTp4/Vq1fPjaOjoKdfv36ZuycAAAAA8H8KBEEQWC6n9NLKvqbEBKVKlcrp4li1/lNzugi50tphbXO6CAAAAPBcWpKxQZZnXQMAAACA7EagAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvEOgAwAAAMA7BDoAAAAAvHNUgc6oUaOsWrVqVrx4cWvatKktXLgwqeUmTpxoBQoUsA4dOhzNZgEAAAAgawKdSZMmWd++fW3QoEG2ePFiq1+/vrVp08a2bt2a4XJr1661e++911q0aJHqJgEAAAAgawOdESNG2M0332zdunWzc845x8aMGWMlS5a0l19+Od1lDh48aDfccIM98sgjdsYZZ6S6SQAAAADIukBn//79tmjRImvVqtV/V1CwoHu/YMGCdJd79NFHrUKFCta9e/ektrNv3z5LS0uLeQEAAABAlgQ627dvd7UzFStWjJmu95s3b064zLx58+yll16ycePGJb2doUOHWunSpSOvqlWrplJMAAAAAPlclmZd27Vrl3Xu3NkFOeXLl096uQEDBtjOnTsjrw0bNmRlMQEAAAB4pnAqMytYKVSokG3ZsiVmut5XqlTpsPm///57l4SgXbt2kWmHDh363w0XLmwrV6606tWrH7ZcsWLF3AsAAAAAsrxGp2jRotaoUSObNWtWTOCi982aNTts/rPPPtuWLVtmS5cujbyuvPJKu/jii92/aZIGAAAAIMdrdESppbt27WqNGze2Jk2a2MiRI2337t0uC5t06dLFqlSp4vrZaJydOnXqxCxfpkwZ9//46QAAAACQY4FOx44dbdu2bTZw4ECXgKBBgwY2ffr0SIKC9evXu0xsAAAAAJBTCgRBEFgup/TSyr6mxASlSpXK6eJYtf5Tc7oIudLaYW1zuggAAADwXFqSsQFVLwAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8Q6ADAAAAwDsEOgAAAAC8c1SBzqhRo6xatWpWvHhxa9q0qS1cuDDdeceNG2ctWrSwsmXLulerVq0ynB8AAAAAsj3QmTRpkvXt29cGDRpkixcvtvr161ubNm1s69atCeefM2eOderUyWbPnm0LFiywqlWrWuvWrW3jxo3HXHgAAAAASKRAEASBpUA1OOedd549//zz7v2hQ4dc8HLnnXda//79j7j8wYMHXc2Olu/SpUtS20xLS7PSpUvbzp07rVSpUpbTqvWfmtNFyJXWDmub00UAAACA59KSjA1SqtHZv3+/LVq0yDU/i6ygYEH3XrU1ydizZ4/99ttvVq5cuXTn2bdvn9uB6BcAAAAAJCulQGf79u2uRqZixYox0/V+8+bNSa2jX79+Vrly5ZhgKd7QoUNdlBa+VGMEAAAAALky69qwYcNs4sSJNmXKFJfIID0DBgxwVVHha8OGDdlZTAAAAAB5XOFUZi5fvrwVKlTItmzZEjNd7ytVqpThsk8//bQLdD766COrV69ehvMWK1bMvQAAAAAgy2t0ihYtao0aNbJZs2ZFpikZgd43a9Ys3eWeeuopGzJkiE2fPt0aN258VAUFAAAAgCyp0RGllu7atasLWJo0aWIjR4603bt3W7du3dznyqRWpUoV189GnnzySRs4cKBNmDDBjb0T9uU5/vjj3QsAAAAAcjzQ6dixo23bts0FLwpaGjRo4GpqwgQF69evd5nYQqNHj3bZ2q655pqY9WgcnsGDB2fGPgAAAADAsY2jkxMYRydvYBwdAAAA5MlxdAAAAAAgLyDQAQAAAOAdAh0AAAAA3iHQAQAAAOAdAh0AAAAA3iHQAQAAAOAdAh0AAAAA3iHQAQAAAOCdwjldAAAAACC3qNZ/ak4XIVdaO6yt5TXU6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwDoEOAAAAAO8Q6AAAAADwTuGcLgD8Ua3/1JwuQq61dljbnC4CAABAvkKgAwAAvMVDOCD/ItABAOQZ3LQCAJJFoANkA27OEqNJHwAAyCoEOgByDAEgAADIKmRdAwAAAOAdAh0AAAAA3iHQAQAAAOAdAh0AAAAA3jmqQGfUqFFWrVo1K168uDVt2tQWLlyY4fxvv/22nX322W7+unXr2rRp0462vAAAAACQ+YHOpEmTrG/fvjZo0CBbvHix1a9f39q0aWNbt25NOP/8+fOtU6dO1r17d1uyZIl16NDBvb7++utUNw0AAAAASSkQBEFgKVANznnnnWfPP/+8e3/o0CGrWrWq3Xnnnda/f//D5u/YsaPt3r3b3n///ci0888/3xo0aGBjxoxJaptpaWlWunRp27lzp5UqVcpyGilxAQAAkJ+sHdbWcotkY4OUxtHZv3+/LVq0yAYMGBCZVrBgQWvVqpUtWLAg4TKarhqgaKoBevfdd9Pdzr59+9wrpJ0Idyo3OLRvT04XAQAAAMg2abnkPjy6LEeqr0kp0Nm+fbsdPHjQKlasGDNd71esWJFwmc2bNyecX9PTM3ToUHvkkUcOm66aIwAAAADZq/TI3HfEd+3a5Wp2MiXQyS6qMYquBVLzuJ9++slOPPFEK1CgQI5HkAq4NmzYkCua0SH345wB5wy4ziC34W8T8vL5opocBTmVK1fOcL6UAp3y5ctboUKFbMuWLTHT9b5SpUoJl9H0VOaXYsWKuVe0MmXKWG6iLzk3fNHIOzhnwDkDrjPIbfjbhLx6vmRUk3NUWdeKFi1qjRo1slmzZsXUtuh9s2bNEi6j6dHzy8yZM9OdHwAAAACOVcpN19SkrGvXrta4cWNr0qSJjRw50mVV69atm/u8S5cuVqVKFdfPRnr37m0tW7a04cOHW9u2bW3ixIn25Zdf2tixY4+58AAAAACQKYGO0kVv27bNBg4c6BIKKE309OnTIwkH1q9f7zKxhS644AKbMGGCPfTQQ/bAAw/YWWed5TKu1alTx/IiNanTGELxTesAzhlwnUFO4W8TOGfANSYTxtEBAAAAgNwupT46AAAAAJAXEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BTgKjRo2yatWqWfHixa1p06a2cOHCDA/i22+/bWeffbabv27dujZt2rSs+r7gwTkzbtw4a9GihZUtW9a9WrVqdcRzDP5J9ToTUor+AgUKWIcOHbK8jMjb58zPP/9svXr1spNPPtllZatRowZ/n/KRVM8XDRdSs2ZNK1GihFWtWtX69Oljv/76a7aVFzlr7ty51q5dO6tcubL7G6MMyUcyZ84cO/fcc9315cwzz7RXXnnFchsCnTiTJk1yYwUphfTixYutfv361qZNG9u6dWvCAzh//nzr1KmTde/e3ZYsWeJuPvT6+uuvs+P7Qx48Z3Rh0Dkze/ZsW7BggfuD0rp1a9u4cWO2lx1545wJrV271u69914XKCN/SfWc2b9/v1122WXunJk8ebKtXLnSPWTROHfwX6rni4YB6d+/v5t/+fLl9tJLL7l1aFgQ5A+7d+9254kC5GSsWbPGjY958cUX29KlS+3uu++2Hj162IwZMyxXUXpp/FeTJk2CXr16Rd4fPHgwqFy5cjB06NCEh+m6664L2rZtGzOtadOmwS233MJhzSdSPWfiHThwIDjhhBOCV199NQtLibx+zug8ueCCC4IXX3wx6Nq1a9C+fftsKi3y4jkzevTo4Iwzzgj279+fjaVEXj1fNO8ll1wSM61v375B8+bNs7ysyH3MLJgyZUqG89x///1B7dq1Y6Z17NgxaNOmTZCbUKMT9wRs0aJFrilRSIOf6r2evCei6dHzi56apDc//HI050y8PXv22G+//WblypXLwpIir58zjz76qFWoUMHVHiN/OZpz5r333rNmzZq5pmsa0FuDdD/xxBN28ODBbCw58sr5osHdtUzYvG316tWumeMVV1yRbeVG3rIgj9z/Fs7pAuQm27dvd38E9Echmt6vWLEi4TKbN29OOL+mw39Hc87E69evn2sTG3/BgJ+O5pyZN2+ea0qi5gHIf47mnNGN6scff2w33HCDu2FdtWqV3X777e6hiponwV9Hc75cf/31brkLL7xQLX3swIEDduutt9J0DelK7/43LS3N9u7d6/p65QbU6AA5aNiwYa5z+ZQpU1yHUSDerl27rHPnzq5/Rfny5TlASMqhQ4dcDeDYsWOtUaNG1rFjR3vwwQdtzJgxHEEk7DuqGr8XXnjB9el55513bOrUqTZkyBCOFvI0anSi6CaiUKFCtmXLlpiDpPeVKlVKeAA1PZX54ZejOWdCTz/9tAt0PvroI6tXr14WlxR59Zz5/vvvXYdyZcOJvomVwoULu07m1atXz4aSIy9dZ5RprUiRIm65UK1atdxTWDVtKlq0aJaXG3nnfHn44YfdAxV1JhdlkFXn9J49e7oAWU3fgGTuf0uVKpVranOEMzeKLvx68jVr1qyYGwq9V1vnRDQ9en6ZOXNmuvPDL0dzzshTTz3lnpRNnz7dGjdunE2lRV48Z5S6ftmyZa7ZWvi68sorI5lulLUPfjua60zz5s1dc7UwKJbvvvvOBUAEOX47mvNFfUXjg5kwSP7fvulAHr3/zelsCLnNxIkTg2LFigWvvPJK8O233wY9e/YMypQpE2zevNl93rlz56B///6R+T/77LOgcOHCwdNPPx0sX748GDRoUFCkSJFg2bJlObgXyM3nzLBhw4KiRYsGkydPDjZt2hR57dq1iy8un0j1nIlH1rX8J9VzZv369S6b4x133BGsXLkyeP/994MKFSoEjz32WA7uBXLr+aJ7F50vb775ZrB69ergww8/DKpXr+4yyyJ/2LVrV7BkyRL3UngwYsQI9+9169a5z3W+6LwJ6TwpWbJkcN9997n731GjRgWFChUKpk+fHuQmBDoJPPfcc8Gpp57qbkaVovHzzz+PfNayZUt3kxHtrbfeCmrUqOHmV6q9qVOnZv03hzx7zpx22mnuIhL/0h8a5B+pXmeiEejkT6meM/Pnz3fDHeiGV6mmH3/8cZemHPlDKufLb7/9FgwePNgFN8WLFw+qVq0a3H777cGOHTtyqPTIbrNnz054bxKeJ/q/zpv4ZRo0aODOMV1jxo8fn+u+uAL6T07XKgEAAABAZqKPDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgAAAADvEOgAAAAA8A6BDgD8n7Vr11qBAgVs6dKlWX5MtJ133303W479K6+8YmXKlLHcTuNX9+zZ08qVK5dt30O0OXPmuO3+/PPP3p1vAJAfEegAAHKF6dOnu6Ds/ffft02bNlmdOnWybFsXXXSR3X333THTLrjgArfd0qVLW3aoWrVqlu9nvGrVqtnIkSOzbXsAkJMK5+jWAQD4P99//72dfPLJLuBIz/79+61o0aJZcsy03kqVKmXb91GoUKFs3R4A5DfU6ADIdw4dOmRPPfWUnXnmmVasWDE79dRT7fHHH0847yeffGJNmjRx8+kmvH///nbgwIEMn5A3aNDABg8eHHn/73//2373u99Z8eLF7ZxzzrGZM2cmXVbd9Pfr1y9m2rZt26xIkSI2d+5c937Hjh3WpUsXK1u2rJUsWdIuv/xyt830/OlPf7IOHTrETFPthmo5Qvr3nXfe6aZrvRUrVrRx48bZ7t27rVu3bnbCCSe44/fBBx/ErOfrr7922z/++OPdMp07d7bt27cfcT9VJm1v/fr1rjmXjmtYjjvuuMOVo3z58tamTRs3fcSIEVa3bl077rjjXM3I7bffbr/88kvMOj/77DO3vI6J9kHL6lhpW/pen332WbctvdSMLFHTtb///e9Wu3Zt9/2rTMOHD4/ZhqY98cQTdtNNN7ljonNp7NixdjRN18Ltz5o1yxo3buzKre9/5cqVSQeK7du3d8ddx/+8886zjz76KPK5jsW6deusT58+kf2ObtqomrSaNWu67V5zzTW2Z88ee/XVV90+6vjddddddvDgwcj6jnTeaVvt2rVzn+t70nGcNm1aUvsCAJmBQAdAvjNgwAAbNmyYPfzww/btt9/ahAkT3M1hvI0bN9oVV1zhbhi/+uorGz16tL300kv22GOPpRRUXX311a624J///KeNGTPmsMAlIzfccINNnDjR9V8JTZo0ySpXrmwtWrRw73Xj/uWXX9p7771nCxYscPOq3L/99psdC93kKrhYuHChC0Juu+02u/baa93N9+LFi61169YukNENsShAuOSSS6xhw4auPGqKtmXLFrvuuuuOuC0FHY8++qidcsoprjnXF198EVMOHT8FLjp+UrBgQfvLX/5i33zzjfv8448/tvvvvz+yjIKHSy+91AWWOibz5s1zN926Ude2mjVrZjfffLPbll4KluItWrTIlf2Pf/yjLVu2zAWvOmcUGERT8KPAZMmSJS7g0nFKNjhJ5MEHH3Tr1DEsXLiwC6KSoUBP37sCJZXl97//vdtnBY/yzjvvuOOr4xzud0jfoY6nzjV9bwq6rrrqKheY6PX666/bX//6V5s8eXJkmSOdd7169bJ9+/a5gFzH78knn3QBGABkmwAA8pG0tLSgWLFiwbhx4w77bM2aNYomgiVLlrj3DzzwQFCzZs3g0KFDkXlGjRoVHH/88cHBgwfd+9NOOy145plnYtZTv379YNCgQe7fM2bMCAoXLhxs3Lgx8vkHH3zgtjNlypQjlnfr1q1u+blz50amNWvWLOjXr5/793fffefW9dlnn0U+3759e1CiRIngrbfecu/Hjx8flC5dOvJ5165dg/bt28dsp3fv3kHLli0j7/XvCy+8MPL+wIEDwXHHHRd07tw5Mm3Tpk1u2wsWLHDvhwwZErRu3TpmvRs2bHDzrFy58oj7quOo4xlN5WjYsOERl3377beDE088MfK+U6dOQfPmzdOdX+vVPkebPXu2K+uOHTvc++uvvz647LLLYua57777gnPOOSfyXuW98cYbI+91rlSoUCEYPXr0Ecscf76F2//oo48i80ydOtVN27t3b3A0ateuHTz33HMx5Y0/X3V+aBurVq2KTLvllluCkiVLBrt27YpMa9OmjZue7HlXt27dYPDgwUdVbgDIDNToAMhXli9f7p4y62l/MvPqyX/YxEeaN2/unpz/8MMPSW9PtQWqgQlpnck66aSTXM3JG2+84d6vWbPGPT1XTU+4fj31b9q0aWSZE0880TVB0mfHol69ejH9SbReNRcLhbVgW7dudf9Xrdfs2bPdU/vwdfbZZ0eaVR2tRo0aHTZNTbL0HVapUsU1GVPN0o8//hipXQprdI6Fjp++72h6r+ZZ0U24oo+TzhX1uwmPydGIXp+aS0oy69N5ee+991qtWrVcUzQdf+1DWKOTETU9q169esx3qyZr0TUwmhaWI5nzTk3dVPupYzZo0CD717/+lfQxAIDMQKADIF8pUaJEpq5PTaiim5XJsTYZi6egRk2GtF41s1OwER1wZFWZ1Q8omm7io6eFAaCa54U32moqpSAj+hX2UTpa6t8R37flD3/4gwsI1IdGTcxGjRoVSVaQFd9zRhIdp/CYHOv64o9xRhTkTJkyxfUZ+vTTT92x13kSHpNktxlu91j3q0ePHrZ69WoXhKrpmpr3Pffcc0kvDwDHikAHQL5y1llnuZtg9WM4Ej0ZD/sehNRPRDUI6usQ1rhE93VIS0tztS7R69iwYUPMPJ9//nlKZVYH819//dX1nVCgE9bmhOtXcgT1/wmpZkN9RNQ/JZH4MktmjOVy7rnnuj4zqglQooLoV3ywciwU2OiGW/1Yzj//fKtRo4b95z//iZlHQVBG37H6/ETXyiSiY6vvO5rea3uq4cptVDb1m1HfGgU4qllSUJjqficj2fNOtZm33nqr6x90zz33uIQWAJBdCHQA5CvKfKZkAOq4/tprr7kmVQo8lGQgnjqWK0hRR/wVK1bYP/7xD9cEp2/fvq5WRNT5Xh219QRdT627du0acxPcqlUrd2Os6WrapfnU2TwVChKUJU0d4dUsqFOnTjGBmwIhdaxXh3tt48Ybb3RNujQ9EZVZnci1/6pt0T4pW9qxUufzn376yZVPyQR0bGfMmOGytGXGzXVIgZNqoFQ7oBoDHf8wSUF0wgmVQd+hmkzp+1MyiTADnIIx3aQrENC0RDUVujFXsDRkyBD77rvvXNKD559/3tWc5EY6FxRQKGjVeXD99dcftl/abyUHUKKNZLLhZbStI513ypSn71+Bv5JXqFmjAiQAyC4EOgDyHQUMuokdOHCgu/Hq2LFjwj4QumlTxillHatfv757Mt29e3d76KGHYm6oW7Zs6ZpStW3b1gUk0X0dFBCpOdHevXtdmmo150kvlXVGVIujm0llWlMK42jjx493/VhUBvX/UQ2Uyh3f9CikNMs6Bgr2lFFu165dLk3wsVI/JNUqKKhRvyLVKuhmV/1FwsAwM+i7UHppZfHSYJvqvzR06NCYeRRcfvjhh+6Y6bjruChQVb8SUbCigFS1D6rhStSPRTVUb731lstEpu3ofFHGMtWa5EY6JkrlrKx4akKo71n7EE3lV3Cnc1T7fSyOdN7pPFDwq9+YMsDpO3nhhReOaZsAkIoCykiQ0hIAAAAAkMtRowMAAADAOwQ6AJCDlCErOh1z9EsjzftCTcPS20+9kkmBnN+/29q1a6e7vjD9OADgv2i6BgA5SJ339UpE2eHUT8gHytAVnwEsvpN82H/GF5n93a5bty7d1OUa40bZAAEA/0WgAwAAAMA7NF0DgHxOtSkjR4603EbZzZTFLjeaM2eOG0BTr1TLeNFFF0WWzYzxiwAAiRHoAABwlDRA5iuvvBJ5rzFqlNpZqbYVyLz77ruHLaOxbpSyHACQtQh0AACZbv/+/V4cVY0Fk2gw0VCFChXcOEGh3bt3u3F+Ro0ale4y5cqVO+YxbAAAR0agAwAeUzOpO+64w71Kly5t5cuXd4OFxg+htmfPHrvppptch3YNSDp27NiYzzds2GDXXXedu6nXjXr79u1jkguEzcw0GKpqM2rWrJnUcqmYPn26XXjhhW5dJ554ohuo8vvvv498fskll7j9jLZt2zYrWrSozZo1y73ft2+fGyxUiQCOO+44a9q0qWuGFlLtjNb/3nvvucFEixUrllJGOGVTe+yxx+yqq646qn0EAGQeAh0A8Nyrr77qMpqpudSzzz5rI0aMsBdffDFmnuHDh1vjxo1tyZIldvvtt9ttt93mmmWJMn21adPGBUGffvqpffbZZy6lsUa7j665UTChZWbOnGnvv/9+0sslS7Ulffv2tS+//NJtq2DBgi6gCGtcevToYRMmTHDBTOhvf/ubC2oUBIkCoQULFtjEiRPtX//6l1177bWuPP/+979jgr4nn3zSHaNvvvnG1doAAPKgAADgrZYtWwa1atUKDh06FJnWr18/Ny102mmnBTfeeGPkveatUKFCMHr0aPf+9ddfD2rWrBmzjn379gUlSpQIZsyY4d537do1qFixopseSma5jGid7du3T/fzbdu2qVoqWLZsmXu/d+/eoGzZssGkSZMi89SrVy8YPHiw+/e6deuCQoUKBRs3boxZz6WXXhoMGDDA/Xv8+PFunUuXLs2wbLNnz3bz7dixI9159PmUKVMSfrZmzRr3+ZIlSzLcDgDg6FGjAwCeO//8813H+FCzZs1cDYb6n4Tq1asX+bfmrVSpkm3dutW9/+qrr2zVqlWuZiYcoFLN0H799deYpmN169Z1zcRCyS6XLJW5U6dOdsYZZ1ipUqVctjgJm5YVL17cOnfubC+//LJ7v3jxYvv6669dszpZtmyZ2+caNWrEDLb5ySefxJRH+xB9PAAAeZNfo7MBAI5KkSJFYt4r2AmbhP3yyy/WqFEje+ONNw5bLrpTvfq8REt2uWQpm9lpp51m48aNc/2AVL46derENINT87UGDRrYDz/8YOPHj3dN1rRMWJ5ChQrZokWL3P+jKeCJHswzOjAEAORNBDoA4Ll//vOfMe8///xzO+ussw672U/Pueeea5MmTXJ9VVSTkqyjXS6RH3/80fX/UZDTokULN23evHmHzadaJfU10nzqr/P8889HPmvYsKGr0VFNVbgOAIC/aLoGAJ5T0y514leg8Oabb9pzzz1nvXv3Tnr5G264wWVrU8Y0JRVYs2aNy1R21113uZqTzF4ukbJly7pMa8oGp+ZwH3/8sdunRFSrM2zYMJdZLjr7mZqsqUxdunRxY9moPErQMHToUJs6daplBtUaaRDQcCBQbUP/TiVzGwAgcxDoAIDndGO/d+9ea9KkifXq1csFOT179kx6+ZIlS7qBMJV2+uqrr7ZatWpZ9+7dXV+bjGpqjna5RJRhTZnS1OxMzdX69Oljf/7znxPOq348yjKn/6vfTjQ1Z9PxuOeee1wKbKXE/uKLL1wZM4MywqnmSC9RMKZ/Dxw4MFPWDwBIXgFlJEhhfgBAHhtHR31WRo4cafmFxumpXr26C2DUfC4rqGbq4osvth07dsQMGJpKGU8//XSXzlvfDwAg81GjAwDwgsbt2bx5sz300EMu01xWBTnRTjnlFFdzlAoNKlq7du0sKxMA4H+RjAAAkCOiM53F++CDD1JOGKABSVXLor44kydPtqzUtGnTyCCjGe1HIhqIVE0JJbOazAEADkfTNQBAjlBSgfRUqVLFpXkGAOBoEegAAAAA8A59dAAAAAB4h0AHAAAAgHcIdAAAAAB4h0AHAAAAgHcIdAAAAAB4h0AHAAAAgHcIdAAAAAB4h0AHAAAAgPnm/wOd+5riPEhFywAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import fsspec\n", "import xarray as xr\n", @@ -116,7 +151,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -130,7 +165,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb index b188188..14b5b5d 100644 --- a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb +++ b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -42,25 +42,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "2132d393", "metadata": {}, "outputs": [], "source": [ "collections = [\"met-office-global-deterministic-near-surface\"]\n", "asset_id = \"temperature_at_surface\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T12:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2026-01-21T00:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0120H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0168H00M\"]},\n", + " ],\n", "}" ] }, @@ -74,15 +74,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "edb71afa", "metadata": {}, "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -99,10 +97,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "fbc72d2a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_56340/2895931206.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", + "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", + "To opt-in to future behavior, set `decode_timedelta=False`.\n", + " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAHWCAYAAACVGA3LAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQecZWlRPlw339tx8szubIRdMkgQUYIYCCIgmDMYCfqJoKKiIDmaMKKgf0QRsyAiURQUieISl8zm3dmJnfvGc77f81TVOe8599zunt3enZ7ZU/vrne57Tw7vW0/VU09V4jiOpbTSSiuttNJKK6200korbQda9UwfQGmllVZaaaWVVlpppZVW2iQrAUtppZVWWmmllVZaaaWVtmOtBCyllVZaaaWVVlpppZVW2o61ErCUVlpppZVWWmmllVZaaTvWSsBSWmmllVZaaaWVVlpppe1YKwFLaaWVVlpppZVWWmmllbZjrQQspZVWWmmllVZaaaWVVtqOtRKwlFZaaaWVVlpppZVWWmk71krAUlpppZVWWmmllVZaaaXtWCsBS2lnrX3sYx+TBz/4wTI9PS2VSkU+8YlPnOlDKk1Err76at6Pv/iLv9i26/GCF7yA2zwX7JJLLpEf+7EfO9OHUdrtZDfffLN8z/d8j+zdu5fP8Ktf/ery2t/G9pu/+ZtypzvdSWq1mtz3vvctr3dppZ0DVgKW0s5KGwwG8r3f+71y8uRJ+d3f/V35q7/6K7n44ovlXLY3velNpbNzO9o3fdM30cEs+mk0GnIuWhRF8qpXvUouvfRSabfbcp/73Ef+5m/+pnDZz33uc/Jt3/ZtMjMzI3v27JEf/dEflWPHjm15XwsLC/KUpzxF9u/fz6DDN3/zN8v//d//FS771re+Ve5///vzmC666CJ5/vOfL8PhcMv72uqxns75b9We9axnybve9S55znOew3EKx3Eu2wc/+EEGGHB/z4S9+93vll/+5V+WhzzkIfL6179eXvayl52R4yittNK21+rbvL3SSrtd7Ctf+Ypcc8018rrXvU5+6qd+6g5x1QFYPvOZz8gzn/lM2ckG4Li+vn7WO/W//uu/PvZsra6uytOe9jR51KMeJeei4Zxf8YpXyE//9E/LAx/4QPmXf/kX+aEf+iGCtB/4gR9Ilrv++uvlG7/xG2V+fp4O4crKivzWb/2WfPrTn5aPfvSj0mw2N9wPgMFjH/tY+eQnPynPfvazZd++ffLHf/zHBIkf//jH5fLLL0+Wfcc73iFPfOIT+d0f/MEfcB8veclL5OjRo/Ka17xm03M6nWPd6vmfjv3Hf/yHPOEJT5Bf+qVfkjuCAbC88IUvZBZx165dt/v+cb2r1ar8+Z//+abPYWmllXYWWVxaaWehvf/974/x+P7DP/zDtm1zZWUl3sn22Mc+Nr744ovjnWqDwSDu9Xq3ybaf//zn836fafurv/orHsdf//Vf3+Jt4B4++clPjneaXX/99XGj0Yh/9md/NvksiqL4YQ97WHzBBRfEw+Ew+fzpT3963Ol04muuuSb57D3veQ+vzZ/+6Z9uuq+/+7u/G3t/jx49Gu/atSv+wR/8wcyy97jHPeKv+Zqv4fPl9uu//utxpVKJP/e5z226r60e6+mc/+kYjjPc5q219fX1eDQaxTvVfvM3f5PX9qqrrjoj4/KP//iPx9PT09uy79JKK23n2Jn3AEor7TQNzh4mxPDn4Q9/ePL9e9/73vihD31oPDU1Fc/Pz8ff8R3fEV955ZWFDvBnP/tZOkhwlO573/tmHNP73//+cbvdjnfv3h1///d/f3zttdeOHcuHP/zh+DGPeQzXx/7ufe97x69+9auT7z/5yU/yeC+99NK41WrFBw8e5IR6/PjxzHaWlpbin//5n6cz22w24/3798ePeMQj4o9//OP8HueXP+fTAS9YFoDnXe96F50/HMvd7373+J/+6Z/Glj116hSPBU4ajuXOd75z/IpXvCLjJMEZwTHAOfnd3/3d+E53ulNcrVbjK664Ivnu9a9/fWa7W7kvsP/+7/+Ov/Zrv5bHiO3+yZ/8yY4BLLjXcIa24kTB2X3xi18cHz58mA7zN33TN8Wf+cxnxgDLiRMn4l/8xV+M73Wve3Hbs7Oz8bd927fFn/jEJ5JllpeXed2e8YxnjO3nuuuu47V/2ctexr/7/X78ghe8IL7ssst4Dffs2RM/5CEPid/97ndveLx/9Ed/lLwTob3pTW/i57gvbgcOHIi/93u/d2wbd7nLXeJv/dZvzXz25S9/mT+hYV28C3nH+ylPeQrPs9vt8m8cC/aNYwvthhtu4Oe4vm44bwCYG2+8MbPsVo/1dM5/K4bnP//Ohs/wV77ylfh7vud7OL7g+XjQgx4Uv+1tb8ts4z//8z+5zt/8zd8QpJ1//vkEQHhHffx59KMfHc/NzXEb3/iN3xh/4AMfGDsWgLGf+ImfiM877zy+05dcckn8tKc9LQkwbOUZdPv93/99gkjsD+PeAx7wgATA+3ua/9kqeMF7gf3jecG7NjMzEz/hCU/gd3hWMNZg33iucV/xvJw8eTJZv2jf+XGotNJKOzutpISVdtbZU5/6VDl8+DDpHc94xjNI3Th48CC/+/d//3d5zGMew4JL8KhBTQKNBHxm8ONR8Bwa6mBAP8G2dL4TeelLXyrPe97z5Pu+7/tICQLXHdsAreSKK65IaA7vec975HGPe5ycd9558vM///Ny6NAhcuXf9ra38W9f5qtf/ar8+I//OL//7Gc/K6997Wv574c//OGkkBw0o3/8x3+U/+//+//kHve4h5w4cUI+8IEPcHvg7oOqsri4SHoLanZg4OOfjn3pS1+S7//+7+e+nvzkJ5PfjfN/5zvfKY985CO5zNramjz84Q+XG264gdcZ9QKgeIB/f9NNN43V0GAb3W6XtQitVov1AaD75G2r9wU0HdCtUNeA5VCngHoFv7+bGY4fP5sZinF3794tp2N4DnA/cQ1Rc7GZ/cZv/AapS9/+7d/OH5wnzq3f72eWw/Pxlre8hfcCtRMo0v7TP/1T3ocrr7xSzj//fN7r7/zO75S/+7u/k9/5nd/h8buhxgLP7g//8A/zb1y3l7/85Xx2v+7rvk6Wlpbkf//3f7l/v89Fhmcb53X3u9898zm24d8/9KEP5bMBOtbXfu3Xjm0Dy7797W/PfPat3/qtiRhDuC8816Du5NfH+/HFL35R7n3ve3M5WH5fuCYXXHBB8j0Mx4Vjx7Ptgg+nc6xbPf+tGsYL1KygXgbX/UlPelLyHe4xBEPwrGIMQ0H+G97wBvmO7/gOjgO416G9+MUvJr0JtLJer8ffQX3CO/WABzyA7wiuJd7Hb/mWb5H//u//To77xhtv5O9eM3S3u92N1wX7wf6xra08gzBQcHG8EBHAGId3/1Of+pR85CMfIXXuu77ru3jv8ExinALVD4b3eauGd/7Rj340rzWoe1NTU/wc4xHuK8ZSHMNVV10lf/iHf8j78j//8z+koOJ64/kB1e/P/uzPuB6uc2mllXYO2JlGTKWVdkvMI495ShiyJIi8IWIYZjkQgX7Sk56UfOaRwDz95Oqrr45rtVr80pe+NPP5pz/96bheryefgx6CrAmi5R7tDCPrbmtra2PHjmgp9v1f//VfyWfIOGxGG7k1lDCsh32GGZXFxUVGXO93v/slnyFijQjnF7/4xcz6v/qrv8rr4lkmz6IgsgsqT2hFGZat3pcnPvGJzGqF9B1kYbDvrQxXkyK8tyY75fYHf/AHXPftb3/7psvimiCSjXsWPg+/9mu/xm2EGRZkE/KZBlxDRJFf9KIXJZ8hO4Z13/GOd2SWvc997pPJMCKDhv2ermEdZLTytrq6yv3iGYB97GMf499/+Zd/Obbss5/9bH7nGRIYrnX+euMZQ8Q/b//2b//G9d/5zndm6EVF2c0HPvCB8dd//dePPXfhtT2dY93q+Z+uYd38u/3MZz5zLGuDLBrGFGQ//HnwcQ7HFY4leKYuv/xyZlfy4w228chHPjL5DO8X3jNci7z5ult9BpHtuOc973mbUcI8e56/1rhORVRMPCf5zz1LU1pppZ1bVqqElXbOGDIAkDZGsSci/W5Q+kGEMx/5hSHbENo///M/M0OA7Mrx48eTH2RHkIn5z//8Ty6HqB4ifCiAzxeWhvK7nU4n+R3RSGzr67/+6/l3qIiEbSBKiWjobWWIkoaR27m5OUZ9cS5HjhzhZ//wD/8gD3vYw5h9CM//EY94hIxGI/mv//qvzDa/+7u/e9Po6VbvC7YPNSUUWCOz44aINyKuWzGcD7Igm/389V//tdwS0QOc60ZZijCjhEzKz/3cz2WehyLBBGSmPNOAa4DsGjIqd73rXTPPCO4B7mF47BBhQIT7R37kRzLPEjJ4yKidjiHrhWPJG9Sy/Pvw360s65mVMLuynfsK94MsHfBBKKd9Ose61WPaDsMzj6xHmLHBPUcGBNcKWY3QkDUKxxK8T7i/yGrgefH3FKIQyGjhPcU4hh9kTh7/+McXZpn82dzqM4hnC1leSMrflvb0pz898zfGJYgm4N0LxyVkl3CcPi6XVlpp566VlLDSzhmDahgMk2ze4PTCGcaEHtJ5QH8IDU4AnJ5QpSg0V76CShnsXve614bHBNllKOb87d/+LakpoYHi5QYpVTglF154ISdhUIjgfINCtV122WWXjfUyuctd7sJ/4SQBlOH84QBPAiH5c8hfv1tzX5aXl+kUFl17rFsEOPOG67Wd18wNlJkPfehDpOzV6/Utn3P+XHBd81Q0OJW/93u/R5UsgGA4jG6gCrnBoQTtC8pYoPKAKgPwAocaVB63F73oRVSlwr3F8wkZXdCSABA3MjjEoBvlDUDbvw//3cqyt/W+trKfrR7rVo9pOwzPx4Me9KCxz52Ohu/DsaVonIJhzJhkGF8AmkEJ3Gyc2uoz+Cu/8isE4wBbGE9AcQRoArVzuwzvF+h++fPF+Rw4cGBL41JppZV27lkJWEq7Q1veCcHEDaceUqphnYDb6daNIFODGhBIt6KBGdbHPuBEhrUeWA6ZjTe/+c3sI4DGZ6985SuZ8QFP/fYyHBOimOhjUGQOcNy204nbDoNkLX42M9zb0+HVI7sC8zqR7TTUT6Fm6id+4idYq4AsFMAJsjH5eiCAWDwbiJr/4A/+II8LdVSIPoe1EwDUkOTFswQuP+oJ/uRP/mRDCXDUYiFSDcAeAltkyGBex4Dlws9Dw2c4/qJMRX5fk9aftC+A+fyyXqex0X62eqxbPf+dMk7B8CxMaoyIsQYBk+18BgGovvCFL7BOD7Vv//RP/0SQg3otBGa2w8JsjxuOAWBlUmb0dN7l0kor7ey0ErCUds6YN47EhJq3z3/+8ywA3axY+s53vjMdFkQ08855fjmn5ICqU2SnTp2S9773vZzIMaG7TaLqwGH6mZ/5Gf4gYoiiZAgAOGC5tZ3ev/zlL485YyiQhXnRO84LDv+kc7ot7wsyBXDMiq5P0bpFhiLdrThOOKY8TWkjAzDAtXE631a2D8O5hBkfFO7juQgNxc9omoi+EaGhSNqLlt0QKb/f/e5Hxw1R6GuvvZbiBXmDw4niZPzgfgLEoBh/I8ACxxfgBkIPEH5wA1XRv4dB8AIOIgr584Zi5610FscyKAyHIxo6p9gXMkf+7vm2sK8QnIA6CWoSKFQb2ekc61bPfzsMz8ek98G/38h8/AGtc6N3FeeOZTBObWSn8wziXYXwBH6QwUGhPcYpCHPgHb6149Sk80VmB5mcnRYkKa200m4fK2tYSjtnDA4/nAqo7YRdljFZI9IMmtVmhskX0Xc4va4a5oa/we2GAUwA1EA1K9/R2dfzDE1+O3mlLdAvQnoYDNFERHRDigochfxyp2Nw8pDBcQNV5C//8i95zUAH80wPqE+gaeUN53k63cVP977geqFWBdkDOOJucCCLjuf2qmFBjQ+OAdSXrRqcSNAHASbC+5+/937e+WcEnH0oORUZ6F24btgW6Dr5DJw/o2GkHfSdIrpTaKCR4ZgRMXfDcSEzA8c/VFtC7RKi7Nddd13yGcA5AHBIT4Mh2+MUSjeoTEGJChlEN9Qk4LxRb+FZj3ve855UtYLyU0hTAi0OjjG24zYYDOjw57MpWz3W0zn/W2t45gGY8K65gRaJ80TwIARMRQbaKJx4APSijCKAMQxgEDVh//qv/1oI2sKxaivPYP7ZgsIYjhXr4vrDPCi0nZ3uMS7h/iP7kzeMSZvtC89FOKbA8LcDxPAZxGdbURosrbTSbmc701X/pZW2nSphaAgHNa+73e1uVKuBwg16mqDXwVe/+tUxNaljx46NbfvlL385v3vwgx8cv+pVr4pf85rXxL/8y79MVR5sM1SoQaM5KCCh7wWa0D3rWc+KH/WoRyXLoC8C+kqgh8If//EfUwULKk7YPo4BBpUxqNpA3eZ3fud34te+9rXx933f93GZ3/7t3062hWPBZ9gHekO89a1v3fL1wjGi7wT6JkCBB/0M0DMG6kGuyOSKSOg/g2v4Uz/1Uzz33/qt30qUd/x6hX1Y8lakErbV+wLlMKiEXXTRRez98pKXvIT9OqCEdaaGK/SnwL4///nPn9Z6z3nOc7jet3/7t8d/+Id/GP/kT/4k+2js27cvo2T1G7/xG1zux37sx3jvf+7nfo69U6AMFap/uR05coTXEuugKWLeoMaG5+eVr3xl/LrXvS5+6lOfyt4d2O5m5spZ6G+BdaGcVaTOBNWuvXv3skcP+nKgBwzuJZ6pUCFskkoYVPag8IU+Gy984QvZAwXqU+j/kb/O//qv/8rj/5Zv+RZeH/SiwXP70z/905nlilTCTvdYt3r+3mNlKz0+ilTCcA/xXEMd8HnPex7fRyjp4Tz/+Z//edNxzr/zdwVjCa4N/sWY87jHPS7Tg+XQoUMch6BOhnEK4xWutyscbvUZxNiA5xlqiX/2Z3/GdwNKYo9//OOTZT760Y8mzz3U2aCKuNXmjxspfOE5xnbRnwXXC+8U+kXhnQqvT9E28r26wt5Wofm8gGtbWmml7SwrAUtpZ6VtNJH/+7//OxvlobEZZHcxmU5qHFkEWGCQ/0WTQ0x8+IGjDafjC1/4QmY5NGmDhCgcLSwHxxryt6Gz8J3f+Z0ECnBO0MAOje1CwILmbXCUAGR8O/gdACc0TPo/9EM/xG3dmsaROEY4GTinousHeVU422g8CGleONgAbwAuaM53SwDLVu8L7P3vfz+b0WHfZ7pxJKRe0fgRjtotWRfOOKSjN2ocCacZjp8vh2v0oQ99iA5VEWCBwRnE9fjgBz849h1A3td93dfxOcH2cJ/hYPq92+yY4dB7A1M4tW984xsLl8W5AJzDEca+fviHf5iOeN6KAAsMDf8A4gAmsA2ca5H0LuzNb34zHXo8t2ho+tznPnfsfCYBltM51q2ev0tch2D/dABL2DgSxwPggXs2qXFk0XsKQ6PW7/qu7+I1xLXBcQOsoklraJAJh7wxggTekBXH5I0jt/oMAuwAEPn+AAIxdkEiPTRvmApgeUsaR04ygCmMDThGjJUAnQgmhc1CS8BSWmnnplXwv9s7q1NaaaXdvgaaCeofQI0p7ew3yFOjySbqkkq7/Q0UJdRAgdZVWmmllVbabW9l0X1ppZVW2llkqNH4t3/7N/n1X//1M30od0hDjO9973ufvPGNbzzTh1JaaaWVdoexErCUVtpZbCiuDYuR84ai2LBZY2lnr6E/xv/8z/9QyQrF4U996lPP9CHdIQ3F/mXfj9MziIVs1njThT9KK6200oqsBCyllXYW2wMf+MCkSWGRPfzhD2c0uLSz397//vdTpviiiy6i4lrp4JV2ttjP//zP85ndyEp2emmllbaRlTUspZV2Fhsi7htFLtFVHRKopZVWWmlnyq688krKqm9k29n7qbTSSjv3rAQspZVWWmmllVZaaaWVVtqOtbJxZGmllVZaaaWVVlpppZW2Y62sYclZFEVMXc/OzrK4srTSSiuttNJKK620nWWoe1peXpbzzz9fqtWdFX/vdrvS7/e3bXvNZlPa7bbcka0ELDkDWLnwwgvPzN0orbTSSiuttNJKK23Ldt1118kFF1ywo8DKpRfPyJGjkxU8T9cOHTpEpcg7MmgpAUvOkFmB3elZvyHV1h33wSittNJKK6200krbqRb1uvLV331R4rftFENmBWDlqo9fLHOztz7zs7QcyaUPuIbbLQFLaYk5DQxgpVYCltJKK6200korrbQdazuVvg+wsh2ApTS1MsNSWmmllVZaaaWVVlpp22ijOJJRvD3bKa0ELKWVVlpppZVWWmmllbatFknMn+3YTmmlrHFppZVWWmmllVZaaaWd9faa17xG7nOf+8jc3Bx/vuEbvkHe8Y53FCqsPeYxjyGd7i1veUvmu2uvvVYe+9jHytTUlBw4cECe/exny3A4lDNtJSWstNJKK6200korrbTSttEi/rc929mqQS3tFa94hVx++eUEJW94wxvkCU94glxxxRVyz3veM1nu1a9+dWHtz2g0IliBKtkHP/hBuemmm+RJT3qSNBoNednLXiZn0spqoNJKK6200korrbTSSttGG8Xxtv1s1R7/+MfLt3/7txOw3OUud5GXvvSlMjMzIx/+8IeTZT7xiU/Ib//2b8v/+3//b2z9d7/73XLllVfKG9/4Rrnvfe/LLMyLX/xi+aM/+qNt7StzS6wELKWVVlpppZVWWmmllbaDbWlpKfPT6/U2XB7Zkr/927+V1dVVUsNga2tr8kM/9EMEIMii5O1DH/qQ3Pve95aDBw8mnz360Y/m/j772c/KmbQSsJRWWmmllVZaaaWVVtptUHS/HT8wNDWfn59Pfl7+8pdLkX36059mVqXVasnTnvY0efOb3yz3uMc9+N2znvUsefCDH0yaWJEdOXIkA1Zg/je+O5NW1rCUVlpppZVWWmmllVbaNhqAxmgbVcKuu+46FtK7AZAU2V3velfSvhYXF+Uf//Ef5clPfrK8//3vly9/+cvyH//xH6xnORutBCyllVZaaaWVVlpppZW2g23OlL82s2azKZdddhl/f8ADHiAf+9jH5Pd+7/ek0+nIV77yFdm1a1dm+e/+7u+Whz3sYfK+972PNLGPfvSjme9vvvlm/ltEIbs9raSElVZaaaWVVlpppZVW2g6mhN1Si6KI9S6/+qu/Kp/61KeYffEf2O/+7u/K61//ev6OWhdQyo4ePZqs/573vIdAyWllZ8rKDEtppZV2Ttsl/3RcpFqVymAkMhyJQMqxVpWo1ZDq8hqXieanpNIfYoaRuF2Xyijm33GzLqOpplz3qOkzfRqllVZaaaWdRXa6Cl8bbWer9pznPIfKXhdddJEsLy/Lm970JmZO3vWudzFDUpQlwbKXXnopf3/Uox5FYPKjP/qj8qpXvYp1K8997nPlZ3/2ZydS0G4vKwFLaaWdo3bJP5+Qq79rr1zyD8dFGjW5+om7+fmlb7iO/8bzM/wMfw/P2yO11Z5c/Z17ZKfahe9eldpKV/+oVCRu1PT3USxSr6ITllR6A4mmW1Jb6hKcxK269A/NSvPGZZHBUKRRlxjLVvEjEneaBCfVlR7X509Ntx23GhK3arwul7ylL3Gtki5noOeq79t/Rq9JaaWVVlpppbkhM4K+KeifgsJ8NJEEWHnkIx8pW7FarSZve9vb5OlPfzqzLdPT06yBedGLXiRn2ioxOsuUlhik23CTL/vVl0mt1S6vTGk7zi55yyk65rBoqinVk8t0oqPdc1I9viAyOy2yuIyRR2S6o476Ohz4oUinjUo9kbV1EWiqT0+LrK+LzM1yG6O9M1Jd60vllG5zcKeDEjWrUu1HUlsbSFypSH9Pi58dvf/tE++49HVflXjXnFTW1iWe6khldU0BQ6Uqcaclo10dqd+8KKN9s1Jd7un3Ux3pH5jhcpUolmpvKJVhxKxJ79Cs1NeGUlvuSqU7kNEezZ7UTqxI3Kgn4CdqN6USRczMjKZbXJ+Gr2tVAh98hn+r60MDQhUZTtflpm9o3i7XprTSSivtjmqjXle+/IpfY3H5Vmo7bm8/8vOfOyizs7e+8mJ5OZK73f3mHXeet7eVGZbSStthdsmbT4J0KpX+SD+IInXQ+31mRRD9r5xcF5mZkuqJJX7Xv2S/NL9wg4KUkS4fr6xKZTCQaHlFKtWqdB9yd4maFQEdtnPTmkStutSvOiK9e1wotd5Iqqt9OuegQUWH9tABry31pAHaVLMhQzj2USy1XiTNRTSQmpl4Doc+3JfmyR6d+xEoVlhvuZ+pmiMlqzeQax6/K3PuUaeh4GAU81yHlx6S6x4xlSxz6Z9+ObkmlfV1qQOcNepS7Q4RgRGp15ldaZxa5/rV1Z5ItyfSHxDItK8+KVLX6xS3GzJCFqU7lMGhOYmrFakOIoIZGK7BaLop139z57Tu4UXvWuF53/DwMuhRWmmllXZHtNE2qYRtxzbOBTtrAAsa4LzgBS9g901w6s4//3z5sR/7MXLrKnDm4FzEsTz/+c+X173udbKwsCAPechD5DWveQ07fpZW2k6xPZ+LJAabKRZpLo6ksTqU+qk10pT6e6eU2gQnu1aV9TvvpeNfO75EsFC5+YTgaY+RLVlewYshlQP7JGrVuH60f7cM9nSkebTG5WR6SqJLz5P6tUel86VjdOwJZvDONGsyuuiANAB+kDhYXNXva1UZ7JuW67/FQUJWUaTIDn5sINVhLK0bl0jJAniI2nU67QQAKz1mKeKGZiOq/aFUByOJOk25+F8XNPuxvM7919Z6pGoRmHGZOoFM5eQSgUZ0aJ9UV9YlbjYk7jSUouUGmhh+AGiiSKo3LWhmCRQwWK+fABqJRlJZ70pztSvxTEdqx5d5jXH+2E91hONoSG3Yl0v/HtmXmggyKp2GRO2GRHVQx6oSIbOCMapVkepI5OYH1OXaRxeDuQv/fU0qoyjN1uA4cd8aNaktr5OeVtLMbp3FVVAH/A85a23vZ/UZOXHPUhuntNJKK+2sASyvfOUrCT7e8IY3yD3veU/53//9X/nxH/9xpt2e8YxncBkUCP3+7/8+l0EB0fOe9zx26Lzyyiul3S4jnaWdGTtwxVCqvYg0JICAk3dPHZBL3rKoDrc51I0FBQ/xTJsOsmcpBPUUsx3NvKz2pBLB4baaiyiW+spAhhcfJAhoLHaZDanMT0l1vc8ajHjfLpHBSCpw2AFyGg0FSfCZp1t0mAd79jHTQApVfyTnfbAvg9maHL+31YqYHX5/VxrHV6R7eE6OfH2TlC1kZGCDvdN0FlFDUju+IDWv90B05CRoXBUFDAALzaZUplp6PCsAKw3dATInKJBH4TvOdwi6VV1iZH1quo04amkmBvUrWG5k2SjWoNT0B+d2YA+zLlwP2ABUOmRaAGKaTQITgrfRSKLZKb3WlYqMphr8t34cIK7GrBMBVGWk/44iqeEQqxWpVGOpDJF5AvVsJOf/z4j3A5kbXstBJBVeV1T0x7J6p3ke29T1q9wWMl211b5c/d37buMn8dwzAn/+UvQl7uUG3+8wO/SRgSxd1JC18+SsBir7P4FgBN5dkSMPsne6IAPbOqbjT5hhLa20c8lsetqW7ZR2FtWwPO5xj2O3zT//8z/PaEdDVxpZF5wGsi6/+Iu/KL/0S7/E78H3wzp/8Rd/IT/wAz+wpf2UNSylbVeBOLIIrHFAZB5Zk2Ekg90d6c/XZThVlVN3yTokF//Lgv5Sh4JVnXUXzBKs9QkqHNjA+b7222bl8H915YZvVCB+8b8tJc58b09LWse6UjtykjUVq19zPh02OBGgfiEj0P7iEYn2znF7vb1t6Xz+iMRz0yzSzzuEhz46lM41i1I5sahZoMsOkW6lYEmzBauX75HpK65XQFKtyNo9z2PGBY48nHb+wHEfRlJd77F2hAaghnoQrieZgnqChKqBnMxBAahx8FKw4sXyPB4Ta8c6PrRZMiMxROAxAwRgKtm079vqURCtxzEgk9JY6ElvX0caS31mjrAd1PbE2ESlwrqexmKP5+iAB9kkHB/uZ0hrK83vNa650LndMjAJbxmfg9yyldxn2zDDXfCf69KfV4B88wMbdLhxfwfTVRl2qjJqiqxcmHtOczZ7DZ5VkaVLssvNXR3rc8bnyA4Zz72d6+r5ck7Yvk+NdEzgu4eisYqMGhWZ+cqirF8wy+taWmnnUg3LJ648sG01LPe9x9Edd563t501GZYHP/jB8trXvla++MUvyl3uchf55Cc/KR/4wAfkd37nd/j9VVddRarYIx7xiGQdPDAPetCD5EMf+tBEwAJtavyED1pppd1aQyQfDjds+dIZmf3qMilNzcUVqe+aZbR97kv1pBZj/fxpApVrHjuXUIdgca0m3Yt2JUXcF719Of23KnLx23pSXVqnLG9vf4egYOrLJ0VOLkjc60llblamrlmWyuKK0qAaDYn2zMjw8F4ZzjTofCNLIl9/0dg57LkyktogltaxdekfnJE6itBHI2nesCDxVIvn19/T5jamrl2WeO88MyVxqylTVy0oCCH4aqSF6qChNadEkGTwzIdTOs3xzzukBHtwTIvCTNhuVFGaHMFPAFgczFQCMAMLnWNkd7BdiBAMhlJBZmZmKgVQNQUvoIANZ5rSWOzLcLZBcILM1qgN2lrEXSCrUl0faG1OfyTD2aasnj8t9XVQACuy/5MjOfY12WzV2WRRIwUYsFo6bG4ILgBG5r4aky7XWBnxWnV31WTYrkh7IZJaP5buLgBx7MNBosi6C7AFz8NmwIbL3AYhOK9hwjux+4uRrB1syNKlFdn1pUgW75wFIFNHRNYK+quN2prlm0IPtjhdJg9gzkU7/797Uh1GUj+5KpX1vr1XNYmnmtI7OFOCldJKK+3cASxoeAMwcbe73Y2ya6hpeelLXyo//MM/zO8BVmDIqISGv/27Inv5y18uL3zhC2/joy/tjmTMdhhYQcH27FUrmiXZOy+DfR1pff4mdcJRL9JuSTTTlvaRdTrJF/zHGmljcNg8A9A82ZXz/zsmXYtOtGcRQHFaWKXjjH8bnbo0rjuhdKiZKam0W9w+FcXwWaUqvUv3yY0Pa8lF71yWWnc0sdYCdvIeFhn6mln+c9G7BlLpxxLNARiNCJRaXc3+4Dxh8VxLo8PISgRZE/4u4xQdAgpgtjDRO8HhJLjBdYsIT2ybkBe2SwUAZIAHGR0ADfrMAIWwYD9MLDPrBcATSaUKGlks8dqayMqqHhuuWactlVZTqmt1Gc1pNot0rzbkkSsy7IA+Vucx9+dQr9OiU43IO/7FfTx237NjmI2aIlERntLLrb/iOkcil755iTRCpdtVpb+7Ka2blc6ImqP6wroMd3Vk2KlJYwkgToUNkP0DQJy5ccTnBM82QPv0V0bS3z+jmbhRJIOZhlQHjfHsQnAsZ8KSd8Js4fLx6GkRWOHn2anpDmWjVlVGbWSj5vj8NE9A9KMho+m6NI+tyUXv7En3gILC6c8fl6t+6Mx21C6ttO2wSCoyykTgbvl2SjuLAMvf//3fy1//9V+zCQ5qWNCh85nPfCZpYNCIvqWGJju/8Au/kPwNUHThhRdu01GXdjYaIuFwnGBH73f6r4hnSVLrsLCcilX9SIYXH+CnoHxhkp668giBRf/QHCd2ZE/WD0/J1NpArv32WQMXVluCehRQpUSdRah3QbI4np5iHcTooPLBkW2I2jWJGtVCiV1Qyk63pwuyPSikZyajVReZaSl9y2hTBCnoYUKwEqwc0q4MMCS4xTMq+DgELr6cZVjGLNgmwR03EXxWg5yxf4/QPThxwbYS+hgK7COVMkbhP2SfrdZE6W1VKonxmpuUMc4NGRY43rVuxPNFAX4ElthAnbPKSKTei6Q3d/ZkVKoQfoOGATNU6XVNaFfBv6C8AYx0vnAza4Jqy7v4XFRPLYkc2E257cYXb5DaoX0STTd5TW54eBE4Tp9NZB5WrX4j2d8WMiql7Xy7+esamZo+BDzqp1ZleNl+rT/riUx/TkVBILiBMc/HKIzHrRM91oJtFGAprbSdZph2zJW41dsp7SwCLM9+9rOZZXFq173vfW+55pprmCEBYPHunTfffLOcd57Nevb3fe9734nbRefOM929s7SdZU7bOe9DfU6uCSceQflaZYzWc+F7VuW6R07uhH7x2xaTegxQhXr72jJsVWTmqr7UV4cy2r+Ljnp9qSs3sAC1ySwNnGauC0ewN9BMATq2Q2Gr1xUZoHh8RMneSn+gGQGrK6HaV6dtmZ6tNYPEueIcQctpnRpI4+YVfh7NtdmThFbJARMoZRloCald2RqC9I+8elMCUELHlJvRbAq3Zb8nzmtB7cmY4ZioxGbbR3E8cEguUoVMSyUCHSkWAf4CRQwF//jcKWhQ9KpGSXIL3HsIKOB7AhcoMLeh9FXRSHKrIot3wn6qZxXdC9crrKNIzGlgBiovfesy6Tzt65ZY9wS6YWVpVbp3OyS1+ZaCa2QDZ9W5rB9ZkP5d98uB/xvKYKZKKlhUq8jq4fEMRAlQzn1jEOh+Ya2c/z5efA/hj/ZXj0u0e4bj3qV/fyz5DsGDfM1daaWVdu7aWQNY1tbWpOrSpGaghkVG94AqGEDLe9/73gSgIFvykY98hB07S7vjGSJz7rA6LQeFn3CaN6slgEwvmyNahgVULdBU0IPk0Ec0As/aDxGCFRTl4jNmOWZaLGwH9Qp2zePmk0J8ROlRE9JGj5FaTeqrg0xWhkCFPUrqUkNtChpDwvmLIlKv4EwPZ6eked1J7bcC2hec95kpkZU1qnVhYifIWeuxmDVvu78QSRXsskEkzaWhNG9asvqPCovh0R2eZq8bsjoALKMZjarD+Z8Y+gmLoIuAii1TBFbS7MomGRYHRkGR/iRj5if5veBYpKK0MQMnMRZqNXgslB4GXcxqYeIhmmf2VTXMivOroJ51KgmgLcoKzFwXb1qQfabM60WQHdqQdUAumAK+q56IGiysrCICF72rzecatnJhW5rLI2ae+vNz0jo1FDkwxcL0E/fKvnPn/0+P96dssnkalq/v2q5ld6BhTG3ctEg6a3Wlq9nNZp3ja17AAgprkxTJSivtTNlomyhh27GNc8HOGsDy+Mc/njUrF110ESlhV1xxBQvuf+InfoLfoxcLKGIveclL2HfFZY1BGXviE594pg+/tNtbjcaUaOhIRjEBiBZ4b43mlVesqXZHYMskvUnQGPCit/dI2YKljQUnK0Fd96jJWRjP1Iw66EMysAl5ilQs1zSkNO5oJPVlAwqgL6GLPSR/kUmZny6go43bqbuqc3now0NZO9iUYWc3MwTIDHA/Q5FaPyKdjJ9ZdgMqY/U1dH63RpaSBxb6UaYeBVZA6ymsWbHi+vRz23aYWQm3wVoW3UACXvjFhMHdgQ4fjOD4mSHK0tZ4HA2lfSV9UwBaoA7G5R3NAayYGhrKhHCd+shWjWQAJbi7VhOw0j4u0t1BysXMqBhg4TUOCuppzLZolot/4ppUY4ljpfxhHfxc+6gpueD9PWbbGquRNJZH0t9Vl9YCgLNId2+9sNYDoA91PyhS9/kYz9jKBWf/5Bw+j06xA11wSxY+imG20t8x/94f4QKVteSensWmY+rWGraWYKW0nWglYLmDApY/+IM/IAD5mZ/5GTl69CiByFOf+lT5jd/4jWSZX/7lX5bV1VV5ylOewsaRD33oQ+Wd73xn2YPlHDVQmAA+Dn58mHyGpn3H75ON5AKswFySdDMrong5MEn+vhVcatSzqBoWiiGipA8BgEAVRe3tBuloKO5GZiMpGkdWBopbcJwhc8xzGmmTRfQuyWUgNzIALpzDwY8OMvxyt72fFekc7SnlaRBJb0+TdJ6oWWG/Ec0kQPnJ1LiG1m+kgGwbOsFF2ZeJoMSli5PtFMgbh+vnHDlamIXxgnvSmxxdFTjHbKxpFEDQ3tp1k04OjxcgKaTFGVgZiVTXkdmDilYs81+JExWpMwlWUFCflwQeAycTjCJrIZipKKAjvc7Ou7unIZ2jfZm6/hQbejYWGzKca0lvd6MQrMBuenBavzJ7bSzLFxXx0c6gBeeccf6dHhd+HwB2/ztDryPVcmugJU/Ly9yn5MNNDv0sBytFhuwzBUQw1lkWGSpjyDpf/cTdZ/rwSiuttNvYzpo+LLeXlX1Ydq4BeCg9Jxt9pDNVrRQ63re3XfJPx9nk0JsEgmONIvo84MkbalUgmwu1JZzj1FcW6CSvX7xLWkdXOUGzFwu52zWpdgeM+vf3TrFmYKMamo0MtBzUE9TXRzKYrkvrVE/pFwaM1i6alf5MldcZYAp9FPiDDAykfVmsHWRcZDxbknfqEmUwa3zptC+lGQU9ViZQxvI9WzIgJ6mjyamS2XcTMzGeacnV3yRSy0YvAzjB9UIGr33VSaXPoQdLuylrF0xRBrp5qs8ifJwf7ueIdS4AdLEcvf+ZixFlaF/ubG8FwAQXZKzGxbKYlWGFQgP4Dh3a4Ziv74UylEhvq30Bz7ACWJF5dkT/2AIYyF3XMbCRU1wLlzkdOeZ9n9SeJsfuh9o4W996p55rhvGTPa0AUqBMh3/RSBdCGUEfpqu/c2u1eqWdO7bT+7B84DPny8w29GFZWY7kofe6cced5+1tZ02GpbQ7riHbgAg+e26gGd8wShomhs0TPTsCKtMN3zSZSkDuvKlTbcSfnwQ0LnnzycRRRpRvuKstNzxcjwHdytFDZdSpses51G7QdBDbGs43pXGqq5HBRjUDMjARr17QlukbetrDY980AQmKu4ezACot9v+orwyTfSHi2FjqMUuzFVBUZDc+JBWcwLVELQJkluEI9Pe0LHOg2YTBNOhPqoYVV+vsnwHnLaqj87tlGNgo0igp+Mz6p6gcroESdrDHZ+rUk/KWoE9dHtH7SoZyljaH5Oegg1VCeWOzalaFjFkSVyLjPlPgkjSPdAtawLiIgB5SnAgNAKzgM/Se6Z8/L42T2i8HDlVzcSi19WEh9Q/dv88UWCkEKm65TIEvk/6ey4S5+ES4PdLK7LqPIEqhAJfPQeC8h46+3+7EyXYnPjy0ScX/1mRRQfQG523xiy1TsYIeMn5cPAdP2DoIqU0AB8m1SM9pDIQEIGVLQMW2sf8Tplzo7xOEHloV9oU5efezR9xhq4Z6P7xHyEZTBAM2RM+kiI1mK2s9qdT1xqigSTVRMiSoQea5pkqKDPZ0GqwFjJr1WzROllbaLbGSEra9VmZYclZmWHZm0zEUsCMLASfS6zRC6UuACNZxAESgOBNZiN5Q+rvbErWqpIqFhiJ676LuAACfDacbGT40gACdZSpFqRMLylZ1Fc3P0IOjoXUn3VFQx2L7+M/1zGcAU3B60cMDilKNleHYOre0ZidPgzsThuNYO6DghcDFnFvQpOBkIcPgv7vTpSAm6H7NTEuabfEsjGZkTG5Ygl40MKPXJcAl77+FWReLcLOIHvUncICKlgmUz0LqFwBL3KjI9KdvZk+b1jUn2LSTxz8ayXD3lNQXuzKcb3OdjYDzbQpQ8hH8LWRTQhCS2UDO8tsbo0WFGQR65voMqGx1sFsHNLld5Y8jzHolSmYFGYpku5O63G81g5HLqGQ+z9G+kv0XZIc2y5joMy5sRAlQ1T7eZyNSZCxZb2f75CXE39WKDNtVOXHP6tlL6QJ4AI0L/7YaGXCPQE/t1BozydX1nlR6Qx1vp1oca6uLa1RJ5N8IOPSNCozAApZ1w7uKDLGky2BflaFuD0DmmidsNe13Zg0CKQyuGD114TJ9LtCwFFlcNC+9I9tOz7C8/zOHty3D8vB73bDjzvP2tjLDUtqOt7zalpuDFe9xQmcWjnAlllGnKsMpqBdVSNG5+N/WCHQAevp7OgQNqLmAQwDpTPwL4JGvwZgUjbvw3TGzJFADk0Blyhs/Hn5/l85HaMio4HPK4U7XpL+rQSWz5uIg6Zdy6MPWed4ySx4Bh6OMSbu7uyaDTkV2f7GbOPQuBHCmLQRN+z4dydq+mjqlBCjWr2WgrU8qyFTwcy2eryBC793sGXpPa0bo2PH7oFA+0RjmB/wewhs01rOkjSuRqWKND/I2Xg9kQh1cxhpS8jNuLS1SSJxR9nBxEQeRtbtpL521ux+Qai+SWm/EZomNGxckmp2S+hKK0Kty8dv6Y8/tdptnEvIOc6FE8QaW1F14rcuYPrUvWLy+NjsNMicxsqE55bRc1mGiU+99YNxhz4MXOnC5zwIQUETbGgNkk/btnxfRuYJ18zUqWzVcm72fGTFDCTU1ZFT5vFotFAQL8L7nm1SeTQEmz4bDqW4fW2ftyWDfNNIher5Q/uoPmRWBMiGyJqR41VXCnQEEZFCQVcE7i6xrR+tV8D3f51A5ce+MKvhBlhzjioOZUcQ+StUuxnh7n1s797pO3yhJs1SAlUSsQdPNsvsLRoutahBg/qs6TrrIjAuqwPCdyquXdqZsJFX+3PrtlAYrAUtpZ72haB3ZFo+6A2QgmpcqZjWY3aCscL2aRNcJKKx2AhMrBnyvg/GsziQDPQuGzIoM4kRmE0AIheyU/61YwT/qayzD45F6ZCCwLhwTFCZDWQnACRMRgArqQ0AvQsZn9VBdpo4OZdREhDXt5I6JedQ685mVIjt+7xpVsegER+g/Y0Xq6OHIDIw6bija14xKJVUfw33E9wA7uC+YjAkkcaPUUVHzHisGUsJL4dSxYY5S5pkZo/SFyyRRbbNE6ph/wIGyL3AsvuwoZo0RF+kPpX/RHn6P+xtKrwKYIqMWUvBujWmPmSz9qHjB4o/zrLBM7cVmqYGCTIKDFX6NbVgPHNx7z6RsVPuRABKsR/pejsqWgKiCjFEOrPCj4Hj8GEO1rTHwEm4nUNfeFPCF1yJ3PPlM0L5PqShFfRWyzwpSdIGKdPc2+PydjfQuBGGYreSYpI1U60uQhddaO2Ska92+NK8+oZLo6BdlMtiUB2/VmSGJZjsJIOF3yGa22nx3kSGpobbOAlOV/kjiZk0q67psfUGpmfg+JlcQAiEulqFZdzaBrVd3dPNJByswgA+IdlSo+KbBHQfxTlXFuOk1nJ59cQNYwfoAMxpAsPfAqIU7ISt/rhsUFaNC1YzT305pJWAp7RyxfOf24WyTAAUWtbTj++nQczYCK7BJtS+ufOQKZhttd/8nNEoG5x4eHhrrsZgdBdvDWFYPt+nYz16vRH0onKH+Bt+xniLo9bITzVWx9nwuktXzAMCE4I6ZEKubZylKZJQxqWo2xmvqRyk40ACj87mCjAizarqfeBSAEV8mrwaWZGYsS2PfMWKLTAwac5J2BGBZTQAmwK3WJ5hjxpqqitS7Ixns6Ujj2AobeDavPSnSbDDyCyU2CiPsadvzcssdhKSOQibTvDa0/HJeuxJkKZLPk6KTYuAyRoUq+Bw/pIF5BiTYbLKLoH6GVK96quI2tutCgFHJ7jd/LnmaWkBJyzcwLaSZ5Wlzm9SaJMsVgCCAFWR0p65bkSEasTZrfM+huuc9os4mQ71beM5VqzOB/DsBB3oWDWrMeNSX1mV4cJ5PP4MAaHY7iiSabROg8J3D+7+qmRnaABLuVaksrIi0mlIbjUQaDaVwEvRUVWrca1jwftu2mFXF9lCcD6ACGvFtnOW8rcwVBm+pep6uXzq7pZ0bdvaNlKWd8+bZEqb8vYkhI6jazA+ZEyyD75CJKIpah4X4Z8JCsDKpqVneUZlclJ2e33ZF6G9PQ9S4fUJ/R0aphiJ+JFLqDlYqKXjBL+iTaZQtOjhO00ORfgBQMr1c0OCR/1otiks8eyYkBC5JEXVQtwIwgsivZcEAcAF00bkeILJ944pUTy5LtGeWy9UWVmXt8r1SPwWK30hG81NSAwXGlNzcttIX53SAykT61mn6JJnMTFgjEmRYioBDJjMRAoNQVtq+J8AzCWSn12k2E+eljSgn1ZiM1YXksyk8bqfHTD75JHuEf3DOQaQ5tMJ6mEmgqej7fMYnyPrg/QfobR3vmYCGyHCqelYClfz4CgosqbWgbAGEdeoStVHHpnTV2rF1iWc6Ul3vW51XJHEDGZW+FtPjvUWggD2yrBYNb38NNSeRxLtnlTJGoRK9XsywAvTUtYEr3+1hZGMDtql9korqVMK6x7PRPGNy6i5nXybujmhl0f322tk7YpZ2zlqlp7xlFkqSYqA0Lp+YkGUYzLe078cgIn0LEb5bW8uBiPhwpkGn2utIisxrXhIHrFFhQTkmZM94gBaGiQXLoCkjesUMW1DaqkpjLWZjxnwGxh0bOuiI7FeyIAb1Lbw+sWZ4cBxUwRlgwrdrtAPAWpFNH4lkBVmWngEVRkEhD6wnFFH9zbxnnDKcUPxt9CCAGPDbaXByAtUwOjrejd7rVuDUALSYB5qhe1WCz5ym5M0jKxXS7IbTGgGfveJGPdh2kxHe6tEFERTvNhrSProuo9kmsy0AOFUr9NWNo46qse1ApXjhDb4rKGAvXD9R4IrHQdFm+wwyNZlFvFiY57NB9iR/rBt9Fp5HvIGSWXIQquqWASkGYAoPYUIh/5aON9iPq4jhvce73rxhjc50vGea9C/Nqu58wziGMQnjEMYnjHGo10JzW2YvzLTOpCI1CE7smWbNSHWlJ8NDu6S20iMtDFZd7vI9RcbFb0INmRWsn2RBq/yb9F2rbwHQwT6osGj0Lo59+MzSMv6Oh/LGl/zDcc3asHBOlf68B5UbxlE2zm1W5MS9tn5f0DvI7/fSJbdPFgMZk11fFtn15bSha5qFKW2n2Siu8ufWb2dbDuestxKwlLaj7JK3nErUnrzexCcqTjhTVTZU9KJLmEfMMBHBQLfYqvqWyw1jez6JEZBsYKB9ASQN50BFUMfsxAPHJ7qVww2poQ60GXSejsVUftJBDFQwqP+gIzgK6ltLqVSpN71EpB9F/nCOe/M11rlAWACgB44ErHVsjYICh9+3LsOp+o7oS+OGc8Yk291l0sg1+BDaoR51LFXEVVGkbTLFEE5AhoUFpxisjcedoXU59QuFtnSYLMsCgzzzdEMzdOaowFgng38RkQ1mAWI9dHAPJGxnvrwg8dw0efHVkyuy8jWHZObj10v/bhdQzrjS7UsFUWX0o6nc+mxKUeZj4nK5DMRGKltj28uDF8uqZNS4NvOBbP8bzsV5YBDWoCRZkgmNRbdiRRmNHFhJtm/AyeWWJyGWDc87BDwTaGfJ9k0lkA7+Sk9GMy3p7m/Jsa+57YAKaKg8z1plw/1AYhvgfFINA8cT74uES8igkCIwgBW+S3h/8M4BZ6DA3XqiRJ2W1JZ6GjzoNFnDwnEc7+YwktGuaVK1WHiPwAMzM3VVYSRlbKR1KhHWQXF+VZvnIkhASp/VRSHDAsNxgoJmNTF41y/9+2PJuWQkz7EsgyAj1jjyI1BrUUPD76py4IqYgQrc383ACxqdIuOBa+T/+nuJ8c3HnLAuZTssX6tSWml3FCsBS2k7xi7+lwX9BcWW1SqzJomjaRE4lEljsvUeJqhTweSTRPvMQRDpKIDhJAqd/lS+GPsZzrdY04ICfara1LTYHRNO2IE7BBVwzkDjgGOACLw3PQSYgMwknGtkCeAIQPp26siQkbuFyyZPfNju2v4azxOF9c3llE6G2g9EN7UXBDja6uCjQF9rKXQbKd1sZ/O062uRTHfRSBDgq0LHAxF9+kVwQghWRKpWa+C0EvTd4e/814AGqWLqBAGokAqCHzghs1MymmmzSLe+3JVoRrNe5MujKBf9GVwi2YrwSUrjM1aVSjWSWrciq3ea53VunRpIc60vM1fcIPHstNTWB3TSRvMdguP6co/y1vmeQKdjpxuEG+uHsqWd5MBKQYF95jg2ydxkmirm92PLFK230eaLzmdMprgAqCTLhRsoqFfJd6RPjinfi2bScU+gkrEkaphmJTgusO6pIoPZBseB2wqseFAjOd9RLAc/rn/k5dyR8cl8VlCbg/GECoUJDReS5ErbIlCIquxrwiJ4ZBVHNkZTocveQbxjw6G+c1NNqa71+U5yTEefFFcCg/G9tnezivXs3WQ2BZlrVf5ircpgpNlVAJTBUDMnoIpZdlR3bkX2MLzfHGBse3z/dVm8u9xuxWpeoC5Zr1C9LbYGqNpzSoEQ1R0bPh+lARQqOLLfj47PMASq8PuIQ/P2AgwW4ltPKRznwuUlPWynGkJo0TaohCGPWFoJWErbIcaalKmGUmv6cP5H7PxeX+oyOsmJpVbJZE6wDidE1B54p3IUSjcgJ7uokTqTta11B3Lxv3ZJM0OjR+wHkzKoVZyIjU6ESaCo5iSkZrmzp/059DNOHnXQG1SuCqADEwuyKxsaSir6Io3VEYHP6sGqdI6JrO/X2o9DHxlJf7ZGWklSy2HmjkcmI2RzY2MRoE3oSOP8btfal0l1AEaPw3XrHI/Yd2LlghavXefYQPpzde3TYjUu9KW8B4UX37NGJV9YYXUuBlwqN5+Q+lFQy+oSLy1LpdmQysy0Fu0O6xLXzNEJe7c4tSzp6aJOCgAoAImsrBGs9A7PSftLN0s8P8OeEdXlmkSzLda71NZH2wtUNsmyZBYNl8vJ/XoWkEXtrltAmek0Y1WYMdioZsMbQxaBltMpVp9gW6KN5epG9BwCOWw7z0KwkgcplS2Cp3BbgeqZgxV+jSADnFe77nByb8vMylhNDt4Fvzd5y40h539Axwk/F6e0uqgIgzl4b1vahBE0RwB27haUXUgJY5xl7QjG2pGqfqHgfaqpYMQkhUH9wvjLonyreUkMYMICCQQ0VtdSkZoVzkONERmXimZDsS/IHkPieLqlWRrWw43SQAQM61qwazStYz3H7QY+FxGcpgeEmEFSlTMEVDjmCqTrjbYKMNMFaEn7orBOhwqIeoiU0beAEt6vxqrI8sW3/t7PXK/PdWMdcwqOLaVcuvyxZ9fy734q+V3WvtzeVtawbK+VGZbSdoQ5rYvNFRtViYfanwAKTKzRgMqXZUhgACRwxqVVZ4NINwcelLREHUyzpo0d0bCxo487KDwNyG4GHGyaO2lhMXeBebGsR+CSfY9UyQuGOhtOWhWRlQsnoxbUtMAp5uQcicxdN6J08fp+PbbIJk5OOogiWqPF/rxSwXq7NUroTiopD4zuguYg5JqHwgW3u4UB72pFar2YEzoA3dRNban3tIh+fX+DEcrePDJr4MmnjSeJJSBDDadpqJHZMV/SlIMS4NrrS7y4LDEATL8vlQ6ALhyliNtCVJaOERwlZu0U6MIpAXAczNZl7uM3sXYFnHzZOy/dC2akvjLUbSyuyODCvdZLJiJYycsib3ZdJnaXT57DjTeRXz9qBrQua9jooCRPNXNFrmQ7TtMK6VKTKGXhZ+G/+XXy352GbVjrEm99H0lvmHxyJgAqkzIrGSUxl2UO700Ilqpw/vukTA3mGrrNejWhBrEj/W3UV0Xvdyoq4SIEPhZ55hiW9Hiy+jdaALwIUCQFLw5gKLmOPOQwkuF0U2pdZE8GBArMpIDihf3CifesJ4BKLc1iCINR2rwR1ybplUIpYoA8Bfxen+YAgOAGNStIvTLrGpEmhlqyykjBTaXX1e1apoWBCIzvmA+4bKT0tAYonDUZAbg0tfYwarmMnY0jrIezZ5DqhVBkVId/1NYxTJ8pvX5M3gCgWm+p/kxVOseVdofxeZJNEmMpspULKgQtgymdJ/ozFYKXMHCgFD6Vjw+fjQS8bCBOUVppZ4OVne4ndCh92Dc+X2rtDl/yrQ4qpW2fYTDH5LjVzICr1XhDyCSSxklUB2t8jsyK0jcwyluWhBSBdFse1fcJfyMrckQwuUetKmtNpm7qy9qhBqNiyxePTxigj2BZGCZEOMzDjv7dOjVUCgIi/T31KpCh6O6pJhE2RPdaJ4cK8vB3F86zynmSM+4NMo2+hv4w6AeCv1cu7tw2ajNbqQMIhARw/ji/lQu05geTP39IRVExA/YSGET8zPnwCSUMDgvoIaxjGamCUL8v8XpXYvw7Gkl1dlYq01OpU1NHOgzR2xodG6Wj4AIqVQRgFg38Ojd1pX5iJS3w7/ZUnWiqw8wKnDfy3+lU6fO2odR02O8kvCxhXUfB55lrm69HMYeZ0sCmvpVsz+oQ8uAm7ImSb4BYVGw/lp0osE2llrcKQAqsELxstN5E6pYCuaR3TJKC2mCfRfUx4T48UQX/uyJy4OND7esUAEUqzzXHe2Xc2noVHhfeCcuchDVIDk68JiUBMkFtGwIrNK8PCWs+PABkEuoE5ybyAQM4q64oUGBxPN4lqz0kZdPkhV3cwmm9yTJhYCjMbhpljBkXO6bRXEsaNy0mVLGkSB9BikSWXHuz8HiQeQeFzBsKsy+LHh+EVXDtQOv1niTJM+8JucC5d9CJ96syDOiq9i/H6OQdVNCCsZvbrhSLoCRNge0aa6Bp/B6iFrG3py7Ddko943GwhxWyOxjzDWBxnstm1jJNWj0BzEyMHuvZXA8DOvgw6sn7PvKSHdcB3v3IN3/ycpmevfUZttXlkXzn13xpx53n7W1lhmWC3fTgltRam/F5bh9DETXqLfCCMprElLeqILF7O2o/yC+O5Oon7pZzwbYCEi/89zUO8piI0GDRnXJK0jYq6WRpgzac98YyQEDVOpznizKzkeYxvneB5cHK7i9G0p+rMXMAZ7u7ryGtUyPp7/KOeFmD84D6l3pXd65N5cwxR5O5NXU0kBUiVY6d4LPbQDagu6sqo5ZwO6NmU5rLMTM12A7AUnM1lukbe1I32hKyV7NXrcn09dVbra42ZqFjm4/M5zIHcKrmroplMF3n8TeXPCRoTowxgEnOAHe+4ppAuKHmCOEWYQaGw0jqWKyABD8AMjKS0eKS1PB8ALRgCyjiDQ8HEVzQPgBikI2bQtRXCFa6F++m0AOoLKSX9fqUL/asoNdAwanr7qvL3NXxZNWgUM13MxpSjq5UX4MDMw563PGuDPWLuJFGiDO0IN/xpMaJ9ne2J0vB8Wx0rOF6RdspAgaeuTBazZ7PiPTmK7JyUerAzX8RUtN6Pst3ck9v82zLmBiBySzHriAWUMby55LP8mT+LjgPROEBWkgfrWgwwylzADB4F+euElm69NY5iSiaz2R9jJ7qinruTCNwgno8jKUIDLhTi3GN74lH3ZnBZBvCVIgiEUQIKZMhODMHG+8Ni+71vfFaMwIIH3+5DVfzg2RxCmiS7I41GkXwYYi+RqhVMaUw1L9wH94wFkGJZkPf7cFQ4pYGDZjdQaanlgYgCFg4PFj2lPWMCPRoE0/PgnNcDSykVPGRsOaLTgNOagjRSwexD2RdjELqDW9HlsHH/O3HgGBGJrvFByd9ljMAIwKlbMgfHMfqBW2tibFlke0B5bjaUqEWvSf6rIWZFZeP12yMZa6Nervv09oHbN+nR8nyyTMQ3PuQJlrUX+xM2HWPmpZRrybyEdnhNSy3HhRuxzbOBdsZT15pGSMwwSDRReRco0wXvX2YSrn6gBJFVNXS6K+qJV36NzenGzLlJE3VV+WqHzq0Y640KF23tplX2El8M6PMcC+SERx/doiHApl9aZNHUuDv0dcIxas6WWzcJyU1ZCwoT4zoWBuNBWNZO1QngEARfVEnay+anLkOkx0oYiKNtYhF6jEoCGjG1o/oRIOSNGyriIA7l/DVVw/rtpqLmDTV4auD79yqSPtkJN3dVWm1awQsAD84v96epnRu7rIWCJPp6uHO9tJWJkTAse+pIyJrhxDh7fNc1vfVZTCqyHDKZs2eNs/Uxo22nkWB6fwpUUP7rsBJp7KY08IUzFdA++pXJe7bgVg0VrMrVXWy4FSw87ZlVppVGczUZTBTleaigrv2NafIy1++yy6ZOtKTqDmToROebvPOfIalMIsi48sMVGci8x3vvzdcrKVFv1uidW2WCclj+TzQqRRkKDLbh7eU3UhRlmLqBn1mp29GZlQ/ay+IzF8zkrV9WrgemdIevtt3hRU0tyqycNesgz12KhkOfw6cOKDzGMCEjMpY0f8GmR0HLVhm/F0fP0DUH6Cj+emYU1KRZUmacgbHnchJZ+6F9ithZ/TEAY3TbLOtT0c8oYqRLEnZYFfv8+vhKl2j6ZY2hOyDFhbxPQFdixleVxELJOmZrek0ZdQBwlenub7Q5fsHim/j5mVpnFxXZb4FBOiGIm3UuVmd2kApoQApMt2WylpP9wPg0mlmnO24pVQzZFSSwnlksTH+DQ1wEOgU06WQWanklN9w7fQ+O3DRLDfOixlh1L3YM4KxFjRWGjL8w4jKcUkQjQAzoJ8ZgOJ+IFOPudtvXyyk0nZ3ISukAAv1fqCI4Z3Bu0BFumEsNdDc7Piwn9bySNYPNGTq5oEMp2oMiCFT7yAMzxG2OTJBAX0GHKR6bxw8C7JhU+TSSrutrXzqdpADTw6vZ1Cci288Xw4WPq9ZkTmXR5QJAxvS8T7RWJ8IDu5VL4iM5dI33pim0916VrCNz6wxF7Z31U9esi3nxX3aMV/1gwcz3wFs5TNCHhXcqiHLkjQlC8FHs65ZFxjqHyg9a13LaybZadKdWj+SNihkQWYBzx2KXlsFLija7JzU6946pSo73X0bn9fKheGkiYnOU8lhE0rwmPX4HKTAvFC/bxgQUX51nmIZdiqcxBbvBMpVQ+au7kt3X0s6R3uydOdpaayMWADfOd6X8z5UlcVLm1wPvOlbbblo9dRNwmhg5+aB7Pl8nNQlzV4TS3MlkrWDVRmNLFJLZwdqYjHrTlCPoYW45hjCjcLkWo+kQqlVfbYrI0j7MAQp1elpqa6vs1u2NJtJJBjPI+qceK9N9tijzXA6kM1oLA9k9W57lWbXHcnsFwBcGlI/gb4RsVxypC7RVFN6+zvS3V2TxTttfL2KCtQzACDvdBc54cH1hMJath9JsF7R3/nvimpPfJ8F+sZjxxqmifJABUYwqb/Cid9/hWb7YDPX9UnJATDE89fdA2Ci28RzABt0qjJ9dCTL59elsRqzjxEyl4hmH7s/IubqcO/7lMiJe2/AOHPQEjZiKVgmOZVJWZSCPivbYYhu43k/nUaSzLK4sW4kHnMwkwg5j92yVdbjySlk+Qyczj3pdvmxSQljGCKE8ewn3lGgDgARzCsACPWq1E4u65zTbrEonvOKy45bh/raks5fKnmMOpKGNI4s8f2sYDzvaZ1ZQsPk+2zzHPoi4bVFYT8K/FGbMqNiLBwjKAKAsQKZdtTEqdoiAcgwZpZ9OF3X4+c569jilKsU4GZFK3T7wftgFDBkORBgqq2nUukUKEDjWQKDmtRXXd7Zsk7cgCRqchhzcKwOzBiYMQobMvYEeuj3NYylfdKz5JhTGgQtkMNHEAXvBo4R4KaxjKxLRBrw1JGBDCDe0o3S7M2yUoOHsw1uCxlaAB8qqOFasZOvn2s1CY65UtotsX2fGmXktCm2A6XFJaUmFjFEEMBFNuVsNPADRqVK2LZZCVh2igUDnfNxaYgSow5hpaeDM9PtKDIckqefSDsCpCByHCHXi3CsSV3634g6I/oDXj8KkZsNFiZX4MhNTen3QZr60v93TXpsrnEP0PEjxaLyl/71TVwf31/6piMZUMSU/WCo2R/P+sDqNbn0747y+K76vv1s8kVlGdGmiKDhMBqGiQeAI47HGjpqlmWKxfpJnw67nigMVWdUJwoeS63CyYoTOiZfi+hiYMa22RwNExwmdUavK4wmwUEAUMk4Cvn+BxbFC+ls4IhjIsR2motDOfjxKrePIvOtNPxC1gXHBocPGRNMXiFQcQNYCQ2UJGQxOiciTkIDKMv0RNqnRuwPg0xGf65DxxHWn29I81SfzxeivojEoabkFlvGqU1dRGRV6t0KJ1oqcK2KDGb0eFsLACpWRGocazilmDjZHg7/Wo8WGopwTQkKvzKCOjT1K6NMUknIMox4f1CACxECOBN8psxZbZ3q8b2rH1mQ7uX7OfFDjrbaj6V93aIMd09x3e7+jkhlSlonutLf1eJ5bIUHnm8EOZZV2YBqpI5kwE8PwucJvSmkiYXgJwQ9G1G9Ei8t/11Ivwo8+vDvcDl6NX7AIrs/V5HGqlIeqQ53c5+NE9kgtYKM4MiU4zRSDREKB+QoLF47UNdeRhCfGMT8t16JZd8nI2mfGEpvV53UmMPvG8oNDzf5pknXODzWonOxSLrTrJJrlc+42NAMkF1Ul3Y6FmZXMLZQbMKENbh7ZJdQT5frqeTgJqGH4XpaXYM3QOU1Dk8Z2/LdZXruGIDJZd9UNdFrPGKp9INlGJ1HwEz/7B+alfpyX2rHFXSwZmS6JVWM9ZinEqtKZRXa5n2RqY5UVtZldHAXsy3RbJusAoAaFvOvq7oYgQ/mQ7zkmM9Y6G9qYgA90+2kJqbSte+jkda8VSrS24PnwuhcDQUEKopgmQS7z8xM2HuaXBvLNuC6ZTB8knWJ+WxTFQ5Zv06NzyjlrGcq0j6ltEDWTurpJ/VuzKBAPa1rdCx8Djpzs0rFxNZiOteAXgxgD8DB2hskoTGP4VJzMc2qjGYqMnVcVcr4Xg1AM4aPgH/1fDCHIHCA58rPaQSQl3uUHZiEtEZ/F+a/igBYJaFBo44G8u/9XQ3pHFlXfwZz7VRDM0fIivcc5afMCNBq0QvNRRIgDa/gyVTnIHfdrLNFgT/XmL9dxe6O0zhyg7TuHchKwHKGjXUYjMij0DBSrfr1HgdvcncxCK8jOqODMwbuyvpQB3DPxDg46IFLD0/PeMIWTeOyMESqMPZA4nUwkMre3coFhpoLJGCRYl9Zl2j3FFPxGCjQobiG7sSgDXT7CkwQ+UIWxjImAB0xtlOvamdhGLuMGwhb70nc0bQ+0/ZLa+nfxnvGNkazHQ5QGMDQOwXSxlG7JsMZjQxBqve8DxqFwc/NOrujL4vX+mSyVk53wADcUdlk0KoYcYOKT1MBiZuDjbC3QVjgCkcBTgL//SR41s4Ftw3kBhYvVqV0JubNIRxh5VHDQBNzp7KILjZzoxZvYgID8MCECrWYfPYDdSB5bnxzRbMsSm2IOYGuoH8MfHmbCxF1g6Qyri8mSu9NsBXBgc0suSa5iVCBWkDPMQegc0zPi6AFsrvmTHrmg9QwV8Sh8lBKX6HDQu64XW9rbEcKR6XJZ5CUsaiv1PlGlRO60z56lRafxdpyi6IF/d1Nmf7o1SK752W4a4q9ffCOto+uUR517fDUlrqVT+xV4tclcIYnOdiZWpQgqzFWGO89J4JrPlF2eHKyYWzbaWJigwIRt0hk3ydETnyN1hd1jo/oaPFaN4RCBq0F7WME8QfcwyrGNKu7YIFzR6P4OB+AFRwrFJEAYOC4gWoJW99fJ7hprkbSn6/Jvk+p0whgn2YURNYO1GTpzgXH7uAqyJqwUakDzKIMl312wX+scx/LF0+mpfo4MckoRxuAFvZ4+j8oX+EcIhm2AarV+YUiIcUzArASUr14vRAYAdjx4EwwnIQOHuixHpxJ6GD5jBuM7Ep7xwzA+HhNCmW9oWOwqYZxnzNtDRys9dhsleP8epfgRJ+PSCI0j1y0C1uvS22pq3OUZz/x/vcGMtqD7OhAgQuce8xrvPFdzRLhFqAmLYqkujpQ5TAvTAdoQZbDFCH9dg/mG0ZXS8ftRIAC144plyye9d/jgs8BsqEQSHEQy9gPW3WqHZJ+hud5Smlc+ozrzhJhGAaj1KHn6wRaWSTSPmHS0XX0gdL5CnMAam+aiwMNMC2NZDhlWSQ2FFbgj3pGgAsAKWSzBzMtZtmV/qcyzPjBsUHRjBTkVQRCfaxVIQHtK+PUOZFaUOeDc9n/Ca3TxDF1AQrhgszjejcoyIB6Is7hoPcBrJiCHXweADsX1FFabkX6800GggYQWOjifjakgoyQvcvYBpZtnhjIhe9Bxqgh3cZIvjzxDSvtXLMSsEwwOJKL993+C44JCVrvPjnASYRTja7cACowyKjWF7sqp4oIzJJFLJzDC7qXO8akhKHQ0JwnV0rykC6b7GEyqGukyhvmYRtWBBntnaVWPgsVd2nqNWq0ZDTd0FqPUSSD+ZapTWk6GXK5jIw0qjLYP8Mibk5k4JpHGgHj9r3hI3TyMQlNNVn8zL/BezYpSxxH7dQKgU81hlzmNL+rrQyY0oZ1D0LiGCBH1V3gWGLbXtQIw+/4DoXk4ETjOGlxnHSyDw0F0wc/ahOyZVO4ePB73txhyPdWAIDJO5FJEzb0N1sZMrJfHValxsNKmz+G8sihQ6M1ChWm/REBROVGUcCmqJBXI/8Vmb1WJ+fOcXVs+nMKChBlW99bYxR7+siQnZ7r3dEtbn4Y2lYbGjYXEZUEB1vPoXVSnVSqgnGSN+peEN1MEgK4Du6cMcJcTZ0QOj4Gmk3dSJZWKGMMw+UezkB9RydsFuGiYHYY8d2rLfclOrRPufWduixf2jmtBm0hUFD6VkBNCn5Cv3mSJfLOYdS/ml4T/0gXDvaPTFMeeSQeV7jxzaV9x1TMjEaTfAbH1gATC74/EEnrJG6kylGDzx+D5oNhrFWlkzcy0IjxEHx8qOqRS2+0MdBsSFHBu78LNBfl7Q/h5+D2WoYMhvcDYANgZTANEKTys3DIp46OpL4OUYqKLF4W3qTc78HfeO46R0XWD4QXw2vbJNMPqjAAVZUxMQuXQQdAwe9YxoMUBCqB0hQpS9ynqRgmtSNwFHVZjE8Yg1iDgGNP6jckcU691xQsKbyvmHIY6q8e0lKlMA9+B89YlmarL57LeCNrrb19cC+HUl1CUEuljdlM0urJKv2BxLtmCDoIVE4sSXUR6hFDkU5bsy84RzinACZ1TiDcBsCK0pkjEWwT28d67Lli1La1dZ370Gh4tStxoy7VVZ1HMcfgXUbNDAIQiNy7Qw76Fp5DZr8hxOC9WPw595qVIOOSeUewDaMnqtCLSqM7YAIgCDOjyGoAFFA8xUAi6114fyVQNqtpc02qV2q2JepgPIQgCeZLXRcgjHL93YifA9y2TyrlUpUlFWygBgzHAvDijS2xDMG50ctcldIzKGhThZoxP7ZETMGyj/U1BOr0vLBN1PxN3dTl/mav7qqfAFpZpy693Q3SjVEviesBGpo2/60mLArNllUJVjSAgXrNhlSReQK4BOhpNSSawrWJGDDCvI53eupEOvfvVEpY2Thy+6wELBMMLzMcUKR34TxtJZq6FQOtiCotVtQnFW04B4cJlBMqEcWx9PdPSW0NTqR2AEY5w+DAjDRvXhZZQxZkTqor6+zq3T8wK80jy5qxwAu+tKoABenUuWk2XoQGPdLtkGKtMPqBIkU00tNeJcPdcwlH1iU5vc6je6Cj/UC62hNkVK9JFWABTLRpZC3wOfTwlcqgvF5QuaxLO50nTX3DMDhh4K1gsltYswJJAzmsRYipzoT6AOyDheJ1RG4AUHL3qY/+F+mAG2ZYtqJ+FRZMw2lgNgX3ycDKVgoMQ5pYPuiMTI2CjqpIRzMuKj8cE5C4lHEoL+zqZIiyohYGz6BeRwUuq8WsvIyhpsUjY8sXZS9a65S9+Ratx3JLF2nTxlq3Loff32XUrre7Xpj12Yql6kXBZyHvH0yP49oJurauCljOkfaopxaherF0Kj8a9gqh4wT/iOppCjjUKTbg6RHMdl1kviO1xXUZ7pvmBIqJd9f/HpPh/jlZO7/NqObKXfecVi1BaMgg+LlnAEsgNcpgdQhW8kXck4CD05Qc3AQIYqwQnjuyGpJ8NiWUDwq3HwLCHLsrv4z/4UAlpcfoPo7fR+Si9yD6W5fmYl8ax1ZkND9F4IKMHt73el8BCpwpBEUYKbau4nCu8DuyJ6585JkPPBMAI8y+9CJprEcsRKZqUguS4PodG7bCqUSGBo7SaiTNZZH2SWRmQNvR7a35u2TPHpXmzGavH0r7lAIdqr5NqF0BEEAwAo6Yy4ijkSjffXNg4STifR5M10ih8Wdi72dGDEQkLEcEs6xxKR1qRN4Zqff9x9Iwx5tZYG9eG1K6gsyQ12Xk7587zWHflUzBvVPCjLbk8u+cY+CYD4acnxAFZ0R+rp3QgABeRntn+C6ycH55jbWUYAyoShhlyXQ/7Zb2WIE8MhpReg8XzF11jEkmY+wKY00U9KsQjVqDnydNKFGb5rU7GGstA1Wjkx1Lg+OtXlc63LjelukIwUoqC67AKFTQSn63MUrpdHbtRrEM9tWkvaD3mAXuCPpFqCVUcI6aFcx/0ZTW6KBWjrL0Bpjw3mDbOueOZDhfJ7jB+nUPcppUPf0GK/ivL1lWhgIiVQYEmnUImtSYlYythwuyLkpLM/U6gI5py0xjvFyHeAD2o+cNUObvFWT6kR1lNZODFmR39gAQqhR9KBgAMMVmmotK71YZaA0sISsHBgX4di69j+bR+Bdghd/hfGcVcPP48DkVMzUY1dt9OzZEvgU2iiv82Y7tlFYClskWg18/EpmuEVhgYnFHIywauyUWSuWiCI28105NU769WBqLfWkeW5P182eksTKQenfIqALAymDftDSOgU+sqijgCXOiNGeMmYv5GQU53vkdPSX2TjGawYER3c+hbd/WgYN9QCyKPbIuzdgvJl/SZBABtai3T3a9gwoMWOxpEyPrCExmN3UoLThHIKSTP64pnRZ0d0eDQ2RLVvtUxGKavF4jBYcSzoiuoCivhyhLWpyISaBuky4jfuToDuWidw6TYkU6Dk0DV96XxYurQSUzcAPebNi3JZH+5InFSbE9B3lMdJkO4un2QkMEEwM+N2HgbVhRZTI4adpXBdkWnQDnvxInNS14PuDUrO33Rpeq/8+MghWur503+flqn7Brn+tg7pbUiLgTbbr+YCvg/qyd12SkGhMmMlaMak3VWddyOuowmUxQmA2oojZHSOXpzelClOeE2M80JjJfzjn0KcUFz6ZKcyrNjs6CN3rDvbB77xMmInXwMSkJjedpupWopHX31iWu7KWCjvKxT/+9dmASnmuSLSusBzHnyP3KJIuUWz6sl96gFmOsp0tYihJGhTPF1dk6jzzInri/Ip3f8D0HffLjSmdi36NhLN39LWlM1aVxqqsOC4HGiKpwMDhKdM5NXau1EElvl31G0IEaGHPGkR2crtLh0n1YbQsi3RifhhHpZxhHe3OqPIYIc71nalTr2u8CNEsGAeh01hLQgjEuf7vg0OUlqjFmg69fX+knPUaYQaup40VZdVORY1QbTiCWM2U/vssG4AFWHFSP1Q6A1r9mdE2j6KBOBGN4f09Ln3uMH4juY/wdmFAL5dr1euWpnU618zErqfvzRohhlimoQ1Rn3HuGaKBlsFszsa1rlyWaMscRPjPmjJMoToPCV5PzFLexvJZkWwQNYCGOgXpKr7/EPLZrmpl2zGs19D8C/ZhZGHj/8I4rSbd7jseY7xzcgCXARpUjBruc3ur1PAAyWuMT1KAYWHE6lmdEiPMdyFgTy0TEwBS9uO0ctbI/q2CF4431kPLaFAoBYH4del8pndswr+m90UwGsies+ehX2IQUgSTcY2YMsV2bAx109mfrfE5Ym1mtEAAhCApQg/Xnv9JlFgQBKGQnoRiptENVFMOyFGZhxkjrFynPDKAClco+3it8BwYBgPeIAUmvPcOyqM+EoT4NYi44J44BVE3TbA8oXciMAKCOZnQs4PDeqMoQy8819bpSbU2pZHodoiSrN9jVkubJdb0XmNuD96a0c9/KDMskSxx6DC4pDSdT2L0NBvDjTaRYZ4CCulnlBgNIVBZj7faONOlMmy/82mV7WCDtdDJOrFAkOTSbNBqEURGrWeEkrhObOc6dmkZr1uDQa10ERlxG+mwQZ8ExBg4bFGOPStkAgsgPt2m1IDSbCDyqFEb8sL9UslEnixHS95SuRZqiKVM3dnkeGIwxwLaOQQFsoINXs8ZzZ3d7ABxEWtj53Ar6kGmBZj9oBCy+1sgTKQEmA1ztofuwKswgAn/Jm0+yroWFf+9cluGsDpgwRKf0hqfNzzxjVMn4boEajw3MyLjgunq0FL+7nCYmLThLkCZGRN4jJ5gs9n4WIEEnEmb2GK3yYtE0qldEHwutu3fz75HdYG26t4dBABP+h/WxAYCYg6zseS0WRjuNkUAONS65IuAi007VQTYkqGkhZQI1OjcNVapzBA4zoutpFqFqPHOVI4WTZMfHqDMmWMg968Ts2UUAYPbZsehc81RXVi6aluoIzmQsgqLQG9eMGqIUpM3UvSaZFtlqNoCnFWZLwkLtgjRFAlpwTdgnwTjmFsHPK9Rl+jPkaWS5DM0YZdCzLEXgtTjhMuF8XQ43QFz2zvPZ+BicDQ1eMJsKn2JhRBWi3qWzBMPg3WOMQxaFYMV6r3hRPlTD/DrU0EuopeOSZlliaRp1h8+jHQPoNp6h6aFGAb4thNz4DimFrDaoyPoe/dsNz2DnJAQBKqQj4t3zTA5ACcUYKG2dfeHgkCHzjfGCDhmj7OZEDiJSDV1x0JW7SEcKipZhdJ49+GGBkPpqWoiEc9DMkUbmGxjLAvVDpUFme+4k2b2g032mQaTVaKRAUyk4fi2Z1UyevcBB974prDtEP6QKMyyDuab0z5vjWNy++hRrL7uH5qRz9SmlcWH1NSBGA0gAKzAAFC/GBz3Zah5rK13SggF4AHRYi4Lgm4locBtoUgnwMlCpf9SusE8LnVoELRQgIUqvksWa4eD4kGSri+XEfUhPRAkCAQYVatHASiLQYIETigtEsbTBQGjXODbBACJYVI/xCzU1rkCJ8cd+T7LuWBdzGlgSXoM1Qm1KTVpLmN80c8J3Af1mLPPF48aYjXqXk+oXaDZOQdP6/qZR1oxuaywKyiELfIS6NNY0O0LABNqWBRYY3OHzm863nu0DSHKanQs8oN7GjxsARYGLXg/OK2i0i3cEEvtUQKsT/GO+9+sSdaoynOlIYxEZRA1O1jzosDqQ/l74Q5qZ7TcCxdMdaKNtUgkbTdRAvGNZCVgmmHI2Yzp14NdrZ1l18LyY0nnHtC06cUUWFkS6GgaLy071lWKA1LpxV5E5aR3TCAN5uM0alTnwcjMV68olmExmG1KHrO2UySAbIRepW8geYjACuLA2DolDTeOglBY2a6G7FmFyMLTjQQE7jjEEJzjWNNJoyzNCpH1Q4NTAIaaSCfTjLVqGzutavKgAZzA7x8/DjBackvM+MpTmyZ5U1iAMUEszKZgYIF5gUtBVFIJisnJFm6TfSlUzOKihadTk0r8/xogcJmBmpOAQQZcKYMPpcZy8nLcR0CzseucBLQdUAF6jd1CH366ZNrY0IOI0H3sEyNFv4/wr5OJjoG4txNKf1QkHUeferewNikaVmMAwea8fFtn1ZZuIWR+kE3l/Tptv4gfFzbPX9rSQc22U0FEwwS5f2ByjnIWW6RMRAD1kk/Z9OpblC+pWTwPajr5ryptWYEJnNYkMZzt6u7oRnRY4NcZP5/J4lNsAvtMy+6Ulqa71JJrTjBrAKnj3uEchJdDPHcX9UCdz6pFT1VInRZ/DqBlEp9254cHlzz91Agt7e/gHCNbTgQ8oKrkaknD7mfqSAupWRjUst8P88WyVcaDbdGcKoFxXPPSRkbROaPSflBvQPkexrF7YkvZJ1G7Z82sKSni+M2ICoCYi2GHZGT9PFjEzyitSW7MaugHeh5qOx6S0aM8iPLPIhkCAAuugUL+5rD2InALG47D7qRQyHdO9d4obxhw4+TiHQx9GRkfHD3d2GQSpVaS3FwOZ0tN0u9UgkKPPIwvoO+p4aUQ6LdjGvjmOY9kGAkV6XgzKgArbULAChw+OGozOZgB00noLr4fINvcj7ct7jQQA1UFIqgbmGTvv2WKAyqjBGB/oUOOdwxjfH0q1D5U2y+a36lJdWpc2utTD6R5G0j84K42Ta1JZBu+zzoL56OBuLieNpsjistagQDDGajNBVfZaEI7RrOmAyl9NqsvdtA4TRfreuBL3ZH6KtZioo4waWvPgIIxMAMjZc7ANmtP6M22BuiLgPl6/lTILeO28Rw3GSwTNMF9zLkKBeI+1JlXWciKHa3SspC5J19VeVE2p23PE75xyZUEuPC9rBxrSOYbsvap6KUUyZtAHfVYW79Sm2Ar6a2FMxL4gBR7heNd1fmGWhmBEqXU4ZvgLKhAT8XghDoDAJvu9YO63ZwdGpgXGZc5HVS2Gr1a5PN8TA6cstndAYzQ1pX55Q2OVYQadTCmVoHg1GGDtgQYHueekdkYDfrVhJE3UreC6Tzek1tnZjnwUV/lz67ezs8/z9rISsEwwAJKDX1QONVOyNojw96pG4DjgeUqylnKKMaHkC7JDu+A/1pIiv3zxJgrDsR3st7HUpwPHNGq9KmsXTmlk2sDUYEYnN430otmdTiawUQc8V+jbW3SpktJpmGnB4WPSwYDU19RxWjsAlRYdYAk+mE2JGFGEo8cotg12IwxkpHQNVdkLkR+LwjHKYs4HU7cYsLs6IMPX4yC9H7Qc5XjnI91Q/Tl2f6R908/wOyhTESY/9HJ527Lq+hNQGd8aAyXkMTExWJ8AGKgHFTTXG1hTMUhvtnHeVaktr9OR1TS/NbwDxcNpX4EqWaZmgB+ksqFuieYBM15Ou0r57K6I5BFxUuowMZH1UElAAKSJtyJ/vBWDDKs73CyeRHdmqSSyvLu/oJE31NesHRT2RGFxMHjVM5jEFATAAYPDuFUlsTCCn9Q62OdzV+uzDlANiiCi5VCa8dqDZFle2xSswGEAB7rKiCz4RHgm1VH2CRIG0Ld8+Rx7zCDbhnquooLpUHY4ahi/m0XrwfeepfBidpfA5QLatHMwm1K18uq54Ykzek4HuoCmle9Ob9tPF3AwoztJpI2D5ceyLxMK+/PHeTrmEtTnfXBIGgucd77zcMQ7VdKxMD7hHcd7C1DKgIWrDiEZCieYSlhWdjOdnjzWpZSrRaLZMK+fUlaQVUHww9890Fbmv2oZM56P0fxikemb9H1jJscc01AefPfnI/Z/cbqQFicrBYm32sZJjKthv44kWm9gGc1dUS8xAoXJwIRy7vFuKbWI7yCdZB2fvVbF7wXpcXw37TED0LHoOmivQ4yzFjxzClMCmm1ugBJYzQIkTucK75s3gaTDnTznKVDRL/XZSoRBCEK1QDqOqjJsaod51BaiqB1BH94p1riMqPrYOLXOjMjowFxC8SLogIEyBvUw7xuGfSBbwkCTZVIgkbzelQoK9JE9d5oaPjcDfYxgYxipAAxqNK1G0p1wzbLYtbXMb/LuhvVmBYA/BCp6/YJrxPHAAI871tgnsiwQfGGRutWWwDegbLEFDo0FoM82CuMVzKBGhNmWpgb0MBYC6OM4kPHr7VHqOKyxPNJMRw9qYDWZvgnZCkjftwna0QsMGRPP4njPMe3DAv+ixmaT2sNlxEwHwAvZCT2lbIOOxmdvZZhkER30EZCAkQHVv1VjXdizDQDn2RcEOplp4jXQWjYGJywr5IyI1kmVRkagCiAGamgMkhmtnH7QgRnNxsGX8JR0aXcIKwHLJuYKP2GqnXQVQ/4eBU0iLtVx9SivaUA6U6lmdVJVwMdE9IvcehSjWVEa0/T9iH0e8O/aBdPSuWlN+xSgR4FFjVgURwlYjeZjwONNXdGGUCz0i5QOBUlCP27Qplgzgqi0FVEim0PKFDMM6vj5udWgulKpSGNhRIcvaY6FNLipmQznNdWr6yn9qoqBmtHWWip7aduuL3VlONdm7w0t+IOee0ptgINDWlWu7QkmnPP/ZyA3PqQhd/7LIxKDO80eAWgihmaZQ05UDlwYGUTEj7QCbGEkFUT0cA78zCJFEDzA8ZIu1uBgq8DFrrVx1Z0SF/bw8Mi+ZwES2oU7ugBkiJB54bh1N270hFx7UpwCx8OdWDR/RGbFC+VvbWYFPSMgiez7w0TIvw0sOY857HZ/4p76+97POm9b5NTlTVJpNjOtQbDr4O9J8D3ABApMk+LPXVrjROqWZNflerjOeH4HEZ0BgFLcc9AMMPFS7KFd5URNUBiJTN+oDdNWz2vKQk79bDCT1kZ4t/jqOpxDa0AXUKbcEkpUUDzfWFaFKmTNGium8jSl29v1RTgdek+HU0G9kEWu4XAPIcwXIpuNikoSsDxeNB8W+ifHHWRfJmVTirI3mzEQFDRW5OBHwWdHtDOldOD6US6VSkSp41vrI0Pn3roCmKIakekb02MadHS7FCKZAZUMYBbPLGiLFWiWKNXHxgpcg+kb9PhWLkzPKRWqSCPFuP6oFcM9gIME+hnWwzEm1CijgOJfFkvT2dMx18cAzg1GjYVzNZjTwAd/rC7CBU04FhtIozpTRZv+6bPk/H2tcUjAN5seKqABiML3YTbA3w9jTwbPg50rnzkdy3gqToti4bnWVIRKUJmicqsdYGd6saCXOazILdRPQOYbY7CwgWr7+pH0D0xJ82SXal0QuxgenOVyBDLW9Nil8fm7Ubi0pxhqXVb1XQdIwX2YnmIfL1LMvIFkH7QwrVeB6iTPq9OQxsl16R2AuqbK4AIsQC6XWXPUQsQ63mboeSFdMsvaC4ID9rXd1/B9ymRKWI+EjFlVBEpXBp50Ia1jSmT52aDRgiuswVTWA7IsmOcJ0O2ZZqDS3nFQdCHjjefABW7g/LcWIPCizxfpjkdH7BMF+WkAGwBNz64wCBlFadUewHanQVCB5xwAxNkFCPZI0OCSvVwgq4zGk8xeRdJcMFCGZxa1mnadmCFE8NACtDg/0sNZzB+JgLrZrEr3UEs6x/qydhBBD2TbNbsYFutj/yz4t2wfgFltcWdnHkpK2PZaCVg2sCJlMHD4fdJKeKfNqhzZhA6m/T0aVB7DwNQ9hF4nsbSOriqvExzR6TozAIhyYELjxIyJuB/J6oXTCW+baWBq1cekYSAy0j3QTopQRw1t1oRIONP4bR0oODGZL9rbP8XifnBM2YUXg2cLmQtrImY1AXUsM6UOIWtXVvtSRaoZERFv1oWUPbIa6wMZzbaTaDU/6w+lBuliawCFSaZG/ndLgQsK7xFhtB4lSqtQPrlnGZyydPLuFTnvw3r9L3rPuvQP77JCPoSgUCSoBX3swYEJDpQBdDOHY4HInNHcWOiJ87PjU3qBcnVZK4HvMCjahEAAqWfESJFP8rwXOFaq3ljE0rpI+3loBsXoMDYBkE7kEdUI8q1wYHRyAmhAc0U0jMRy7CkhldMCK2jq5bKmpN5YnYA7tVAaYwHznC4PGhKcSTpr3VgFJqKsuASACwAUwAAoB6Gq2UTLTfZ01gMAuoRIODqVfxpAN2YBPp+dQao+48edrfXWaGrlxKLI7lk6BnDCMBHifcE1894Wi3cebzA2mMWzPY5G6BBOZYFYYeYhN0cOAXxilQqlTHNLsy1QP0O9EOsi4HygYbcpYXlmFEZ+tgOXsX2l9Kixz3PF85nf/W+THp5YqBLcn0kKZZnFmQbB9U+L0vEvefGMYFdkSH68FsvjuWa2zJw9BaQoFNZnMN9PCAZwQZW7Ydp7R4ueUyWwsH8G6il476gWB98vlpUL9X7w1B0k+uNs7x2oY9gHwQEBR1okT4cWTqT1bOK77MIOnsGzgAbGL2birWAZYxqj1XOIFOv8AMcL4BxjMaS0/ZbAuQTI8bHB6/+cLuq1AV5zAeCQOMxB/w4fd/SL8WuaiACQXmxjE++bUl957xmAy2ZYWBROelfQkJLXxepp5tucEypxkzUUo7mWtG5e1W1i3EQvMQtWwUb75/h3dXHVns+KRLNTUoWSWByxQbJMd7RnGBXFqipdzFoYzCl1qeDatLVZJKllgyGV/phJ6g45p+LYEBDENVfBFZEBxvvROEhh5iVUMywYv5wSrEFKG7sDWhjvA4IpfJZU9a7Wr0od7AO0DmhqEbqrjMGJR78R1oKCAo3ATb1CVgVrRaK6rO/RTCIV5uDYI+uBJpURAMJI1g7Wpbunxvmj1oDst11jA8daE1uRXZ9fZx0ZaNRad4ZnG8+AHpO2H1C5agRTvT4VwR/uv1VjRh2Ags/6KCY4Yk0KnulOlXUozMCxVtauF3wPgJMaGvBqNoX1bT31TQjsba5EsBWUuM5xrWfRep60X05/F3wQzRJxrIVCDIK/qJXdwRZtk8LXzq7Uuf2sBCynaaAjgQ7GBkzdiDxjb4C0FUMXWA4SEFGZbcjahTN80dvHeuzajAERzqGrVDG1bRxiSsGe1DQzBhxG+utVWbkQTRid46/78ToQ/12LmNWxQBEea1jAPcZy6AGD4lEzqkKh+B3ZESte5gBovVXYO4UKLSiQr0nv8JRM3bguvYMz0lgCZxdOolG9MGHQwY8CeoSpqIDeMWMpX/QaMToII0sDrbVIlFpIEbPIE7JJHLxHXJ/HZ5zppKgTZkWZpAMYAHN+tl5bk1k24MWJDZ1OBsjC2OAI86xJUmBsPQBIObOG63SALaqZFOEbvSRPu4mzhY/ugIUF6r4t3NOpm9P+FptJGsPRU0lXqxcwJw9ONCkx6+l+ersCVTHQvtoiqzYB4PpTwa6dSi6nkfCNB+BEpcivQfidX8NgM2sHEJnWqGBvFxxalbbmInQC7JrzA71mAzhKrf1JRgvRNjjBOO4QTAGcJIXolQ2qzTEJ5g52IoXKb69lZVpHTW0PehCoHzanqH1Ks1etxUiWL9BjggKaCivgvttzMxLpz6cUoPQYLWNXdCBh8X74NV5jexYz5xjKH2dOSE7bNHNVkd1fGjIrwaaQpBJGDKLzuSMdRwE3m9a5+hUOyWpGFi9LQUXhcXmGIyxy9vEtoWJlM98ecEGWxSlfyE464IFjOpjX7aHQHjRI+D4EHKDQwumG/CzqSpCIbdeSS0jRgAWoJ2o2j9FvgHxQW8g+s8wRnTR1AlFkDV4/aC7MjATYEceJzDmdWTis1pfGl/FgSV5tL33+LHBiAREeAwAOrhMaE5pwRdhgNWlka464dzvX7KlmlkIKGINZM82kJjGRS24jezDU4AKkhJsVnotKF6P5oW4EFK0GpPjpJFekdnyZDYpJ6bKxGOpe3ObeOe3R0huQKoZMN4EMgk/+7KEXC2ljKv8PoIJCfSpkgpKGXl8zbX5HyiiVKWsSmfPtneyzD7QrJ6ZzQ5iFyzyWXjdi7IpKeH2NGsjvrecJgQhAFxv31qV1oqeXHkqYyL4YXRlAhe+MyxuPIAgx4vsFVTzUqACsYIyroBGlUSoBeHFOw11Vzp/thVESqMQ5QHUPtaEQuyC4sGwFMsEsyjc1LlUjswCdnRfoh6xnGcWUfGcNiVHAvH6whh/zFwB+0eSZ7QfwHqCwfkWFD5gZoQjHgMu6kIMGCnRbAESuzspMEdXB9Jh8LoNNHenK+oFWGlT+twljSGnnnJWA5RbYcaN8HfzIIHlxtmpFzQvVUl49sjCI1vmExW7kK6rIAWlCUgrYH8YLRlFcitoSlWDmxGt0BToRqPFYQ3fpBidQV/KgzLBJEyqPVLMOAwIRHR2wDjutW/8EFoBim1BnYs8VpWgs3RkZoFhWDjfooHn0FZM89jdkl3mNELkUIbsAk9OaZif0F1Mj4qCYvUoKZpRL7vQs51QTmDhwwaTHRmMj5WhDVcb6BCSgxf+1wvkKnDpec5OZ9MndIpOkvJlcI1ezqFpi1qcg7H3gExdLr403nRQbW18Hd0hCMOLbSBwW4/gTXCCQuK/4KVrfDwUwk3Q9NP590vxrHZmNkSxeXEsAjjfFcz93+UKtH0LGhlSx0+nJknekzTKdpf0zc+Bap9B8FPLeWuORV8Zyfn7CIUdWEIXKcw3t7gz5Z2eXIOsRKFglDvDYRgOUYFQvP/6wWD57DnFmE90DdkIoQgcdf1lXWkaUP8K9AiBTAMOibwoKpPS/YccyPmEWycAQ1cMCJzKJhG903a1OgWdQnwBU8utsFbhEFdn/f/YONirSn61K54QGHLpzWiQLY+8GZBNIbdHxygUNtMh4vKcJrguARghUWGdlICd0Ir0eIRW7yN5fNJ10LWfPJMJAgWwt6mKUOabCk45FdAAtqwoH3OsEcG4ITIHq4g0dMQbSMTW+PsegIc5RpcuTegE4yYg8B++9XyOluahDq1SalProGdhMTZKNV6gb9LpK4nD2v8rf04KIAa6bN/sk0OGol2wbAaiwPoN1knMtpcRa7YLW/6hIQA1KlXNt1pFV+21SNAd7p6V54yJljiF0wf2wSF6L8tH0kaphyH4zU2pF2qMRwQobSGLn612pLq0oLWxuhplyZE0YTEIhPrbZqGu/rtm2DNEd/eYVGeF41vrSOzSr2SST4nWVLL/XibCAyxh7ICq8hJZVGTNcq6QC3YUMKlm6uNG0UR8CqV+C9IHKfHt2FfMIVb0IVEyV1EQVSKfsQexBt9Va8r5EgWolAMDySFYO1wlM8L6hETAymu0TCiZRfL98ifZRA0hCcJBKZUblAlhxIMJaVBfMQZ0NAGZvlBTC6720njMmJ+/0ZzxXCmJS6liikGnPuwu2YEzgpWMjZAVdmFupBma92sIxCZkXLkNkXcn2V0vbCJ3jjSN3dibp9rISsEwwV5IpjADai3RLVcE2M9TAHPowXm7w/I03PYqlv6ueSfni5UXkBJEkKG2w8HQVDdvU4XZqAtdBqpe/q7Y5jE6HVLlOb6/WpiSDIWfC1NNRh0AjIv0DAD4NRn4Y1bSmaJ6yRqSH0Wb2VEHEH00QNeoE2g8KBzEgM818fEj1EjhyVHpyWpXr7NtxaDRGv6si8geeObNcoJTVjLKWnq8MQPZVCeMKIoGIHvLWYSBOJyyXzCWVjEX7Ne1rgJpZFGlPwws2Z8sjQ6TBYWIPerAY/9sljHkerA2Bx4TnSSWLE9W0kcjKxcX3HxkVXDePCnsjPKeFQZIYvVgmZVwmgRleFhSFGy0N1z8RWWBUVh1o+Mi8ROYUdvfg+m8trU1HPBhbw+xS0kwydD5jbd4X3wxKgxaJQvJZV/ZnMChwNb4466co7qAgHbSIYVRJouqgJbgkKR0P0PbCg5pkp5m9zzCtarHUlqvS26MR7OaC5mway+o0D2aVdkQ63q6gzX1BP5XUwcVEHYB5RgK8UNcPInvsiWrUhEL7wvMM/dvcd6hV0YioyO7PWaDB3kmedg90DhVl8Od7iD4oVmCO3imkfAb1WRlwZlFvPtPejM+ogH7KvJcOqvNNOsMaHdsnHDQAbdbMsJ5KM4Wkp9l2AUiQQcR4CkoKHUWjdnmdGeu7jPbLfbiMsGUy+GPqUBqVRiRbnT2/PqS22HX1+iw2BQQ1ZqUv/T2QKtOovauLJcX/DlSSWhWrlwuAf0Ibc+ABWhfBgNKTMqpYdKiVBuYOJtc1IKX9XnCcSgutxggi2Dg5RDRe6xxooAZbHRmOAc2OYZA5bpxYlQj1jlEkvUv2SOuGJWv8B8UyBI9wjSGIMmRzY6lPae+V48t6DjMdqaz2ZLR7RmrHl6TSH0itCZ7wqhbqQzUMx9TrSTw/Jc0bFi1bU2OvMq8LBYvB3x0KH5jgiQOO8fq08JlLaw7HaHY2f4TvrVNXmbViFkOvU2txmI5/Ni9EoEYSzDRN+EaDQqEyG49/rs6sBMH7Wtr/hFlL1HXN1aS1iH9NgAJAqQknv87gFuZKzNMQgvCeQbzPzDqh8F37llF22OSUPZMGQAOA5ep/3kSU47s/287AYG8Yq+GxfjNuEI0AwEeGiUwNF36hAlkKkOkvYD9WD4Tj6AKssPZI2a3wWQ78n6ru3dKmxrenjeIqf7ZjO6WVgGWy+WQ/CbQUGDnRQSHf6ao7ofM5uPcXvmdVtfbDaI3RuxAB1IaLOqNhEEKWxwdDRilcWpBgopoMciy8I4ioSPvImizcfdYUqmqMkoIrq5E0peHkMwhOK9MMi0ZXfWKFU6KDnU3k3tfDBiIMsKD9YPm1A/UMMGIkqhtJ6ySkmDW7g8E7qfuwrstO29AO6NqbBClrb2hFSVUcLigWMypTjKJMpt2pw2+ekfcE8DqcpGjSAA5S5b1IIvQBMFGBsMGaq6BlNPpd7QUOiR2zR6C8OaRT3QBGNqoBgUJXUnxcS//eCiDZc2XEonlMVhv1Y0G9BJ7XtQN+fTVYOLAEYHPJqF10iE6TOhQum+sPkaFmeZuVSGT9ICbkmkwdBwAVaUC5MowaB/Q6TqzW6NM5zOhTMAD9EOfmyUoDKcnhJJmU9NgmWlG9x6TTDbbT350eNIGLy4Xj2s46nylctyCqW1iTkvbbSMAX33FESrPR+LQCO0dFDD4vPpHxbAtA+a4vKK0NQQmMJcOpCjMYeK/RJA8NOL0Gw6PVBCcAFXZcKuONa5KrJxHLqgRFzUl2zgBK0ivIg9oYm5KouElg2zutNQT27AQUHexzz+ciK15WSVXt55IGaRLqIPubWMDdQECSKbXoOqkxXrvgTQR5np5VsSaFLDpGZlazLBRCQX0DriWybabeRFqXdUqPrcN4KOaRuX9mzKaLF/PbvTbOGLOA1gQ4uU4GSugwW0+pRBnSswR0FLF1pfhwP3jHMP6hOSOyLF4vg2MzxUj2xapXpX0TVCdiGe6ZlvqpNb228y39Gyph1m8FGe+402a2hZLHGGNR49jrM6vCsXmmzcJ9pZNVmXVhxmUwlNG+OSo7ArzUjp5iYb4+gOjlAgc/SkQ0RjMNFSvAvIaelTPeWNjmq+B9I9UrEFZQSrFmOXUdVWHgtUqoiNkXysEpl2emwe6XzzVQ6GK/HaWIKu1bxURgbKbs8sLMctXZtoDOO84Bta8ovEfzRRagU8k5EbHQuhOlJg5QF4MszAWggWtjVdx7SD7juYRp53p9dlFrhTop9kpaw5xsfc1w3wEmcIwRskEAORqwRFZG1UctQ2fZpUQOm4EBPfeB+THwB2avA6fSrg2Bij+DKS2dPY/o/4BeBgWxltTXh3L0/lkBldLuGFZmWDYwjQJs/WKCE306BufSHZTmEpoaVtjPYO08FNBbESYnSp0wMcn5hONGyoVFgZwmADlA9BlBxGudKiEVpojR0RsDHYo+ly6b4aC5dgB9TGLp7laOLLvdevdlbL+t+2IvgamaDLzpo0VKMfjhd1XzssLVEdLXVliMQduEYUD14bkumyPngzoGYZs8vDsw+7N4NMicCU4ucEYYOtYMRw0yxQEnPJwUCKAQ/QOVgFr9VpBvERyvx6HTQFoC1kGzK9ASkMGBXEkj6ZrukbakS7Rvx2p8QtDCCBP/NGfC5WdwjNYAbTMryp6gqBsT1CTQ4gpfmzWP9Oe1vho4faAGLui/rJkMqDTeUG9LqmAGgMKgUFjwPCZvZJdm+VJcR42CK01NhScS+hxrjLii9Gcg412Vmev6pFx091RJgWNBfaPA69fVxv/NOPrjRfi3ymz9wfxkDldehSzJ2ITOaUgLCo47dkDm51uwvYxtBlbsX75LkP6uiRx+v9aaMSgxDycllvbJKFH2oxrYUPn2KpqAjEWaEdL3V2T9QApYtSkdGjAGGbcko2eOfg6AoXiYAhTw6S3Dk6+T8voLOJ3ucKpKX6rqpjRUq8VwJTBrvuegxCmcTkP0YwgL2xmF9nuS628C0EA1KoAi+PqgwKBDeFJIbB3W6QinARTNzvo5p6AlyaYkz0OWzsRrZveI9dOe+LeifdYns07Hi1OyCQOOk5hjSPMx0BgEYVT6WD/HvAJqFusXodplFF1kt9HUd/3wDDMBnr3G2Ir6DNQaVh2A4DtQdW1cpWIY9u/gBMAEy+yaSSi8g/PmpX58VSqraxLPz0jtphMis9Na59IfqMhKFMloepZAZjSPrJXIyJpsAmACyEDNko46xzwTjEBwyu8LaFFez2kAkxMhzt+yAV7L6UqcXlCfABk++BKwBZRK5XLAmeHPjoPPs+8fWStQrQECQdfC9YTQAUFulTQy1ERBhptUS6u9Ac0X9x7vCra9ekizL3iusKzO4eYv2LlArAd1NQBHVLizBo7t431mpyDso71lYqmuDbUm1Z6nRLWrm/YcUlVQA8OU3a7I0Pp5UWwG341Unpk9fazPiz+DuHrI/NcGKh8+MFVSgKPuhVMJ4Ef2FPLl21DPfpsaeB3K7bj12ymtBCwTzekUt9VjAjlNN6Z625oJccoB5S29fsL6DyDqQZZQMDm6QwcQ0rqpKwuXd0jkX7nXFFV6UMQMgOA9WrCcDxxwNpxqgagp+OLsGG0NBEnLwNxT1wJ+SgmiINWKR72fAAZKRMgbS6Z0hPS1FRdz222TKUYRbhfF3si2QLoQKfG6NFYiEWy/h3oby6zYoOeynM7312I8DHLeHFBrTrCvE/eoUvJYJwXUNgBJ2Tq9mlz7SA29X/TuNakvKfmVUSErvtfoKc5TM1RsRtlXQMNlg4L6BKy480inwhSGLCIHNZukyDOO5fi9b3l8AM6ddr3fOMMSZlm2YqEyFaKP7O1gEVfcI0jxwnB94WQmlJ6cZQQDYDlRqowDmlO+ouPNWg1QGVxaNqXsEQQji+CqYYZ0cS1O3r3FTB5qd7id8IXNJ0nyf+dp/kbB4q8hNaQIvFQ22N422BhFbIvnMpYX2oDqVbQCqH+gluz7FDIffXPq9FlvoWt9pyqrh+oydWzEDCvWB4jBWIIgQ7hPPiv9CqmPfj4Oxghu7b1JKDBOZ/Ooq4P+IHDE7IBnUOz4k1NExs0AB7cP2V2rU1GhC/0skRAmdUeX1VqykCbqEXU/PnOOsA3raZVS8MypC+TO+Tlou167w4xzKkmPcRTje/dQh84YnDXuN2hOGQK2JEuZv69GAQP91WsDvU7DVcZ43i7NDrPawaQOzJ1Nq9VLhEXs3NjPJWm6q5ns6rr2zujvm9Y+I5FI88iyxIfnDKxWqBhZRS8Vd9wRHKpUpH94TiWHF9Y5didF95BHnm6xTwuy4RRQQcNfYJrrTqIZDjMqlaVVGV60X4v+CX6GMjqkfNnaqTVdF2N41XqG4BzW+pQ9huoli8Bn0RRI+91Qapo9PbyZadrkl0DWgF5aY2nPD2XxNFMPR90ddg1M2T0yaiHOFS0BEkWuoF7G5xUXpCFwsTEAYAWsA16D1RHbD4DOhdoUOPx16+0C34AUZHSRJ93LVCcptoK6Fm2ESwlkCN6QLldnUTy2x/kVst2WHdH3F8+O+iXRCDQ2DX6yLm9XlTVfsPqqZQWr1UQGHwZVSdbZrKAdQ0oRRWCUgg5o3uvzKHwcUZEK1OXweOa0Hw3uTXdPPVF+5LavUmGNhRz7YKdZSQnbXiszLJPMu20z8ra9Fx0OpQ6E5pxjkkOExFK03lhQ+zToMhiQPIrvPFHq9ftgWgHdAp1yhXKI4PSv70eKF3Uj1vzMpTM9g4IIJJzE/RWZPmLRxjiWtf3aQwENBAEqEqneGgYf8Ee1zwW5zolMI7o+K1+fUr0rOlBD1YQZmJ45vG39F44wgA4is5zYqaKiA6vKP6bdzj1iD7CDSSJs3OYqWFh/75XaPMsHzQNXDOXI16WP+EXvWlO6Bihy001OppjYmFHBxOiSxrgdbD5pSmq8wKE8jzk1WNbSA2kfjKznqN3jK3L0/rfuVUOEusjQWBL79e9RVAzVLdS5YGJAMebaQa1VUUljbzQ6vi118lLDhOf9RWCTwEomopunMrlNyGIk9RvIlIERsqcis9cquB3MVCRe02LoJMtiTqUrTtH59Uvr0fFJmZUJh5CeSEVvXw4dFIKV8N9NbMOSmbi49n/SNsaKq5MFsscX1g7ljzVzeg4IMNDFIoffpypD7rQ0T6LALGZvDXW6AVyUAoLrjvccY0APVA84GXBcvHM8anVmCjJDzBwEzw3Mns/hLIBzWlTudCat40oBUejQJ76fN2FF3dV+/WjmOpPvZQY3AC4MTqiTxDqVpC7EBQGsuas/W0aLZKbBdTrMwYV8K98pUKdMHYyBCpd9N76+F9Kzrs2a5XpknpfAgkQqqKIXi/QeRtEDeWYv6E/qk1VaXQMzqsZIYZaOKpypoEBQV+dgy+swOJ5WlFZHMGj9Y1BnwiwV6iO0loXF76C5rcYy3NXRHhvogQWxFiiCLfSkvweULuvBATXKZp19WXjMUpPmsbVE5h7rxeD2WjE970urrv2VdnV4DJDbr5pziwL/0f5d2kcMIBFAZPec9ZmJJIZCpQeg0GdkSUGRG+hh3hsFBfGM8sdpA0eXA05qVwKgog0okW3Ctfc0lfel0e1XQVcDAAjfSVAQAVZsG8zaJQqU9gq66icl+PWZWTuvJZ2j6nwoRbsqw/3a88ZrRNgQEgIIYGAsDmX1fNR8GOhNhFv0uWGwkvVa2i+FTSpn9BlBnQzrWqzeRHvB6TMFlTuck6+vfYNiaIxI57gByuWRrB1qJGACJ0WFwHaF/kdrSd8Rp3Tj2rmQD5tForO9A+71EbPmGINO3DvbGMdrAMEO4O87vOi+tDswYLnhhhvkV37lV+Qd73iHrK2tyWWXXSavf/3r5Wu/9mv5PTjAz3/+8+V1r3udLCwsyEMe8hB5zWteI5dffvnp78ypKh6tsyZO22GZouyg6Ixd0Z1eZEox4CFzwsEgZHSIRHaSzceU5wpb31eTXV/qyuKd2xqFtDoUUGwASkD3AZBxTjijHmia1rcGhlQq0fV2fcWkOs0hbKyK9OZ1kgQIaS3oYKT1nKrqxO3a4NLdawOKm6WIPdOCbWsvBh0w4ZT2Z7R3QzLgBo5OJaRf8CJWZOhRWpt88z0djjxQD+DQR4fWHA0Rt6HSJ1gDowNmkuI3qpbWvKjDoVr7TvHKyV6aNKNncRI6iHkgsamS3VqwspHllcBwDVALhXuD66tANwUrPGZm7MYBSt4y968oo2BGUNMMHO5cnUqGBsZtFW/IaQRo+Lf7c5od1DooODHKewZVjFFz1kgoGPZNMvHix1nQfzG7s/zxBRupFMscnxbFajsoZUXbDGo3Jn2f2X8BOssUqQfbmfuK145VpHWsJ30IcUQtqa0OGOHEeDV1U1/HiQ6UCzWIsXqwrmIbnVQBjTUrNatZCZtYBscA2mLzlD2TRmVK5IcNIIQgLg/sINaAZVyAIhFKQcL2qIJ41H9RxMIUuzIA17I4ets1cuzZYKWeWu1couplzwXr5FxyOgQQAWWUsrNBHR7Xj1k4zOa//ACAD4XsaS8b79Hi/P8EpHnW345dC/9tjOc563PLGkajEaOWETRerfdTFTJS9hDoN6fYL6b3B0lq9eBc4lnwWhfW7KmzDanj0RQa/KlUvPbzUAcY4KJ145IM9s2ogECrkTQe1oy0y8tbc81h0L3eemN5bWFtYV1VyNYxSWmT5OHuafbOAghCZoZZGRgUwbraDJkUYNwLy84QHNes1sa6zpNeihqmLtQ1jeYk7kwbCk6yTGGQyuWm9ThVAMSU0LAYsjtRWBdlgjHISnkto9g6Jrmv2w6ksBEkQ6Pm1YgCDrwH3ZH0rW8JZeqb9r012uU434+0tgy9kDg3K9hlEBAsiZaK4jjtEu/01FHta0aFUQTy8PzguQQDYbouNz140iRRoZops4P1SmY5CtZ0dWxoQ/nRqJguhkHADiCKOpmuKp/6uWDZGx6uvdz0fQvmFh/b8Zz7OLjDmVLb1ziyLLo/qwDLqVOnCEC++Zu/mYBl//798qUvfUl270476r3qVa+S3//935c3vOENcumll8rznvc8efSjHy1XXnmltNunV6SVKOx4BNJ4/qdT0zLJTtyrps35bNDi/gJ+NKlhRi/Cy00FLvChEWEapREwShJzElKudPtUJCfu1eGEDEcBx906qSnZmRtFli+o0Akkzcc6nTMCZx26UWgddTUqunBZVQHOihXKI+syUJUp/DgXdWh8WVwnFDuj2Bs1EBhkkFXB5E9wM2UF9k0FP14YDaDEiE9ViwmhSIVsD8AUrjn4uFrXkqoFeb8EBQj6Obq4u7lDcuhjWtQXFld6QaNeP1NOc8UcZlnslmPiM9UU3ag6Y5PMsy36uFih5hkwPFfr+xEN0+vgk0WRkIRTvhIKyka21Rr0MLKfqRmZ0LhQxh1s3NtTd9fnC88cGjBiVTw3nRORrJwH5ZuYdDaqne3C8xYAyXytSnBsyX4Cka4M8DBKWChdPPFabHKLxyhxk845WH6zbEw4LmUAR/J57rhzG8wfU0LDMkU40L3mruoqWBkqbWSI/hEL6livH2zoOID3Puipg2ADwYAFQ8L+KMmxB4AK+0Q9lgNoGMYjrTHxAxwHOd7jxzMoCJRwrLN+Kx5UwjKdIyLrAPR2ndKagWDb/p1T05glCgrRg2xGhEyxZzV4zF6M705/mvkl/RZF9Z6dxjKmmshxfZg6cJR/b8N5NiDeSmtq3PFlA2AqKRqASJ7fXE0EG2hWUtAyUBA0JPBIAZYiRANRXrvjYgOWXWX2gWIlRm3CcUAhDOAAQR2ej0oyc05CzxZ0tt8zTZUwAAfIDaPeBYY5DJ3o4egjOwNKF/u2YFxGtgZNI1lfZOID6Kuy1tesDuSiIXaAjArGcIAa0MmwPsZeLIP+LMNUaMX7blEK2QENjskEWXx8byx2tWkyqVF+zQ1AWJ2KBruQYbFrDQBHsFbJghorzPcmkVpHVFVhGD4Ldt3odSutzEELaeBW69Lb1+JzgcxFVK8xQOANTlkPta7vI8GTgWPQqwFkCGbQjNjFKoIAhT9DoGEj8IMsh0t4o462sTQgU2Pt8FTSF218IBKZ/4oGLFfOb5KO64bgARtddtFqISJVVEEvamycMo15p6bNI6dADdPg6LH76sTNTGgusBDu28c/Xu0d7sdHqGXbhsjVdmzjXLCzBrC88pWvlAsvvJAZFTeAEjc4869+9avluc99rjzhCU/gZ3/5l38pBw8elLe85S3yAz/wA7d43+7kZWgVtxK4+ITI7QfcaZ3M0kJPHSxzfUM48FiPgVnwV1N6Fr7DBA6gQofPKAQr51Wkuy/rzEQ9nfyYNZlXkKH1AkrtgvMwfWNfjt+nxW3MnAL3tSL9eQAfpXSxUzTlfI3q1XG6g/bEYAE1erGg94HRPJL6GHMiNKqpkT+nPniXdqSlEyfD+y/YpI19MzLTrMiuL4e0GWRplGfO30mT0NQ5jA3cwFP2Hglem2KykElXaETy0BeAqmGYCKuZAkutU0GD5lQxJsm8WG8GNBq9PQ1gGJMJnBYyFuiIBBFqP05z1ryR4WbZgs0MGRtmOxIHOkiLBV5y7s/EEkod73XMIkM+7qY2h+cFss6YRDvH9TnHs5bI/4bZuJwjP8mK6FKZzzeyTQBIYe3LxIKYre03A0jQ1yJNBhUCFaeVZqKTEw6HX9sYh67YpCWRigpefSxxR2tU+F5bUBvjBLOueCfDwnmLiHpxPZ+LAKj4D8ac5kLQTNQb+OWafDreRaAE4xI+QAYl7K/i23b6GE95JDJzTZauGYKmzD4n0fxyicGEVmZjrffDCil7iGh7l26ltqrz6hFkV+LypqDMKK8H9FZTbPLoufflYKYkAFYKWtRhBbUN42FSp+JZQq9HSTI/aYCMYCfJWAf1Q2H9ptXUUH0LtCzQrVgfIlKB+tm0FkUTHLAwPZI6QAYyEOsDaRhdjEprq6DjIksQkdLFzeM7XLPlLh34aBbp/ICGG2vgiEDFKGQe6GOQCNcWsrdQGyOlrSZRB5MYomPWGBi1F1jPJHvri1CeGrHGRqWLlf5WX9LxXq8PKNeWNTFJX6UKetbJgaoDFm2s6T1MMF8AiKCRpTcu1ndMg2Osk+SKKd0sAVeVirRvWpfB7haFcrTnjwpckFaF2hRrTtqbR2AR4E03h2eJtaG7tVYVQAT+AeZSPB8ANgAOECnBcmyLcEK7zmsTxzqfbWRNJzYphgLqnbIpU9DAvD+cvwMAyvwXCqHrGoRcuLzKhtB8HpF4i0RuNiZEpuHwhP2Gr2hm3C/tDmFnDWB561vfymzJ937v98r73/9+OXz4sPzMz/yM/PRP/zS/v+qqq+TIkSPyiEc8Illnfn5eHvSgB8mHPvShiYCl1+vxx21paWmyE2MOIP8mH3Prx48CMdcgB//y+H10hEE3cUwqiC4w6+JcbZs4MAgAlKTFn+D2e/FmOhljYMAkB4qQDhgKBNgV3LIVoVNIUNFOC0ervYqg3YLTDpzWceP+ljQW9W9267aMDKLzpFBMq9ML59FpRg6UvPgQDueoq86LOzBegEcqGbqDk5qmEzz12APHOqSFQIGIDoatgygP1sPAC8EADOQOhFT5JYiAAqSAJ2zqJA4OE9oDJhb0BcCEArCCRmc2uUNtJkn1G+VDv9QUP0CLN89KLGwqeTsaQNwA3ZAJ7gwE1LMTgoPAxDncwsCPTEdR7UtioTKYeVX5Jot5n70yIdMB0EIHIakhqCSgBY0ZIfKAdwJOL7MiQdYkdDJ9P6TFBe9vxoJj3HQC3CIFbAyobGV2nZQdmYTweKpF6gbpdaivVFVOuehRDEFMLebYUetVZLlVl/mv9rkpYHw4Pci84BqiRg5UQ9JQwiaYZkl0NKi5QPaWlMTZ8TocZMdgoIY5MOmnSfMkG+Hm2wBwgcgHlOyQCU4yB7YNBpRsrHMwhcxveDkn3o6QLlj0NWtY8ogqveZwEDkeIyrv4wxqYjAWBllajNEcB9GeZE6pXCg4hqOHMVudPh27RwxaBefpmWA73hjgBACE1GWl/VKi1wRIlH6kEfmwHwgxgQEZKkHx5gXvLCL+/ZEMrR8Valfg7GvvlVibOA7g/KsqV4wC7WZL6zoMwLDYHopiQW8ODRBlFRtHuzsELiiOT+prAIQ8y2SUL21u65lvAzYuWY/bzixMUwEMxvRuX6pDgBhcb4yLODbU13RtBdd2BqjqawNgfMYsoVLdOBZhrkAdErIrRq/zY9HmoGmdI0CLrmeCLZ6Joeyv1kum8vp6nryWRmXD/jHvIhMBILG+D1ka1Lmq4+/NJgnaY3128LygGB4iO6R2mqAC5mZm0yGwsqYZGH2OYlm4vKFNbU+OZP08sA8CtkJBkKPIECDDnEPxoE5N1vfgude+RxgD9n46Ym85Hye8f8rc1TVZuiRtqJyh8YbZ8MzLl30PN0nan3FDw8ftoHOVjSPPMsDy1a9+lfUov/ALvyC/9mu/Jh/72MfkGc94hjSbTXnyk59MsAJDRiU0/O3fFdnLX/5yeeELXzj+RfgiBM5UQmmwgsyt1rVoQ7vxGdKBi0fHUX/A3ZvTzqI6DnYa0aMyDzt5WzGpqdxQUjlwzpABQUSle8A7rafnUkT/AXjJ9AYMJmH05oAjowpNmlnBIEPpWSvGJtAwZ4XgikWoCkj0eBXUkLZhWR+PyvdnRdrMbqTXVdVIrADfonzsHWDFsRi4fcBXCeSq8nZtIqGEKKkR8G7g3Aw5qWDCGSFi18UAO1C5TUbSTPUFgzyoAS4natHDJOvFa+MdftMLlgFG5p/eVo1FQ0MKfu287GeIuuEYQJuC8xQFtUNetJiei00Uud4YeZu5TiPE6xsAlkTJyTMluecsoTIxwp51tBM+vRfhSy7t700xUHB5pzA7mX0nM5SwsO6hiGbk7zUzZAFnaOzEgm3mx4Xw3DaySTPrZhywomPJbqCY9mWrJr1ftmDsa9SE5GgsawcbSdFsvaHBEIBIdq/vwNlO95m/B0nfFD+ekQUXrEbJO9SHGaDevnGeOntUBMcHyqoHatwwnmTGNFfUClcM7r0DdKeShtcsLPL35cN7PxHo+NwQnC8b+2FsyjccdEfL6guH7ZggEIYaoAGpPz6+Gg3V5J4z2VsXoQhU1dzx0yi30bzC/VsDSa9VSZveYrN6ognQobOP+64ZZVCaKPNOEGEy8SYFL72BVAlgVB6ezjoBBo4JtRVDqRi1q2LZa3ZYn22yOS8PYVop26Tihn2vHJw4+ADVy5tGQiQFYzaaUbaaVAvTB6Up1dWuxMiWeD8W/N1pstEl70Hf1MvQjBJAD6ALErpGDSaoMGQYQXbZARK/1w7xSZ2KCUzwcBOVOKbgk4J/gD5mp6xmkpkm7MPlkV1K2jJBoMwB9BFEDgFkjQmB5rNG4UqYCnatetYXDb218I6B1YC5deqoCmSAGQGAD9o2DOIsfB8baA5c4xwdZi0nDYehobcRQRgkkvc1ZOEy90PSoOPx+5iMeC4QsMQszThI2dB2OEDJWxSjN9w2AJayceTZBViiKGJx/cte9jL+fb/73U8+85nPyJ/8yZ8QsNxSe85znkMQFGZYQD2blGVJKBg2ebDQN5HMvPXmzRg9UsYKuGDnGKxgiIog2jjiQKTHANDhFBqukuOR522MA598kZ2oMagNO/pHfbXCvioEK35oAG4Y/z0CiEHQnF/tp5E2gKP8LFLVXQyS6kwgWqriBuhcnOZ9KS/pWQorSvVj9kih925Z36s6+qi5IW+7Azln4xybZCObvA0iuekbHEi0EpljpYYp37h50xIVb2CYfBMLJE9TBymIRlkETdVwbh/LgxVISTK6C7Uhz3Zh0u8HGRbjB+P7OCh03rBGBzUHy0pPAcgM5ZDd8AywGDKk2ATOYBg1Cwt+N7QwWFD3/tTZeYvb84xeaLlsyxhYzyc0JtWt5CfUgDaz+fGfxgwbeghbnbzDjEp4rFvaX+5v+H771TmeuVFVtRDNBUiBM4P3ERku1ssds1UaQnVAWOtEcJ9NpATvOd5xNj9NaqhckVBPFIEVPHuksQagswibJdcmuAc+znnGkLV5LutrPTT88ibXyvfhoCm5ntl9hYW9yTJFkedwvCxIemX+9mHDlBt77ewyyHSH9zNRA8s/z77rAMC52IpmuHX+cGCSAe22ntMAdYxOm2AyqACHmY0SA7lnNsOsiQCwMP1WkRi0MIASONF05I3yg0APsiso9J+f1oJ31GwAxID6FEUynG1pPYkFh0jJ8mJ3Zqf8pplICi+Q14Eg6oWGk5qRiSF5vIY08EjiqZZUIHuM/iweSEKjSZ4/jq8qEQr4kWUB7axZZ8bFAUbsSl/MtqtKFqR7nUYcXkdSjSOXkI6yr7H1VmExvtXVUDAAVDEqUZrKGj5vN/k5/sa16u3T6BC2B4CCOicGKI2KCAYF5n4AkcxzaMe21tH5AFmM8PuwRxey5piXXbHPVT7pUwR1JPlnjz2UALKnkOVRQML5JJwuJ/keBYHRsbkhCHBlLAw4lXaHs7MGsJx33nlyj3vcI/PZ3e9+d/mnf/on/n7okMol3XzzzVzWDX/f9773nbjdVqvFnzGbkIpM6En+mUWMQ1rErQEv2E4qYVuhbC2oGqCUIUtDxRvK7uqxgG7hNSheVhNywDM89bDw1HnKQbf2sWLp0Cmzf4fTUILBQGeToDknOuEEYMX240pUbGqFTAyAjUUFPSKIiK3XttTXVSksOc6gS3py3B5dNKCoevG6XwzqAD7o0oteB1rspzO6Sxwf/q8+JyFEDXu7W/w9YjFiTRoL6wQrCS/br4M17yRAMloZ/0U00yd1y4z5dTn04b4c+fqmHPz48HarZWFmy2RQXcwgcegSfX+cg2XKzNFTJTo9VzqXZru+bM4DlGSa6GyOf0VWpjefNViEnAMBGhEOw9H5EzDevQOIHEgYP+FxTLBR8XrhZOhRiM3AhR9D0bZvKTchPNjTASugIBYlhbZA4yjKFHA7tViai+jHpBlcld012exD2Z0xcILMCChdaANijo6PJ1gHYxMU39TxyRaHpzvW4vsxAGziSQkwCWgjPvb6mIEASCi5zYBN/twyCDeo7/NaQj/2IpCbvyUTnkV+FFAcJz2HyedFGcj870EPFp9rKO7h0ru5WkoPdGWyK0mTyaBvVNB8OFXB8v1g+ynogAFU0LG25rs0ZDjQpwp1fczEqMywTDWTbPaw1dSxdk0dcZUyriqY8J442P5qn1LzbBK4hM73GJSUeEcQkQCaOiluFTj2FhyKZqfU0UcGqI1oyog9XJA9UfpVnIAUfUAwYQ+liuxcuymCxpP4fDCUeE6pbZXeiNQ0Kp0BWFiDYYq3YN5d7LJ4P7n+rAccsgEjaxtNeZK1LAlNDMfutTc17sOV0XCuyEQlwCyKpHV0VYZzbQpf4DxBu+rurjMDunqwktAjk4evYCjJgBV/dgMDxddpvhmwkctCh88ZJPOdFo5xgoCnae9dkMXc0jiWG6/GxrT8PJF7R3Z6DcsI/Yi2AWFtxzbOBdvhGgupQSHsC1/4QuazL37xi3LxxRcnBfgALe9973sz2ZKPfOQj8g3f8A2nv8Mc9aBoIku+8snH08JeL7BBxHqr/TZcthZgBVxtOIuMcIOXimBSS2T1AvQw0V4ooG5NcliSSLQXvoaDgkccg6LYST0fGHmdwz4BXlBIqccVRmOogmN9PCh7i8if1RGQk41Caiv497S0190wqgsFKFJU0DnbubgV4+96d990MidVDUV8VpDpwAWTdH+uxp/9V4z4A3U1P/f2Mej0I+qlE6zKVcbs6As6Xn2ln6i9uL4+J3EWF+u/lAxN6GDZ7AtACwDNwY9uczOfCbZ8kRb0sobHGuwBaFFty2qIQKfzH6jJsPhyWf9GgTXoX/hBc1P2+gE/umeZG2s66hG2vDkFMDFr8hg6qwRRaPJYlNFwYnIRAJiQQUme16Ln3ifO8H31qHvy3WmQoSdEuW+VZQp5trB/AyuNpfQ5bp6q8qexaJ2sNzhGDUogmp46jP45gMnyJZCU1rEFzxLqhbhPRouDiuxIsyKkeWoNdVIUTvrqnAPiVEI3dKjYb2WYghX8y3GkkdbQuRAI/kVQhlll1MRhnJjVdaB059mVJNMS/J2AmxAEWIaR+8D7gh/spza+DZUtH//JPFuhelEOIOWpiiF9rTBTE6qshY5a3kFzIJfPFIZ9qpLsit2/MAAQHJMfYxoUAlgx+tgA8roN0pSQeYAjD1UvKnNNWTNE3yycbcvQOH0K4yUaNWI9Uq/akBh2WWNsuy4R6FrWWX40P8XvkT1BUT/BEChk2F8TTRFRwGhUae+HhWPAOD7V1F4sAAbrKqecSOGj9mRg4zA+x+/IyAAQ4d/hUKpHF5QSZj25ALbqq9qsUccaPWaqn4G6BpW17khq6wPSzRon1qRxal3qJ1eTPl+1m05IbXFN6seX2UemutpTmpzV6JDiVsc1aBCQqdpZRPBXX+5JY0UbZFJRay0m7QrUruxNt9MKgwa1jX/0Wcn9HT7btt0wAIuMDHwNfm+qnw5Wku2Ez1jwb+bdyT/z4Z/5oXCT4NPZQAnbjp+tGkon7nOf+8jc3Bx/4P9CWRd28uRJ+bmf+zm5613vKp1ORy666CKWViwuQrIxtWuvvVYe+9jHytTUlBw4cECe/exny9Apl2fQzpoMy7Oe9Sx58IMfTErY933f98lHP/pRee1rX8sfGLinz3zmM+UlL3kJ+664rPH5558vT3ziE2/RPjd8aYwrEOcoL0lBoxVGUl2M0eYJO8lNdA4h3QEIDQXnMGQqYB71RLaDgwrqTTzqkqshcN50cl55xysPxtyxyEve+nUwzj+i6BrpjLXxWCCXnEQHbd9UscH8Zt8nvqmdK8CKd572hoXK9TaQg/PH9tZSR5XOTMeaoTnFhHUwmr73AdepYywitcaZLJ40tR/o2KOTMIrrAURcnQ1N0LAsMiWww+/v2rFDpkppAHQGUHhvE7c3i/Tjdv3+28vQiwWAw7tdQ4HNi3/1HpojYn0jEqUtFqWmtUR+v6GVr0II2tMH1wb6+q2lmnKWczYpupynio2FA4PPJmZXCig7GQpGEagpiM7lF95ypC6QD066n09YLnMMm30/drEmALTg98GcDjYAKirWYUIadkE2xEB8SfRkuIgDyaquRzlgmAUV/D338Y0KX6cC4Y+C8YJjUe48k2W93407TcGYUxToSZ4p0FM3Kg3Lj9lBliaJQHvUmMEHreHIrOPCJOFPvr4ld1ucWpanhRU9j5nPw2Px85+QSSy6JuwxEtDA/J1O1MIMwHgGPDkXrw906pgrn1kfMC4DQMEsuSprkZ7MMU4L6b1XFYGDN0O0DIJmMQwssDFjjUAFY27zxFoS+GEGogbUCHBgGRyiWdS1aHYGGQ4eV28gNWQ62nVV+DLJYWYzsAyK8hFwwnYAgHBM612ROtApXhCbaFzdC5kX8qvAn0XES9XMkroT1N0QbLWkvoLCTM8uIsKGAA4Ec+JEmhmAo7rYJ2iqDCpSRaYIBfmH9jAjNJrraFE/zhsNLVtQTEMdDY7PMtk4P4CzVkOqAE3rA5G5Fvv1LN6pObGBcNHzMjbe5pMtkwKqwbCM5wO0zgT42zpef+r9lmAuvpNRzCzInmzF8jTijZYrLWsXXHCBvOIVr6AfDPVctPmAcu4VV1zBv2+88Ub5rd/6LTKWrrnmGnna057Gz/7xH/+R649GI4IVJAA++MEPyk033SRPetKTpNFoJCUZZ8oqMc7gLLG3ve1trDlB/xUAEtSeuEpY2DgSIAaNIx/60IfKH//xH8td7nKXLe8DWRmoi136wpdJdaPeLeHbl3spw4EiyVLklwkmyUTbPYjmaWTcV1Bn3yMnGChcQpZKMzYOJ2CFvSzsV3c+3RFEZDs3keZpX/koYTjJ5wELJSm7yGZg4vAiH4u0u4PjssfdVL2HYGSYSoV6oT43befN6E1LpHXcpI6tL4eehwFCruDZA+1arc280nuhQgHWmMqkHTkpowkaqA6mfc8Misl/omEX1WnqFamvjuTGh7Xk/P/upVKaXnCJba+hU69GCLVDcFY4IXwOJjfi2l4DYPGeESFXPxEMkOzvBDZJ87hUBS+NxKXnzCZgtr0iwALzOqqsc1XAWSgCLf55EaAIHPkiitHYZ0VUguotUAdLdlAUIZwwhG51m/5+8qJuAnY8K2LvYm0V6kEF1Ek49jPW/HXSqVi2ZuK+kii97qt5SgMSzI5CmGk1fb8zAQ47ByiA+X0H1UwzLuaYRdpslru1dZMeKjlqyoYUq0DmdyzokgcFDqbyWYWADpbQw+xfP6fw3/x+kncrXK7gunuX+mR5Pz8LvCTvWpA19v35sWr/lnQMT7KLiPTbHJHP8DigyWR9vEeIH79lRdKgjhb2ADB4000ACoIIyBujFsUyzRxv4WhTVli5fE4lQ+0Gx8Seqi5SEGWpx4wNaGDMsMy02IOFmQYDNaB3eQ0LKWTobYLaEaun8X5aoGFlVMNs36BbVY+dEpmeUoDSG2hRfr8v0mjI8ML9Ur/qJtLHZHZGsy3YNr7HPg/u1WwRCuSR+aCypNb0sH8X9uuNH9WRsl4qEcEJMyY4x4V1nhMBHiht0y2qnbHwHsAGgARj6pTOC7wPoIYZ7Q6ZrPVDbVk9VMv0O9myhSB4g7FgbLx038H9kCCDg7/B7mBdm2doDMy48M5GlvEntnj8hceKZ7vblate8GvMECCbsFPM/cjf+MgjpD1z68V3uisDedGD/l2uu+66zHlOLGnI2Z49e+Q3f/M35Sd/8ifHvvuHf/gH+ZEf+RFZXV2Ver3ObMzjHvc4ghgXsUKtOJq2Hzt2jEJXZ8rOmgwLDBcRP5MMWZYXvehF/LnVNullKvSSgtVyNRYJcAjoVfQ13OEOOcrhZp3uFAwUCVAJBhelTXlWJK1XyO8zOVSbtD3LkrBRchnHQi5p0UCEOasFjX40P3NnJIji2zJ5pyoDmry/AaNoNhhOWSM5K+qdvlElbQluoDy5bv6mbUOvszpUACXOPfeIKTTsGYFkU0elmlHNp1K32hTrWM9aFe3eGzdQuI9OyKk0pXZr1u0g6obJFWCFzr43CwujmgktQyOPhz4CXf5QBU4B0sl7bC87c+XCisx/1Z/VMKKb9mLQ7+KxZ8ApJbwmJjLgSjSkiLEINJLersmcR5fh9h4wSQg5iXbnw30FrcyDZTRT5Vm0CZbrx5IHK2NZgGCfhQy0LVARtpRh2eiz5L4UgBVfJ5dVCrc1moITFdDAbExJmoVuZnnH3vaT1nWgCZ2PL9lxAg4LezFZ5D6TNai4MIgOJFArymR9irBrEJlNxp/wUuUDJ76+iUaMnZMmA8aOPRxTx2hROVBSmLnLgeaE2lrwvOWpimFGKnPefk28VseBSxh48abBdr55+m5mjgn7XSVBKxuj7F3m8gE40iy19h/xJofeW8QbHDpwqKyNpLrek5h1HlDtClwJ6yfiSoouDQxFsMEu8PlighYqeOH3U2sKirCeZSuS+kHUj/RckQy1g3D+rSeMqTpinAZ9N2myyfoYkXj3rBblr2Ff6JQLhRrU2HSk/tUb9W+MhQArDlR6fans3yuVlXWpQB1sFMloVilm2rumQpoWzJtagh5WRdNMABws124qBQ7XpV6VxtFlyjqzqaUfM+pbIOE810kkjSlYADECA3/DvVOycmGbvUtuiY2xiPLveWDh+B+2a2AQIR9AAZtuxtRBrZdXUnAfjLvh+70xWyUXdKhsvJ3TydScayphF7oglBkC9C94wQsmrodsCQAJwMik0ggHewArMLQBufe9751R3EVLkac//eny2c9+loJXZ8rOKsCyI2wjLyb3XficjkkL88N00nL6UEgr8N4RcPooN1gwcChAMWc7pCF4tC9PNyF3XSURfTNj2ZMtnK7vTJ0Pk9+0ZQk+TCXIHSf3D5Puu95R2qI4BBlMt4v0rNO0K98CxKzvU1lTFJITaLSzzjCD94mcroGloJ6ETjga4GGysIaTAAu1rta0SKuaHGs8rR2eoa417EBmUliDknSzR5ofkwz41KSPub6+KsgotxrOHLoUa4dmtyT7gmJOVzqri+z9bCQn7nnLBzY07qK0de4WuRxzCA4zjo1NMlmHJ5TCDr2tlKOMDsn4CjLcp+5afNzJcxgA5IkLMluX81DDQ3CQk0MWRZHBzN8F2ZdbZZOA+yTLA44QUIWf5beZc/7DL/QZ1L9qayYZ6kp81ncn6mycXZl4jDmjylcIZPzXQBQjOd6gizyoIRTcSNInKSUxpETl70nmOQ3GuOQ47d8EdFpAIjmGfCYupHcFgCHzHgS/J05TQU+f/CXjvwbWQpnhJNDk74tnb/wYjSocBpa4myBw5dtm1sSAigZTUiDm58Lmut4DxAMQ2KZLGIcALckIpZkup8my4B3yxQi6ONXKGm5W1wfMhJCiBUoUAi7olwKA0x1qzYk123WL2pqlroJyhW2NRioIAMccGQ+jf0X4lw0gDZi4hDGc95F1pKfaGNS1lDbmjn8iCYxDhpIXaKtLSqtiLQqzFUOR1XVZf8ClvAYoZo+vX5HKJRfyHEjpwoSCbR7cK7K4wiwMakkG+zrSxPKon2nVZTDflNbRgfT3TUm9pcpioKzVSCUDQIE8cJ2Z+5oV3rNnDa6XZVG0bwyiaAMVD1izv1lXY2lxNIXc29oUrITvxhhro+i93mxMsNpHPHfOeuDzYn/7NqN2EChsBwGSglquxMco2BePNZcF8ncn/C78fsO55By36woyLEX26U9/mgCl2+3KzMyMvPnNbx4TrYIdP35cXvziF8tTnvKU5DO0ASlqD+LfnUkrAcsk2/JkHzp0WecusXyo0Jf1hl/BxOmdx9mEsRE4IaFZN/CQrpF3RDO7Lnq589GWSSnjvIMVru/fVWOqh3HyM9oWKGJs7ggRABujGYlxCU9JKWEwVxNLuLKBTKkXj/cgg3zKnCg7hoZlY1w+mQMuamAYqNNrq1FG60zNSBAOoCpTN/bY1ZuDMupOSDnA9lX9y42DMaNlmkEJ6RUEQGzAZlEzAyQekeNR0JnwjQEsao0MTnVkzdRwj6Fp7021TsfQuCtvLJi3LIc7eGNmfRnC+hbtezN+j90R887FoN8lvRJkMv0l2U6Ro+9AJTMrhd/n/t3IJjn+k0B3ITBKPerNnP3C6KG/bEFz1k2Pf7P3bhNLnFN7b5wSBKoYKGGbWpFT7uNJLoDiGV11kouPXTMpm+zSn8n8cQRZiQSEFQRp+Gs+g2TAONxWBnjY3yEg4SmFVK4kE5HLLAfret0Iu8vb2JK5bv5vnkYW7ivnyCUKk55VR91AP8io2DHh3SNV0zGBgZP0+gQZLG+KG1LmrHbFgxh6rQFM1OkHGOGJ+XttGeWEboVNAGhYEbz3QsGJee1FaCxOh2zx+kDrTpqQMB6w6NyVsNyZJwALVMk8y5DQzaxhJL/nGA+VRqONAdCAisVeNRUZ7mozK7R+cJ6Z9akjqEWpSHOhJ7Wj6DY6kPgul0plYVkqC0vSvdcFUl8eSP3GE3pMoJHhNnf70jgprJehrLGN/70D04lS5GhqJugfoz28EATj2G+NOpmBQZYK4Am0N4A7XNM2zr0mFUWXiQx17+AsM1lotriR5QP3Y+9EmK0In89JQZfccq4kiWAperpgnoV5LxfUlGI8GFLyPDimXOa0aJ9FFN/8OhNruTbzWXaQjeIqf7ZjOzAvpN/MUFT/iU98gtkT1Kag9QcaroegBbQ11Krgs42yNDvJSsCyVZuUh9yUJF6wbg5BeKQMijvgfbN4NuhzMrZL1KGEA9ZmfklRLjU/aBVENJLlwmXCQY0Fu0EEn5Q0a2g50LoW0IrwO46V6iJOF6qn3adx/gRq1tSQamLOu3YKmzWcQ9Eh6WUVdOdVMOEpbKhd9ecUNCUZqwTUVdgjpN6LZdjSY1w7r6XqV+jbMlWlQ4CJCN16CVpM1jV77dMi9eFUPZ30rd7FKRVUELOGl17UyiJ/0BdAW/B6EYt2YnJA1ufgx4D4KpxoJ2Uu8rZ45+xN23MlFG4MKLmUaaFTk/a5SaPJ6tAksqfBpIdrpRx3Exrgccdy4bu7Mpquy40PaY0/1wa8PdvCrFhSR5B72PLOaSbLUAyOQgdtQ5Ce33ZSZ5B7L7aQhskvmim+ZxoxDUgU7vuWTLKJox3IPuMZBCjBvVnD82uOtcsKL1ZlMJ8ODnoPUoWv9IsJ5wjqZDsIEFhT2CQ4YE1j+X1NZNAez6Tkr5lfr/z342NL1iEJqWRjx18EjCcBFQcOARgLaVeZ7fjuPVvigRbj9OcFB5L9eN+UAMwkYhZWO0IRC+P7J3U/VvunwYB0215M781fQ0BHGpefUwg0w3P1zI1nXxCcgSiJna+qCOofteW+1lywnwjSxJr5QHZFI+vWK2QUy3C+zV4ocVCvFkHWFwIqU3VmMupLXZUyNolfFtBDLQzZaNDJkC1h3UlFInT4tbEaGRkClq4WsWv2QoEJe2bFXh+DDA+oubWkDhEqXYv3mGen9fP/p8fPh8261p406tK/eK80Tq6xwSQUwtpXnWTBfTw7RZlmZlowZqO/C09KKWj9vS1pLKKwv8q+Xrxe3ZEM5urMxDuljg0rbVyNWlWRmbo0T/VlNN+UWj+SKrJYuN7tKkVd8DfG3MFsQ1rH18fG0Uk2likfWyD3b/7z/Mc5NwXPG3q2YJ7F3OjqnZir0EMNjIeE5TBpu7nhdENqWAEImzhe7nCg4oZsuIpz3/rtnI6hzuSyyy7j7w94wAPYaP33fu/35E//9E/52fLysnzbt32bzM7OMvuCgno3FNtD1Co0tAfx786klYBlK5bnL0wkZxYsk/88NES3XQ4UIif73VEo2IatPxZx3OSQfR0Ci7wnl4tubDkSPcG4ec+O1D1NH1IP8oXcaQ8XFvKaFDLBTMijN0EaOEX4Hk4S1kE0150OFOf39qpzjoHUuduZDBSpZKoepgDIwIc554jYDWZq0jqFidV40TjmnnK4QR1j74Ywgu7qOlagCoDgKmM8R5+ADexo9qgiIzgsXucCkZvVKOCnx9JcAU1MnQwqnJEaohHTE/cqjrzt+5QVyBqXO/P4WDfiUPI0VAdKuO1ej2BZIQAS9prhvdAJudZF0WtVautQ/6nIcKZBpwOiBOhXcP23WChOxjnRUFZjgXFC55vUrCI3WW0A+PX7nKOaWzyDj8ZA+TjaOR2e9BivOskcFXU/nPDe5t7FseV5T8CfB1dfP8az2N2HFySVrPaIfVj/ljlOjC3ojxNehzDymjs+nkbQA8mzvWFz2qSHii2kinmpshi/MiDj2Zl8Hcem1yD8vijbGy6T+y5P8wqBij7/WQCUGe6NesX32CWEfZ3gWcucj2eQrCFmmgE3JxbvZj3IWqIpIHpJQYU3B7Rq9t5TUKShKn0uEe/L6rhg2WS84wZyVKLZssJGW02AmH0G6hKXRwYANSKgSFnPERh+5/L27hNckG41lPrCOrMPzEzzWVDJeeyjjpqOGiSIawQpEDHR/eBcQS2DnPqQAAMF7AQbU3VTdlT3DH+D1sVsShcDr9LMmNVm5t0y1djGuvY7YcBpukmwohdbwRNUIJuQTN4zLTUcG/vBaM2JS+ETqOAHGZj5GYImfsegT6ygA8X3GAPXlb4G8NRY0gJ8/I2eKbgng9kahV44xwDczTaSesVaDcqeIw3WQUK/U5f1OdDZRI48SKPnh/+rKzd84waiP/lXIycoUfgunIZhWwAreN4GlBuvUD5cnwnr8WU0NCzDObko4xHSN8d2soUsSQbgbIR+Stus8Xqv10syK6hJAZ3srW99q7Rz4lKgkr30pS+Vo0ePUtIY9p73vIeZnSJa2e1pJWDZio05+hN+Dy0AGMWUrArTraDOJpbvS1HA19cJc3KTuwwfdEJmJv3gFgxqoVNWtH+rp/Hj5ETejKW6mpXPdWcgpH6AF5vUUgRcVe+YrXrvqWdALXpTTfJ+L5RgxMSIucccDOXjOgg02eWgZwOiRzA26AKNeE7/ZY0Jl6tK+xj08NFkq8bJDxmYpOs9MxUAC05K1x4GcPCpLgOAZBO51iQZAMgV3rL2BpNZFxSLiCqiOqCngGfSGH3g/zCBQkHUQuwWyWUkkwpr5sjgWIJJxKN0pLJ5vwJGkbXw1hulVfA9JmhkjiixjclXJ1ly64eYxJVnjt4z2B+u07H7jg8x3Kdz/wP51YnP2ibvxJYtP5lXJnxuG/Xs4VjsoUAFKpFhTt6pMES/yTnljyH/ub/zLjNqAhZ4H1onq9LbE0l/t2bVQAVDI8ZE2WsBfR5SCWTeeyoF5k+gOBuBMSOh7IQR3UDtilRPNn9NeV4AVwQmViA+nFIgAxCTj/+Ex1BER8xj1TGREs+khpc5ACiZvlOJw56jgPkuHcjwXUmPg8EP70mRU/midH3wWc0ABPczzO4TTmv7FBoAVqW1rH2OeruqCSABoE8kii2AQZl0a5zoUsQqhGHjpPekcqDkSmGBepbX2DlwSRrcWoDDa0dYt+L0JJjVsTCz0azJYL7BjABUvvCvv//rBxrSWgDQ8ZtVZ8YAYxnqYqi2uDJgXUbnxnU2m6Qy2K42Hfa4pvtl3xb0U2lBDAW0KwAoUyQjTQsApipDSgKn19n/xTkMp+sJVRaNgEHhqq8pfQzBFYIFjLNLPa1RObZmdTLgGGuhfWV5XeJOiw0oq6R6qdw9wFV/F3jF2jzVn8fWsTXS3xSA4H7i3uqPj4/1Ff0dhudgMNfQYFCE5qkoyBc574N4xqLTAivJ+3KaFroRRRQtjCNoCAuxm4Sq2E1BDAMVedXEovfWaxg3so0y25NWzqD7OwYlbCsGJd3HPOYx7LGCTMqb3vQmed/73ifvete7CFYe9ahHydramrzxjW/k3/iB7d+/X2q1Gr8HMPnRH/1RedWrXsW6lec+97nysz/7s1tSJLstrQQsG9lYmmL85dgAOySbKEy2wOGe3tIuxg9nA6ctG+n1BcKNnMaxFlAzivY/aTthVHXUgYSwFZmDh90PVEV8vXwfA1c8sn4szEbF2hiR7mQgA+o8cHBrE2AE6kpSFGt9WazfC+kzyX7MmadjYI0pzUEgbco43quHO9JaGEpjWfX3QQPAthEpjEI6GCOOKsfJaGpLJzBXB8P1SAr8fcLF5OdO0LQBgbAmwYpi9T6MD17YP/rI8DgEPQIiGUKa2fozZik5qWOTZk7Sa8nfLQPk1wh9aPZ/YkgAAnCkvRqMbmZRSo8sYrsDk6EufkBSB2+8oDpHX0ye+eLnrogStqkVvRdBhiazTG49ByZwvJN1wkBD+O5NmMg3PKb8cZnz31iwbB+AuWUZAaDXzvdiCV1tNBVLFzSt9eB54rNsyhSbyLKHWYyxgKZJXfvqYVYCqn2svaODjn2l8sBYFIphfCeCzE/RuJg62sGtCJXFclHkoqR3USH9WJbFAYsv6yJtVh+SqnKl9NVEDc2BCbIFeG8DUOLvldNBk74VUM21Gjpcp86JEYFKpW1A1OhdBIBJTykLOCCzgvED72R4zqCWwkFGBtbBCDLMC/3EOadjzUwyit/NwWcdDAbiXB0asydQrNJ32xsjqgqY1pcoZVbBAgwF5gAl7ZMqDz9oa5YEx8YGvbyOSlsEJQvnuHbBFLMPADSdLx2TuNWkfG91TZW21s9vMUCEaBECJ16vQkBstSENU2h0kROn6qLPyU2PQONJC85AxatTZR8TAJlkfEZgak9HGqe6bNbIGhiTEpZ2U+WOMVfsn5X+XMOyQVUGtfAv7kd9TWWVu/taUt3VYaArETAYoq4TmahYmgsDHgsAD7NXFthCQ8hR08EN+s3gxlSkt0vTmC5ognrE1skhl7vh4VkgAzYBBXns+cz4tVsISGZ8hTDRbAG9sJ6WlEQolba1WWu4zkaAZFPmxoTgbvJOJ2h8qxvfORbBX9mGYzydbRw9epR9U9A/BdLKaCIJsPLIRz6SwAXN1GFOGXO76qqr5JJLLiFoQQsRqIIh2zI9Pc0amG1R372VVgKWSZafrYO/T4cqkqyecxjCTMhGmc6iF7jQWduESrFpFCR/ykWgZ4tjBv2VntIeBBFaRiGhrKUZC2SWMn1UPOuS6xXA9W0SJlfeaC+tBaWDsVA/ODdsc+2gbgf78FqZxNGyBb0YlVLRTYtOGl3L1cnQLBGTTutYl9SEtfPaBAH9+TonP1I4RiJHHojJpUmuNPvNWM0IaV9NLdTHbjHJhfcriaiCBT7yjIWeK0GOLee69n1OkpNv8vH71OTQR0Arw7Ztcqe6S6yABUCGPHjrI4Psj4GnROggbHyKewW5Z1wfRF8+qYWk/DdxlALgYxmVJugRKL6eq/OcICSA8wz7tdDxUyyl1BXIJ4cPUiYEn36WiSAH0thjlK8NnvGJE3h+meBBDB1mf2HZYDGgPGXWLXpXxv7eIMuRM9Sn4DkGZQjPOJT29Nn13k1G80qO22qveIGVnqlUywBkwRzJ+t+m7Mexyt/joNnshnGKUNghuAZ54YUE6AQSw2nmOHTGx8fI5B44eJkkcZqv4QjAVVi/wsvlzRQdpOQL8HPLOP3T3xtkZ/GcJ6pbcUrlCq8ZwQ2pnUrvSo4TgRiTv/fMytj+A5l4bCcJduCVtgyoZ26xTWQx0DuKy2C8RVbCaFveXyWheDHzos46swwAFwRuCHggA1BViiuDNnrRPFuDd5wUL1BlLUML5xxjHYAPKaNW6+fHAPCAbIevN9o3K7WlrtSW1qV3Phr1wJEfMTPN8WQB6oyavcNnqImJGkjF603XsU6vB7Lf1z1iV3JtcJ3Xzu/I1HVr0j2vw231dzVI+20uDJUC1wSIGVqdTlsGu1psbDnYNcfsDGtxTnZZL+PPNuYG0IQ1+1zXGsgZBSfDdpWBI9wLrfvA9YOapIJEr8PBdlH/0ljWrFP7yEBGs4jM6bt7wX+uy/Xf3JGDH9PrieCTj79hMX6Gbhu+jvn3Jf+KFLwzmTnf31/3L1w9DDVsllkZ8ysKjqFwXxtY+M5kg687O5Oyk+zP//zPJ373Td/0TexXuJldfPHF8va3v112mpWA5RbY6VAp6+sVGXbgJManta2tvOxFjtiGg0MOhBQBjQ0tiV7morUF5rUrIeCJ2qA66UjHbIkVzCeSiKa+48t7PUtMJ9w66aIP2EBVS3rz9n0jOH5z+rkcC9mtYD8Y3AmcrLlkY02jpJg8m8icmPOt4KrCzveY5AgkLPOCgzx23wYnE5eARKEkQEtUweStHHAXf0FkjMWXcHYMwBDImOOPz/0SJPsILztAECKC0wowIGHcXI4IUjLX3MBXJapyO5RVtg71Tk3waKtO6BohVKcEVdPpPYOTktI70poWp5+4o+TLexSzNw/PS88REzs+x+/oCbN4pzCElzp3yIRNfKfoVNtnRvELlWiSSTm0XG+jzLu0hahjBv3YyinYLMimhNsMnt8x1ar85FuU5SjItAxnQGepSB3AxZ5x/ze0zhGtb3ElvlTgIJSl8muZHgMPB1Qtz0wC4EQFNCM/vIJYTpgRDZ2dNCucu1ahJkG+niWX1R2LHQXNEQszKw5+wmaQIVgJsi35/SfPTPKvLhQCCc+aJI0g/d0gpcqFNpSWqsES/b59SilUzEROVWXmxqH052oZIQKXF9YskGUxQaXDPizQAKF0vMeJOIZRo0Iwwxq8JuiBGKMUUCjgMNpX7j6y+N3oYBG7xEfSQIPHTl3qq5rdwTgIsEFH3QIwYb2eXweCabyroK8BoFlWA7+D+oSgT+fmLrcLahnX7Y2k/cWb2Rslmp/i553lvqwdnuJ5on6EWYiO9kTRaxWRVoYMSW9vO8kI7/3MSJpLI23uaJmh1rEei+Z5nQCkACjWI6WIdStSrValv7dNahcEBnDuyM40T66bQpllTmKTC2efoZHK3uOe23VsxBo0QkAL9xrH4YqT3X1NaZ0ayWi+wfuCuhacFzItvf3t5JlDDeXawRbrWHDdMO5jbMf+QGc7+LFIbn5gQ6ZuGi+2H6OrbhUsFAVY0G9zTyqIw1pTUj+3GPjZyJJ3PN5qnHjC/nY2kBlJlT/bsZ3SSsCyoU2K4G0EJqpDTCbpSwSwstk+0g2nk8gYrYsf5lYuGpgmLeMTdNDYcstWFLke8xTGl0fnexbf+6rYbyNW1UyL7HqEkbRpAJicEo4rfvHPpkhjWdPSLDCuirSP6aCaNNSEOtKCFQFinrFOvKBIA8SQ/8+GaprtgVRjnc0qrS/LesTj8WJLFlEa3YJgIoZSmU6ymPT2f2KUFMHDMeDnoClUU1oZIn/8vh0ojLlKGukMRgswSgioBgQM1lhSswtp1BvnmAcrer1jghQ4HtU6QEt2kCPv3SZ6SnCiHqWqB6IAzpxap8k5Pc4it5xfjFbn9Bwv7sW1AgUifAYIVqzoOANWQiOgw35yz5UD4qLoYMMpfHZNwoaAuYxk5l3daDINhS7C7XgTxkzqT5crfEf972T9nFpYPGGA2WSiBxhBlLa+ojKirMPizTQFugocolhaJ0wlr53Kn4dAPhlfAildgJWky3xSOO4PQvYcw9efH4XFvvggoEEl190vcY6ykjl9r00JwE4mexyOjRNoYZnfcxmbzPdhAi9YzsUMMrUfTh+zgnYeZ1xJsospcDbFvTBLiQxMV1UIYb35mnSODZLMxMr5oE8Z3ZPywilocopXHAhAUNbYatwaw4h0LNZMWOaG45QV2VMFrIeAQU2/C6hfad2KgYzkePFCp+IaPH+jMvl16WM8TARFAsU6BD3wh2e0RyKDTlU6iz0qajntCZmUSqxykf1dLe2DhY7wlYqs3vs8ZoZa15yQ9cMHZPr/rpeZ7lB6B6dlMNPg2Ka9aDSwxNqsPR1SvW5+QJ3vx+7PxdI52ksa+HYPtKR1ss/rl2SmcG2Q8WnXqA5Z7WtgCtkOzTIpDQ5BHPZSsUBTY7Er/b2dtA6oqkEhADAHjDCAFQAzCA0gAzRsa1+v9gltQswamnpVszFGZ0Mmv3ewY9ejxnOgmAHUQxesPtGeNW/Yi2cksnnhVlnR2MjMWDDODy0QMuHdTj/cImiZECzVwMdm6dyzx84EJexctjLDsolNAiukTbgzEFgIVtKVNtpBMBlPAhsZB2izIx5fv9BZKwI4oXOQ+T0MZeYOf5Ifis/Da+FOCMBCCxMCwIc6qmyQGTghmT4M3nfAHAeqE9nkM3u1ZkJqN6miCQZYBym+LaqPQR3MuvJiXS9a9vPDhA+pY0RAUTDptS4h9cONTgkK++HwW0QPtKcT96rKkQdp1gVUMEZYTS7Z6VcOYnTbGj1VjroV1CfOpGVELJtBWcQtdC4HQKBzAofEezCwLb01qRxEymMPsi6kg0TGU/eaFYuMJn1n3CnFttxZsQyRBYaDWhRX8AkfBpHZa2NZvijI2OSi9wnw8eh7XvUmE8HXCQ2y2XQeAIxzXdgzzm34WfhsJzc1X+SjBxhG3YtlQ3Mgpij44DLCRRnJQu5D7m+0azha43NcX1WKIEALQHv6LKnjiPeJwLoZbArAPByXcJ2cghdagO4K6V95CV/JUbwc5wUN5DJjm1FKwrolXxf0KRxzhlIWAIoMMMyNk5njDDM9fq4OOgI8ysyHURITXBYESHS5VHqct84zBy28S/a8UunOsrWmuMdaFHOW6SQ3kA3W2rL2gkbpWWvWrLL4Hu+rjxOUO+c7aoIhdhoAHmxuW7G6B4CDepXOPQrZXSwDjnt91ShaGAcAZpAJwb9tdIxH7Z29owzaaE8ojdDAidfGTVTmaqFRYoV9UzTjii7skdTZTNDGCaj3EsxoXWFjRYMuoC+1TyCFXpfamiJhFQnQLvDYJjIqnVNrMprvmNhIVdpH16V2wwmRmSle6/V7nk8Hvv2FI9K/ZD8zEvXVoUocMzsfSXdXw+iwA45npGbx3DG2jaSxgoJ+sBxqvO44B2SN+PeK1iP29jZl+mpEwnCckYxmsH0FLhQXoCKYJEIA3kuL4yiAzPKItXt89kax1AEsrSkxDKDG1cOoumgAkKCGzS5VES3p4cULpmM29oFzhgQ/DMIGyNJ4ejUUwrhFtoE/4ZRQzNWoO3WFwNP1ncey55kxeXywYZ1g3u0oUhUs7Q5nJWCZYB5BRMZEKSjpJMR/i4DJ6dpGGZOizRd1dN6WtGwOEIUOQqaewNcrGDnCbQTHV8hBZfGk1XCYwpdGIw2QsOYijWyG23eaywjgBD3ALNo8f1UkaweqBC5hMT6L+zHQejdpM4AWp3lBHECjh7WEo47JDQAgdJgQ2XTHAceGiRJSwliIoOUeyjXGxJws6zQvHr/Vq7DAPqWGsb+JRew8CsjaUnSwdhliRnetc3UkMne1OlPLF6c3O1WgwcUEVx59CXTipSoOQBD60bSq0jqldA+Y/8uI4dpQC2kJYkwdiqBF34NQ7Yxgyuop/PaymVhAa2OxaUMyYCXzXLgziHvtncF5Eo4WssvhvQvX5X7Cd9ERVB4kBFK+rD/xLF8B1St83317CUXKFbby1LAcuMp8t2m2csKMbO8iMyur+vvaYbvYOXzTPuoZuWxdRHIutjxAngcPNHsAJzkMb+YyTfnDDzK1yTsZBAgyAMY/n3A9uDtTO+NXrGdKl0tpgblrWzQ2biIYlDk1owvyz5ziGHcZBE7CWhpQc+hcu3R7ABipNGhyx1ovp/ViyJYyEGDrYUyAA7uyt86IuwJMOKWjpE6hAhl1vAyRKU51vSBfDwz1IDUAFV5vDzagoFtVqRChZwG9y6h7HR0yCqwLQQE3shR2MzH2gBJqYwG2VwclqlqV4XSDy5H65K8EalTozFrDyVEsjWU9T8gZt69flKjTIp0JmQuOh8v95Fh5fsOhrF6+Wzo3rGq3+KmWVBeWRTptkfWudD7wBZELDspw95T0Lj9IsIXmjjiGa76tk7nXc19VkKbgQfulNE+iKXCT1xS0KwC57n51+l3AgOeEzvenBpRC5jjWHzEThPN2tUdkYDS4ZPU9GBsD5z0ycQGM61UECEYmBY3riUJ7o/iRRgsBBVN9w/yHOQZU5P5u9LcBeq8wM1VbM8Aci6xc1GamjhmVRkWO3t+y4qaEWfQuTPIBJmaFc3M2r28ALJLGzlvxLbay/5wVMVnCv8MMzNlkkVT5sx3bKa0ELJtaYcbkdKwIhBRFYicNJEHDsvw2C1lZG30XWuh0FB73BuedA29Fx140AIUrabYlpcMQPDRU5as/nzYcHKtFsGg8mret79WI8rCjdRvYjqoRGQ0MmRBTGEuiuvY7Cpa90Z73MPCiQlAzSGfyAvrg+Fwe+bwP9qW3qy7H7gfQol3l916J7sRV2ffpSGI4DTa56S/mNAQZFsS+6VSCYuK9YFx2OHFmtWFc0mfB7h2vCybrqxQEYdLD5ygohfMEgALHgtcOXG+jgUEVJ97bkcEsQtra+MzvB6PHzYaBET1QNtAkH96zLt7SWCddRgJx3azuRxV7dHUFKRWZvnHyoxQ+M6QDBpk1BUmp5mziPOaygx7x5nUrcmjDF8icdweQ+eNIwEuSObLeIgTLISIveHeK+idx4p/QjyWfOchzm+y4+7vh0Ey+hHiP1g/ZBSDlD8XPppoEKgcKfvt6DnxfptIMIsQxwixqQscIJHzzVK7kfhhQS+o6gt4mCgxz9yoAIRlZ4Fwz2cJr5H96k8XMBUi3lb436WUcAzMOugA6/L23c3UxEB8P9Pr69tNnm6DMqFsJrcyyR6Sw1qvSWItYo0K6qfVEYUwhFpm5FijEIugANQhWoM6N74E2QNRavaHUl/taY5ajhZLCBbXCGZUY9uwnnHUUqLPIfUobKjIoMowIjOism/QvQQDvHSTYlf6q2UstRmfBuNVgtG9cIQULoAQUrf6umsxcvW5O/YgqYJD8ra326XijV4nfZ/R3oSzw2lCq/b6MZjvSvmmd+4l3T8lgriUtOPrVqvQu3SPtq5py8n57Zc9Hjsrg4Kw0rj/Fho/o/XLnN62y4SNs7eJZaTGbo2AjobbyXmmWAscKQNM6OaCSF69xH5S6mkwd6UlliMwLskoNBW7DkTQWutLfP5VScXlrtM4HoI5ZEqPeuTSxN/jkfbYgEZUnLWOOTDCvBRoS41fcezbjxf1HYb4uj7Ecx8n+LqiDWUatYSTdvXURyPqb4Z62FpGRq8rKBZMQQvDebTHImZ/6SbfeqoVZ0HxwoiCgOf5l9jg2Azg7HcCMMLdvw0FuxzbOBSth221lkxwUn8TDASSc2MNlQwWskNd9GtGHsc/y4GIioLFI4oT95qkh4+unVIw0mu31GOoooafKqBNJbzciZKlyV2MxyycniLAaFFwrAIfBrHXh7ol0UMcyb/SSnhYGErhwP+l2mBGAYuWUboMdu90hcYcYtefTpvAVqHWF5wtQAbCCSQld5YcdlTR2SVRMYGEE1lW/uP16ljrlPRYSGWUbjMFvxnaQDfH7Fco+u6KRj/ODaY2ww7Au1vP9whEihWSxL7392v3L6WLsuOyyz9TZ16LRmI0zK9LbjQ7RVV4P/IvPVLQgqDtAJLiVOnNLl1SSzA+oYBOfsfFHLqXmuJKTNRzV+5TLcubFCUDRhJQ2gEVI8wqzJwWAxiWknYqQMcvUZNYrmvz9Gc/tL/+eTZxkC9//gixm0Y9tGD1ZWifAkce7ZYCf91/pc+jFArCCIuP6SpU/mQsTZFfCxojJ9QmcEb//UOPjezZMj8WDBtr/qMCRcWcj6OWSAIHwnILf/dnfqB1B4uAUZXjDW+XUw+C6J+85qY9+PEbJrKNmJX2n84GaRL7bKEEupoGghwYB9L1BZB9Gadx2TXq7GxpYaFZVfXB5KPWVUUIXQhYE3w8t+q/0Idv2bJM1DiyKX0bDG1CQbAAycIVjb0FS1yhKzLJ2tfDf9zuYb6qCGMFmqhCWNIg0UI/sbPfQNEHR6uG29PbUCbR6+1o8hu6BDsHI9CdukOU7Q+1LGyKiu73+DKS+qINxZU3rM6DIhToSFMyjF0rv0KzI9Uekdf2SyPIKQV400yLgGJ63SxrHV2SwuyPRdEtWL52TlTvNSefaFWZokBX2ppK4Tv35Bsc9ZpkBVk4N0owvBEkgHtCscDnU0uBcq+sDHisVweKYAiKg3LFZpDeXNGGFROSEVEfMF/aMQM7ZhEa0xseXVYW0BNwge45tRrGsHG4xyAQA4jRczCkYe7WhZ9qHB2INbguXm2x0ES0sP3QE716eVjkJyCQZz9PNbvh7m4vfjAc400jC6frjpf9+x7SSEnY6losWbmq5juihjWVNTuOldN9iyynTIucqN6gUcewn7aP4oDbeX3rp9ODRL6KxpCl5TY/rZ2uHKtI+auphoBehb4Gv64691zLYdQB4gRoYpI7RmwIghZ8tZylmvG79NHqaUNBwDNa0ktFE1pQo+PFiZK+z8eJbTOAwdPw9eo+q7P20nuGuL2NCtL4oK1Eywahzh0irZSu8FsQpX+ytkTaF0/PVya0/o+kUTmqDlEdf73qWw++pUlNAy9LJxgqBzdEboSO90QpAS8FEDIfFo33kd7cU7GgGRR/SoU3Gi3euyt7PKsBBkSuODYo8WsQrcvLuoQOs2TKc7+oF2edjwx5Y7sCOZS+sc3otbZhH8Gvnz2g4TzXI2tlOlXoUUMnCbYeTJ/czAWAl2ZPcOJAPNiRcq/Fsy6aTbFEQoehYC+hRAB+9fSM2jhxNj3swI4A4Xlv0B0K/oFzWKTxV93tzrLBMbVlS05ECfX/OQNOUsGeLqf25c6X9iNLl/bNMXx7Ppjh48PoSB1H56xJmVArAZTJmsnYjoDL6fcn3hDIQon2NUjCTAcsmQc5RzZqh8msvWLfGj1qHl77TUIjyJrV8d3oRAQqAA6VvST/UE+E4Y6DJzwU1F9gfnHTWtLRNma9WJbUIDnVvNwq+Y8qMM7s6hHOu9RxeQ0EKEmtfUBsykLhST+R2kTFxAONjHRS01i6c4biDMWb6Swuycrfd0rmpK9VTKzI4vFtqrabMf+ha6d0FBfRIVSvNaemuczL7VfAahSpgjRtOyehO+0hta5xcl+FcS9pfPS7Du17E/Q4PXSi7P7cig10d0lSR2R3NoShdAQX6tOC6Dne1pbY+kPaNy5QlZrddB47o17I8kOoAmSMExrQAv3cYKQPtUYMsF4Ix0ZoV2EeRVNf7Ek01mX0B0GJ2Eo0z20qXC9UTMS6S4kvxEBNPcBnqeoUF9xyfaibXjHWT7Hcsw1ZV2gsozE8ffASfmJ2RmM8Jf3eBGj5Hun+Mxf1ZBZsbmq0yVktStKyDcKj0e/f6osXC8XzSuBYGZzLvZBGaOjetLLrfXisByy2xopew6PtNPhvLhBaBgwn7KJyw88tu5fgmAJKN0rEbOl65CGd+H8o20RMfzqjMMSYEKrUg49KGdr4qR3lzN/Lyg6iQR1FRn4KmWfgekV5Gg1C+0RMZIlMyo4CH4KduxfassdBGd1QN61uPF3OuvGeLdnnXuhGPcNEFNiUzXViX3/tpqHppNqOBolf2x6hIb75KBTJGuWsKPHxiS7M6WsNy9AFVKtw00Q05iNQi2+P0HAgDmKgXryl7wVDKtML1vFbGVYBYAOsFuJjcsbJlcZBxcRlk1tsgOshMjK6LbaNpWf6e9uaqsnJhGtWDQlpCtwsbFQKgrWkfl87N+tn6gZz0rV3Dicg9BOEuOcvMlPf2seVYsJE6lhTDwHa9NiOMoOeexfS98Z2l56KUxaIXNVdPFvQVSXeWiyCGheab2aTxI1OFmv1uOK/e8mg2kKwNI6mke2lPl0xENhArSOg79oxRepzReMsi5ATNnG6WNFj0zAV+LCiQ9BNBtiWRAU6DCOHlmgRk/d75tiYFZYr8oWRdk3n2LvbJ/gBajBoWPm/EI7XizB+Biz82DMbre1cFrYqy4XYDuFN9VjXLoophlBlGHcdAHV1V0dJO7ImyX1WliLksu7+nQQ5XBcN98SaD4XyB6476GO7TxT4YQEGdjH7WWEcWRWtq8P6jiSPVqk70CGCwLrILCGJgv+gVUhm16dzPXLsqvT1tXqSZLy9K5ZTWnvAYGnVZv2wfne7pGwYymkP390jmvrSitCtQwGo1Ge2ZVUn1do2BlOaXjkj/zgdJQQN4YtCk2iQoAzgB3QvLMgPCsRmiAwMWxfO6tVEDMqDsMYASwdxi3zL02vcEoBDXbeb6HiWao0jBBkCdK4NxW1AHA60tUhlovcAxhQLijgIdjMX+Hcd0y0wjQ4bCf9xPlYNWYMJxmYBUsagLM1Tr+sy4ciOzVru1DrKxqjVJKoqi+0JvmuSRZ++rydGf5F3ZAHQUvXOald1gewVDXPL8hWp/eT/Cx7CC/d3iLMppZmZub4vjqkQbRui2vp3SSsAy2cIXvcipmgQGiraTz4oUpEsLJ+LC6MQGv4f/hsdddB7x5gNSQZB4S+e60SCi5+9OXCwxFcNQrGl9S4w2NWwifKsFwUmBLKVsbRf4GnPmMJVCpkM9r5QUOkPm5HotTBKp9XUt5c1MC/4NOsBrnYs5Cd5F2SYZOF+a/UgVtLy2JWmu1RJpLyBjAYqCeXnm3CLdn4AeUsjsX3fgyG1PFdKcF58oE1ndABwGbKu+rhOX132AbjCcrmoGBtuJVAoV1xmOgFJYlDdP+gGkPa2Rm1K+lG6QeY4s6rx8scjM9UZlQ/bk/IDS43NpLDJ9gymfBVFpNPx0atxwevy5KnwHPCtg4IG0Oxw3QIl/7t4qfk9qMPIbd+5/2vAxKdgPC+ydsqQpmuwFKFIcc7AU1sbkzin8twj7FFpRICPJ3gQvZT4zGgAvnCcAymhKX6DaeprtUylqq5eyzJVmDSw7QPqkBg0SUJMBQAZk7Pn09y35CcYCBfIGYiAgsC7S2x32MbFN5gqIQ4qY01PyjfKSSzIsWD+4F4lUelCjEh5fJnOE9y0s9A8yQUm2hhvN3isHbHy/vBcRghNsMKmd0UERAmCA1Ll2Xdf3FcBE+69YZpNZFZUZHrqCFEGgAU7PpoKK6QIHPpdEkLhucLsQAcN+u7uUTgZZZbzniMzjmtUtywLD2ACKF/aNWhdkbti93ehQq+e3+N53D3aYxVm98y72U+mfd560r1tidqd5k1KYcHxr53XseEzNzxQHmws9qZ1clagzlyghxrtmpL6MehKodLU4VvXbUPOqSHUeksNCKeL+ng7BAMGC1frUj6/KcP+0SKXBxpLd82ekeaJHitdotklACPCCuh50rU/lkTXbDNA3DeoX6mwaVWmeQrNgrfGjsmIPwKujoIly8xWCCYy5FFFAx3t2vscDHZOSyefBwCeK+7lPUm21Rgn3UTPlFUqQI5iGDDzGYr7WlnGPGjWtIwQ9d66WEVmB6EvnqD6buD5gFRQ+/3kfYZL5kOLz6WZB0nC4mRCQ3Wyfm2VwNg2O7nDAUtr2WplhmWQTMgSZv4tAS1hYGr50G3HXNwIrk45no0GoKMuROe4CvcCCweGW8ESLz7GAWxYWNtcs2zJEoaZmWjzMiWaT9aVqRo4YikkcnBFRhgMEwGEyr8yuTIu0j2v2xYtokUHBd/1dRkWGQ+ARVnOEvCmlN52k8o/p6vNwXAEIu6YUqwIPrTnRTIlHgVtLmuYnd30QdCUPAJEDD0yayK5M3zSQ5QsbST2AO1XOu3ZFmAQg2O8OWjCRukoXAQUdxYjHgcicKnah0DOiA+XUK9wGRl4bFTl1Nw0fz1wXMzvEyKJRX3AOKxdWZPWwPUwbON5+3T275RQ70vw26gUUNIYMJzwvWHXnlRFxOqEVialylKN0hY8b+/+kVd4aTbfnD86l0fLC7IDUo6y6mHeU93crzHQERfWFYGSrFNLQ8mBp7LuNUqDB15U4W6vi1wNgJRExSM9rjDaSo255dsTpVWTVDNJsi16PUEErzdIwII2gwu5QBttoWnRo0+isf+8qZ06dxPOTAJTwHtdzl7soK23PXIj3fCzgOf7/7P0JtGXbVRaOr9Of21fVe69e/14SgiQhNCJ/BEVADP0wIHEMByAghCE66EJQMIogbYBBjNK3BnSAKAhKJ61gIIEfELoAEpQE0ry2XjW3Pf35j++bc6491zprn3NuVb2Xqnq1kvtu3XN2s/bea681vzm/+U1XbDJG9SzypKIbcVv3/vIyFGgwqqkRWytAiwYPOpK8GVEdSaV0a6SBIWoAY9jjbRaHlIgrpYpx7K0W33dGaVFNHo4GK+LqEv9hRDPyBmfEFMYwcpckJwbJ3NNul/PaGBSnHZ0vmiFsPDHW/BrJXaMku4KpzUdHAmCgrHVxGA4f2gyX/8oWjz15r7OSv/a+d0lOG4vBCi0WuRvYHwIEW4+Mw8k9G2EDUVzQpeDIePwoDB7YC70LJ2F050aVA4iIw4lIM8+6PdLfWJSXxR/HpIP1Hj8M8347dJ46CqPzO4ywQBUMgIcCAccid4yGffgcdjpC2T2QwpK4R8NzPZ5n6x1HImU8xAQvz2dyZkMiTVMUo0RCPCYxmRcxv8p7IqpjTLDHM2m1KDrAQY9zbEgtGlxzA9EtRstEMcycV6M9eaHwPqHoLur2ICpmjdF210A/HpxphMGdV6e8lW5cLcs5WKlzJOVzdEL7vQawsuo76+/aTuN3Y5uGBn+ux3Fut9uAZXlbZ4zUvDRR5GfZC7UM+Kxz3nX+Tjy13s3rkoyvN4e0BhAtNBcBYl8QWdmp6hmwzRr8rH1QFeqDipjdM8oEo8aKeoJpVEDD/y6he0mNE82FUfqKl38lHQQTtAIRo59JxAYRCfkcBoKpvoAO0EIeTg+eNukvtue/NUJCHrLJGWuSaxfgAdEWF01BQ5I6fz+3G+UjIdUZr0+pW7KfgaeKfmLRAjOsGHHZtGKMQgmrDCdJ3OQ1oCbEwSQM7kDirdwPnFdqQ7jIj+XZuEhLmjtTfvxmGPLveaquVPIIxnNYmQG36MXjuLFj/YjSvUYLs000b0PyE7Sghrdm9dkk70UShVRukDPok/fJIhTl0e0uKv2zNC/UzhXL5gaXV9M6MP5SJXIRi0ZqZDJSsFqSZxXPnReV1OJtMf/CBMh0myi2YO9cNwU05jxg0/NACIO0xn4FMHxuix13IcfFnr9KUTMahHOV5rfSPc/AMX/lYg0OtDCfzV+nFZv3p3NAhnMJFAch+sXK8z7fTUVGGDWuKF3wmLMbKCq4JUUHrSNTNWyxLxwiVAfTc44BIEhPlernNOZBRaV8uwAmi3QB1EhhQ8mjI0VUZcmH/U61jymE6bx3chfmoGquEEERqZVz+a9IhAWOh/0Ht/n8EcXFNpj7eA9JZZqGzXcMw8HztwgCjGbbOZQoLvp89NAmo0+t4ykT6ZGngoiJUGRnjMJYlfvxNqSgpb4LHFqUXt+VavRsrMU0C713XArzzZ5KFCvY03opHAqTGaNDuG4AAsvR45wIhw5A1bk++7jxyJjUOAAMRkdw3/ZwPRIRg0KaiMGoY+gEnqfAXCGAIpGQRlhc1RUBaFDoc6a0Ljd+OS5QBweJ+Fq/S95BUYAEoMKY2X50Eo7vqV5cqGQC/Ne1BVGSNeyZughxeeMax+58hbNSP1/KKvEOWXMi+b/z7W/QxrqsV+P5LRzndrsNWK5LS+Q7+UEhHyT+kb2U9m9PuaiLpvjP6lpJWaiwzanfoSyqk0eRlu+7XtWn6BGG8YU6LTCEwPs+1tonCgxkYdSCVt6oNa+sMxqQqwI+LhPhLZl+4GxUlTgmfQOF+XoKgABy1NslCa5YeEIYa90UgghWrxbPpynvgBuOaAukKCWyIZERLD7jDVXXUs4/Pr/yHo2w/Y5AapWXjzSZSqFWhdA5Zjq5eDyRBG/1UCxZWSVXsegCrNiYRF9QG4CREo3m8JGQXtYIg3O4KQAoUvyN1Zo1v0BkiuUciKwsjM2C0Q3FNos6mbGY1LkwQ3DVcDEj0nn+5Ev9hQfPSAgQmgMUvm8mm528Z1keSEJf0j8MoMRBkkdVVIXMXXfRo1/DTrPv4rVmoGzhuMV3OP1zuj1jwn0MfJlkMyl5aUVso0/GCJu+T56+RrU9RApMZc8B1TjmNIGdYAj/xnOfivAFopxelpyGMSIxFkXRfeK1KqXJ8tYWQLAz/uO5nWpefm+Kt82xB/Pod2IgGXDSfTzV0e4P5x9HH6MCF6MqIvAQHSOou4Ecka0mvfEt9a6L+AaMXjko3jVET2BII9Ji8uZeyliuW+hIptQXxSaaFfWUuUoD0IukzgeOBeAw2sVc5Z6zGtty/xth3GuENnIqWlZTRLz/2B5zCgFHV+ZCA5UTK1q50Qrn/g9kiqVQJQAJ8migtIV9e5c0jMBCmyI+gnojyInbfGIc2hcGjFL1njiinPDobJ+0NQAV9nkqta3QoOzVvTxiHk3/UZEynp7ZDK3HLoXGEFGnaZh325RSBkiZb7fDdAuFMEXkhUAQNN9Yr0vFSVhoGM4cqT+DQpW4D7wm5kwKBQ3vBfc35bBmFUHBtqwJYxFBztPOONe8JuYPdZXWR0VKnTdJp1NxhgNJqsd6c/BQl7mDcbw2pFjyssKRC7TuFWv+Mt/iwvy6hlRyLABZWihK54zOyypyGf/O5v+1qbW32y3VblPC1mzLXpBogBUiJt5Is7/japp4EVbwRhY8D3n8tb7fST+vFuzPT3FfTjObuCgLvS5TeKKUrqQ5BqKOUlWt525uUmMERWldc0cds/yVqoCeABiLylRFChUsGA1L6Ubw9FvkQTj9ZiTBi1Zdqj3Lab8RepdnYXIGi5pUPh7tiPcxVnLX4ooAAAZQ9p+b3RMm1Ms5Qb8CT5lgR0FaXo8k9gWfTxsEN80hEu41qbcrRqR5sI3PT265eooJvIzCol4/KtLgefSEIkYQlQMHP/YbArwqUOGMPNBInpLtsdB2rwhAhGEb76O/BaYUhr5YHkwBLMWFLX8vsANoZGoImyQyEp2NpmQFDpPx6kFK/j7bC+T4QqVIybK/8y7m7+dVNX13ptsYZBg8WgzSolC8B1W0ZaEvDqxYdEVqtyy+ygZgTOiCicYnInBBKtKgGue+/hEa3l+jVvJcrayGS1ZvKams3RJlM9bF0mfGvuHfkZaVvg8WRYpTq4+6ZM4XcQZUwCD1gLv77CSZ4z00QK75a7wvluOjMufdyyKjy7opqI0CQ5U0UhXLiFK7FkXRYzbl3exfmtHApQMCIhoKqERKV7YTR4mAui6iBuoEo2FMYCTbVvk58je3gUIh6KV9nCOErcdmjJQcPNAJm0+KEuDR3ZI0jvnM5pDBOeQfSnTp5DxoVY2w87bjsPkY6pVo8vhxoAwyKrSbw4SRn23QVEM4uqcbdobT0Doeh8G9W6GzP6bB3r80Dcd3QVI4hN60Eaa7LYKB7r7k13SxHaSXR5PQPB6FwV+5O3SfEE3tGaIsoI91mqSSgQbWmgili+CCYiUqmz+tHFB4tkjCZx2bVhA1sjYADPJpJFpUgRGJ+Ak9UuTeo4MmzqUSVbLomijdVQWAY80WBTJyDHnOmMdFDhtS0imNEu/H+d+bhiffr1Q5smoxupg7Sn0r2AjLoh9LgYpz+sRj6AErP1Hq7Mn7EPvtz6kOEf/ddQhcPO1tdp2S7q/HMW6FdhuwrNtyic8lvE6/Dz8uvfj5JLKs+Jw/aclKStBQffRj6Qt+ikhONclIBfTk88Ty8QXzCp/XeKUteZr3WMGCqRGhGZ3LDjXtaiV2NYZIP0Euiybl06g6qqSNuVB5b7Gem+AE26sxS1oUtjW6i52/UwEkL8EryfziESOVAqkTh7pwRS/tPOw/VwAPczq6IWw+Kl/BkPdRFjsurzeXXc0kYOM+arjEpFIYTUrvsoVWVNAkyda8eULzsWru8m8WoFTe/sLQKJ3figxmxiFa75Lc/+EZ8N/TqEJ64GS0VH9UGCEeHx481Bip3iVLgHfRlalLrOfncAe7k2bv4cJi7ce4f7Gih7Hmfc0nCPf3KhCTXHrNu1xsdt24L/D4u8hkEknw757SrPhPSEZrdMXfH1ArWw6cGOilvG0XhuUsHKJI4UaIP0ZN8sIR8ZBWz0Q/s9wmA+Lk9JPm48Aqa1lIpyXXxJ6BydhWmJJAJwMkMTfFvfv5fUnyaryTyTy8Vrg1j8yog4GR0ANROJT5CpOTABbmoFCBSnLEeJ1Iute8FT4vdSKYUQzvuoEjgJYKTMnx6ZBQARG75tGuzC2HTNSXaCyul5ECnbMsl43HbqX3DH/jWo7PAySJcMjRPa2wcWEWuodCh0WeC3JccP7eZdCpcH1WfLcRLr1wM+z9vwHrw4AaNdNoLqJMmFMou0xKlbxbVEZsNcPxA1uMNjTGqP8ilLWtx6fcfrSD/B+h5koRxU7YeFLUDxsz0Ls0wX2vx4iHFduk6tj+ILRw31V9ceNdh2F0x2aYbTYJjiAWQMlhqqrJ/aVs/Inmu2jtFD+eTPAAUSy5DnzZrHIZ1YHFKYhjQUAjj6VRFFvDZpp8jw8xRki1Q05iQyJbl58v1+5BrAWKz75lVqk5+tfW45j8az8tKS3zNKUTkuiz3z4qNaYMjry+1eIcW+PE9b9NVTDb7kYHLTMUh14V2lrzOLfbbcBS2/yCKh8UDKo6j4X/zv/bWyWlInWlkEx+MJ0MytQR9eJ4R3Bd830veDlKQZLEQLPPPMBSL7Z4rh1Y8eeybezzJfeOBpQaU9GTnkVX0FAIj5MZKBh6fi7OpnDkclvE256eKyqKKc8fv8XrmAIbDgerJaHHRLNK9KOtEEZb7dA5qQxaKq44YwASqKCAmeEUuzET4HJ8rxj39lzIUcaJFXjRQNHkZou4mLfTxqtQC5S5hOiU1mKpOPfCf7f7KhXsdcxojgzuOhZfJvDrAmsUNdZVyWxySBef3C3J8DQynSeMEZxz1Rjgv41mVXjuchGOt+yfVZSWVb435LABSOBOVmPdxo6t6sm7gjHlF0hdZIsLs53TxqGPvtgN8O/2wvVk7solIc5VC28JD/nPk2ukbYa6RjOCloo2qOPGjbt4T3TKwbtkDREWUPwsekLDXMce8sjah1C7wpiFxGz1XoJyie/ZJ0dbSvrpoj8E7yea06Q5IbHgK8YvFv1OmtvGc02MFjUPTX3OMXG+cJ08nntPEuEH//wtf8b6q2ClNF/5qC9+Q7AD13Hm/4pxjx0oab6LyImKc4wkeglqlxn5UHyy54TaRpIDp0VnTaIdESwKYVR5Mxa1MulpK4jLKDPeX1yLzlOQFUe09uS8X0+kXhKcJfgtc4Ac9xgRFci+d0O48rxm2HnHLIR+Ixzd22Hk2Bwu5v0enJVnADXAwV29MG/0KIGMdvC8rTBDnZidEDYuTmmI40XcfGJK8IKT4jfpt3OpUbP5+FDoX1dGYbzVZwI/ijIe3t8Jm49Pwsn5bth4YkSgg/oqiJ6gtZ86DtMd3Bi8tzMm31MeegRK3iRMdjCxC/gZ73VC6wRRl0p9DUBDJKUl8mVRENJuVR1S6nhJlMxk5MU5hGi6CCGY4Ig5iGxNRlHeKH2dAQFSzZpKwUOExQo3Oko011yVbEftK8zJWDesxfy0ujnFrfklsJLYD5nPxfYXJUs35znbIDqUssipf3f8Ndt67J1/8Xgc3P6zzHF3mxb2rGq3Iyx1bRX6j3Km5UUv92ImHtw6flXh7fPb1xpV2fYrW+L9WDx9BCYaul6reQDmFYKSCWh5X/z94mRILyS8WMZjFuMURlVU7FHPKaWEYejAC3xc8eBhQLBGi0ZoSEOCF1gKvsv1ad8nyOEA7QS7mrHtgMVUVcjiRBw9klWIn+o9DiwyYuK9vcb1N0q3elUtXwTqZraIbDwlzyAa+9oQoUDzi1kEQD7nIyq+VOFB9A9fmoAAoy42VpWPHhdG9V7bGCFYgULY3AwfObRJa9q+NBrtOVr/sgWv+M5YV22B5kVW98nyHAwkM9K1MQvzDmpaiBtcFtHqoPKMDEinhho3a0uCc+Vt185rzkQsw2AuTd1wkQYZlrcSWKlbbdd46UqRGH8KAy2ISrBIpIF+fdZGZYGxL+9RekAYqnhXIBM+QSFIjbwweqJUmuEdGhnRWhKRaqh1g2isueeXR5zlfTEvc+rYoPiEgRxGW6xwoskvV2NBAKy+V0ZD1HfCG10J39/GYN2tzvoaoyxWj8bJeHsHSJwrOD+J5709RtV0ibzCWIdxTGOZUuQoyKrUrCAec4KVjkZKFezheLino+1KrRDGP0GfCRi44pvx/uk4t+RsAJH+RQWeep0wtDGn4BwG9GS+lWN3DySaZs+UYiOHElnhWFEHD6hf6DdoYog8MNq7uR1GyP+bBUZpEK07vrPFSAMMcgPBUMSy60Rui0Qo+qR/ndzTF7raloA67MdIFOc8SdSH/C/n0U4zTO/BgA2hcwXorhk6lwas/9IcT4U+NmyGweaWUOuYSyWgQ96NORXWAIz4noAWqwqNdOAQGFYDVaSoJZpikvI2VkDjtfvL68Sci3nfiZJQ4c0BY6HiCrUS9w1AkjQ+jYRxHtIxjWR83BcPVpLxa/N65hxifpooTte2is7l5kptjGqbM8icAplzya8HC47d6JBMcwqTXLHS3Oij4TdJhGU6b/DnehzndrsNWJY3Vx27Cne6qILx4hPqh/3O9DMLLfeO1jBI1nopV27jgVfNPqXITdLBZccuGJ4L5677238OZSMYUUOENLSwpBnfSgmB7DH07FvHjgsMOoZ6eWH8WGK7JQRjf1DETGKXj8e49EgEdfVayN33xa80qsGFSQ0jKpBpsj6O2bsi22DhYkAiV7FSY8YnDFcRH1GjsgkbCmfo9/AsklWr2xPzdFqos6DKO6hPYJ4pPQ8XI9J3GjQ0+helMJp81xKJRKWCmfElhgrkgVUVSCl13rDDdgAt9u/Nx6v8oMFdy6lOC6ClZkyYJzKCUT2m1aGRg4gxNOuD66JFqzVKwOYT4l3dlfiZ8wYaKDdDm8/Gv+PJeK6QWFqnpdDyE/qoaSl8WXfj/LalKE1ONXPH5XPVOjU+umKRNxn/VYa654Zb3RNEC2CgMMF6W3OA6Jmt3kVBPqD7qDeUyeaVx5Q0QQfy4+WZut6hGNLdSyGMd6uirhJBg6pS5XGVvmnxUMwVsVjlLMzHyANRMOkpXnaZLqJy6uXfvOPLilvqcRGpIFVoFMLgTAibT86ZB2L3A1QjFJHFNof3pwad1OawGhwV6DIaKhoiLRFwGDBRIQX2oVLkZX9NjQ/3medwEuu8TyZHre8AIiTbj0zC0d3tMO7AcTJlhOjkDlR5l+OD8ir5HwIy0DfMvwQ7Ls/QxE5w3MHZZtj9y1GYoPiiRp7gONl+1yTsP9SpnDc6zw13kcvRJriTd38eNi5MNOrUYFI/KFtoJ+c7TOxHZXjmoIDeBYU1zBW09jFft8L0TI/Rk96FQZgisX6zHV+h7bfth8Pn7RIYmeiB0WiNPuuDpVYsmK+P1p7B/RlAYAFgTIEr8ooYidG5LTrbjM7o6gKJ+IE8f+QD+tphkcao7/alv+KoagsDUseCS163sYF3LW6Ti5pkdkkyp3vBEt3A1pDQFVEYfjwyinHZMcXPTX0xn9/0PIntwcht7uxZPO6N2G7nsFzfdjvCUtOgrIO2wLUsbRuBi9/fdnEGxBIAUgIP19R8RCf3bCw5dkqHKRlthUmo5C1f5r0sRayszdQognd71KSx5BWJaADh+1iETIycxqiikUCtB7kSFlmxc8JrJfVV5DhcyC2ZXr3Couyj/1Z6hFFd4lhQPrFRvmiLqq4+T6X1KWLeitHDSvffGUImx2wqTqBZ4fiMuoDHfk483CxKeUH+Rl0ZGHrRwLfaMmp8wyt4fHebeQZYhFkQ7kw7USES0KULqvZDkv5lQbryntJhUtkckDMPHKhgsbmcA9smeg9zb1sOdP1a6GgEfAbw4quxaJ580J0IYkdNRlmiUe6Tqi1KuMCh0l9YHDX5lX9bNAbew4UF2o1ZD2hKIMxPHJ46ZqhtGWhpXEfOg12P9Q3PR4FC2xVhNIMIxiw86hh3BCsK4u154X4vOFhUGny0Mw3tK1pLYlQyeKoEeQMyoJzhnHgHR1qfJRZQVWcA3xEAJB3XdC7AaZHPmd15mGk0ya6Z17SBGhpIDq8iFnnRx1W3eWHO1GOb7DPnF0R2mbiu84XOK8d3NUNvH1FiOQlyU9CO/XujY/fyezZIDbV5x+YgmwP5LLwogL3zSXQ6pdkASBD0MQ/IXZNuB4C49dg8nJxrhK0nRAns8N42nR1wXFx+j5YUfUWEeZAV4sWz0DwlnMPPoYjQIafGjGaANilaKWAO13DwEKSKFSCQeiVJ/YziIJKi+TeTVgjbj07D8d0d3pOtx8aUB+4eiDOmOcFc0Ay9i2NGXVDtHiIAKGw53umyT92LQ3FOjS3sJxQuRHt6VyZhcM+WUr9ER5bjl5FDmRstMd/uO7ZDXopIxKsyo45PRt0NYACY2fO03EIeU+XjRRQzriGIuiCSloyN4FgdbemjrX15SyLZwBL7SsNFn13EP87lzpmUzN0+ud0BG7IDsG6ApunnQSvk2y4ny5ujq4r4FBZEn//SWJSoJ3AxOXmLON1uz5p2G7DUtOgZz6gHxYhFvoA74+S6REfyVjj3Mk9J2reCt7a0WpcARSFKc1Uejnwffy0aZUGEZbY5DY0BEiNbYbwzI02rfaTJp+rphcEeja0NMRpgbEOFijx7pSnEBV9D9EbVIui5pGpVmswfQYQaCDQ+QJu4pJ7fqYu4qGEw08R1o03Ycbx0rKfCxMnbbgm8lSxGWXk7S+PH9sUCxOKYmiuQKBthTh9Kci1rX2xA4UeMgs6xSJuapKYk6DsBAiy2yrG+/F5SeXvzEWzr6DUzzWPJ3we3yJWeOQGHuyf82Bta7ntvIGNjevl1gWwewwKQ7/gZF8DqgFZHIz1B5aW3ivYV7U+P4eqa8BeoYssih/6zjHaxcO58//gehvVbEp7IPl/yHhuwTEBgU4xC0qhIaZF94QygbKvlRuFj1JbQSvLIJYneee6gSf5bKOgnN5UREIxtBfn+OmMkUPsCqpLRXSyyae8GxwvHZSWsIO9lZtS4OQnjhDTSbQWwen9YnBbZMHB6dLSYpgI4Nove2T3zKkUFoB1zCRhUUgU/e49MnUyjWL2h5neAMmQCGC6iGp9RqJwT0Uh0ydb2qC3aaIIgMUqq84Of4s3RQ/U2V/jSj7uNC/LHmbdJpfbRPW0BkWqoM9qqRXXtfsAZZMDEREli7pxJOmsEGjVc0KD4BUDQ3Zd5B8eyPBh4cwgqDpGQ30xqSeG4+Dm4XxwvABiDO0Dxkug4QQZrR0lhzXmrTVodGnJpIhWWv6eheTIOs008BDivhKaGZH/UW2HS+0SU3JBrgho2cp1pJDYGW10kSeb8aiwQoLJoZBUJYTFiE5HxBYI1moP7YjmCuRoW/6YgjfwNxwLGL/Kbklfe5W7h3pIO6Me6o90Wnaee3mtzvg4qRrKppKlReo20iiNPbaTSnOnXPo9XFlDSMkeOzDdCsRMFyxu9Men+mr3Pt5Purd0GLCuNAwUr8B6ERc+EbVOMKOQRh2XNA4T879JxaqI+xrWX/ulkYht5gyw3fvJoSX7sdUBL/p1fOXNvdd01u+sgbx2edTVUUZ+FCbZItnUGhkU9yEfWY1q9gZgUqjxr80ZuXBAPJz24CkKMBmOLUkM5+6xPMpKoDTnIagSYfDLOhe0ib1/zabAPL8vABAJD8DwOKyPN7penpKEhL8RqVvhm9THwPa8Dv40nrc0Sb0FVpCrQWBdKlMJAkTdaOFURSvLjNXoFBTMpBKjCAZrEb8+HssXWnGEVF6LCuIgLbuLtbxS2Twf3BCB1LEmu9lxtbMx2oQyUVZ5Xw9aS/uO91cXUDjAfge/ekFwbq2ife+qWRQj9Ntm1Jt9Fl2RVfDBGfvw5FoDOKYEM9ynv0DwSxaUk4dwAg74PE6V8EegaHVI98xhrwwdlIDcO2jT0aVAbcDEgoWIGkzsnoX1BlhW8p3YdBDym7pfnfLhogo9c2NxrFE4f0Unuofs3QOwUUVkH0Cx6NuupFrD224zhhfnLjusiHPF+glLTdVQ01ouah94FVdxztWTsOpAHZFSp6OjAu+4NOVMOc5EUo696eWa7B3jfGe2w+c0KyFLYw22rAAoODFM/9PktoqYoBQgPH2iF1rE8d6spY9SzrcdnpGiNd/Td1HmORr/mIZn8POdGredkF0gVtb7kCE5R+HcOBTKof4kzhPV7juZUJw7lFT4AAQAASURBVAOgibkdiKRCWcxUGhnVFnU63IPhXidsPTphJGS02UocMELltcEyC9PtjiTHA6xg2B2OQvNwEAYPngn9x49D82AQTp53jhQ5ABQDbFZ011idKfAX2q1Rx2y71slcoi+k1WoRVh1fJk1NWjFyhBBRQoRxuxnBijkLEueA5WppbSVGKC+IUEZe7T7mNHpHVhYtSZq9qm4Nr4CS0LIkyqHKi4i+2zxe6yW1/atzePGPqj9iX826MxHSwNxcU+dK7kcFnmodZDdIg+11PRS+og33LG+3AUtdy6gkfGncC1Z5yxu1yesrWzY58EjeCC9R1tMuxvMltJckoqIHzTyEtQZRDoSWAbHSNlk/FjtUc6y8AaSAxnEF0pTz0DpBIqp4T71dG8GjSnN2lJIQE26t9okp5+h3Vl3Y33vkvnT2JVLj7y08WaR56ELAhGQo9OjCD+8ji+VtZN4pM2qcwQiwgsXbKBF8xg6YRMPcgxBNmoX3FfQrMwrM44nF7ViBhNHUpLK0H19VpW14LmlUUJpT9rv4IlskqqRO8coLlxr5Ksf3ZItZ8n7YDcsNeTcmOwJC5X67jRDJUIUentO9A6D+8N8wNu2+kh4kC1tAHgs3ALWrSsyuKqHDjeuI3tikC6tNKQw4jleus818McosId0fa2kzWmnddnVOCf934VVChAliA/4cdcc2Q49Gr5fGVqOOEROlmGCf8a6IWsAAG96BonvCjSTQ2p2EcQt1MSzBGMduhimsbI20oE3uGofWRaHuxPyqkApN8B3Qdyc3Yuy6zVAyuiOHB/pbmn8c0FgIQJkHW4UUsM3o3DT0nkQVc3VK6PxgaltGnWO31BGBfUU5yoFvbcM7Z6H3lHEWXcRSN4vzhToIrP88/2YahTWKaDRWzbjTfey4yEUAuOD+Wb5A3NbyLZTmiusy2hbfLwDSc9U4wTERbQadC/uhf2hH96DaOnLm5lVdpf1ZOHhA6k3hmpGrYcb7cK8RNh+fhuHZlkS52yHc8X9G4fLzUYVe+oCok4E4zqOapE4amcnKt7VoL41zKcrLW4zCmch1ZC2YtkSCIC+s9W/kbwUPI1FjQ/0VFqAcaq2TrU5obXZCazAJ0y0gyUboPXYUxnduhMlGm/Q1S5iXc+q8ayAcVLSRRlE0PxLX1T2YMiF+iOiMc+bwmSkAJN0O74/OyZB1tohU6rhz77gbI3e8WWhn+AzHQd4UAN/wTIOOtQi0CwClolMZMNcizcYiQeQCdY+GxmWWOdfm7RipcwfMhYT8saKjxM91OCfm2LjuyYsb62TFOcAdT0sXpC/3aT07t9vN3G4DlroWZVEzb3D2gpSoVgt0F/5hO9Q/DA9S7ADRi5Fsk/Uh2Smd4FaCjbq2YHjmndXf2T2KfP0ao3Xxgt026iWX6EqzOpyq1YhxhcUU0pNiWNEY00UAEyMoYt7rH+kwMWFbtkURRCzOVnOCtVuUrsFIDb1suoj3xOCwSZd/n+i+OB680u3UKDGaBo06Z8DQAHN1Kew7HGv/PervPxYkLO7bbxelLlK09JjwruGY8LbheqHeZXkesS88H3jhsuhbfguABqhfOR0qGoF6zwhW/DjIE9NV1Q0V19uXTT5JNrR6KTS04Bkci3fUngkXO1dHh88D2/cQRXHjw8azSQwbHczftgik7DpyK04vChS+/Jr9GI/eA82nwr12FAQPQmjYJnkzaXRlaVvmPMi+B1AhWICK0BGs5oo+x7GrYhMYn+M7xqF9CbQZkQT2NDsa1NgdeSB4NgZ+8N6dtBjZCgoQaeTb9WJ/UL8O2xEEWS7RdBuWYXW90zvGYXouhM6jXcmTQP6Y0spwfoID3b9SQKoSkCVSmTqDqAiXgZqV99R7cuM/5Mvh3dMwvYwK5SFsPlJ5paG6ZE4BAw28vxZ5tMie74PLQ+OfxmKbOYCmDgYrdMuaNqBrHVpUQo/l6GI+shivx80vo93qHHbfciPVHDeg2OE5mIMGDhDLSRjgWR3L9+YEocQwVMlQLBI1WDYaAmZ1HjvutrSIJFTBQji5U50I2s8rz5P6IQQQLURnO5LMf087jJ1Ko0UueL+maX4MzoMcG0m8FiqrrAlajJeqZVawVJwyGDdwxpjTCpXrOyfyYKwWDpLoUYMFIKZ9PAmto1F46v13KQAg9VWaEUj5cRQlsx0QN3qbgRWhl8l98TkseL6IHGH+3noESnGgUQq4O3i4shti3pYNJBtqbv0AqOM5QWfbkOdzfN4cUSqYYuMgo5bl9GFBN3Ieqgbqfiao0TqRD0i/TU0dR/msHqQBbtYyc846fx9j1AkRbs5JMmB5GBXUSBLtCZowwJ3MsT/eDdpAB7sulLDrcIxbod0GLKtaCX34scNEuGyRVCMeQKIuQpJ4OfzxS1LCdefOvByLfH33bz/x1hlJeTQlBzcJV15+x8hQDCPUnNMf3wGyUrOaF/DqsEqwemYpz9oSDw+8ZJMtMRxQD0JUdLTIn6uw7k/D+RT0rU1J9rWIAfnz8MaB7tGTCZ/0Lld0zjyvRgGLSfeOCmXqKzhdrHbNhHEXmXBGo+dDV96u6m+zmY3WZUnwUOoyQ4rSwkbb0gVi87HKeJJCccKnbqOgGbbTfnLB99E3/6ysMSldjVbzACtv2T/P6RZqNEgHxndqNMS80MNWaJ54F1vF35YcIXitFbS0lNaD482VDmaLqHaCf9tCF+9nId8kXpuhVvMYGsgujT7dLoIVd2uU1lhhIKVflt5JXall8a8mgQTYxOPqrisMcMovu8TzyFU3dTP9G8+89xjoL7LvxpOSC2D5VzC8aehtSO5J0v+tyUL+Tn5f5/0plZf4npL+Ihbx9FwmWYSIzb2j0LzUIT0MCnti/FZefYJ6lQqnV39W5UvQ+44IoCbZLkRWCo8uRhUK0/fCvIpz7U1ZR3R8phG6l4RLCIlf5n6pJDqjm0/CGSL5PZA/1wk+6Q8iUjCWu5eFNhNV7dTYjM4Mo8hZ3wysWMK8o6FFh40Zn5mxGGlgCkaMlop7bBEUqwNlgAYRDyRiYxyMERmAwX+kVFLMrYjOHkn+G6IlUvwW+8jJEckY7qLqvSSso5ESq9cANTnmo+yLGAr7diwyvQcPtsPe2yQ/BdEh5KQc3SsyzuY8MnlqU1XEvCoCKg3SpyYaFbbCmVLAVKMWA+krgMkE0TBTHNsT2eNppx26B7Mw3sY5kV8CClozNPa6rAmDCMuVF+3KPI8xgDwvw/OsXl85VQju9BmhT+j/aBdRO5FdRp0d9BF5MEb5NaW3g+fgpxW2/zKEw4flvtl38aDOiSm5URK12H4HwI7cF4g5IFIFB1yUuS+8I0IP1PnL5hsFBbZOgBoqY9BNRJDl3ZDIOKPj0fmBORuS0vKMeUqLYNq4tYhI9g6S4s3wXSUBbYICjOQYeHEOEHlfde7GhFSnjnaDtdsqYde33QYsy1ojTXKrXSiNumMFE+O2Kn8aj5fxvr13wvYxV1PpfLXeNs/lX9LPHMRIF1PDL9m+Aib5cSR/QCdVADM7VhJ1qoky1QGm6GbTP6eSgzHZkgJ45LnCY6bGLD2wStMgt1yTgn3xu5gAqdQDPioYKFsVBSSqu8yV2mUGkwET83aaB1Xru5AqYpQuGF4GrHQ/5gO4iEvljcq8VPjt3kQzUnzuiYAYpWc95iIeWpclyvJmxnOMCrHStQAAGAmohWDVwovP3hv0pk6ji1w1BkKYoTjhQZO1DeJrsuErYiJHaBLm0EdVlRdET1h9HmBs2AyTM3IjO5eF/kdJ5n18Po0et3izDHC48Sa8D/9BPsb8oMqBvn8vfIjEteTeVB5I2deBMCVGJAZ+AZSXQIv9Xfquut9aU4Ucb/X6R1nfatNI+THJ6TtclE89/Sw6CMBv547nlMJ18S/cawBOKLKdlRBAoyNRmdYRBr3SjECzudwJszNeekx+YT8ogDUvd0L3kvDt7V0hqFKjhca1yuByP5svzcixe5WNVXH8pDdtITLtc+gK8w/zIc4Jhx7vCXLDYHD3L80p4IHcDbzjvaeUMtoqjSHJZ7EFoTIMs1w0FujU1wqed2M1mhiI0kFtHvBdLiZE67Xgvu28QyIhmN9I5zqpjg3KFjzzABeXXlx5cbb+UuSKtx5FNftZ6D15wsT0w+fvhcGZFmlGBiAEUAlwswfc8KpwCkAJnCirLfuhP0YxO3hA65OMQji6W4QQ6CxSWh4S5NFPzMWkXFHUwAo8CY2MYIU5M1KEE/eTye1GdYXkMBS5UGsFil+qBGi0MYAJNNR5sUr22H/2vB1JwmcUfR56V2aUc6aUsr4nJnOPa4FDjTV3KGyAGi5TRm8QZbEioaxwD7niLYmGR6rfPIT959Wvh34dBVDYflszHN87DwcPi3oa1kNcJ1gFEvmX6JJfW9JBXo1/im5szJgXGp0BDnCkHLKsT5qzxjmcx1NwYU4oFTFhDqrmmfD+m4oYKLlhcU1kMwqcj67YeeK7pvO90tVut2dPuw1Y6prjZMsbXdrG/ZurS1XTIBoQWv+iGHGwiQuTcSZNWfSUlIzKum1KYCfz9ibHse9cP8X7UTAO/e/sHEU6XH6evF95pIiWthimNF4AREABO26oN1eLeoFactQMk+15aB5IDQY7RDLvWhQDHkQ1tKmsYqF93RYeYEt8h+eRBrV5SY224ItiqucSP6AkmOyqUcvQepfnLKRm9pNRcwyo+GR1yAYfPhTC1jslymO1UwwksWZDqMAKokT+WfltLVoTjQwYQ6DmjLR2AAxDzfkQOlEqE2tYNd4/jWzRKwejbmNGIxWa+wAWzAvBdcETd4ITVZGQ+QjV3uaMspiXkN3uT8PMvH4dVKTWhQrqcPtppnE0Fph06t4pF3kB3Swdbu59jDfKg/xSaCQbkHXvYt70HEnuTImmqdGLhd0dUIlRGT1OwmqjlKo8P9A+vBd/YSwQpMNASOlK0RNrRkGNgyTeot40BEbIqm3xvGcwjuBUGIpjgRvvS5VyjI8oaKDHBnAZzzp8jwECwLX38x4MVEZ++lUFd/uO1Datw5TcV3qMLdIKBTyJJqFNdjD4nfGVR9b89bbnoXNBKq3D+EXf0AfUQoJzArSkc38yC/sPA5wLzS69We4ZsTK9fNA5WCwubPcfRj3pTuoAMcRPQ1+FI6pcMTekcsVBHaMAWLG4IelHQpFFrSaMGcoJI3oC6tIVVXKbN4S+1G2Ewblm2Hx8FJ78gB15BijEG/N3dD5E9FkT9yOFFsABXnaltpJOxgtx0UAFNF5BEWMYOTHIURHnjCWbC1gxdS4WzNxtSII+wJBFo9AvgvNGaM40yQkY7VyTamOc81R9TApfgmIqRr4BFFx7aygRF0Rn7D7jB4UxKWVsgBAUL6qziRwxqFz4Hg4gAJ8QAdKM93Pz0RGllQFsnvhrKkLhmtHxYr6lW4c9GLX+HDxvFjYfacr42pEFCVE/e+d5vZyHJQKBuZYiGXqsmK+GOVj7MtmdCmhxeVXeESNRk9xGSBdYU2q0yLtRuaROkt5TPCsMHJxXIyU+xyt5j+K85JxTde0Gz2G5TQm7vu2mxaff8A3fEBqNRnjFK14RPxsMBuHzPu/zwh133BG2t7fDy172svD4449f3QlyEKB2suS2FLZ33ovqxVZPAF5kr5DkDS18zOSz+XLDyH/n+5MYbUvAi//cRUfieT3fPi+QVoqSJH1zlA3jsfriT3aMOoMvuyec+FS+ViY8NZJBObKJUJOiwbMFJSzHYRPQXdRbK9xz+dwoWon3UqkHWPC5KGs1Ym6vACaq8FhhQyZtOyPRcFRM6heDh4uxebyxAFvExpJeleNt148clVjLgCo1olYD7jPqM/DnMfnt9e2tsb82NpRmQM/lQCsy90I4ulcqRh88V6gJ8Vqqx1k9NlNrgjKSLh4ELZqHMt+d0DBtdaeh1Z+ENihFSNTuT5USJsmx7Ft3FuYwdDenQieYYPHVRQ6LHhZb/Xu+7VzLyK3AOfEcOtPQQGV7/KBKPRLqS86AwpgjoLHXNBcYWNi5JuBiBu+qd+K0zYQCbN7wX+nxOf41osGEVetSPg/Y5xyH6gXXsUpaB/KXzk7CdHdSM29IXyIwxLktcmLOG8tn2UXC8ozJ+rQvAGKnDYm+JNys6jeMPXrcDaxrJAiefyZ8az0TXqfmPtk1pLko0tfupVboXGlpkrB8jHP0n8BnzcW51b0f1jqXJDkctS2scCEeg0nG4l1+4gOEnoqIJiK+5ecIkKDPSWmX+fgxShHfT82Vo8FnimAFx0F0mHjBi5DJr+t5AFIgd05AcKg5DRtSVwc5Lyxwi3wnFpeVivV4l1H749G/0Sd4AhhmXojOl1G5zOV1EDiE1JnDMWfzrM5trNOiAComw6uCFSJXVX6Q0qtQ+NYkmZUiCMqaqS6CmoWohdUzGZxphOPzLQIagoxeg0Uq8b1EQ4SWheiHqYhhOxlzAGoSZRjuSVSENWBORHrZVCMBRGxdNDEV0OY2noIsslDj5LiIEss4PLqvH7pXJpLjou+s/Zg0t4+YLdjepPQpwFD2xvH903ByD5L6xYFkMuPWJx7bxCoADgzswvnXn1UyxFTelO8QaYm5We7c4iiUfVgHS0G65UTZ3JzndGGOj/kuShsFCGE/u5V9EH/7luSniN3knY7pO7xGjuCNIGt8nX5ut5s0wvLbv/3b4bu/+7vD+77v+yaff/EXf3H4mZ/5mfCjP/qjYW9vL3z+539++ORP/uTwhje84fQncQtFCkLcKhJXEN3HaAd+5skngUaW5+ImrOq4tr2ez4dqF/rpgJJvJfATvSLZ8d2KuhB84eSUepx9YmUl15odW69xHnNS/EH1l79210caSmOpw8IE/LHWT2hofQWdDFl1ngm8Vd6Pyf7Sm4VF5aAyOGBsdFVVx4wEu91MXuzrwtqvKB/Gufd1CAywWAKx5baYrCcWXCp00eNVUXBYXM0UgSx509Vr8WMt4a1nzySpU+IrVruKyPH5qJwsF+EjMU6w3dGDrp4G82kkXJ/k1JAOWXGe6SG1YmhYxCBDifWqOw3TUZOgotmah3ZvEmbTZpiNpF5KMC+9jSNEXJh0qd45KH1hXHWgpauglGAmG0+xqGMG+M0XgPGW3awksd7UyRYASmZR8n421gPay1o+F9huC+/q4nuYf0+6mYamYt0SHSMRjKg3Oyavq7zu1EUrJ0rrqut/pZiWgabDdphvuWfomoGZ2VGb3loWcMWxL7fDDHS/5BqFUmVOAgPyrGi/I+Pv5N4QpjsTqbejYy1GV/C+AYQQHCGPopIYN6qOl0lmhOOwRQcGoi/js4IW2gdNOjswBnf+QqIy7I8W2ouACZEsUMDIu4dKn0SH8H5PERXJc2u8UwNG8BnUHZE1Ikqmu/wtAygRjHkc5MU6suFkc48fXiMt9Gn3mTWq1PmCBHs0m8f6l2eUEGaOhlG5kOuGPAwU1EWEYVuuE3MW5zMa5JWym0VXoux000XGtA/IU7HjEfRYUVADP7gGzZuxZmqONhdh7mThy6i4JUDCasHwEx1PpAePTSwAQKxBNTPk4lx6z17YeeeE4MbycRC5EVl6ASqWzB4jEBAawHjW6BDPNcA+M1LXEJnpHE7DaE/GKkRNWifIZZqF0U43HN3fZZSumlcyZdGsVpc8dy0OiUN6YRGIIj6G3DG8I7hgkaBvjDEXV1EZ5pkAvFuhV84DDSm0SwnzRbGSmJdokudOMpgAhOcBwsNLVTmJ4lqjDqVqvdDIruUaLrFZqgR7PGwpCh2/x73wc07JPrndnjXtpgMsh4eH4dM+7dPC937v94av/dqvjZ9fuXIlfP/3f3/44R/+4fCRH/mR/Ox1r3tdeOELXxh+8zd/M3zwB3/wqc4Ti5NxIimE/5NM7tyASg0V8yKg+GBymNxJZ0aL7e+BS94imCpU1I6AYoWccQnU5A2AIYKSyltzGiMup4n567bux0tU+VHugolRcxtgXMxo0EplcwEMcxaVRAMtDJGWWNhxU/bFhA5VsejZxeJpj8j6p4o0WABN1YtFIrH4aqKkJeWbVKRwfiuag91fJq2OdME0XrcIOolhZkaIeg/jpK1JnjmYyxcWfw99ITgzXI0Dj7/NQ2reW1TRlpo25pEzIxArm3rPfI4V+oaFk1QCqRaOBQtRn5gID6oYkCOGChYnUphEgQsRF/KW8TNthhaq0eOa4dHTzwOACRI/rYYKjjdqiSIX66Q416N5/W2x1IdooIRKXmYMOpBskRXbfnHw2SDNAX0yiu1g5bG+AGxWORhK73m2a2k1tl2Qv6UsGBtnsf6O5VRpXSICbnjRN2eRepbTzkrniX0BxQ+tlp6hG29NwlQNI+ZvAQSgDsy0EWaM5oi8LN4jy2Fpj0M4fmgSOhehPNYI47vG0je8vsiFsppSjtMOEGL1jgzcx6RvVZqze0BJXcwBxw06L9onLf5mPsoloXyx7kdXapEYLY15VEgU3w1h7/+hUCq89+JpHt4hFDVIrWMOYgFTi7w35ozsxEfsCjtGOqjm1Hm6VzSGTYKZ4zp9NPa4QCMD6PNDitQtRDBsRdcIMq6VUQsVEMC54bgAbYqbIQqtQMPOb/1k1GVHI02oqJ6BJZ93R0ChwMGk27E9wA4T+nuqUKaUMvSZ4ClGk+X2ERxqQUlS5hS84JgGxC36E0UkNJIeI+Yxz0TebeSgsK7Q8ZzFK3tXJO9FwGCTz91qZ3GeVzAWwafLAzPFxh4ojXtNOoBgRoESJrk8IhSDwpaoq4I+Ht1XMLjxkUWsUSeIBW+rRHNGTsxQd2sBwLKoa7XC4E55n5CXJqyE6jRW0wQ3U6ThlZVQaLlEt6n9cbzFPBW3DY7LSK/Se3UuyafXElihkyqzHzgnedCCcYV/M/ne8hML/fZz2A3ablPCnuWUMFC+PuETPiG85CUvST5/05veFMbjcfL5C17wgvDQQw+F3/iN36g93nA4DPv7+8lP3qKztaYyrBnx4iEzV2fBO+4ME/+yLYaC5+V9Mw9e/FzDsvFzF1+2PnuvuwdY8fuM0rV0IlgCcIxK4ukkvi/59eb3lpPeqMmcBnjZYcCiyj2iLQAnKITHiRKgRo1S0sIASpRixWOMdfL3i4+jnnjvPQwAK5KGHyxgFvmAAWNSm77InOWFVKC2onZFtZfMoE24ygoO/GdRAMDtGz2NFtDT7RNFGaOemDFr1ctVTYeLvh6b90BpA/Gek2tcUfFg2KLIHmVkPZXRGhZDperN4XUjQFZggvsNEEKVqXloWR4Drg+LlT5wjo9pU2ldKZ8PEZvWxiTSvuzcBETJQqd5K1g/48Jabdt09Vd4XpxGq9zb/vKhDcoaw31dL15p2/wd9hSKSMcsOT6c3qs20Kysjg2pNkqxAY0KBmMcEzFRXfMpdlSoYlMsOgF9zqFSqhjtP9K8pXXuw3x3HCb3DAU83TEO851JmO0pvyo0wuTucTKP4V1EraXJ3aMwuXckfWuB8of8p3loHbZCEz8nTf5QQrnrIpTqRCA406T1OI9YroSTJUYzsIMu9S6JBxo5D/S0QzWrI8nRoFXtvVXu05n/qwaVAYyuUGQiWOHFy3eDe6ZheBcAfuVYMMqOcPmdeqDPTdH7Hj3lvmigHh/fxQiVRhWMYkba1CCE3gURB0Cf+xeRo6HXrfMg5G/5b+fgoMgIQGYW+eEceCD1qWKfsnFSenVwTub1aUQtgjaNmMSaVVpHxGq14LtYN0gbozob0leocVlBU55nIEAMn1GZUWu8+FpVuD+gbfUvISG+EQ4eaIbDe1thvAW1rUpUB6ANANVoczgvznNyV3XdBAys/dKkGAGeoamfnZwDLU2Oe3h/kzL1Rw+4tTw+14pexnHAmiRKv7ICjWrcJxQppcvhB7Tg5F31FEc6BTSK40BKIhPs97X9FYT4ulOYzyV/UPNJ2voDpcDo1E0ZGn4sx/fC/zY7ITqgjG2iOTaReq/n8raERdRN0v0GbwZYrsfP7XaTRVh+5Ed+JPzu7/4uKWF5e+yxx0K32w1nziCTs2p33303v6trr371q8NXfdVX1Z/UjO0kp0MnA29o6LZzH/L132cvceKZUPnjhfPQCq4MBT8Z5Hginit3c9jGltSrHssF70Shj9GYK1Wpz44vSrCOJmdfRSNM76PSj/KcE/9BnLDN078h0qs01FAzgkmfqnBCOoles8oz8rYxFF6dxygfpu5Crx08lQhba+0V0BKYVKqSpmjmucXnUR7UwIbxrGE44PekSqKMNRF8gMBqZkxdVXs1qmLUQI+JxkU3qaqs/zTjB791GwMxsdo0F35JpjWPcUyAzPKTuPCAcqMLRrM3EQMfkQ5bwFAocGccpkdiFVsuRIx46FgBIGgCaGQDtNWbhum4SSBhYLa1ORZwo0pRFeiYx+PESMqSJlSwpZuwPzMmEOH/ouflk9/xPQ8xL4VO4lbVe7IMmNjftrj6d6u0jW/2vL0RbAJJI62pogpB5g2PkTkd50YtsudMjvqO6uj65wKwqflAtdfBA0gV6qQV8V11QYjKtS50wvROvDzpjuDfI0piUQEzruJcw8PoWFWwxG67JG6Lpth1mvFuP5YnhqElak4hNOC1V5ldnPfkjkbYelylcDtSHBUCGTSc1aO//5wGQQvmCYhiIO8rAgmMO+Xk2+VLwbxG6D/RlHwNq4mBFovguXto++kt8IUKLWIQh7/NNQbSRlLU1hL3d941CYf3tJnjwWtshXD2T4/D8b39cHhfKzpErIgkweJJBSYYZdH5waJzBiQoO3ws21BhDqDJUdb4nVLkeB06Du1ZMaFe57zhnkQo2seiwoW+WaTMKL3cHtodKjIBoIIoC19hRysDWMdniJogUgGZX6pz8ZkKMBPwilwXWS/wNyhxzA3saVK/Rt4NCCMi5J1bMZLOui4iy23zPK4PNELk0DB6dSciLDqPWfTdniMdNY0kDxPPNTrz9LkZNZbvqE3wCioIHt3rGNdLrVuUvG22u0kEu2KRUs/KR3okwh2Xcbx73oYxoQk3b3HugKMqznUq9e5ZZ95J52yl2MzBaXUEnFgH5+iCSEm8HlDfbrdnTbtpIizveMc7whd90ReFH/qhHwr9vq0A195e9apXkU5mPzhPbLnXUw1wTjZ5shlaKVIS6qMJJRBQeSdS8OH3LUZ2vMHvt/WAKj+PHT9GRdxi6TxCdkDzivh7kYKeGqvRRW1Ic/AJ+Z6W4vanEao1box6xH4CnOi1w2vs1XrGezPWZjFPooX2sQjCMwZDyfJNyLfuimcOCyUWUPOIUlpzkBaLZHKsS94n8FDKAhda9SaSU6yV5rmYuVyVaFRhe3gFQVEZaN2XWC+l+h1BkXnmrEaDGaOOw85zoeLxJfHWGU0EFAUUwjt8CNQuTcq0MYx/o0AgjbvqmRAsICmefW1EcIHP8Zs/O2NGQiQhfiYgpTVn8n3T0QhZKFIXIFDCUmEuoYJh32ZnuijzbWOhkDfBzfL3Z55GXUr5LAaWloMg58Zb+NwDcO86dH/be+GT4XNveexU4e/8M0h4H7Uqj7zS+Qykxh/nFTePZUIvyx0UACHxPVzSF9x/E0HIL7vmgghUaqaD2R0j1nYgpcdVU5ddXU7gSTvM97QuDCOcDTonfE4H3wGlf8U8FJfXwPodEbCr02JTok7mHZffTQpkmGEdaXbtEC4/X8559IC8D51DzQkysOI953wXG6x8bwn1XiI9OiXce5xHNRaizvZc1QlidVMgvczoMKIWw3l46gVtGvA2hyCqcPTARji5s8Xk8PNvOqqKdbYLBSfds6XdqNXuJULhcvw0Kd6K7DIignl2UEW57Lik2fqIiVJzOf9qcvzGRckHQTR7+9Fp6F0G7UoKAqAGDGi2UTKetVEqMGTV5XEsULcJchA1cQqH9m4QUBzPCfJGiILcpxXqEVnXSvUEKZtyDVY3J+YkaRT8+H4phMt6UZBo19tmFN3Nx2dSC8ueo0YLGJFTSXBEsa2PcT63ecM7EAxY6ElwjxEBOr7PHdu9t/5vA/cCWtxGxsZAYV6LbhtI8cDCAZD4foK2BsBFGq+9tykaiVNr5utZaH5xY5ivOh/PgeLR6txcmKfMFlmlIvZubrcjLM/SCAsoX0888UT4gA/4gPjZdDoNr3/968O3fdu3hZ//+Z8Po9EoXL58OYmyQCXsnntc0Yqs9Xo9/iw05RB775l5kE29eGEXTAJWeGm+aPzPUQQvQT/Oo1yDKvj5QhVyK8hUE27xYCW7Jjlmmsjv6VsLxfF8Xx1wKTbvSSnw5BeUZAvHjv/WSRSTVndvGMbHHRZ561wULxmkdAk+sIA3nIIJjHCVW7XoiyV40mBRbyQrx4+FmyyF4oTHzoR8fSuwOAHQWNXg6L11ksRcaJQDjsWbC6tJkup44B/k5er1qixt+1DqDcQkert8VxfG1MTi4uaUhLifVeRuQ0JZagZYArJ41uBtBAfdLWyWFxLpCRbJU3U2JDlPmqGzMwrj/V5obyMSorkpmrvSaM5Cs+20cmFUu3Fkz5rSyRxXmkzPQouIbjRTOV+/6C4ENTIes36PBH/fqghJJh3swJNEyDQ5v7RtPp7dMas/arwULjKQ3ITaY/qQpjcK3Gl0UUaBR4AWqnCZswEAzNE8olfTADK48Xiew0aY4vn7aE/x2vKmGwLUnsouaIT2450wOT/O3u/qIJN7RqH9WDdSzTqPdOW9vhdSULJtY2ss48WipIiajsUjbveG+SknVUQUjdK6nVRhCgZojGpazSLQ5eCh70LOF86PRrj0V6TOh0VirCEa00Ve27Y6B06aYbYxWXAgcY1A/oEa8TFnxzkiYl/dc4jvuB4nMgLx2phAgaNUIfLBmh46H4ASS2qYKlq1D2ahczQN+w91SXfDtR0+tMH9cHzQ3QgeDiuREXPexIR6gAMAIESbWDhS+wvnjFJOWd+qg7lHtm1BkADFHZHErrLInAftXqCLKrLgVdQgqALlr8EZqRIPyWDci8Ed+FyAGfMC4V9x0W5zGjHyo8dEXgnAmuX0YXxA1hifI/qCqIlFZBApiaPdPe8URCgFEJQ0zdVJco5ss6nUlUG9G1DxALAvve80OtkqZoOeo11FW2Sed6IhBUdC78lWFIwZnRXBE66rRjFDRMRRXuP+mD/wDuNPzWvx7AnDJbF5WhjXIv1bnbQypbkddC6vBvJii44iy+Oyecvm99z+ccfJ8JLQiG3fmwSwXI/j3OitlE6xqu3uIjnuOgMWDxLWaZAb/smf/Mlw//1aOOI6tL/zd/5OePOb35x89lmf9VnMU/myL/uy8OCDD4ZOpxN++Zd/mXLGaG95y1vC29/+9vAhH/Ih13Zyr7rk8k5iBXBXr8UbYN5WSapj++Y9GXHj1Buy0HzUJPeg5raUt9scgEj6aPzU2AcN68ZJc0kUJZMHXQAt6rrhRFW6D42y95oeHHjmx80wOhDyeWNjEpoTTWi92AqjuyYSBlcantCUpCAWkmJj9W8Wtqu8rJzwQQFANebL8htUEPK/YZQodzlSxEzNZV6BF/PccUE2Wo6CHPPE2QLtPau8TICbmST8Gs/ajJsq8pSG1I3KYfx924/n7Fa8aqthAWNj/3moug21IOUFq9wlf+sCBkWvVmvGhXI8aAuY0EgFPuvsDsNk2JaICxc7Z1s3ZT8be7aPPWOCFUZRKo+hbZMM58J7Unx3DOD47+veG3e+9AP7pc6ABWC+uG90JsRtlyySSRfS+1W/nT9uyXGhVA3QusYdpZ1qEUn9XuSx9fkiwXggghOIZMwhM+0B0Mp++BNn3Svte9iKEZjmZXoQUrBiv+OcMw+tR/rC3VfZcWutJzphin0dyDTDDu+6p0iSgqnXDpoMjGoAELzDcEQYHYbvshq1sZAsVckgACHHGp5pUioc9C8Y26a4ReEAjS5sPRpC8wl1bGyFcOUOfy+q+YuGI0YYI/HiiWbumF5TGyBBk8vjbTY/TaIamebaGQ0I+w80r8IiQTzeKITdv0TuDGo/tULv4iic+b8n4crzN6iWZYnnAF9Wb8aAC8GI9gXAgLQzRKBRDwXRbHtGmsDPCIyBCHvUSlXD8bmpzrX8ztHHGF2BYuPhnMACVe8pta11TPD95pMzPhNQxo7vbPL6EBkhyNxURxJoaRr9Rr9wHInYSaFGjqeRzPXY3sAiamMBEOV5gHa/o+qeUQt5MRWw8GPf5mWrL4NnjeuPeTaxMrvUmlqIWHjuVGkNt/V/Kup0FAA4P6sckjqfk8q7NaVgCRwbiY9ga1qpIzJ3qREaA5QMkAfKGlr4F6iXuVMTlCuVm+f3pZxG9JGOh0WWh7zD1bXFqIjNRT5a21ikiEWHnwNmC+e/3W6IhkABbP91G7b9sz/7s/C856F66nUELL//+78fvuRLvoS1TVY1yNuiRgqS2a9n29nZCS9+8YuTz7a2tlhzxT5/+ctfHl75yleGc+fOEbl9wRd8AcHKaRXCinQntkWPaSm5PL6g/jP1I9hhZF8HIBKPsLzYiae5FF71DlqbkFz/F8wqF+2oo9nY8RKD0KQOPUXOX4y5O6yx6m12nzDhJcpNi5701OE8D52tcRhbEr4maQ/uH4f+uzqubzZBavKrea2U82/0g8Hd4p21yAS9gcqXhnfQAAa8fMOeRGXoeaSqTlaPBfM+ONugfJhakaMEMFhh1DO7PmPfKNCxBRGRgxjBUe9mfLaOMhApP+bVU++iN2iMHiF0IN0PnmXQFuKzq2466FuIpACwoPW2RmE8bAt1ygELyhRDAEHroSw8vwiCnbffgCfH9hLm6RLAkQCVOk+aozqRRqgexghUdFxZ9DPe23iO1NMXRQHsfq3jwCsZ9fGdtA7Yd9nLy8/dThUnND9YaBzYAJBfMiaVJ4+PGRmQAoviNS8YF3kXinNJ3gxpFL4aQFq4EeZX2pXRfc5p1JaONm+E6X3CoWy/Q+i94/tNC1nPh1Ne6YZwdkQaIwue6rvNLVouHw1ARWlx6MPJ+SpKgHvQGjT4Pe/ZlnTSPPJWpNEon/DCbz0hkasYwehAKUwUkayaeqQ4eQPU7qdSWaUIouZX8X2VCvGknarQByI2iVPdIqr6DlutJXvP6Zi4S6c+jdQaVRR/U/2LOR2zcOm9NkN7KGICmB9Z6FBVDBFphuwxIi4mRWwAzfJW4rwH9uCBKoYptdUiHfOTKt+H90optegfgAX7rtdE9TCl6OJikbTeQE2bsdLI5iFsPTYJg3NtKnAxwqM5JhwjWrsHc6+fG+mQsrwmnk+ACyNPJ/PQoQqX1tTRZ8gcII2Cld7xiCPm1TlBGYx0RET09f1iYv55AEB5kFhPTDVt5/+0w8ELJiFQiltPpPRbyZfRh6+ONR9di4MCOe6PQSlTv8P7BocTox6zEPqz0Oqow6A7FWB0GS+DzQHVvG0XN9+Q0gGM0JKdMJdaWANI67l31fJYok1k/66i1HRk5Tcvb9Eh6t4XSofb4uXAmqF1L7PPWmHeG7oiOn6DNHTzetRQubHjSFX7sR/7Mdrf6+CEj//4jw9PGyXsn//zfx7Onz+/1ravec1rwrujvfa1rw3NZpMRFgCmj/mYjwnf8R3fcW0HNaJ0PuiyCMpCyw0eS0bzHmK3zUpgmhtPueO4YBMm1bN9Em9Wm2LBNprlOTQVMEj6U9shBUS+fozJdJpsZ+kN9BMjNPIPuhJlwQSM5Oy5TLzIVdn9v80wPtuUWiC4nqGFNsD3moYZLBEo+LRRwdihN1IZwJeW5Fp4GLFwU7kGnsNWI9ItLNfEONnwQkZ+NjyE+p0pMensJKDG+PTei6qCAFy0kRTvqGDRm2q3Xg0Uy0+waJEfTpFj3arqvDAKo33Ec4YEKw0923FjGvpbwp0Yj9pCcYSnWylfbeSl4Lyq8mVjSHJaqkFG6qOLrthnUf1FF53ayGKeU1EaDjXetDz6AmcAoz2zZuyvSSuX9q921q8NoPmIy7JIi1+w8+MtAIDSNTqeeTxOKYqTvvSIsMwvieU9Bwi1acmkaFUOFfQgVoyHMhikgUt9zD2bS8FZIzSutGUcoRaLb/2ZFLQ8gRR1xpVfmKSKh64KELp703qyG2Z3D2UMnhmF+RjWWmXA01mwMQuThlAgYzHGEML2O0O4/F5VUjOT9lWMQmpXwLmhMsUWCZ2FcPigFnlFRXPUPn0KRValf4cPNEgtG+9p0jmiD5dacp+tAKe7n5Q73pqG1oEklOOZROPLapCoAhfmjiTHQ/vqqaExt8DmAQSyXAHaKA/cDWH37UJVO/Pbj4ejF94V+o+dhCsv2A6ty/MwOCuRN+mTRncB+HYE/CF53lIOLZrb0rwRRHMAUkCjQv4MIxwahYj3UWutoLuUVWctEQE/cQ1QKh/B5TkBD8hZ2X7XOEw3pAAkAADuP2MDllSvURP0C1LUjBqZGiIlheUeAFhVhT8lenN0jzivEDHC95jjh8DKJf+A4XO97xRcIe2uAkgjK9CLplRFS7DnvGw1vI5C6D3eDsN73Bix0xiGMeEVN3+0rrTCdE8GdfdJcQZQydLkrNGPzYnkEeYOHYwPKPNhTexVIif+XednKnHP4ru2Sdsci875Ggem3Ss395kokJ/vctvIFaW0CL4c0u2rwGqh2TyJ7/P6MTcBTerZRAl7+OGHw4d92IcxiLBOQ2QFrKjrDlje9ra3hbvuumvtg/7Jn/xJuO8+zQp7Gtuv/uqvJn8jGf/bv/3b+XPNLckPqYldrjC48pcr1otw9ol8oBsXqDJJLojPLclDrjV9MUpWvk9FD8m8p/5yE1GBgjVWNHLcSfLcG+O/2nX4Q/pb5QxfShsjWVs9lUjOnu3BgOjSmwzjnw3FB3G4/TZ16ZnzQLoAKBJWdloqI6Mmgxn7uDfeM4Z9AGI2Hq/44VMFEoNzIfQvVoo68NgBxJzg/TTj0dEKLLHV7GDss/FkWjMg3kMDORaZMaUa8yJaYqxShtswHoZVpMjEAuDVNE9z90ojnNxtxHE5l4EVGhTdSWjD8NP7Y1LEvFX67ABcqihEtegkz0ofIh8pnhHuMyWOdUUujc2ayEptjpPbzqeGlLeXPuSgmOMpqaRcJembt7BIIZsXtrX74KihCQjx4Cc5Xyq1LPvWXER+/SiYZ9EL3uxGaF5pc/wiijY9N2YUZrhZSRiXriP+PdP3C3khgyYNbxaHg8ECY18BdQvfASBhf3iK8RsgpbqSCIyWTQcL91YjK3IfbbKTz2fnh0nOU7gLCD+EKQQhHuuF7uVGGD44ZBdnF3qhe6nJXDQA9MMHIA85COFiLzTODcMMlqmCcAPvoualvVf1LNCRqDqF4oNg32mkwKIHbRjQkNfthnDmz+fhqfduhI2LIWy+uR2eep8QpioQ0L7UJiUVoGfjAiIJLnfF3QLSlfaEzgYgJLlp89AcSI6id2hwyKmCFOdGy50ASNQbb0If/cdPwvF9m2H04Nmw/3A7TLubkh/Ub4S9v5yEy89rEwBgX0Rddt45D8d3qsGNSASUEV2tHMwnjCizIK/MYXmBR4vomqS6OV9wjVDuQjTFBFCYA6S/CS4YKW6Ep967K/3CcHpS5IRB78MxTu4URxLnOQBGrULPe2BKiZirNYKE7ew6jDKGY6MfAISkwrkx6n0GvLc6XzJP0nxhXZOBTsV4zAGJSCDU73wggdTjuggO5ihGaiqqo02FiCi2Hm+TBoYxB9A0uFPyYmYo/joUSXg/Zyc2BuZgXWvrHfxCB4vzl6/f5udaOr8KConO4eNtk4T2pTsUHTyr7Cf3fCobQp/Nqnza2+0Zb8AJp2l/9Ed/9PSohAE5nYabhnySVqum2s/N0swrYFVbS22dqMg1thIYWVDqqju3Uc6KHtSa6MiCqlF+7d7QLJ142bHy68pwoH3nRQBsG63XMYVy0FQq3qM4ZHtrEnq7WDkDjbc5vJ2gnyEqo5xjS8DnabRqtin3tE7EsLSoiun7m7KNeQLpoZ06764ObyyqyfXqXOrpW7ES9ySEgRYps/tiHju7BUb9gseT0RsDMVq/gd5nSyp2Rgo+OwGFxWhp2r+Yu4JF8KwYh/T6oBK9/lT3ugIp9jsuMmY4mqGt0ZX0WTmQg2hHc1HeuNS4HagNGRBKKZH1oMbnyNj3HvTa8fwzMi+jUb8IRow77XLV4rbx+0ptzEdwcsqaP15ULnP3LhrixXfMPss+jzWeKm8nxvP43hFrntDwgtFsURB7x+wegLqB6vEoBHnSYvV6ABXzcLbwN+qdYKwfS82T5rgpUsrWFdAqE7Di+lt61k65baky25G8MP5e2S2gQXUBL4N8jPeXlb71foY7h2F4bhYG5yVnZ/IeJ3xOzTuHITzRr2omaY0He+cWAmQavUDECLWfGHGFcwBRh6k4KCzf5ujuhsgl9yT6cu8b5+GuN7bD7h91Qu8pyTdA9ASKTowAIRcOhrRFRaiSpU6GXacgaHlivFDtl+XQTSpVQVLKNNLL6O9lUTrc+/NRaF06Dttv3Q+H9/fC1qPTcHw3aoOIgT/pN8PuX04lL6UvhvJwV9TRLEcC14WkccxzW4/NeB18jlqrKtZ/UbliRr2UomrznVdKRM4PIg0s2InzKugbajFKOZ4kyVviPAHGRZnnSAWbpnMf5jeqg6mYilEEDSxg2+5hdd9wXag/g+9AwTX5+Ty5nu+Qm5M9YJwgH8wq0Kvaoh87zMPZNjpmpSo5uG8SFeQIUlRlFOtZ+3Lb0YAF7HQvtBnNISVP1coGd4nKIx0HOK+9g072nTVTtOAumtWhSuYyNw9Geq/NU9je6mLxC1fWIN6IdH4z9c443ybqqdVxqjpYJotXmuKcRF58kPrjHV/eJloX9Lyb2rNNJez1r3/9ym2QqvGMqoRBieu3fuu3qNo1m6WL12d8xmeEW6vVGRPOq1rwpC58t86LVVzwU0+rGfoLdk6e/O5pLr6v+XXEPmbhjpKRsfbcUMhr8QajToRJXo91MZ/s0EyhRLfjPdiccnGfjpphOsDKP5dq2up5Zt4LFK0IbqahCc+wLv70purC11LbDp5VLGIwSqiqBQ6yGgRYeKi1f8VxnlmwUi9VF8SoGqb3lI9TC7v5BE/jnPvAGg1hpRFYIiy/U5lQejyHyrPXVDIrPmfnNK8s7VmN1HQvN8Pw7lno3jWIuSos8JjREHMQMDUgExNBZSzExHp4uu14uk2kiOn4id8VWhSvyDzwFoGw/Qw8xW2c2pjvu21XUrezCJBt6zdJclsW+paO/0ixTA6Qbl8XNfTHjmDFHaNyT9btmP1mBeh5mO9aaM9O7Drg/zlqxmAxcrtA3YpqhlgQtSq85F1V80WMRDDqotz90jWu6nduOPl7h+G1LZEjf28SUAfwYYpCd8BBUV0jt7tjGKasfZFNz/cMQuPtG5X8uYIzGbI6r2i9Jn7tgAwdG1PJO4EBaQpRjL5sV+pkeA+ffD+5vwASloweCzZqFXe8qxZhiBET5IrsS34HIjHxmjQ3Bdsi8ks5YY0exFw5KzzbDMy7QbX1jbddCtO9zXDw/K3Q25/G2iMAS0M4V+ZNiXpcmYXWaBaOzrcirQv5e419iT5DtQv0KeSSeEUwK8TLOc9y8cxx4ovVahFKW5dMKpq5I8dyDwGKQP9irZoNAYDWhE4lAgGI0EBNkUUjARy3qogPpdqtRoreY87TiLCckQi4FVVF1IZV7XEPeY3ORnZRgzgv6/0HCLFrIeDwuadaQ43vic1VquRmdN6Nd7bD4LmjMAegMyCkoGByxlPF5F2wIqgG/AQE4p0VyXpx8FTnh1oi35MmHFFubmFBXcjFN1a/p+595N5TndPAbnC5gYmL295fgp2qOG9c/xYk5JedvKbWW8m+8uplN3hhjmcTJQztpS99KZlP7//+7x/qwMoP/uAPhm/91m8Nzwhg+amf+qnwaZ/2aeHw8JCJ7T7ygn/feoDFt9y1u2i8LPx75TYrLJzoLqkBRnFXtUDNKPHeiLhfNZtIsb0MyER9Wed5dicVXFMzg/hLmNfcq9K1+dCu96z6faybyGcxi4LeIAEzVBSjionwE+ApQoQFoAXUFsi6gqJBo0W7P+0jyqLGyHFVC4VqSwAoWt+ASanqWUSLkQuv6uUFUvKokRaHpJd1XCVjUgoZXkIr/K08cXoTLeFWf1tEBt42obPIb3hmWf8lAyvspxo8owdGTMgEuDDvNf49xb3Kn4ZGTNIFznvndDTodh4oFJ9uZnzGQ+aUMhuvzmiwZtSu+QLIycZgSYrbAIJ+n35eXdtClJKALO1rNDQK4KaKQqXvnpdOjlEaWpqF/W2Mr7hfsYu2wwHoR02hieTRTTREU2D4aPE8ThMerGBTfa0mO7PQOmoy34KAvCdKZJTpxftl++CYkXLm3tmSvVGkA7pd3TvTfKLH8/Fd2J5HkMJNNddKwHY2b1nNnXlZCEXkXp0zAcei40DBGD/TqUWL8JlHHO89QElrKFFaevi7kuvhjXBT+aNKn+YZUHL5UN5TT9CziKnJM2OfnXcJXcmuAdGIGLFQetb2I1MmlEP6l84SGOeHiIJMQ+dwEg7v74bhXz8fFbDaJ03SopgwvxdC/8mK1nR8V5OAYO9to7D/cJd0OKhsAZRsPgGJZwAUUG4bUiRSHSASzRWltDgWjb5rYiOYQ53TxiLA+NzkjHHdyC+Rcab3q4MItI5RBXcAJgBPBthMfpn0r54DUHpegCyLXjNSva1zqAId5vipmIoff8mUByeVKxYZHUIaHYljz7/bmgfFiL1+RuU2FMp8EAhJJOFtrKG1nuwIdRDvp4I6W1P4fLUv/E4pmfM7h1H8JH+3WDcri6YsAyuLDhn5m44oFJt1RasTJ4iWVaici5nNYduRguvXADcPx0nXHyPNUbG1KAKmuL0NrtV5kLfbM9s+53M+J3zsx35s+PVf//Xw/Oc/P/kOdRRf97rXhZ/5mZ+56uOfGrBALeyzP/uzw9d//deHzU0nfn9LtzqYX/B8Js2BCPNU+0W6ZpcEnOSLe3EHD36y41v0JHoe0wl3kaqR8nMXt63vU8nYqr1GPW5ZOrm0j3TCKt82Rig8ogRu5xlqbUw4mU+QcAhe/agZZn0zqvRZtMATb9L7BmMEsr/gxGORgKGAU+BzLK4mnclFBB6+Q6UpqFFiVIVoDAUHMhRcEKToNvQiKoWCAQpQFLayGgAZ6KG3zbjY7r7HYnRqdMb99bPhc4ZU+MrrlbTgoYORFXMo3LNboboiwKJagCIgiBuUPWWrKEEAPgJOZJvamj3xeGEx8jKDMEPNmHJ/x4iLS/xPQFR2ggVamWt1BkGMRoU6oOb45n7Rnq+efnykSwwzqSrP74z2pM+c8t469rwIBBXztEK8cPTl3ZqCaqlUIe7bzOYuNApqLHpbk3uez1dLplD7HHkrHMbZs6049oW5xf68JDltLOZ4bliNAwcmCQCm4riIBiC+1voVjMgiR4BRJK3f1FPHhiuWiH6wiKLWa6EegAO09i7SYLYyA27ICaUohKkWtDTHhBm+oHcxB64rErygbkHtCnLF/SeH4eCBTSmKeSyFFY/vaoWT924RRMHxgjw29A90NMtxsfmLlCvtI6Iax/d0ZGw4yivkhKUQpAC6qF5oUr+NqjaO5egZrQv1XszQJzixApMAXO+asK8AXc2pyEfz1uh5cb3b75oRTLHo5EAiMIyC6j1jLUGN7OD6MT/T6aP1r6zejt1zU3G0YpBRptg/k8x3I+puMiynGE9ck90a4uusMayUjkmMs6OHZqG93wyj80JRTsY+lCffBf6a9S3Np6KK3eYszNqijjm9G6gY+ZuiN+VVHJM1t/COrVqT6xwK8Z0z0ON1h/hbT1ZyorrfPuFfAEju0HQOUu+IWWpHLKPS3ljt2RZh+eZv/uZw8eLF8JKXvCS88Y1vjLnsr3jFK8L3fd/3hZ/+6Z8OH/7hH/7MAZZ3vetd4Qu/8AufZWBFf69B+ag9RNETYG6IwjEXvL7xPwVXSVnJiF85o8kqjkfpV28wcYNy330Sceq9TL3ohQ4vHsxHH/iRA0glarxti121NkurOyMVLBy3JZKCBaOn1di5MofQQtE5GCemgoXF4bDFpEioAIGGYUXHsMji36R4KBAxOVPzoNpthafSK3zRUwpHsBoEstBWMqERH6qH0hSd8PkQ1C+3yNjib55Jv5BarRX7zBel471RkQGcd3D/hGAOssVt3K9I3ZLn5YFK3koRkyoKUC1+/pkvLJ41AGVZPktMojcagcnXnmZN8vQv11eKAHijIloHGVhL8nVq+ugV7ixJP8P7FehKj58eqwag1zoSCvtCglSraE+RuKvyogArpEBaAbiW1myxKth+TJrn2OU6oe4C7v8U+0E9zt5P9Vyzhk9mMCx4e+1dz0FN9v7ngLmu5RHfhbEFkGLPyIO7x/vSdQUkACMWRfHDIBqyTtHIrgPbQ9iAcwNu44lur2pXBEIqgBFtuMJUzS7DUaCJ41bdHs+BBSspPyyqhdwV+SVTSTbfenTMeWrab3Oeit54NeCh2nV8TwhDlU0mcNNoGucOLQIJ5S1eplaoH6lUL9URB5LbR/oXC+7Kd+aUoYE9EeGSJgozkgImF0iQoM45zquMDs3jcTeemoYT1IbZnzOXZIqoibKhmDekifEAKNuPANi0w+BsM2xclGK4Mw+u47jVCIzeR+mD3mulwZFuBlNFwRWf26zsZPL+Po4l5tQgCq/rHwCtKxZs48UiB1wDNubMP0T/hveNOZ+1H+mFyb3CD2xd6DLiL3P2nHRdcWjKT2cfyCyE+dY0TEBxzrQt7F3I55i4iZ+bk6DE4nySR4bj5xoVqfs+vjyZs9JTwiwiWoxI29ygDtTad987d4tOzBsfs8R8z+twnJulAZj8/b//9wlafu3Xfi183dd9Xfie7/kesrP+9t/+29d07FMDFkgF/87v/M6pir3cGq3G6DBvRB2Q8ZWvZa+CG2SNcyaeizWAk3vZscjH8G0S3agmtsRrm1+jm2gWvMSlhL6666rcngpQsg2iAkjBiHMdJ1gJIZx/zsVw5bgfhvs90p6sVojvHyIuKKbFInXdeRif0YJUDZG7hBrYRL2R+MHflvAO+2666b2zVbgeiyENB3hKNcmS/HQt6GjRFCviaJ5WqgxlakH5/TLWm3nEseCSBuEmbqOJmYINF8jzUykg1p/wPrSQQKnPB0AEQKXh6TWO+pRPrHmSeMxdqQWotp88q1XbpdunBmuTyQBptKcEkPy/65TMFqItCrzyyJAHK3XRneLnhb9jLkvpexvbzviw85fex1JLDAncI83BoLRqZ85keVaFNwoYtqOXV+hWVb0KzUnx16I1IiAlDsUwSha76AAPBplgFsFLryE3kIrzUzb9xe38Z5mhQ7qnGVF6UAMuRTDo5Fdbx41Yb4l79SSKsuBEsudgRqyBPZyz0UgUvvD+VknyOh2rIS1CHgI6bBurvcJTOE86xThU0crfGyhj7bxzymhE92DGYxzd1wnt4zlpVCzsOBWK2OG9UgAQEZj+U5KLdPRA5UwJkzlBBQNumvBO2pQWm6Q886FEM0wIAHSvmOuntLQ4jhRgcIxi6IEep8w9gBjOq3qtAFiMIPcaBCsAI76YL+dVBWlCmRUwJHVU5P6jrgy+37wgSmbYHg4hJOwTqJAuJfsTBLbSSDgjRZBrxlxtYinNmvwVCxpYsMLEJQFa+vI+zb1cv9IkmbvC56yABrLZeH9IAZuHyX3DKlcMNZK2lLI8bYTeY20Bju91EhqPak2i+4RCZmwAyRPJ3v34Qqbj17ZZb+5NwX/+ziaUrLy2VeE4yf7LcksiWHE/yWTsnofvi7cXbnCg8mxuzWYz/MiP/Ej4hE/4hPDCF74wHB0dsZA8ir9fa1sLsOBk1tAJ1GSBdPH7vM/7LOgoI+nm1mqV9Zx7HaIBv87LE9+1bONEvshbRJ7GVZhcSoX0zAPZWJwUOPF4F1Jpv2V9L0m+unuylPITd/MzUBm7lbzN6b8rFacnntwNnT5WVFEf2dgahZNj4U3BQ2xJ4b2dIQsizpCgjyJbh+0w3RRjBkXY6I3UQ49QzExzXOiVVU8ck96V4mDUCFC9zKvKfVRi2EdKvCpRXAxTQazkOmPtBQNuAD5SY08iPk4EgHSzbakpM7wL1g+Kf81CE6ClNQvt1tTRmQSsMLTshtjKZ2eblnJA4nd+m7lIIjeqqIanVPl/g6oWPXE6luJ6h/0JYFO5zAVPfgFgG7WsBGzqPHrptv6LLM8q2Sm9H2tFg2rG/NL3z7XZEEnSasxM4KUWwAKjijlSZzRaQqO4GsOMsKjX2EcU+L2fS9QrH/uJZ0jkLon6rIk0V29zps62cF/8HFS6B/n7XQNA+HlSxyGTavXni5/Nw/RiL7QhYgEnhX3vatfwrlvOCt9LGJTgwsk9jJLkbdCXJMpi76/V5qBYhopuAGggqZs0Us1TQe0l72RgscvDKlne1Lai8wFKgucQyW2F/gUkkE/D6ExLikxuNsLBQw0a5juPSR4JjkenyEwLXVpCuI2BLqLLEulgdFlBC+iwRilD7gqOhc89kEJfUIkewMOK4DJigkryCkYYbbb7rvMV5kSp8SIABNcGoEWxgq1G6B5I8jiPAWrbUO43/sbnh/dJ7RrIEIMOJ9Xt5SZahXvWeFEVRz7JaVU7CyIFAJjYDtdhOTIRKGnB3rhUJuBVzuOHbXFq1LHNOQERSVXv6v1FNwyeO6xouCys2BTKJoGZKlwix+hiO4yeN2DxVB7nvkHVNVACJ60qspgBkvTlcM6Zmij4slZblDdzKKy11q8TDTAHZGE+T7ep71NRNv4GbCDxXY/CkdfjGM9E+5Zv+Zb474/4iI9ghAVBDuAF/FgDS+tqWmOOanxrIKa1DtZohCkylG/itr+/H/b29sKD3/WVobnRX3ipEyUM76VwXutSy5Pgi+pbiQGUApT8M+/NKBpxeSTFn85rt5f6U9PnhX9n/fO816IREQ/svssTaK1FjrwcjIUBeV3SAXsed95xEJ66LLJZXVRkBw8fEz0ldaXGyHRkGsQajsAh4CWeNOiNZoE9evtgDMiiDkBDY4MLnSy6SRV6BReWOCsF0oTb30HSsnKhE0+xW9iTOiyl++O8sX67hMbgvIPDe8csItbugQY2jXVUjAbGH/RpKlEoe1Z1b/8i7cs+XwQrBhB8Ar09H5NNXrXwRi9d3o88ouDBnX7ui1wuW9iTOgHu3tTuU/Mu+3u2LL9lGYiJVKgCbaLUd2wTwQrGIwGE3I/2gUgPG3XRDGhzCoCCIop5TuVODVsBL/pOaBTGn9NqHkTjnZLh4klm7aN8DircsgX62zrXuwS81HmE5bPq37MnexGQ4TffORO0mHk52iqHgB54gBY0oxHqu9g+NMUNzV8Zu0KxukQyYgJ5W0RkZpoDA9EPLerq74PlXmy/ax6O7hUBEHNEECcjakuJYRS1rApEMsoAWppGCkCLwlxzcrfmXOjx2SdK6FZpSP0nJD8EuXoCHBqUWmduHaSAD0SRi+MNSfJak4QBhaGrLUUAJtEbh+njveD9tIKmuGVadZ7RhB2lv2luit0bRLp5XQ7MGbXWQCaHtNLb+Ly0gGOMNDu1RptjjTaXABYbJzZ3uzw/iYTlcoJSlDUqhalkPiNxsep9lQwfKVv6vnYe7XIsQNCCdOPnH4XZI5tUsTNBlHx853MH6bwAPx1V/ioAl8j20D6nB1gh5uG3X7KGrxQEKdk2hebtmMR2yPqE++Pvpz/n9HgY3vG5XxWuXLlCEagbzY786//9C0N7SxHzNbTJ0TD8f5/0LTfcdebtuc997lo44a1vfevTF2HJpYuflS3a1Rk1yk18yeYeXKzwYESag1+Ao3FV9gb7Fs/hDTDnWRdD0Rtsq42LBS+m234VfSzJo3EGTbIfNy0kClrECoWqeLBKMlf2dcedh/DkhV3m5qA+y7Q9c0UQgSZmrOAem3LzUWvCFigkN3qaBsL6/QuNcLIl1jfpI0YP4QJZccNtYTT5S3jFDPB4oyh9WJUhWbq3HqgYTz5yt31iPbbX6M34jklogQbWmodOZ1Jv3DnDf5EOkC6QvvBi4i0sRFoWFjA/9vz16bXX2KxCBXP9XtimsQI8WDJqIQ8nBytX1bwns0aVbNk5iu/gOg33faxa2GhK78QRWodaJ8WqU5PqI4CCURXmWej2Gk3gIT0Abi4Zo1oboroINw5RE8kUuPDVpsqKL7zTi5c0O+xQ+ALvF4UCcA2749p5bfFeluZFv69EF4LWAvEqVyxUaFEmNzebMpSoI7moDO85jGShZ3FbGKH7jdA7EPUq0kIpZOGiWKQjaWV5pY5F4GeqWqjpco+AKVEpM2npSt4WkQKT7cVxGHFQoQ5EHBgRMXqa1iWhYAKk3vWaRC0thJN7pqF1IkpwAA6Ismw+ocnyszkVxghOEE3uakQIEd5MGID0MYgz6NyUOPHcHEZqF34juVyjJQRDTkDEQDSAF6MioIchGoNIFaIqhxV9jfmJSs2N1C4310bwqPfaCvjG+VPBeswp1H1KdXkE9CmY9U6TZJAiZKVg30936hTiOEWtpPuRw9IIvae6YXhWVsjmfcfRyVIHUvIxnwuoJA4kzaOZL3MUrjv/+Huxhk1S52QpnbvkcCjO28siMOt8f7vd8MUjT9tOrWL9H//jfwzDoQrMuzYajfjdLdNWvbCu8Jz3KPu/Y2E6/045oy85Tl5kzhu1hcJ0dd7LmKuiPyY/u3BtcaKoXvzo5bbieImK1+I5/T5JRCe7loTjWnuv/SrnD7i4bVXYqsoXgME+GbWEBsb7bwIDVVXGZm/CGhSMhCioiIpKWqkYv0/unYlaEJIt4blWzzK+twJhSd+Vi90+1urLWiHZKGA8vT+fVwQzBRw9TvQmOgPAJ9SbsWO/R3eNQ2NjErr9Sej3xwte/8mklURYfBQwiY7F6EhV5T55/gY21Ojm9u4Z20JrSfv2CJMxsmwhzrbJc1ZW7r+g+Z82fN/MxqRda5VH495fvoPR6orjqQL7lhe2qm+Lv2PR1LhRDYjNj+Xzu3B+VMMeVjVVrLhoAmw5ZmXsMgrjx6AeR25QdV3mzTbPejQ0GqouFm+q9CGMm1L3aL8T5gdweafXkj+T6XEnNFHA0gq6QiEOx71kVqwbN87IWTB0ltwvRKNg3DLBWRW/aNDHC0mFLfjuW/4OC2dK8nP8wf1QYCUe+3kY781J3+J9R3cUlNDIV8UuOZ++C3pfIjDRiJgJfNC47lR9AghCvsrRfXI+AzDmyGDhRGyzKQn3UJuKtUOQJ6GRo+T2A2hszsLhc+ZhcIcACtC1RAJYnC1WwR6/QR2j3HtX8/Ws2ntIgUEsYDsCdQ59tQR1S97Xe64SzbZ9FeGoEuUt74e1ZJV6y0eG5wKK33ZVKNLufRzXup3M51VhSYuEmwPI3ieh7ulzt3k11lupIm/TDQWrPlnf3h9s4wo22jyZFphthM4jXeZHhgcGyTwrBXqrQr3+Z2HsG9PANQ9yogpXNu9UFDY3Hy95f5K5P35Ys0/dcbJ5zRflLTJElvanbEPc6IAlf57X8nO7XQVg+azP+iyGpfJ2cHDA726V5sGE5UJUX9bttOJ7/S4BKDUgxX8WX3QsQA6QLL686W/+2xlVNgn5n7h91vekLkp+jmzi8n1PDb7s3vh+JyAlt3Dcfh745d9pQ1QFUZb5cTtMx0IBgyeKRipqkCCEDtWjY+ER85gWefErOiIwunhZxWl4p8UIgCe4WuTopcU5xhWNwzzbluxpFBDz8Jk0p3n94ue2SJoCTsnrrffQR1ZG58eh0Z2FDgBLZ+LoX1L4cYZq8+DygxY3heSvUac8GAiL1eXz55hFMbyR78cMH5d/Vn6s6HFLwIRfF6hZcdcF6oPfvyai4d6PpCq923+Vl14cDxVdowjU+UEF7pdGcOooGCsiCLx+CE2YsYTXZ9gMnStNMfYARlS6m4pGGMPtOY2sSHexCKwZ5b4PBCgiF07Da+b+NgzjogOIjPDnqBWaKEhJw7SaA+YnGNjZ+x4vRgpXRhqa0WvwvEFze6obwsUKuOTzSvwMuwDw4EdpMFX0FRJ8sFLNuE/HsEVX7V1n5MneuZZLrvbvoX9Wasgi3wW5bqAnwUGBeid2n/Dun/3TmaSTYK5oV8pgvsK6zQnROaGfc25w86zQzKT6vNUGMYN8CNBEipkauEaL0gKZEYQ6gxrfTbZEsQtULDse6roQbOg8FCWEEcnB7xOXp6eREmwLgIGIyKwl+TB2D9BQt8Wrjdm5JEm/uscYqwBg+I5J8jo3GnBhrSAVJ8Vvi0aZXLF3Bln9Ev4YfY8nqe6fOYJY+8e8+77SvXMysY4XI5UKAkkPsyKSpmro1K/ivGMOwBnXB94HLfxoc/WytoxijuOQTqZrfMI+sLHq36PkAKVjLpnD3HWtC1pS59C86Oz1+ycAr9DfpeyPG7Q9myrdf8u3fEsYDDThdo32Xd/1XcQNTytgQcqLLxZp7Z3vfCc5e7dc8wAiM3wqZaLq+4Xdc2OpaPDkQCHf1h/PHbM0SejktQiGvAc1+8muVYxWmxzS4yd/FzwuRY+A36YUVvaLarZ9Kdq0cM12j7CAMn9lHsYn7TAetEPPog7mLWMhx0aY92c0MjyVhlQxPReMPQMIZvxxEWShL6nVwFwX9fLBUKQnVxdOSSqdh8muGDUWlTFOtnnD47U5z7cHMDFCYwXM9B6CBkbjsTUL/a5cY0sXQQMq88J4s8J7EbwQkCu40985fvQLTFxwFrxkClbwk53XIiCo/xI/d7/zlnjS/bjxPwuDIB0vAEZyTXrOJWPH+l+9M/77qk9pRKpmASm8VxH8J9S50oWX+8YGY2/UZM5V5ykoCzXCZEfBiY4ZKnphDCAHwxLnveFtxr8XdaB3WIHEREEDfvvoCg+u39GTrD9GTWN+jMvtwxg76oT5oURbFuYCo6Y58GQe7XgrnuqF+cUef88u9sJsX+pW8Dskx+93w/yK/DSe7PG9n0HVTAEMIz/9qSp5Sc2ZmIge31EFcr4oqIu68F03RTH9O/bPrpNqbCoRDDlbNcxx7y6/Z7PKVXOV0y0xnkY9oisaYfHRghgJoNoX5KWrYYUohEn2WhQnAiXNYYnqVTlY0WcgxUAlF4R1oABW9uUaJEFenDFW8BENKooWDSLg0IK4tB+Zu1dFikZ7lvcnifMGfKT+i8rHa/cQBGe+zkhya/j9Vghbj89Zh4bDrxXCnW8eETCZ7HMEbT1N4tdoCoRIoBzGIpE9ATexuKQ5jPQarEAjVcas6KOLiPP+61wfaxpZlL87o8hJBIV+rEdnCSIi6my8exBmD54szXura542Fvvo56Ql+XYLzqUaR2J0WCXnzQ+4SO3yfUz+XXMus12KFDJvb5UiLze+3f6sbV/8xV98KgDypV/6peHJJ598emSN/+pf/asEKviBPFm7Xe2KRHtw11Dh8lZpCZ2rACIWd9CXW5WPEo9xLnXq9pHjye+FyQITeVIVu7C9yRbbpJkZYbadgZbiJGPGlOaL+Mlx1eRqnFnm9pQqm7sJKPeMRNlED1bsPHbtuXO9xksNcNLYEg59zOdBAr4mmXNhwQLE+hTYQb2Rmihvhh/+TW8aHLTTarFqgW/vvHBWXGym3lp5vO7f5gnXPAIaY3b9druNV+0UiRLQqPVXTPrTFngxfuSaqJJWiFDwM+81tNo7uacrXxTyhUS3AQCwZ2g2bOK0dYC9qcBkCuDkvo9V662vRlMrD63YD5yb9yvjkee0ghLQodqYHzulhdKAvt8u65WB4sUFXcd76QI8SKkDOLbjCuOFYAGGOp45HvkJihlW9KR5T7z5ws8HIJ8KiDBjPQKU7LpUUCKJovmigHk/3d8Nu98WkbDtInAJBBRsZ0bVHIi8FV8ct+40Nr9p4j9BjNEVTTRC+46q4TREnWzxHFEW9y4aEMA9bI4V5eWVyzWCItQivVearxabAgFTYIOBLM9H74sWlGSlc02ut4gJoizSFy362VUAAoU3RMl88rHJ6gI4WWTA1Xci1uyn+TmWozODNLHPd3CGqT3gWW8m0VfItOszMZnlwwcbof+kyQ0L8OhdlCizRUWaKiNsrwrrUIGGCnrZZgjnf3cU9p/TJfhpH0i/2sezMNqBeIQk36PvyF3B9qbtg3OindzpQHAzhMf/f9043kGFBDhjLgzecZWPF8CYji/cc8uZsdwim0N53ToPQ2ilJB4QqVn+/hlzQdfMdO5uhGZDRF9kXnL5GTVqm8X5e8lnuTiItxOiLZI7StY09vPiu9QXXREFrs7r5gH7vbCGV5TiCPKyOd1sKBEkyIVO3Fx9apf7M9uuF53rZqCEzefzBWywrJ2cQOkjPD2A5ZM+6ZP4+/d///cpU7a9LcpMaN1uNzznOc8JL3vZy8Kt0ugxhhFrlXx9pVs3CZRebg8M+ELFiW31eRMOKo3ASn0pnisDJFWfM69u9u+YX+CS2Kvtcq9wWiwwFuRbAVoWjJ8SuKs9jitQyUUh36DGC+3nbpNvtkVUFcPiNeKZ4msAmEMd/ppIL8eX3BVSB7AYI0nfPJ1GJdFFOi4SrXmYorjcsSb822JhBiQNKKPlgC9e3SdWbz4jCfOWR4DCmDh2+y9g8VQJt+gHPZvwtrbmUsVe7y9Cxt4GLIJDXQTivay5tR5cegDqjfOF0VA4bPLvHMjWtNJ28XwZ6I3gy21XPOYKPJA4Jgr9KBeRrN7BpEbB1SwuNRfgjzNDhA/SxaMmJXaNPshIoEUOzMhWVSyxkC0fpTK6s2BP1Q2XbB6N9ayfllDuVe44vu2dKDlm0LcrnRD2xvwdj126TbnT1by/AGRRmtkZOPgPaEHdOXPILC+Gxqi+jzGnQaMPYqRqjgW+s6TxeBNT54LQQPXcEQA1WNwvnAhVD15/eOiptqVJ8zC8SWHSvA0eXkEBohWxcKKd28tJK+DjWRWsmGGM60ckAlQwzg+QO0eQ1ZwcmRpZ8m8zCBF5REX13SmdNyc9kcbeeFQUzXoXq7wPiYY0SAujlokW00URXVwvAY0P4uv17j+3G+ll/YvT8NR7t8N9vzYMF1+4Gc6/aRRao1m49J5AGur80eKRiKoMzgmYgWoZjgXwgu8BDvks58jJUkeQVpdP1h0H4uR65aYmw9MJbYEeF2lrBnQAinRtMMdVjNLHwe/WeK3YXuV/6nyOe43IFHK1fP5jWL5OLlK+Sy+Wggkbq64GUdxkmbNx6cRY1auiHVIQkfGAYYF9UQItNtXa34zIe1CVrTe8v3gBmnK4HNicwr54dzQyHp4lgOUrv/IrT7X9J37iJ4Zz5zCJPQ2ABZ1BJAXA5KM/+qPDvffeG54NzSajxIB3YKXaULbxoMA+F8+yvogs2evAT3Kuyuts39vLGr8v9TGjjfmWKz+5b9a/CXod+TlzL08tplmi454DjiLYMePeu/VdRMBAHAxySiCqxDR+kNPS35qQ7gS6yASRGAVFUTXJ0T54bEzMVlAPBhC+0wUruSY3WcNjS7qB0g5mZ8ahsd+mMTe5U2lpmocAQyryuWksNSgawOMohWnWaITxQwMVDZiH+bgZOhdg7AmQgq7//AHUWalUwaa4bn8LLTHeAA28VeZILnjvGMlwE2wdZYtRCxf9sOfJwpSeYuWed/5MQVsrNZ9n471Tvk92Xr+PLILuMxs27n3KIzRJy59tQQLUwMsqxbHk3agxMmz/1OGhtIy8QFpMbJZ7RjEIGN+OUhUjADif1U7Rf5v3v6JfVXa5nSPSv8xo9hEH3nDdVGuFyPZq+NPIc9FDKH6BPuOmOn6PpHpXwFY84R55VJvG/ZjfopFKlVeO34Ga2ZtJDoIvtqpedlMDY/dZp6YRxjuSpwb6p9Rc0Wv0kRaT4o30OXWiKPCbwsFAKtk8BBzvSHJ2JPogkRPz4hs9DMfae+ucimAm48uIBDz7WokeOTCjPRVPGDdEUlgHMpwVUCMjbakRWD8KVFPJv9DjaR6T9TVSSHNPu7s4vuEYSxqxOH5QIlT9xxusKYNaMJ0jScxnMV1EiHCYiRagtEdhtU54L11eyyYq3SMg2CK4ufB+m9wP0RIDwABCHNeqejY8I9fYOZ6HwdlG2HhKqsdHIBbHafVuUZQAAgscB/quWlQK0tI6Hi2RnuMDCm44ptXdmVYghSIDuDt6H9uqxsdnTNEW55wjCEnzUvMxbe97vt6V6lnln+ffyfeFHJjSfLTKQeRySbDW1BXN5bqK+2dMjPw08/R4kF/2/YpS+nXOn3wtaqX209Silz6qvoboybOxfed3fid//uIv/oJ/v/d7v3f4iq/4ivBxH/dx/Bt5Jl/yJV/C4o4Q0EIA4ju+4zvC3XffHY/x9re/PfzTf/pPw6/8yq8wOPGZn/mZ4dWvfvXS6MlpAcvVtFMF1FqtVvjcz/3cUyXW3PTNKQqloUhNdtNtLBE5V+laUFxaCKPKS4cJwTj3rFCev4w1HpjKE5x+Xv07yy+IuQhuAs22zY+f8ElLnh7vhXaUn2Ry1vuRUJKK99sMt8ZST3hdIjWjCLHGhewzPOmwiGK7LQnqBIE4BzjIoIaRJoDVreL8I6mZx+u5XBbQ/ZCE3xMFHlMMsoWw4sfPQ/NyJ8y3p2Gm0ZNGexbCxpT7TfcmTJKeGpBB1ePmjPr69nz4vOAlbk9lf6gS3TlWhSHxoHsxCL/QEEtZDkfhfvMW51QDNehB58K94v5LiiwiH6XdmoVOe5r8JHQsJuhb3kp6DHyOHxwHHkj8+PGYKHbp9WBb69c6zbaKQzAXt7CfmpaP/ervxQjmsmT7/P2RDy3XzPXXew/jZ40QjtoEu1T66s8ErET6kcsr0QghvzNRCQUdMTlYE7EtahibVzlyIAmNET3mb4nBLIIUCh6MCuVutM/7ECqk/tvTrEwy1vJmHLCSKIa5uTUnx58Px9eIUXMo0sgwKHlYGKKgdG6a9m0lQQ51LB4D7/w866uJDLhrryIf1X2J0xLuYQfv7Cw0d0eVelgvpSEhebypSeoo+ti/JEn6+NxUxYyBSJni/QYNbysWK4DJJeHHiI/kboAWKBE3yWfy974a4zbmHaCJL4dShftTuc86hx0/iDlOCmGCvmZAhQUZNeFdnm9VA6U9EPAKihnpcComwDy/JopgIp9Fpdh3BMBtvWsezvz5RJTDtE4KABK6N9lohNY4xGgLxj/HhopKJLVTNMfKlPCSV82ibk71yyi5BILMMZT9cC9xT00hjyAwGdd63sxo5rxNURylv9rc7J0CBYdjVFx0NoR9bscvrdFry7OvEATx85lP4PdFYdN5L8uHrTkeRHD8/Gr3pNQPTz9P7CRTf4T/pV3V9zMhgwXxlxuwybp6HX5Occ4HHnggfMM3fEN405veFH7nd34nfORHfiSjGX/8x38cc01+6qd+Kvzoj/5o+N//+3+HRx55JHzyJ39y3B+BCRSIh/LvG9/4xvCDP/iD4Qd+4AcIet7dbe0Ii7UXv/jFLPqyToGYm7p5adyEPpVHBxY9yCa7673M/nsxDBGN8Z8tgoVitwq0r2iEzWs8J66/CdUnuqFz8LIYQbJrr7tXBlqip9tHQZJtK69hnUhB4t3Oj5HQ8/yEqAaRnpvAxe2PhPSJ0Tro7QGICEy+l2Opd84K7AHMQAEpqEdNDSsCG/PIYh/Qt9QrS6UYNY4QYTEjwSdzT9F3GF3nhsLZvmfKhTDR19e8pFgwi8YpaAVNUoPk1sxDEzVnQItAhIZeqDQ64SlccRyUFhn9LQDCxq6Nfbdv1iIVwRYkM0qdGpjFdLAtjo2/6yIU5YTP5VO1p4X5aIq/Ll5bIcclblsCyDVRv9K7vE5L84KWX5Nxunk94yYpTMyXwNjzkUDLT7EF3gxuixooLSwadmqYMzer0pqQCIKTqDXDOMppK60xAhh7ZWKRPqnhQaqjOXVxTi+vrJESPFSfH2Pg2+5LNMrtXYXjwG9v1B6NUAr1R3IRIBc7e7RPL3mkwJloBsCEq8URk9PRZxex8c/HIipy0VWyPNTRwlnk5JjjKoQA0DLoR08/5WvxiLaVIqX1SlAgEkDm3J/PwoX3VYU1ywNhDR3pE/JAcDMsSmT0LCtYiUhM56ApYh9WbwW5Lh5UcSw48GsUKY3AWVFNGxtUm9udcB7D3Dfekblw40KDOSY775Dxd3Sv9BtAxEs3I5oi96zKvQN9TGhl8tz7F+fhyvPl+V1+vhSQPL6nHVW8AGi6hzIecXzQwxhxAVXsUoMyz5xrVZDETxEApJYYT6BhCm32jli/TKhAgaDtY3S/JmppaVI+atZgrEi9LqELw/lUWvMxx5P+5e+//fYgUj8TG0CiyLAFsAZYVl9OM10WiVmZvJ8fp8AUseK/7L/2c4p3PqsdlbMqrEBz/r04q7SwrFtDhDK6fM60a49CKBoJbFqdtQjubvwIC9a7ZXT60xxn3fZ3/+7fTf7+uq/7OkZcfvM3f5Ng5vu///vDD//wDxPIoL3uda8LL3zhC/n9B3/wB4df+IVfYFX6X/qlX2LU5f3f//3D13zN14Qv+7IvC//m3/wbpoC8u9qpU5a+9mu/Nvyzf/bPwk//9E+HRx99lBU9/c+t1rwhX3k9LBHMcb6dZ9gUl3LpwliIz9VsMc9ydb55VjdiccLhsX2UIZ8Mff+9gZYZW2loOk1grq7dA6P83nglj2wfeprS+1juXPaTX0fmJvd9i3QwN8kZGOttjCu501kjDEft0OtMeL8x8cE7ymODpmULO3jy6oUWXr548uz6CFzUm03DCZW+SStxXjf04eyIFC9ER1rdKSMniJoBgHQ3xqGzNaZnFp+3u5PQ3RynkQmdkBERikCZYYbKeGSk5kqX1CrSvXRM2pix8ZM/L7uVFqnotqeURMYPIiZ1zY5fijDkXrJF6eJyREJARPX8Stv6ftu/05/0fVo3+rJ+NGVRSrwYMcnG+EKUJGsodCobynYT0Io0QhjH/KFQCum5B4DGdxiX5kX36laUJFYvsAJnM8ANEHhqWNJ9Rh1S45YGrdYWiqphTjnM5JJzHAbjD4CBkQ+lgIiwhYUpJYek2skkkfW+57dVq8obNcvOH+XFVTyDFd5BRdmWKGb//LFQpoZamBKgAFQwJrDLcQiKVMbZvOfxPJ6Wl0QnFDwqfcZogg19RjCIEUGxvDPKEGvtEkYe+uLFf+IDXbV3VcFiMj2ACYGE3BdcF0AQlbBgJyhFiZXht3A+A3lynVNViovjIqdB2t9+nPnvUVMH54YjRkHmwcMhHN83D09+QDMc3Y1IXwVWqMCl8ux4TvgbUZEo4exkmhGtAVgZQzlxYx5GZ5WKheidUl35LvRFLYy2bUtAW6SPHVvBTy2MqmPOokb8DuPSamspjYzUPIB15N84cOKLqfK24Bki4mI1UhTY8hbZOI1zfepA8+uPf+eH+9Bdzu5zYU31lCnPWIisCOf4Ks2n8r1KHddICgvTQgFXRrvNKW3JWuv6LP/WSIyLNNl+PjpUvT9uTozR5Uo10veh1qHWmnMdTba7CXI7rmfbz+ztUk1E3xAtAfXr6OgofMiHfAijLuPxOLzkJS+J27zgBS8IDz30UPiN3/gN/o3f7/M+75NQxEAbw/ksSnPTRFg+/uM/nr9f+tKXJvLGJneMG3QrtNwgqSIsVYOHHB6SJNLBf+gG2btHL7otco6uEw0O3dcnjUcFsAhWzM1ZvejJBJmts77/pbyFnBeaX/+iqpjuVrILl1HF/L7Z33a8amJ0ikz24wFN4vmvrsM3qN9s7gzCyZEsFigqif0BWuSZSa7LrD8NzZNWmCPkbAsOa64odx5cXFUpwsnIz1eDi55IBY88/cY0tHoCUPg9PM+22LhuIn3QLilZv9TgNmoWWgvGAXMGmmE+VTUoZr5KUTyAlY7eL1C5FnJDsCi7BGpbtOx+IyrTcrvkCYIlwB7HbUYpTL7TY+XRlBKY4WeN9NyWJ1PleawXaRGFnrJi2ELEMXN+VuPS7ZMPrcxjmCy2yu3JqV32/XS/G1q74t5tbUzk752xRJ9QJR7bovAiN1bjPFK7MmQQDffspbLXMAf9BhZYAV0BCj33DUnoR36MFibkcdWwpxEZxSLKjNZI9VIvtuR86L3w3Y6RGXeQxSmjuobsC0ZTENHWc7ZQz8VUoQBKHtsInfuOwzj0Qrc5C7Oz4zCBq9xyeswz7xXhqBCo9FBEVC2vxu5Zo2z4Ny91wvzOihaMeZm+DJNsVSoU+giwgeMiCV9yJrTwpEZj4jNRIIY8DiS0x+i3vr9Uz1L1xNagQVUr5PbAqEYBSO6vDhijsnL8aAQHUTBGim38ap5NvN9GHbTnBDCEXbT/09Y87L+n0qpmjXDPG+fhuI0oj+aenBVAgcKOeFaILoEO19sP4fg8aGASCUP9oNFZkZU/uX8W+o+1SJEb70qyv41fU1fDfQQQYq6LRdXM7tXcFBujjLZhXLB+lvwgSsJxjeu3Qp2kdsUJOV47hVNUoIHRP3wPqpkCXjqoSvaBK0ybfhFCb9cZlT4aIfpbtCNySndUJvMiMgpeuB/ncdgfVaRDHJkKtFh3Kz2m0av4/mgoMzmPtxE8xdjZBziHRF4WnUj2HqTAS8+hhTG5jadzY02NfdEIsOabct7P5jJx8nogdHUOqptVJezBBx9cyBtB1CNvb37zmwlQkL6BHJSf+ImfCC960YsomoUIyZkzqg2uDeDkscce47/x24MV+96+u6kAC5Jwng3NJqDKg1YZnXzx1FgzCk2+8NqEtEC3cl5av22s3u4mj+rfNRER2zeez9HXStdUernXeJeWUV+Wvoyl8K+TSUzyLhxY8UnJQtcp9anweeS/htDpTMJkKi47i3RNx60w0om72xmHw7GI8Me6FVTv0oNaJAVRDjybYUsK3iF/BQYCnjuNoMqQAVhBxMTui4FSHw2Q79KJzC4dORr5AoLPZo1mBKrTiXD2TQRgeKUXNs6PkkiIBy00/L0x7yrC50CAkRpb8Io5RCl48Itcft4qSb5KzC+2AkixPqS0sureVf2oPqsD5qWxm/TF7ne5d+XPnTOh+PUCEFe6hYIVawArCyfCGFaPsSS05yi/6nOkPEVvrxokWdVtM1IM3JiXmYdVo5n8fo00MCLi9o/UGy/Prc1oYBGsGJACzRGXB38BQH4E/e6SnSS4fRcNFAMKej4ALIIr5xGPamBjGNMC4McX+2HjvGRxb+6dhGOjlA2QOQ0Kjhr2WhiW14rTDJppkrr2j9El58y1PBrcBxqFzF0QcNC7+5i7Dt+1RUDBnAqq+kluBdgsk+1ZjD4xgtJHzRA5jxSXFOMYuUJWM4Rd0iiD1TMR9aoq8mWgMTpaTGraFeg0xUPeajPy0X+AHB+px3H1OUaaH6JTmtcHYx73+sL7izOH6l1HUscFimJQL7NICCNKiDgBvA0bYXTXhFEcnI/vdUOFBu4UoQaAjT4UysbzMNxTgYKuqJFJlASgRihj3M9wMi0ZTZLXZxrr6WhuC8QFBIg7UQIvZY/ngNvUq67ZchyD0TGVOWFiPFHgJXf6eUO7xhkYwaIO+sRG0C9jHamMAeHnb74mLqk9Rjt8lND3w8AP/9b6Wzanp3uk++k1gaVg6xvPbxLEdoxk/qscqXIeie4Yfbe6DpfPg2Gp5SH8PUuULwtOzBux0el2HQCLrafveMc7wu7ubvy819Okuay913u9F8EJirz/2I/9GJPmka/yTDfkwaDkyXu8x3usLXe8rJ36CB/+4R8enhVNX3x4w8VTXHm9GTLPoxWOB5+AEZd0WnOa2KKR6IEJJiKjdjhwghZfet2FnuXrcN1JbsgaR6yLxsiXfrVf9K4noCajl60b7uVx4oQt+270xmE6m4ZDvXc0LlC0bCwgBluhhkm7Ow2jpzbE++i7F40lvRdWO4IH06J52ldTTllIVLRDOVI5+ir5Jun9YuK5hurN8LcIRcxlgW5NbxpmnZYYUncOQziWV3g8afEHie+5epdRvSawmLTldDG/D/9tl+oWIv7tBudCdEUBl7+uHKzkVCl/bHoBV6iSGRhgPkzN+KhAVAVazLtX2tb6svR1KIH2wjuSb1eKECUKYi6KRH42xpkBDB8Zi/3X/jJJuDKmbZtEHSoUVMBUBtfXFWHkxHLUYaA6GV+r+G4Jz3Ie64bLoYl9qH5bhXBIfotB7fph1+QnMDOk2Sn7rbQyREZckj//9knXmozN4q+OR795/igcX9qUXDXm/IjhbmBEPPLKiwdwA/CBYwKndWDFqGnVNTZC40o7zM/NKJ1uUVW03v1HYfDolsj9UnpaDoLoD1hd40c2Nf9EE9PtftjzdlQ/o0zFJHeb4hrpfpaEbjkqBIlUODQ5dT2eSfwq2BMBA43clKZvRx2ziAXHUH8WRrguAtMmb+3JwxOJUo0bYXIGSS4qgIAIHgCjPU+01jx0rrQIDghKWoigyLMl6DnTIABCm6jq2BCgBgILJ1po0+rqKC0upzsKMG1q/ok+V73fAuwUqMfIjAoIAOBsAFgqHRMCDjheV0RR8KwtmsH1JGNMcF7K1tF4P82RwudcKTiSSeGcSaX5ecE/h2tHREJzYTw91uYsvjsKqvyB7Lu2c5LFfmXnivs7wEOKsH2fOaUSHOFLKGT3AX9PmQNcRU6Meoz5cNrAml3V6lq8/qunAN+sbXd3NwEsdQ1RlOc///n891/7a38t/PZv/3b49//+34d/8A/+AUHE5cuXkyjL448/Hu655x7+G79/67d+Kzkevrfv1mnHx8fhC77gC5iwj/Znf/Zn4XnPex4/u//++8O/+Bf/IlxNu6qyO7jY17zmNeFzPudz+PPa176WSO5WajQe3YtvxqS1hAqSqRjZZzGS4t7g6G33Dg/nDS41P9lEx6c7TvHzNV7knN9a/G4FZvA819Ixqj/Sf+e5OXIRlWSicWyrYxeiMRnosagYfq4cbISDwz7zQJgP0tUEQMsPasxZIR7UsQA6Dr47ajHJOdaxwKERycBnagwYnz/mGqBf+I4eIVUqyu4RwEhbf6pq7w5oqjJXBAuqoCWLwKL6ynxnIgvpYSdG5gBUNnojXk+97r5cd/6TyBjHyvSVipf/3Fer5yMrRC/8eZZRstLxs/wd8Opgnppm9wgAZplohdE1isCh4KwrOe9q36sY4dDxUNjOgFyioMd9pdYTjQLUKFHvb96BvBJ8UqhQIxs0wPOVPYsOkJPvitVXN0iOaZEB7ZqAIC2u54GQByaSl1IVLqz6qL9h1A6N0lVFYHwiP5vlyagnPf6bBQer2il83dWDbNECywXBNieXtXy5nysQRYWRaka3RpdiJAJGqpOKpkFr98nVufGqgJTRvdildDqit1HoAw6T+w5D7+GD0H7uYWjfcxL6Dxzy3aFDgUnomhTOqvVy39FAf2Leit5vy1fBb6pZIUpkbkbmzqVD0aJtsXiid7IYVQfHBgCN1dwF8AgQsmhYNe4sQmcn8AU1WV+kNwuTnVlVsBP3U//NmlZalFeoZHKO7oU2gRwT2rUA6nhvxsiMPXdQzIZnBMAgytJ/UurPWM5MLJpq6l96PZYLY2NQxp5GDvlhWvyT+xkA0jyWpGE7gBXQyzrT0O1OopJiR/MQLVmdZ/CgPM+58+t+HKOp4mU+5y60jF1gEQrLXUn2cOpk8Zi6RtpcbnN9nJ+zfkWnq6mZma1jtGW/rzqh0jWscrTadjMng4/jt9vTCFbcZSaOYOtvcvNu8HZdFML051rabDZjvgvAS6fTCb/8y78cv3vLW95CGWNQyNDwG5SyJ554Im7zi7/4iwRKoJWt0171qleFP/iDPwi/+qu/Gvr9aj5G7sx/+S//5ZmLsEAmDQk4Gxsb4YM+6IP42b/9t/+WSgRQF/iAD/iAcCs08VakNBcLocYKz9nkYC9k7mXODTX/8pqXhNuoe6gcqaj+mRs9p313c5smp88sJL5piDrn6hePvQIoVaHdDMxk1xwjWJmBaYU5zTNtcocWWrbJ2wAUc1k2huFk0M3yMeR8WHzG8JTtdyJAwfWjgj2jWzCqkOiHBa2hKyHODWNFE/fxPfNZCkmES++FLhYWFSneK1dbRSJ+gcn+UDxDX5uWL6PX3euOw5WntsPO2WN+bmOYuS7JvUr7h+9bhWeXAo70uzolm1U5J4tRiEWgW3f/LN8lb3kEpnze2POF8/h3Kadklvofj7QGVbIE5qvcq4bULEDuSiz4WHnX6c1EcrEZ+k69y/P2rWDkQl8xfjRfha+OU73iXGPgJBqbVRE+UpSUfs98FpeAbAVMjQqW5NDYcGaUCKfSec2mUhrJaXSE+9OoVs+/FbvU+yBRoEodjIeBZx6GPAxfJ44R80z0nm+ePQ5HFzeF3gMDl3U0FODBP8HikboT5XHl2iOYsloqLvIhym1qUF3ohumdIwJPOBTgJPFeZRizGJ/jt2+HjefuR7GCSJ9DEUQdC1EeXZXP6PU3hbJIY5pX+TyqPsZrUwCJ6+P98MUOLQKB/fGsMac5mjPnfF/QU2mFPsKSABfcu/40yr9zH3X2IJoFJbVY1A/bKC2X43kAWiuKocr+dl+7l5simczInMo8A6Agh2WjKuqI501gbcuGyx1KFPJwGf1ZlLq2yFOkJgJgKmWOUQKscnYcvVcEtboW8LnMmqo42VxYz42JUQ3shdcxfTdtva1ZjxecQbkvQudZCrrUOVJK823hXOUOuv15k5Qdp/L1FrEvzaP++J4SJdHuyrFnDuGKXmxRaa0H5sdeY06gOKXghRyzFIm6lXNY1gULqLmCRPqDgwMqggE4/PzP/3zY29sLL3/5y8MrX/lKFm0ECEHUAyAFCmFoqLMIYPLpn/7p4Zu+6ZuYt/LlX/7l4fM+7/NqKWh5++///b8TmOCYPtcdNWH+/M//PDxjgAUazki4/97v/d7ISZtMJoy0vOIVrwivf/3rw63QaqX8sgklvnRxv8VJhp87eoyPSpTOYQud93TYsZZFMfwx6vpR6lc+eRSbAy0Lif6xL6Ud1zRcCzSwnHZnAMYADxVDNJnPQEr+3PD7+KQnRoMpXWkIHRQqU+OamCDCqBlaiGBMkOTeCO2tcZgO22EO7jOOO2pKF3dF2Yv3g2BFIyAWiXATc10Oh0RWfC2VdAz4RcDsQnrC57PQ3ka/WqG/IfKqvBY9z+65oyQXhnQzy73Kzq+HrH2Wy4ok+uR9Utdiovz1W0SWgYPrUUF4WdQn2c79+7RXVyvjDIMJhiHAih/naiTSaMtUjKxwIxujA5Usq9GG4qHU+DbPcwQGGkWocloaVHwCRYnnVPnfhlJkmKTcrooUWrV29kdSRKJBbHksBrZ4zqmjjxkwyPJZmFuhxft4TzzFhwBC+ow6J8jvQDK75HNQrYERFNCOCDRgBKvBYxG4ZnfK43pwh5yM6cZMq8hXgAgqUQZm2DfNYyA1y3JC7F5i/rlzxOjYDMe8c1C9AzqmzPCyZ7l1n1RchDNl8DgKmxgCU8Uv3Zd5Mh0rzqlrjYFVA68GIk2kwaZTo4Xx/uv5Y0V2OFlcjsOOVQIV4QEfArD7tUAzxNdQFLMIFaMtGjWC7LO27sUWI0PTLYC4eeg92SLgGN4LxFJF8qh6uAmpdgFplreCHBgojplgQSzeCTpddq2xxeiSUt80LyXJ0VK6olHEWDDS7qUl4VtOo41lVbaqi6Amxn1prfb/rmNTZNv4tbYaV9rNlhjwfk2ua7aGsK/Zucxp6gHYOlOrOXV9yYC8Wb9srciv086Jx9qOMs/yHa6N382a0bkrn88IlhBxuTUknq5ve+KJJ8JnfMZnUMUXAOV93/d9CVY+6qM+it+DEdVsNsPLXvaypHCkr7cIFWAUjgSQ2draYg7MV3/1V6/dhyeffDKcP39+4XOolXkA84xEWDxY4UHa7fClX/ql4QM/8APDrdIWlL+Sz+snIt98HoFEBKq/vWcAL6SEUOWlxt95DMP3I3/5T3ddi9Eefx11AKbE3/dRFzt2MnFnlcHrtlsWUSlNxDZ5MfqQR6kisNHf6oWCV2g8blXPIDTCZNJiKHpnYxBmdzbC6FKfnkp4vBG5mM1bYXqM8tIzRjPosZy3WA+jMWiFsFFVmUdfYvFP7UfLSO9Zs9yUXEbY3xdboJIk/PhMNHpkXiYXZgdQOjruhc2NUTg66oednZMqib2VegblnPEKin31c4unj8W/dQSZ+IR9VjLSS8VNS56jZd660valftn9SI97eu+VNzzXagVHR/4OWL6KJatKp50hqsa78ex9dAUrdEwmNttfjXn5UKIOIt+rBq5+zs3N+2wV5M3e7aX5LZbXQgBjCfN2KKXsxGP7YWyGvXm79TOjjSXVrjPLyVPc4jVHkCaAh/U/0FcYN1iCzAhH3zc0wjlphMFhN2zsDGNC8ebOMBxBsOIYCE+vlTVMjKakRvOGo4nh8GrIGvAzGWV232h0T3TlWJyT4NDQYrPOSTB9AgVW0qECR4KBFxsXx49th97544V51XvQh2/fIVBhcj5rzlQUKbuXVAlDo4CDzhMTZ5TbmMS8pWCOkWLMa6DIQnY7y+FJwLTm8ZBKhqKmdj69LyYJPzoLBKigKzQi/StSFDennEsJIhUMI8rC59wXyhyrzqM7W/PQPtQioJB0pvqZFPONBAUcQ8EJIz6cY6uio3yWGoVCbpUpPrJuizV8bzLipIdVcsKTk04IG6MkD9FySf3zkueZrXG546MQ9fDzhlcdgxoY5nZEF7CxUJ0rBkg+N3rbwz/ChqNWGRDw/a6be/020YZx6yzXVyQbZddn67Nta7XCbO1bnKPt2qtcFnOsJf2I/Qk3dHt3RFi+//u/f+n3oGh9+7d/O3/q2sMPPxx+9md/NlxtAxb4mZ/5GUZv0AykfN/3fV+knj0jgAUhJPDdoN3sG9QLdna0WtYt0HI+vJdldelmhf0yWdrM+5Ab4Dl9Rrj4s9TjkXkoSoZXXRSI/y5e3+JBzCjO95tnMox+gzwpfzUlrLrmPCJSup51vPVMhMzobMmioZ4g8I3tvnreLe45v9sbhslxJ8whgQzOslI7AERmOhkTrEyaoXWEpFkQrVtSvwVgZUkSYAxxZ1xc70GTSVyMbyZTmndPFyxbJLBGwfu0eccwGZdYDNC2NvH5PGxtabls16xgqV27lyiuayUwkBwz+ywHLctavrhf7eTuQUsJqNQtbKvOl0Qt1+xLPU0s+zsWehTDyZK94+7G59HnGoGKRh5MotcMRDO+zOCnMpKpfLlq9FZVPrkoAxRqc8Cwo1KVVTIHeDEg5QodGn3Mjm39co7gNK/FdCz8vVCgYselbaP0H16+gRZTd6L6lDO8DfDASAbYgLGpdBWCeHiB7V3SKun0tPO4SlmZ+9wgU03TuUOLDwpwSZW57N7xGs+KRLWAFLu/jTB7UmgUpPYtGY/4bOteATDLlBG7Dx5SiYz1bDTKQnlfjTKQDmZKcSw+qepqph5mxTJhPFpBT6Mj4ztETuwhYR5yhRWlqG71255B2Jwy10/GVTUWrVEMAXK1KMiIyI9SyRilUaDSPpHICQs7WvRKa9gABHcOGmGCKAycShBRcJE4CX+LEAUjVVir8JyVchYFA7TDphLHS1RVsDhAWTcI6gmo1wX6k9Remzy5ERp7qdJf8nwWPigDl+p5akTafebtA0TgzLinnDAl6Kti1ryvClpysGItFoKMx5f1DvtN8D5btCYm7quiodX10nUFQMkn9efN1q+EKpevMW4MC3BZdDYZIPLiKtczon6zq4TdLO3rv/7rSUtDAUowsJDwj3+/8Y1vvCa1slMn3UNlABw48NMAUvCDwjSghH3Kp3xKuFWaJJalRZrqjNHFpPBqv5m+yPBAWOJ19DgUzul/28tbqR2VF7oFHv5Ccb31k/BXb6RGRS4o4NbouGlMdM7vz2rPiF13vq/tv3C9LNaZRSxcH4ajTswDyQ3kK8d91mfp9SaSrwJaWAdeR6lpQPUmXUGNRkNjEMfbmGi168VCjdYswRAtV8XioqULDiZxC3VjvKCYI4QB2Lcufsb8QXI9vs8nc9wXydWp7gsNKBfdw/ltDFZV7dNxk7dlQGyZSsvqZ1x+lqsM//xe+vvrm09WzKtDX4+20L/aCE66j9EIuT3ksuHJtnoSaFRxSqWF448DKFUFe60xYvfSjE0DK0q5sT564435Dt7rrt5veO5Bl6FRSlAlBf0sv4BSsKjgDiUsi1AomIkV1dXojNeulC+CEUuo1yiOGZ5GJzOFLe6n+TIW+YlAzKJQNLp1DlSaKCILxxc3kuewe/YoNHfGYqRT6U+/cPfaEuqjx1/zQEiHcyIBMa/EnguOd1EteHsQeKevdBO55KNHUap9dSvNkX4cNc8PGJ2Y7kzD/NwoTM5MWKV+ujWNQglsKIQIJ4vmBkVKm103VSihEdwM88tdqeKOKMvWhNEnjqX7BrE4owgAVKpvAlDnUuTUHV/q27iaVQAkR3ojCBI1d0j7BcADwYGqYKNEWihCoNLPECogWN2chfaVlvQJ+6qgAgGKgjKjJ0ZqGPqAcY53rw+1xZlEWbZMuk6cUYxWYhx25qHVm4RubxI63UmYDDocA9u74gSK0QujPK2iYxUpwRX1u7R3PidaZF2EZSxPKgUl88yrj7UEzi2sF/ZjzlR87tcQ66cVszanHrbxSfbWSkCD4MoJy5S2TyI02friIzJ5Ta+67W63G6996Id+KJPuAVZQhBL57aCIoSglEv+fsQjLN3/zNzO8A44cOoMG1QHw3b7hG74h3CotGngFaddqm0X6iY8aJJSwJTKt5vXIJ4A6Xmpeh8JPd3WgYx1P8jJebSnkvdivir+78HlNIvPyJOncQ1V9F6V+Y7XptB5NDBm745lKFyhTSDrlWqYULoSzyQdm0cgZQ/+ImtALbh5uk0VlYmaDeS4NRFnQB3CvT2HUJ4udJcZnRR+rkHoVQapr5nmDwECef1K6r3mC/VpgtWbbq42KLOtfefv68+Seuro6LcvOu6wvnpJX7lz9fnn/GQXAv0/arO1DI93JBtMYVDoOEqtjLoGqYlHtymqIWNV7dk7+ljyItI5LLOxoClvcqIoYkA7VLkj5jivQIjSdeWjua80Q1NowOVy1uiJdzDC+fcdCj6lEr+3jE9w92MGQRqkkKyBIhSwYzDCMCVoc0AL1C04GCBigwWi3ehzOUAJF8srFraq/9niUGmYGLxXATCqdoEmP5UBhNP71GilMgHwkA9Q4hul0KJjrXG6F4+kOVcTWSRiuo9S24flHRPhCP4RLXWG57U0kj8eALSK/GsmIURUTWwBditcNQx9zqUQUwiE6OQvhRNAKx99jeAhVVXqhWDXCZEMMfyTRsx23JDdmcxpmmyE0r8iDxvNkgcwR5I4nMkbxDAEgLMKCffWZTHbmoXehEcYoQMm8E71uqrAJCCK1DOdCzg1ABvalQIpE2fgEbJxoHziuKEaAgdWUSJy9Pz2RLI5FRvU9nbUalK2eO9qbMSiE9bD4ntvQTv52NoQHMAkNOG7cWGveM6AkoGLGKAhVIu17N4bs3KARe/vBU17r1mIBIos2BiSR7VgplasCTEZbzs9TUptM2Svpufz6R+Ci/bnRc1iuh8KXHedmaePxOHzu535u+Nf/+l8zfeR6tlNHWKDvjPDOpUuXWJgGPxcvXmQiz7oKAjdDW8cIS+pWZB6BugFW8rTDkC5VGLcIQ+m83jPiI0HLJp1l0ZYSsCqdl9ecTIYrojcuIpNHZ+qiQBYxKfWdf/vIgBlhjqubFms0bXed4GbN0OtJwnzp+vfOHYXu7kiMn5mCEniwcI/pMVQqw7AZmsciZTobtkJ30xUBXNFyI9aDudyLFT3ybp/9wz5/EJGJXirHd7ZJUjxj83Ay1OrpPkyPgmH6s/DIljyfdcZJfX2U1QA1Hweltg4wzCNydZHJ00Yfa8d+FmHMn1kOVrjfNPPW8w9d1C1JWgGGef5NuSiqMBjHykcy2lk0xYAba7fIOSJAUKPOkutRsRzbWxTD589gH9DEUAjQKFHMdXEyzMgzsOuxfeiZd/R2AzhM5u+mn1sUxjzsOAY96wpWRMpXnQbot9YfsWdAY1VlyHPZdAMIO2dOQoBn3SR9rbq7E6UwyWNJ0E9zgSqanVLmdDdEMmKNpiziJc9zzsKR3UvNMPzLnTD486qewjK672KEWT3ekNm9w2TcAuvCNFGcFNERFj3UuQrXoKphSYFI7dwMERUY/lD2QvQB9w774kcjKYhwgLJF5TIAMcwvg0ZoHbYEkFB5TMc0QJIm3ssYcNEsazE/S54h9se9YSQG1K8t2YzUP+w+BEiZcfzhN8f4xpTXyoiIXZfd7KxxnKAPACl4TgAoGhnjuGNETfJ4oPQGh1irM5PoBZWuwLVFXmPZsbdqTvRSxda85K8+QjnWMsdIHAMVtcuk/BkxUaecRNGr9aCiI1dCKb4fJlXsf+Q89Wu02SAlOnrpHlnZh9K9yO2oUtR8mf1yozZfJPraft7dV7J+QwDjv/23//a0HPuqS09ubm4y1HOrN4uy+FaqLxFf5EKSlY8wNAteA+99yM9T16fokSjw9Ze1lQnGNdvle+Wn8YZs0ahNFslSx1wfSuGRQh/99t5LZRxcDwSkTzJRV5Soququn4Q3+qMwaHRCa2MchicdkZ3FOeDBw3bwzm1PmdBJGtqm+IXqInHrNJ+gWGqXLm1xUUUiMaSYh8NOODzqi1Ia3se+JIKWJvntjWERmFjLv8u9XHnL79nC8WruQUl62KuM2XerZJHzc63L78291aUFU/q06OFc1p/FSKCp3aRqer5ys2yox9dICA0nGEug51hhv1hA0lUsTyhemhhs6kcaneHhLSLjzuGpTxFQqHwwE8w7Lonf5aTQEFUPOyIe4+156Gh+mNUFMZoQaV4+8d6kgxGhcfK0SR6I3RLNUaGRrHQsnkMLRVptEYkS6T4aPYDjgH0GBQrG9rwZjg96pPGYNxpjm5QXzA9TScDn47P7aXkRStGz8zDyRKM4LXQbhQ1YU0XyNLxIQaTLmdYAggLnBCxR4ON39kLzA6+spCkuvh/qpUbi/b0iYT55ZDPMn+oJMInWb0PoT2bQa7SL58N814XxXxUPRNI9k+AZkZDPjDIIQGH1cypFLX1GZrz29N6j2OI+wmKNMN2ZhMZJi4UhKQJAgKx0qPY8tC+3Y5SNuUIoJmmV5/Wz0dlZBDVheyKqaIyAq0NJcyJMptsikkbx5TkVTHKetUKbfQxU9fADAGqdHDQz/CcAms05nVn2rk+mrXoRD52XzBHpt8sT3cWppGpYuq2J8NiY8HSousK99h1ASyw8rNvKs12Ug/eREe+MWscpldDkTU0v3ptKpa8kLFOKPtt3eS6O75PfZ50+3m7vvvZJn/RJlDaGqvC7FbBAlgzULxSegXwaCtL49ta3vjXcyq1k5OTer2YD4dlF72q+v/+7TDmrXspSZMb+tgnN8hjydr3Red3h6oy6ojGoC2ftCVztCu95SjZbEDAwGdNFOl0VurYQ99SpkIiBKcovUq8EE+3ly3DxhtDqabTF6lZo0THkH8jCW52nklItT8rFy10S8sd3ly5ukR++sSXeVOMtM+8FYGreCAeTPmkiG71xLRWxrmFhM9Bi/14XtFzrouHzmpYBi9KztubfiaKS2XVY2OoAvAHkurGfGAAYf1aoDipMFg2h9Oo8pW4pjQZGFzzKODwFggBMfG6AFj2kR31eKCaohrEBIAMnRr/hZWkOCKRfocwkoEP6AQ+30J+qgh5SzLEhkrMnQukydTEcD6AEUrSWKC8J3lo3BXK0RpOy39pVgBIBaBUIErpXln9h0VfWQFLgMmyGBoAbjGUTM8A7O26Fw/1+2Nk7SZ8f7pNRxgzkRbqcFBKUQpYaBVBAI7cgczDxvlf5F1WGuh7TpjxL5Dd5Z6iZ3T0L8yv9sLVnuRHLk/L9b/OiH1/ekMgS7idrQ5nFrYUyXfSP9wgf96ZhxoKXzRD2pWDpPB9DKqhgIgS4nxQesPHl66AYRQ9/oy8H7dC6+0RoU4/KPIqEeUZWtLYUt9MolT0vglOjIGKMbc4IXgBWGGFE5OtyJzTuGEYhFFsveN8UpDOfRo/Z6Clo0agbchItimJOIsnbSB2R5gDq98Zh3K1MJQ9WTKHSN+Qcync4l0aaMiVLjveMJmZV5+lXMDyoSe82H/v1Ph5Hx5TRwqyljA8AiOozA0ZV1MIPZgMWtm95TsvzSuyabL7LHYL5ce1cESy77bwozs0UUcnb9Vgj7Tg3U3vP93xPyiC/4Q1vYM4KpJF9+8Iv/MJnBrAguR5Z/igqc++9916TpvKN3Oq8r3Wf5UDCwqViLKUvbV0IteTZte/zHAa//Sqv/jI1rrxVeRVelSyTFy68PN5AtzPk5zKjTb5c1uGsT4uMm6hclp/fkhH9tQhlrpwTZItStVhJ4ju27W+OwslRL2xsjsJo1JaFypJ8zROrXirIqG7uDuLxfCStruWGNJ5x/ixxjHN3HEaPleXa+EXxysFGjLQMR22CliqiVxPtCI0wGreZ2G9/++/WaeuComsBDGmErHHNimFPx8KQRFFiAVNb7fV9yN9tKg8541e99ADFDa16jkGEAqYtKCyBNqNRDhiSBDCqqhXrReCZa4V2M9pp6COR2mhSFvlQUBSTs1VljDhGCzvq66D0Jyv8KEpMABXMZ9FkbBqTmhAvVcNlGwIXBTOkeKniFo9kdCqrLq/2J4GNKlFFsGJ9NuCCD/Bew4uNyIqWD7GolNxPBRuHndA4c5waiNh+Y0LgiDyiqsJiVaRRgJpFtKok8/g5D1QaEA4I2SPWfCMpXBjEgNb7a2ClGk/Lx5vRPfnYmvOweeaExufgiU3NVZEIQnd7FIaXe/rs5Zyo2I57hRpO7CCiQqBWuforuB8RRCjQijlRKjxgUSWL1HXODcL4Yp/79u89ikA+9pl0Rve3iSxYvRhNoIeaGcd7LKBZ0RN5XqrAyTNt7Y0Y/ZaoitxMHlfnQuYwKb143g2hhWvX+4sIG2m0mvhua14+d1jV9t0zx8WcoyrCIE4v2wbAwRLeq/uAPMU06kEHkVs7zZnm7x3yRzwQMWBiNkGMoNjcl611BhIquX2Rty/ZMFVUZrkNUQeq7Rg5tTlnD3glyXyOXzeafTPQw9QvdF2OczM1SCufOXMmvOlNb+KPb8AMzxhg+Z//839SX/lv/s2/GZ7J9upXvzr8+I//ePjTP/3TsLGxEf7G3/gb4Ru/8RvDe73Xe8VtBoNB+JIv+RKqlvmCOHffffdVn7fOU76MEmMtT6K35lU0PChYRbVZ9XLW1Z+wc1V9X/y71LwnpK5vdSAqOY69cBlYSe5t9lldq4uyNDKw4ifpyouU97uqZWLNAIdV8QVN4OS4y+gFudSoWQDvuD03L2GqrS7CYZ/Z88F9BxDiogPvmy52Z3aF4pHv2zIKRzap7+2csL8AIDj2cNyOdAZxvhUW2jAP/c54IbpyLa3uXbleUY51zoV2NeeqAyrLAMx8yTtg/aNX1VEzuO0JKDcw1FTRSl3V3EUjKEhQhjdbitupx9sMBnhc1RvOj4weRcUnKyBo0RBQxlTKd+4S9kHTGjXj8WOxPaOJwZ62PBcYfjTq1VAFeGH+CQxM3d8UwlRlCQZn56CpSfJS+A9J/RbBIcVLC/t5jwSlb9WwtWJ/kXKkYIVAjxwsJI+rB1v7SuMUYMnUp/ACdGbh8HCDCffxOcFg7TTC7HJlHCdFa0FRsrQ0pbrxn77ivXaDM4lji8WIhAu2gFIn35tCmQqUrFmp28/XubITDFoGQ5CfoWNAKFIq1IDP8YwQadD6VWwAKaBwsTaN9gv0MRjHGvmI91HruDACopQutO75kzhv9e46jjMI5h+rJyaqdiHMkDekN4SgAsnslMYWsBLvnRZzJCCNL5mOWR07AGHTUUsouRh7MMBBr9qcqCCL7DYZtkOT78801smqbl51D+1dxRzojesYgSFISL3lRnfCvMyIQ6MZJYD9c6sM8mkYxdChf7Z1xaQd9aopkvy+LcyzAEDZNeXrYEpbbS449KINkVDPqjoqOdOjtKaVr0/7uNAPfz1l1kpOh8yv73a78drb3va2p+W4p066P3v2bDh37lx4phuiOp/3eZ8XfvM3fzP84i/+IpUIPvqjP5oUNWvgy/3UT/1U+NEf/VFu/8gjj4RP/uRPvqrzWSJbKWHXG8AlL4NPGCu9YPkxc4On7J2ofja746Uvq4Vp6+RoF6+n+im16vsyiEon3BUTiU+6N6epJuPVXYtP0rN98q6Wikv5JkZk2u/8+uxzKeooXi7IG7e7U6qvdDdUErU/reoV7HcinxqtLilzMdokYCWeVxeN9ZSDFhPn6Wntj0RWUguMHQ+6yeJT9IhlVLC6RPy6SE3+/JcBiNPk9zxdgdvTHrduHNdeSUGCOzolrLI3Co6qd5fbWx6F7a85AmYAJxQvD7oblZEak+MBgkj7USUm/I3dYCBaMj6ehSo7CW53ymBqrCcSxQA1Fs2hlLB2BQysvSkjLZLUrPkeSi9ClKJ9rFEWjaYweR5AhwnzYvzib+5v/TMKltUFYZK9RX4A7vU+wIC01x7HMzqdJuTjXvC6aaRnIinMNWmEOaq8Z/c20qKi6IG7N1aDJh8MBCWm7KbbaM6LC7ZV9VFwzM4sbGrdlVKrk77P5WF5+e1p2L1T1sL+2UHo7yHaK7krVArTKARrTOE4iLptTEITORsb0+paNepB+1TzR0x8AIU5TfjB6tVYVMIk+ym3bgqOeht2H7oinVc6moBaVePSCBbGoxWlhBoXJJutPorJR8dIG/sCSq8eR+91qy+gxIo8+jULDic8c36nP7bu+PkrF7rhnOzZAy4nxc91lndC2WBds2wuro61OF82a4z38t/pfnX1sWxc2JpXoklbwr4dM89lKUkO29+lpPn0Ghc+TvqWtwr8rP78ZiP0VGPm2n9ut6uIsHzN13xN+Iqv+Irwgz/4g0y8f6baz/3czyV//8AP/AB1nRFu+rAP+7Bw5coVhqF++Id/OHzkR34kt3nd614XXvjCFxLkfPAHf3DxuIjE4Mfa/v5+cbu6l3OZIVaSoyxzk0+XQHYybi81EEttHS93OhHX93VZExpSdZxkMvSewcTYFQ6/CRbYVr7AYl1Up1pwqn3ME0YvUkbPWsyPqI6DBkMf1C8fVeHiA843PFJW0b2rHi94B6EW1pqF44N+2FKd/nXul0kzevGFHS32mOeRrMoraamLGXVb0BBtmTdnYf9wg3kund4k7G4g+Xh5TlPdOa4XTexakuRP23Ju9bLjnuYdnK/5hTdEaAiql5JGPUALja8mJVMJVBDF0ChFkiBtVeWtSCKOo8Y9C+O5BGh6zc1wV6ACI7WBbRAZaYjxGYOaJuFKy6aKCsjOdh0h0tKqG1YlZfP+IoIDr76j+Iz3ZmGyDfA1C/0n8I7YdSgFzAphVirLiTJa7p2IESK7j6SEGapTChDvN+6jKnZpwbv8We9tnoQr840wQ1I1JHUpxaxOpur2VVQwSwqvUnmS5x2LdcYdXd9VNYzbqaQvohEydy0Oo2XOG4u0pg4XM7ZnYefcccyfpPFIwCfhIUo+M/IChxqS1cXg5xhhHpR2XSNuBlr4GZ4pQIUCCsonq5MlT6yGsweRhLmbw3fuPQj7FyQXj33I/EuiAifV5XmPdEyjQCTHuEl460AQule1P+heouhVvWfVuiOf51GB3Jvv8yZyJ5f/vDL2Xf8tB03zYermubq5p85Yt2b5qd4BGsv7ZA4jD9TyiEbqHL26OiYl2pZnd5TkifN8mrzlpR48YMpzc28qAGPOjOtxnJuoffZnf/bS7//Df/gPzwxgec1rXhP+/M//nDSr5zznOZQw8+13f/d3wzPRAFDQLNoD4IKoy0te8pK4zQte8ILw0EMPsVhNHWAB1eyrvuqrVhs8WeVu/1Llk1z+ki2rtF2nilRLr9Lte+1pOBp2F6qmP13NJqE8cbCUmFcEdyuOn0yk+b41oWA/ceYy0ZKHIvsaaPFvfczxyJ6hRVfgqWu3p1TjmsxaNPiZrInEfC38R+8t+PkHbSauwit4pAm+9R6oKguX9xQ0BHgqUUfCRU58WycJ3m+La95Q4BL6o2T8Ycxs9Ubx3/jO/j7tuepa3ditU7S73otOiRrpF8RV9V9KVD77PN/Vj0HG//INbAzQirDP5BdyL/gxjDh4wS0J3PIviGPmYao5IB4gkPNvRvFEf5tH3Ix5GKKQ5cYUAVCt0RY21rColLAaGYAgAIAnG7kQoE0ZC5JWqEoXm0HO7VWRzEsMI+qhfaNM8VZW8t7ACW9GdX+qCEWFZpCHQ2M0f2j2rNh3RRNquFagT4CNd15gjO9tnYT9k36Ynx2F+aN9KlwJQET9DakDQ2qe5p3E3BsDKO5Zxns/t38bMvVUPs0D0Yrlq8BKPn5zb3hudIuAiPD5ooxtbxqmkC3WXA2jhNE5hP8hJ0UjD8xjwrY8ocgis/aIRpwa0ybnOLv2zfvK0SH0y0CMVDRXUGMJ8Zbgj9wajcpZIV7u7wA7xrlEesShJSee8n2Z9wLl5+lYwpBuS1Sca29zHsag7mLsTZqh1Z64YospUCmpfvo5QCrMSxSrjv6UG//LnDJ1wgql/MX686XroP+cwxS3luB2luYnetoj+pAVD5Zd52GquTU+Op6vuXKMMjApXUu+/Trsj7zl+5BiebvdcA1lT3yDbf5Hf/RH4fLlyzGg8IwAFsiVvbsblMle8YpXMI/mxS9+MT977LHHWCMGiT6+AVjhu7r2qle9Krzyla9MIiwPPvhgWY0rLH95U7qO6+8KA/A0yl72+YWL2/T6I6dh3bae3OxyY7POs4JL9MpoVX/L+/kwp1GhTBFlGVBLJryMPoU+Vvrxaf8WQVbqETKQ0G1Nw3TeDNtbQ1KqkMx+x85ReOSd5xhVacILSMqDJHuyX7vjEAat0EKhtHsGDiD5/qc84Zg7g4VOwUq+yHngkgMJJN/32o7Oos34yMn9d4dFlOV41GHxTBoWnWl48sm9cNddV4o0sevR6nKrli1O10PZ7rTJ93UJn8vyW6LBkI1N7zkVkF+pW0VqmEVejPZE+guAhoIQUmSgkOSjLZr/YADD6lggAgJgowiAlCqAFQAhpWdFwONkdyNdyYxE7ZPQvySkgEhJrFLua8bYfbBq4gYw6JHXf2+K9370wFAiPXZuu88GVAhMLHch81p4paok6mI3xf6tBpwBRwVQeF/NqF0ALZuDcCX0w/ieQWg+3mc0KEpAK4UtShPzBPZwMx0FVTiLuWjzRQAbqU2IUKwRWSkpQiXfu/nPr0/08OPxT1thhiKYiA4P2iIpbOfWSvBGmRN5t2p82FihvPCGRlQ0wrZzz2Gcs32dCd+q9bF6z8/eux8uPb7DqCLBNGSr0G+AIpfkz74BN5ky2eaUNa94D7V+CwUT4JRCnzvVvTCD/eQQcnRCfUM9lToDOh8Tpe8XKGIu4rHOnGfJ+CWAU6J/5wnzeWHH5LvYJ821ERgaIOpXut68YHDsb+ZpAdDBOmjXkp9zmWNn3TUkjQotlo+orq1cMmAV2+OGaNeLznWTUcJ+4id+omi3o8D8e7zHezxzgOUrv/Ir19ruP//n/xxe+tKXLsiZXY+GXBagtV//9V+/5mOh2OVpCl7mXNFSu9ak42WKXmYAbe8MVhpapT6vV+CvijYshI3BglKFkXzCtoT13BO0bJKz85ihDU8W1jF/fn/tdVS1/DrrJtn0WP4+QHWlKpbVBb95Y0ipSbSHH34y7A/6Ybc/4GT8F28/L55xgJzNcRiCG+6qAeeeKX6myZgAGzQqQF8btyVxdI3mFwF4+3zC/LpRCkRVkAN13MCYn4fB5X7o7ozCpYPNmMDvz3W92tWM/9XbLerzrwOWSgmdOX1xnXMnzXnS83OkO6qxDHUjk+VFg6EMb7cZjab+pYpgsbgkDOiRUmqaLsfE1Kessj2oYbwBlUPBlMMq49/kdx0IYIRCtwUgN/lkVWuy6EuMhhhQYWSoyruRE2lUQJ0qFvGx76psdUmijsf1jghGmqo8ELuHabTKHqI8BMsHQ0SUBsO0KfLfbpqvnreekjU9qnvDHA3vD/DBEjP4NVpQ9UOjBxrpsa5FgKf3aut8lXfpW8koK3uhy9v4sS6J+ZJ/Nz7pxGsjZRANYwtgZdoI/d1hOLm4EXN3INLAIpIaDQIVSyIrDfbd06GMfjS1cZfNud4IZVSJ0UQX+cIGm1MZF9gH/UNy/gmy9BVwzqyWTHWrEZ1sMmdFx4+LmsT7M2iF+dZiEeLae18ALV6RbZ15pvg53p2oDpaClWX0VAMiSLgfa+VVW0/MgbVq7S81f+xlzeiHC9ek565z2lorgZVa1kEWLcrn4lKOzs3Qno2V7utas9lkcOAjPuIjwpd+6ZeGZyTpft32uZ/7ueHxxx+/7sf9/M///PDTP/3T4Vd+5VfCAw88ED+/5557wmg0YsjJN/QB3522lSg9q3iYyz6vS4Bf3N8m3epn8ftFT0M5KrH8fOv0Z9WCuUqRbJmwgN1jvyD4c5aOkycy1vbbVeqtO1apcTFx0ZbBuB2uHPfD4bAXzvRPRIVr2g4bZ05Cb2cYds4eh153ogaOGISDk244urzBPBhrg1EnnAw6YQRlnCzyY5P+OguP9c9+/BjBMZHfhAhKaTw8/uQuwebBoBc2N4ah05mG/plBGB93wtmd49BuS86LXT/yYACu7O+TYUr/LLXrkSBYT5+8eg9bacysojGuauvsw3OUkmrN+mWehVAMY9OoQ/Tyw+6GEamREippqSptEo2w7mgNC4swCAhxc5fuZwn3sT/uNxOjYSSi8rkmxPuq7hLhqXJJorQyFcOEjkag4t9t2KT4nD/O8cBEbBRBrHJzEgBV/apO7jG+gTEzxphUXRnFaNNxS8Zy5jyCF3lnY0BwM9mdavHLNDISQYkHapZT5GqSWNFM0vdiwU/Xd+h13HW8UhhlmVFXMoYWIrNuzptQvjgwykJg0EpllRERgiQ7x4sVmDRlOggiQPKYUaMQdu4+lGrqGg1PzllIxLZ5gLRX/fe5uw4EkDAPRavII2rNuVOASThssRI9/+2ecWtTaa6qfjYDfW1ZzaneLPQ2qrpUdW3x/i+uv5j7EHG3a6x7bv6H154Z4B6s2Lrn54W6Ir6dJu673GOb9ym20pjFv/P97KcETOoS/f05cxGWUtTEzl/ablmrE3fx967kcFz23e124zekk0wmi8yQp73S/apmSWjX83hf8AVfwFDTr/7qr4bnPve5yfcoToN8GhS0fNnLXsbP3vKWt4S3v/3t4UM+5EOu+rzrovnrhfjXN6yXe5ZP2zy1a9V5kgl2Kd1nsbigRWYMeFWT9qKXJelXTZjYb1M3mdXRLxb3X7w+U2TDtgejXjg86YWt/oggBcphsb/9aZjCKJg0SRsDtxrt6Kgnx9OJmAnwnanjJYtmPb7b7o/WmuyXcZ9xPACN45NeuGO38uTifHfftR9pe7jvh0f9cG73KMw2RHQChptvMPBwjZ1tuRbUd7nadtoo4/VuV3vuuvdrHaPSDBTauVFy21EhM3cRvc9WqZtRCc28gnGvhQYxvlgcUKvF8zOMrQhu5N9WFJH7AyggggNKEPtp0QwDHNW/I1vLZG4V/NAwJ9XJ5arouDZKWMydsePyZPoLoKa6JGmwN01m16hhHhRYzROjnOH/vE6lzcHLy4r1TU0eV4NJK6CDDsT5Z1oZzgdH/bC1OVyYZ5Cjxmu93K/AHDuhYMgU3bQQpgcqlu/D52Q1QQxUedlm5BVkiohJFfMlY60uAmhRAIsy5Nuhfsj+5U3eozi14CvUJFFwN4faIfN3EA2bhzlyq5RWSCEI5IyYx12L6y6jQ+f9lh83Jzf0nHpPZ8g1UcDL+2cKjNiFFepVynuoxVbxDihtb/pUL8z2xlRw9H2C+Amed+UMCvWsgULzuaEcH+1pOD7phlGrql21LEJj9z+KuTjakwcrfu3yBj9ySCLgc04q6dtijmx639Nobx7p8KAnbp8dx4BOzI1yfSuBIO98sJYDnDr1ydMUK77Z2vVS+LpZIkrWfJoFGt7/Rx99lCVRPvMzPzPccIDl6aCBQQHsf/yP/xF2dnZiXsre3h7rsuD3y1/+ct4oJOLv7u4S4ACs1CXcr9vqForr2ZYlIK+jlpT3sQ4A1E2o3rOxLFrjRQXSyXaxlYQKJDS+6BHKebsWil62UC/jHftz+utkv7Jr963O28kaKCGE7Y1huHxli9zwze1hGBz3KH3MxfagI/Sc81aRXr2Z6smWfJJ5mCglzLbB1+Cbh7AaEJSSNf2zAMDCj5fW9tvZWILRUar34tuWAplnui0b61dDB4jKNQVQfRq1sLpuxXcjNwwUsMOoTqgz/kBmCBvnCECFUsdaaBBGsNXWwPfIQbBkek1INlmrGP0wBSVK0IoHW6hYQkGjaaC1OiRKUEUxLF8j9i3KI2t0x6IqugPBEGWH9ToIFhToqIqX5ewIkKjuEShwBBroi0WYTLpWz++jQAR4ZkiqLC5rhii1DufmvdL3rNEEWJF+4h0F+B5f6oWT1ozvceX9bjC3K2yE8CQcDpe6SQ2WGJUgkHPRMQMw7h5WNV30e31umw/tn2q+qfu71PK8NX9s5so1qogKIxl4lkOhfEXQihyovoIvRrs0YozxMg9h765DERypyVMsnh/bu8ihbXfHnQfhwrvOyPPTpH8RMcFvpQcClKN/EDRB5MckgV0EjmMHzDEArI3y3GnzbN7ySNBCMndGm4J6JN7hSoEtLeZY16o1ze5RGpnx5yiJy/hISD5X5U7GfF2zPMl1acNxrcxOlAOaZU610rWscsLlYKjct9VFJW/IxlD0dQAbNxlg+b3f+70FOthdd91F0a5VCmK3BGD5zu/8Tv4G/803SBf/o3/0j/jv1772tbwxiLD4wpHXgozXDc9fa8SjxKtfNcHUJzouX/RKifC+/6uAi5/g60Kztk1knMTfdmwFMG6SXdb3VZ8vA3WkTbiKwnX3pXSt1jdr/fYknD+3T5oY6BFt0MFwjnEzzMHzhsFyjEV2Go2zdnsSxqBd2D3YGoUJcxjEYONnaxaQW9ZKHtq6e2ILw/VKrD9tKwGIfNxfTZC2BDhyicx1jiHnzwHI4vHna4AdAyuJAIKPcGh0JdaUwA/oLgoS6Ann9/6iXLQDx/G2k31mRr4l/ZvhbeeghLJVZlQQgBpDZkSa4dhuSMK2N1abGVgBTciMQ0tTsXoYZszjM6t/olELjvuRFXZxss3xBttg0D7Ta671ZlSAoBow3tNb6Q8j0hLvS39G+lfyDAHu9U/ko42vdEJ70AzTDXe/sgfOjxxVLPomtJYJCxz25mHrOfvh4JEdub2FyPGqWhr+77xZ5KAcBTdvvIh6THG/hjamFNChCK5KHctY0YKOeA4mczwP4Y47D5PcRC9aUupbqZaU9E2M8wsXd1SSGudSIKU3FWAFY5LjAvd3ayLqYBh/I0n8j/WLEDUcCZAYHHXDxvYwqTZv1K2Swya/V+l4kHnR52+gZhbGTas3Jz0M0eY6dkHpnljEZoEaXQMmfJ5IR/ddNVeXWAPLFEr99VofuJ9bl9dpi3mmT1+7KUHLs7D9yq/8ytNy3Kcth+V6N4SUSj8GVtD6/X749m//9nDx4kUWlPzxH//xq8pfWWbcr2vk1nm40XLu8irDrPT9OlSVq3mxl+3j+bklAFHin4r3r3wd0QOz4ph1517cvj5CVZucn/Fu667Pf4f9oS600ZnQU4uCjZvnTqgiZrQcM5KwoGKh6+0NQ4DSDhzng7Z4hvE9qA7jZqVipLzj0ybyXYtkcMkDtnJxrCkyuew9yZOD67jjq1rpHCXAvXBNtWBicds65aNkG/t8YWdn2OZ9Mc+7yshaojwNx3lVbJBAAWMNNEOMJcsLsSRjbMfEaU2S14gKjwmwbPkgFhFhRXBLUNaIgFVANwMT+4GKA6ACdTEtzEfjlcnvqt5kdLCmAys23n1OTHZjvISqFe+L4gJaxb6Sga6AwMIzQ4QJfcQPmh03U2KKil2WwwKlLEgWW8RH6VQYF8hPiPSl3ixMN+eMMLQGFsWqiigmz1if56wjymiT7RmBCgqabzx8wE137jtI3lmfU2HrgK8BsmwO8t9jbs2pS8kzMGOc1LQ5C0QahZBRM6i2weAHGLCEdkY9mmFjR2hze+eOinNLmnRfJab7/BZeV2vGH+QeGsDCc8G4FmfNXPJaWJ8F91DGeBxzSL4nCnSeapzL8oMQPdR/D0/SHDufG1m3Ftf9nc+vyPPb3JSonFFj/Xrgk+HzluYcLn+2pX1LjrN1nC/Sp+rfdS2fA3Pp47rE8XXn63XbsjWn5GS9GZq/f9f6czM1SBfn+eSmwvuMyho/m1rJY7ouwrcJZT2Pbh0oOV1/q+OVDbm6bZaBs3WT+ZdFlqInKpuQSkAl93wuo3nl3qNl56mTZeb3pUVmiaQojASjsLdmTVIDZt0Gf48OuqG1OQndnuS49PfG4eDSJr2GvbuPw+DihnLrycAXD9rWpJgfsg4V0Nppx886nOF18mlQxwKgzbfTLCr5wptTCPPPfKsb0+sqfp3m/fLXBA46i4jWblwBFjGCFwEQjDXUyKBaGPILzKBXjzlSWc3YhrQ2jE6JyOkBYOyB38+Da0RB807MWx0Bhb83lm9iIQWLgBh4IujRqIwat7KdUwPTY5OGBUPbqzBprsnCLbEaGBoZwk3BtfM7gDMYziYFrLkMRTYFjVW9N1QWk5uN4+N4fLe8gIEBF72+GQIzMNSTeiaBeQkYhyjcevGoExqTtlR2R3QJt8OKc2oeEPfDZ+ykVmFH9KI1D9v3HyzIaXvD8bTOrzLVd3H7vOZG3AfXjn7jmqH0BvoVACwOxbGlz1qjG8i/Q0QB+S/mdV8lriIAqvobSeJ5lMLuNYo8ki42aYazZyTP7o679sNTT+wKWN6cVNEz1gtS5w7GCcet0AGTsXnUDrPmPJwcdWpV2OL5C9LvlfNQwSyAlxvIG7uDcAz6b3sai/P6KEjd3LoOfSq/p55KVSdIk//bN79uLYsC2f3w517Wn9rryKJYfh1ed469WrByw+d2OOfVNR/nJmrIM4cIVt4Gg0H4tV/7tRsPsDz88MMLRSVvprbuonKtbX2aSlnZaBkQqePEnubFXxVxWZYfsxAWL3y/jPqQblc6//oTee4Bs3tTWljqEv3RH/NoegAEathWc0a62HhzQEUwFJDEIbvdSbjj/H6sON/dG4bRfje0Nib0+pJ3z7D/lMY/zr3dH4bDQY8AyFR5+p3xVQGZq42urCtrnIOVledzC2hdXom1ZXSGOiDuv7saGuay86zjCMhbpJ8klBox9qWOD4BA5SU3GlWnM4nbwxAncwYBPOsDcz2a9JgzShKtnCra4HV4iUXMSLVoAcY0wJJ5sK3PBmgsoZ6HsONq4EQjKgZWaPT66Ei8IHNKcCsdu3jxBHTgHvA+aFFLFjTU7vBwmswe+xZrheAmKVjSPKGYrG+AFZ58VFBnBEuTryGIcbEbwp2VvLhFXNC/42GXkVIqfSHhXJXA7NJMMc3U3SI1DueAotoKOk2+riyjJuWfLwMrvCWF5GX8jVy1pwa7pKqynxtTAQZae4c0sHFbnjsiQrsibe6NZcuHiUnYmZFKWp0+OyaFO8ld3yfsD6GPi/tb4Y4zWeFJHHJjUgkw2PkR5UNul50SY8DG8qDFqvf8HmPQF0ctNIv05E6NKH6g76KPXF053mAUHQ6o7c3F+c7PlXmS+jr01vx55lGRVXNMnUpc/tmqKNI66pt1fcyP4YH6qrVqFVi52aIqz+b2h3/4h/Hff/Inf5LUQJxOp+Hnfu7nwv333//MAZZ3vOMdTCAzSeHf+q3fYjL8i170ovCP//E/jtuhTsqt0PKJ7Vq8x9ZKCev20pqRVkfp8Qpbp+2P5ztX11e/7bL+5ECofIz8XNU9rLybp/OQLON+14EdbuMWEHsu/HfhBnjlntJ3/rySjGkUjRllhSEdjGJlyG+xY0A2eDRthct/cSY0diZKV5FkaFBVnhpukxY2mrTDU0ptgGcUgAWJnsejqkK9XYdv/hl5wHEa8GHbPxOtRAs7TWHJapvFZ17axotFrNOWjeuSkRk/MSPDGWhUy8MvVxQVcqtjAFYa1oIK4L3F9wC2MKIxHvBvmYO0ZgMMQU1q5/Ez2WBWAMe4HmhVcnjUqaTVSGhSMbLZEJUtU+GK0ZmWUBQt/yWCR5d0L/vrvKIdSkCmM7B5TvypQISxABRfBRiLSe1KP0PfTKXKIho2vjXB3vJs9IlUFDICKqVB+Uft7j0M88v7m6GHPAQXFcD3ve6Y+RDdoVSrh0zxtC+5eCiiyP64GizNkeS6TDfEYN6+pzLC8/FWFbUtO4xKVKHFqPfCrvroBRSU3nf83d4YsxYpI1k2FrQmjyl0+edVopxGAJPlzdh1+ugFnFPTAuXWxgdAy0IDCEcCPaI9rEukamCgLmJcE7iqahgnb40YWsV2XNdRKxyFjbB1RkBXLtBSYg9Yfw1Y4zl59SpEVOBQwjl4H7xzzAnI+CR4T/+um3Ois2yeOuRyp8667TTb5m1RBKf8uX22TMTGxsIyFbL1+5Xeax7fvdg3Oph5tqmEvf/7v78KTDSK1C8IZH3rt37rMwdYPvVTP5XA5NM//dOJnj7qoz4qvPd7v3f4oR/6If79FV/xFeFWanVgZR1KDbcrVTBf4gHJX/Jyn9anziTGxpLz+VZ3nLq/E954Rum6WrUP75H1fS5dgx03P0/cri6qogbXMtUwfy2r+j5TSWHy0bsTGj++rxudcZg/fDlcubCtkq7g/k/DFJQHMDJmDcqrwlgFDQjHgUcQAAj7oyZMvyCpKf1z92VNgLJMZnLh2paAoIPjftjZTCWRr6atAyiWj/X6aF3Je52On8Vj5mAoGrxqfOLvwXE39Ddd6NuDcgWdzFOygoIxijKP8tZzLfQBDy4rYk/l+Sf9dcdtdmekNamrWxGAGtKajD7fHUuysuZIWTK1L1IqkR+5IukvojV6Xo3MGBAhJDOAoDkoUrTPv/zOEI6gyBmK9uzM+55EgQzgiGoYwcqgGcI2ahxBtrjKr+D5W2nuDMeFGt3y3GDNGmVNQJ4pktHIfcdGCM8fU53Pe9PRr3ZvEka7Xa2pIjksjWGqqNYcNcL4XnnuO+dEba9kpNZRcuoidqVm9zF/P0rGc/wue0dJv8P9huKWghaCQtD6sEF/VtWb0fuZ51yWaGe58wlFf3F7PVjxxyz9O65PczcG3HsOcGpjDwCc45vKcppTpDV85jMFupNGGA7bYaPv5l9X7LJ0z60PACb5/ey1J3Q2Wc5TaQ2oizTYv+2eSRWuekCwiilQN49da/Pr4mmiKpU8v0k3nx6YrGtL3bTtxsZU17W97W1vYwT9ec97HoMZUAaz1u12w/nz50OrZYT6ZwCwIHLyQR/0Qfz3f/2v/zW8+MUvDm94wxvCL/zCL4R/8k/+yS0HWEpeerR1X7B1jGHf1lH1kD6t91nd53WUnEWjbf0+yfbzlQb+MupDqd8+H2hV4nZ9v1YvDKsAiV+YGz5HST9HwUYADFBNDKwwCdW8jKB79Uahd8+VcDjohpOjXuj1RmEw7WqSaQijkw6jM1PgkrYaUCiWGet4LL/GqIh2ykXAGzh1gKcOtCwDK+vkkizLHaoD1cvOh1Z3zmUUBj/WizlB6rT3DoyNreHCmInfx5OIhxfGbhMRDeQ8aVSGEbSG5MPQa4zNQXVqzMPouEODHMAA/Wn3pmGi+RcRYOB45E+JUh2L8BllyWo9wFuNsao5I5QXtjFs+SDY3GhVlAIWtSsN66ghqcnyuA4HfAiyNApkOTvR8eKSsOUeC4Czc8e7atQuAyC4JhQYtJwWVawi5Yd4pKpgXvWlSYoXgJ+BONLpFDyyUdZ3xmTu4aAbtrYGrK+xuSHgw57jbHMWuhcg/RuYeI8kepxzcmbKKMV0ZxZ276iiBDlQbuv7GsdGDXV31fvhwYqN13XWlPwdvuPsYXjq8naYjVuV3DVzW0ArFGohJZmb9V79unnRro95H7WCJbVddd/pXLoxFdC+MZGoxrgZZhBMUAfPbNbieJh7RTE8ZxVvaJy0FhxnPoJVYgzkuSJ5w/fIM0S0W6SNdV4+pTVaisIsfFd7n+qZHtfHi1//WSkpv9Tf1Hl5zV263W6y9vDDD/P3DB66p6GdGrCMx+PQ6/X471/6pV8KL33pS/nvF7zgBSwMc6u2Uph93QjLuoa998Tk7TSgoXT+dYFT2dNcPu4qnuq6k2gJqPjrXdX30gKZh4/XuX8lrycoX+WJOV0QJZdFK0VrlXjwnn3zhvjuxpBKYxcPN1nPpdeZhOG4TWMLP8arJ11Befbw9C3vfypX7MdoHTXsauljHtwg3ya/1vzerKJr2f0peieXJPxet1yeJRFH6ycpSxpdKeWH5dezcA4YX7OUmuXpZAQD/IdE12CIQ7yBEthapBSRF1AIaXj5mh8AE6osJgdzx4QhqYUbDdxEnACVJeZ6VNx+658co3J/27GiIyGnh8HetfpC/r5l44CBIfZdlcUcXQ1AAvkIND4NmMWH7cIxmbfenkXiKGmJsStFJVlERjz1rG9TyRIjl2zYbvMd5DyM+3XcDOPdGWlg0z6knRV0dGdh79798vMtjJno7DoFhbduPq0cZ+nf1izJ3c91ybyHzRFZMUGDYPkrKl89aYYWC5aWW13FdHs/jUpVug7fj5JTAu38+Svhicf3Yi0YUCI5XjDmoJZn+WC8AfPQ7AugEeQvYBvPG1LIubRyBKKOwpv3axnQwpuPtcCKNqIhVxF0MVC6kqh9YR6oW7vWASnrtlXrZCnat4phsYwqdj0LAd+qUZZnGyUsb8hjQfH2PAHfcMPTDlhA//qu7/qu8Amf8AnhF3/xF8PXfM3X8PNHHnkk3HHHHeFWaqf1nlhbx2tWSpav49mX1LDWmSz8xJXTHkrHOu1xl4GWVdGK+s/TELpvJU5vHVgx49s/Q9+/dY61qjAYjoFt6P2mF1wWbwAMeKsZaWlPxJBwBcOMToQG0LLVHYbDYS+c3Trm8Z7a30qogcv4xKVrj/1zYGWd7Xm9mdFRe+0O3EAkoHSesgGw6Bn0Y7/YxwIFoTqeHWfxPOsKSawTucrlY5cVofRj3xYso0AJ42UeJsxfCcxzQiPYNVpKY86xQ8UrNagRyQF9Cdt0+pMwAdffFLmYkC/KT9GTbAUU2SH9xUR7rbtikQ6ldkmUxN1TdFSPK/taZXudjxJKmQCVlPKzaKDjayrsotifHVed6gKQRHoXUrsAFrF+ih0CUvYKpEr5Hj4Hw+ikqDVCGXFEXXBcAJj+NDRQKFFBFyh9xxc3wvzMUBSgVGp5vj0NU9yfzjQmoq8aNxgXiK4sjqEUuJW+y8dRTFrPrrVu7sQV5WtFsm60Z2E2EgBokSzeD9LvWqGxCdW61IO/7N3wYGVxLi2cfw3jG4IHKASJtrd1woR3jFu8f6LuNgsNABmj+Jmgg0VKSJeUObl0v/w7WRqjuaPHKFyovYJq93xf7DiO2WL3Pd6PlVd6dWClGMm18WHRTf/uLz3+6T6/FgdqaQ06jX11tbbY7fbuaW9961vD3/t7fy+8+c1vJnOAQiuORYAE/GekDss3fuM3hu/+7u9mAcdP+ZRPCe/3fu/Hz3/yJ38yUsVuleYNvuuF/k9LkZF9wgKX2P6de6NLn9eh/aKxX6PI5b9HW0ey+TTeITEK0+tbp3mDcF2PzTLvZa584xdl/91o0iKv2aIalnxv9x7X4vs0VhqQHdfOh4V4MOlweyTc99vjsNEfhTY83prXYF7f00hE5tfO69DP/ffs+1ykmdHwG3/bd/5+rlOxON/O17cpNW80rDNeTqdks2gY+p98u9J7Y2AlMWqc4tc65+Z4UHUi/q1RChjtLEYXk7Fl+yGK1OF5IaoCMAMjbtYkHQzgghEWAyss8qeKW4UipEbBYn+pgqSRC2BT0s1EHCJSj9z31UHcMzTKHMYzc3Pq55Pq2br7r98hUoRzoQI9flhX5bAtBTPh5ce+aoj654WoiVcm428fjXVqZdNxk/eL9waGuCmLKf1yetwJVyA5DifDpoBAREY3eqPQuHNIStLeHYdFsFJ3vX78VGB68V303+fbJ/fLG/xrvIOlZn26c+8otDfHTGJnP2ZVrhAlgy03qOYa/Xxg1+DfGZtjqm2q4zx1Zas6jouo5nMrc7covJBeA94VyUcKYWfnRMYuo2YO4OFPFUQwIQsbO/LOrT/XxLlMr2+7PwrHJ8IssX3hZFin2v2ytbI0J5Uic+s0y3lcZV8spRJm9oPfNp/zlgn2LFCw3dpQN45vSVAyv44/N1H7oi/6ovDc5z43PPHEE2FzczP88R//cXj9618fPvADP5CSx1fbTh1hAVC5cOECC8CcPXs2fo5EfHTsVmvLaDLr5rScNspQmlDyHI5V269zntMCp7oE0mttnqPtAd16SdjpteXPqiRbnKucrGpIeveefBsTVoHYqCXe42WgBKDGFhEPVHIalLWTcTdsdsc8H7x66CfO33XJoKtC+KZ8VgItdk6JCs1q6xOsopKtajloWRfwr+PZzdtyydDUI3ma43uDM96XpUn6mgefgcvUq6veYAm1EDBMJq3Qbk/pwT067klCvRrnaJA45u/eJB6PYEYNzPm4EZoodAi6iuapEAiB7hXpV9YP+7uip/E7A0Axh0cpa2rcSw57VYhRbozKCWuzvBxu4d4FgG4ook2HrdDbHmk9FAFZfA8hQAHjc9gMje3xAtCxM0Y1MSaRt0I4boU5lND6lVFqSdG8xjZywUAJk2KYzZNmmJ2ZiJJaVyh0OObgsCtgpjUPo0E79HtjGsXrNj+mTBYX/75yYSvs3Xm4JLK3npd61RxXan7uTBL1cT9GzdDaHIfpiS7/mygoaVSpJcc0EZR56VpAR8upkm7fFTki8VoBYiFtrEbvmS15DvvH/TAathkBOjzc4PsDyhi2H+vnjKLhOYLGVzq2Rt5yp105ub36t92/rc0h78F4Vgk1YF/729S+liXgn7bV5Zpeb7pQXZ5oTh9bpl56PVpO5a6TjL556GMu/HfNx7l52m/8xm+E//W//le48847Q7MJMZlm+NAP/dDw6le/OnzhF35h+L3f+71nrtI9wjtvetObGGk5ODiICgC3ImBZlx5T13ID6WqT5tYBJXUe5NxYXnX8uujNqr5czaSVgxX/O+9L6r1c7iXLowNX20evglKS+vTfV/9uuJyFJuk91ixiU/QuOmMH/7YaJ/TGO+NyFd/YPFyVlKgzWJzBDSAUaWwFg8K8h9czuujb1XiM60Qi7JqXJ/cujp86qk2J3sQ+10Yv0/2q/jilLDPIULOnPxaAodER3H+MExqUBjpGLRr7EGfADyM9eowIoEAtc9W+jUYVE9E1r8T+Jv0L0R6cUxP6/ZJagSo1WtST7e+Vfxfs2uJ9WPDKSt4PttncHUh5jSYU0gR8IT9neKUn59gdM9pC6hojI+r1dwn2dkwrKgigw+iVboP7Kcn8GgUCUOlMQ3N3FGZnx6G532aOjNWXIcBjpyS/g0CoxkucXJMbh6DqXbm0tbAN1MPq5vt83OQtvsNZhCOPkC5r+dxJulpvyggLk+9hnCI3BKphVHyT6EV+HUvPoe8wwIrv+8L1uNwP37e8xShhdgwAl7vv2K+ihdzIba+qcRRVcOO/WndlF0bx3Y/NewQuNfMR1K9k38UaLdgPymLrRFqupeX3a12667rHqwNEOaMD98uYEMtskmXUxFXzNM+XPYsSxfB2u3EbKF87Ozv8N0ALUkYsKf8tb3nLMxdh+cu//MvwsR/7sUykGQ6HlDVGx0AVw9/Ib7mVWs5pXTfaUpo46hYvHl+9msvaVam3XCMYOk0Cn5xz/RovV9OWgq6CTnvdeUvRqlLSvS2IpSR24zfjuLaoxf2slgtUbaL3URI3fXI8kmSxHZRnACCsWbI/vO74HLkwuYerTtraT+7oI/5nhdwsf8YWaLtz6CMMZqvizL65fJYSHSSRtC306WqjM8taPu5WjaVSjounWOq3ko/k7n9+PtnPR40qK7+k9uP7R5qlKjPhHptXd3t7EMHsYNiR+ivjVgQsVBKG4dUN/C65bpVL5jOAdxyV2qESprkmYsCLIhmMNxjxoBniCqIyGCMdDUZiCEjmjTCZgXbGTBOOSRv/vvYGmsgu230VSWUTDTBwA7BOOdl5gxLO1oTu1iLFDV7y3t6Q2yOvh0fLDEIbV1RFA5WtiRyGpkjnav6NvXPol9WuASVM6q/MQ+NyR6I/2FaNWtDEWhvI2xBQQ3pRwTFQlwSPc+xf3mRBRlCqknysQh7LadqyJP26CunrHPPc9nF4atYI48NuaO+MOL5GNh9QxW6+WkbX5Qiue34AjjzZvtRMha5UpwX96CIyhLFs4wl5YJAH17E6A9DtzEIXCfmZA0JokYvv9DL5ZVB5LTfItpPke3neBtTQJy+JvKqty7o4bXTmalkT5bV8MbdwFaW9VOW+BDZOI5ZSiuZ4oYMbumnU+roc5yZqUA/+gz/4A9LC/vpf/+vhm77pmxjU+J7v+R5KHl9ta14NNw08tEuXLrEIjDUk2PzyL/9yuFVazrW0f6+TPLbMSKsL70u4fXGxuB5KFOvmB1xNW5Y3s47X+zQgbNU1lDyP+bPIE++rzxdBJoBCnu/ht58w30N+28Se85CxoLHomALSfKLG/sxvcedBDgn2OTzpxec6GGsxyVqvb6rIU7rei0/uhKcu7NBI9h5BqR8jtAbQ0JjHgpwJKJYhv2Uu/+Y1O6MeVIi6ReNa879WcsyXGT0rTmf3Kvf4Mqk2G891kRip61AVDM33KXHAsQ/krqvIyzz0upMwQs6KSvACgLS2xlGSGBQlGOCggw1OupQ6Tq4V2wGQDNqq+CV5Gzbs4VHH/tiOamNeBUyjHYyyzTLJY1MEIzASpa0YuUAkQv8mcBg3w+ioG6Mp9gwItvS6Z/4cmguD3BwfLaqLcFkTCpBEhSaHHRqvjMgoHYzPxCItWlyTQATGbA/AKYQ5qqK3FbRonhDxFsCijvHDo16xH8hhuPz4Tth/127Yv7AdDq5shNbjXUrrtrfGa9UQyufEurHq890SkZRrtFwIGBBxQ72nSZMy6oy28Vmkwiw+Mm9CAnU1ulZ53Ov6stDwjJCv0ihve27nmKDUooLmDMCYwHjqbI/Czt4J3+W6c/p3utYBqdeT0sfkBzlmPqp0NOyGfqdy9Cxr+XxxtW3Z+liar0o2QP5ZeQ1P910AryuZH3VAvLxtEZzURHavNqfr3QJYrsfPTdS+/Mu/PEobf/VXfzXrs/ytv/W3ws/+7M+Gb/mWb3nmIiy/9mu/Ft74xjcSLfn2nOc8J7zrXe8Kt0oTT+Hi56XK6CVvrvdC1UVcFo5NcnDlDV/XW1IHgq7FA7HKk1J/7vJCVOel9M08Vnbfpivu26rrXAZWrCVGa83npebzEvxnpXPbpEsjxHkmS/vatSC/BFLByGkQWeMQNjT6cZoIFcAGjA1EWrpbIyrvXD7cZGJ/C4ZbYx4OTvr8DSAjUZhxOB50w2jYYUI26g+QlqY1YfYPN5hzAYUzfIaaMthm2bvxdLU6fvc6kRcPMEs5LqscCMvGgBhD+We2+E6Tvy0qQMNLKV2IsoCuA0UwAgqAZ0QMWGiyqlbPKAxVk5qq8IQ8FsgUy3HxyRjFTNtjqnMhqgFDlVEVNf5h6MPAOxl0o+Qxcw6QXzNrSQVxfK4J7DB4ETFB7g2T3JuN0AF48PksMxkrAPMAZDBCYVDGSI3SedhHy/mCihWuz0U5qvwb9Y6ruAAlbV0Sf0X5gTpfWxOyG2F21Amt3VGYztth1psx74VjGdLJI8gUxycn1wlHxbwTDmZN0qMODvvMvSEIGrZC66AdZqhqj3E3aoX5neMY7VqktqZ94/X4MVSI0OVRCDvWcidYzfELDd/jvX1qvMVhaEVImaReE9VZKbaRGb3L6ousyoOcTlo65hev0fZBtAY5LdzE5TtSCtnl5eWtlAjOvjj2hK1T0eHCNSndd2cDtZdkjj4Zi3qYb6uiSFcb/SiBiVUtjp8leTDrMDHWiaosHjeN+JccmsXj6LOuyxH0f98EMZZnZfuYj/mY+O/nP//54U//9E/DxYsXmfduSmHPSIQFqKkkSfbOd74zctZutZaGRMvblDiaqwrx1Z5PvTfL8lJKn53W47DK63Kac/vvitcUufzpZ6v6V9euxbNinpo8EmFFwWyyrGq4lMFjfn9yb5z9tsWiJL1bnV/OQbpBQzxwMPqQ6AnP+OCoWxyLdT+2LcAKojj49/kzkm+GpGIk9qNoIRZcK3KJhRcefURZkCRNb/usQbqS3aOnntwVaV2lulmy/tPR1o2y1EX40mOtd77quflnu+j9K23noy7+b9vOnr8ZVQaY9jZPoooYIxkKVmDkD/HcUd8PhfNMjpjgRehT+C0GJ/JNJCJihR1JMQPIhLQvqGYKBLobyJ+RaIxIw8r1GG0LxnlXa5JwH/QXxjq88OyjJNED/KDfk2OJECXArCk0RwLvjRGlg2mIRDnjOUHvgqiBRW8AACzKY4p7ev+obNabJuptlntDwN2ZhumwHXbOHjPPZf7ohkSssC2KUeJeox+oms6dFazgeyTkTxphctQOlx7fCZMDee/meB/6UwErVKNSAQIVRtjA9WXjzfP+V0WZ/fj1kT0/p6/k/a9hwJrh2+uNBXBRfUvog3sFoYE62te6fVrWh1LDO7K7MVgZod/ZGIiYiV435jAPVvJxsZCTWcOK8HM0IifdFsbZ4tyCtQHRZkTCe5gL18hjPQ3LYZ38kmXnsn/XgZx11+7TOE59f6to86KjsDRf5/20ffPvb7ocFs5b1+nnJmmo1dhut1lk3rdz585dE1i5KsDy0R/90eHf/bt/F/9GBw4PD8NXfuVXho//+I8Pt1LLF5FlL01dqHzp8d2kv64UYB1QuFagYp8vO26+iNZJFC7Le1llXF5NVKjUn3XvRymZvg5Y+Im7biIvgRYPgHLpT/8sPKjBZ1u9Udjo4OWfhbDfoTTououXGT3wcPtrQDQlTfAHxUEBSnMezt9xwIV/e2sYut0JjVgYpQZMds4ch56qVWFBr6ND1D2T0z6fuhbpWCiyqD+lBTrd52rOs/i3B6NmnJtUsSWl+u+8IW/vTwQteh9AdZHkdqmzAlABRS18JmBFPfIELRIFQdQFOVKMrjDZXI1oo7xNQNeSKAgFIEB50mgJ+6bPFYYXaYIwwNpT5jHZOAbYYU4NgVKDYxF1LgyEAPx2d0Y813DYEXqhUtzQSCucNSgaYLklUHWy8Ynz4V4gCkRwpQUDrShlzPvLEu8xNv04sGdPADXosL+kbCHnYXsawklbpJMxh17pSPFEk/BFfRYolB22Q/diK3SeaocG/sbnaEdtfj/DMbAPlMmY5J0qZuV5S76VKIZ1ziI6LApJx54O48eYHX+dlmxn4NZqsoSQ0FCvti0Y9wXRj3x7b+CuelftPmC85pLjufOolEu06vrs3Jh/SxEhfAbHEvMYM0XAurXDRzpyGlbpXpTaaeb+0rGlf5UTrm4b39+raTkQ8etgLjizjIJWAjWeHnYzNO8cvdafm6V1Op3w0EMPXXWtlesKWF7zmteEN7zhDeFFL3pRGAwG4VM/9VMjHQyJ97dKW/XCruMxSz4reHRKC86qvI8iQFiSNLjY70UvUx2AQfMFGEvnXgUw6hbqZdEjf97iMa8joTPPsahT4akzMEqNkRIFH/YDapZfLCyaYtcTDS6nXGP37uz2cdh5cJ9G3IWL23qMahIbjNv8yRP/eT0ZyLLvDgbC0wflbPDYJiM5/faE+TQwIOFZ7GsUxsCNV0TzymfHo+5aUpOr8pnK+6TGiP/t3yGLaFp0qm4h9io3/p7k51ygxRS84PmPGU85T730jldR1Oocd505DN2eUKtg3AOoIDeF44XqYY4DwTyVKq9ELkZ+EbwgSgMFLc3xILhRNS3UG8HxkXtCqo0CFjSADR5DC6Bi+/bmJHTPDcLW9pCe7L1zR+Fgf4MgF3VLDJyQuqgJ/cMTgOA2x/jxQV/UyPT6QQMDncxyonDu8XGHeTCIJiIahGPZ2Iv5BFbosuA4sn9jzHY2xkyEx/1hscGWFqQETe7JbmgfabFEVK8/aYf2xTZzWpCQP2uHMO1rVXtErQaqIqbGvZdWZl0bgEwFPl7qdt22LFrt2zKjuHS+khJhHtGlApyCbTgmsC2UCQ+OxKlR7Vffr5y6Zv+u857nACDve6s9JWX14n6lOOpz8xJ6Haiu6DtAeyFh3PpeOj/m41oqsb6/dc36DsGUqlDkPOyrMyjvw6q2ToR42X6rjrGMSpZHu7xzru6enrbh+J/xnN9c+PzvP/S7xf7589Wd86aLtDzL2r/6V/8q/Mt/+S9JA7ue7dQ5LA888ACz/3/kR34k/OEf/iGjKy9/+cvDp33apyVJ+Ldq8xNuMcelwNO0SbYUXs8n01z3vLYfBchdlydSUnVZVbPD75v3x86xtIL6KjpPCXQUKtznCm3XWxmkDvytNr7T/bxCkDVPKYufFQzkmOsEz2kNBxzV5PH5cN4OFy5tR9lOGH/gpGObExiIjUDggYboh/UJhiFqwrAQZVsMmXc9fjaES92w+YBQxeAJB1DBdmioM4N+4W/QHvDbEoHRYFBC0tWM8lU5LOt4iZY94zz5OB+P0TurtRZMyafOw5uP0VwUYTG6Us7rsqhJ3kz5j+91dk0GSvN5xM4R5wcmR1tVe6UuKViRTiuVSRPpzRA1etR0YuNSgIlFZ5g3M25qnRLdpzOl3DD2xThB3Qtr+Bs0MQAQCDTwMxSyhJGPyAVksimVK1LIvY2xCDcMhVoIypHUjhHaV8w5QQJ4c8b8KuYvgM4FqpoZ1TGqAq27Zug6KiJzZBSw4R4bjW1naxAuHnViNGW+K9Xrw0EnzHrzMOsa0m9SBndyBskcAkSmGzMm5Us5c1HYYwO1DNEUi8potAv3bveMyBf7WiN1BnldW6X85XMBcsGI4vEWoj4psEAeBnLUMK4q+fQ589PkHDJuOG41J9McA7lwSek9yvtR6lupAaST2sh3N73+eE4t1Mtj6Tte916WPivN0f66eM+W0NY41lrTZL0eTtox12/VM19XkjiPgtTNXetSAdH2+ifhRXuPhd984jkr96nr4yqBn7z/aP/xLz442Q59/rG3fwD//eI7Hg1/9NS9C8ey+1t3zPx8N2TjRHadjnMTtW/7tm8L/+///b9w3333Ucp4ayuVff/d3xWw+rQDFu7Ubod/+A//4VWd8FZupfCuGSRFIHGVPNW6ZotaCSCVFkS/fZ2hmCaJV97sZcann9S8N3xVW0cGt+57L3Cw6hirJKpL360DlOooYss07j0tsONqGdixfG0XUBR2+sNwDAoXjLs2+NMCTtAMbDy1v0Wqjqk0AYgMp93Q60zC6KDLz+EBB8Wle/cJF1ocT+gNAlqsf6B8wkgcKzABCOh1JDkaifkWTTg46fHfqAht9Ld1I2GrQGM+njxYsaiSSY9a9CKq8ZJiUx8JW8eDl3sgTVgieX9rrtf6blFG66cNpzoHB418lfpt4DkCC4CaZQugGcduQWwxgbrJ3IRWX8YFaFzdjUkYWVK+Us4AVKgghtyWzLOKHKaG0sEM0MCAQzTFtiEVCmpdFsFw0R0cd3AsuR9G47KClpRnRp7CWTHyTX3O8mf4GXNy0O9xaMwlImb3m1LLpmCl45XPGAnQEInQMb919iQcPrkV5oisDFqhsTkJ851xaDzVDbPNGYtINg9bYbI3qcAf+rozkUjOWKIwBvDwi8Utk3dZVdQysFJXiK/U1n1HStGk0vhJ96mEH/Kxjv0gqJHPTIxizJqMsgD4rTIIfaQyN2ZX9a06Z7WPiUwATCNyu9lNc4PQDKT6yEqZXlf9XRIysHOb2ld892pAlgFlm3MOhj3OxxePJBoEkRR//nXB6jJHyKr7WbqPpfXGns/+sB9+4/HnJhS1kpyx38cfO/++1I/Sdnae0vlKYMVf8/Wwjd5t7Xrln9xk9+CTPumTnpbjXhVg+U//6T+xaORb3/pWVrQEgnrta19LfeVP/MRPDM+G5r0e67xU3juWe2FS2s7V9We9pOL6z73O/GlbXqSxTlq4Duj4SESuDHYa4LCqOrs/j3kPlwEgv+06LVIF1Ou3rHkus68w7xcdH+KfacQDn2ORBKXLanoQYCiQHIw6YZMqNrK4IgJC5aRxixGRZndKzzn22z1/WBnUmiRtdCkkk9KTOWnT22nUHKsXA6Bk1+CpblAMA2gxnfxroe/VRbv8u5SPtwW6TA0Qz5/rMmDpjR0DQzmXdtk4zcePf955X+zZAmigO93eJIyREzJtUKJXDH+JiDAfBcENo7kMlaYHwAiDG88ToGTWDOf2DsPFK9vxWQLccFOVQAJgwBjBtSE/hPcRkQ6MB6iQzUV8IQIYvMvoI6hXG1Op9TJoM2dkdNilahjvgxqXRhtrI2I0bZJSRrqZHtvoalQX604l+R40Ns6t1f4GVvj+Kq0S4xp9Y5dR1R7GuCXWY/uOAA0e/9w4hKNWaI4aoTkKYdprSSSlPxOKGO4lQJFGUqyujfwhURdDw/gOctMLdNYVaksJJce9I7U04Jr1ZR1Pfp3XHu3s1kmMpkYDFvPAvCS0snj8UmRwnbZsPkUu16WjDT5vr761yklW17yhXGdU++tYJiBikVL0A06cVnNICu1du4fs81Z3lESg123LHSf197UO9K0CNp7iu2yslui4dd+Xzp1H95oZiK471kqg6yJP11bt6HZ7uhpy2p+Oduoclu/8zu8Mr3zlK8PHfdzHsRaLJdZArswn498qbV0P07LwcXq8+m2fTrBix6+r13E1+QWl5r3ipQWvSKNbkB+uJv26ujclr7z/bNl+fhFYBoBOA1biOfyxYy2F9L57bzsNq6yGh527tKDYAoxoSwQr2miIMo9C6R2XN8PxYS8MIWvL88ALPw2zww5lbS3cLl7r6hgwAgcTUQZjwvRYarOgob/2b6HzLCqkCRXttEIQ6U9yzUvEJpa1OpU+yx9Bu5oE42Vg2G9TPG8GVkqGAUCLTxYGrz8WhGyl9C8fvUAEwH7ku4bUTJkCSCKZ2imB6Tmh1GVJ7vgO57E8Fh7bCqcqgOC5rfDkpW4IAD74DpGWo1aYok4MvNDIRcFneh1VroZWIdc6LLwvrRlzT9hjNRhZ5NLdJuS8gMI0HEhiP1TzANhBOUN9GlIdKS4gY5IRw72R1FwB2MPxjLKGfJXWPEw35qF92AwNRFSQfK41W1B4kPdRsCEjL/iO/cfzQ+5He0rqEvu9ZAit72Uv50Ut238ZwC7NpUwU1zkFhjZ+Fvqr1EPsc3CsAh2FNezqBCzS+c2DT09ZA5DidUAtLjqOlAo2F1ph6Zj+s+SaChEBa/7asN1gstyHK3OsJN3b/DuatBilxu9VyeynaX5NKP34tmxu9NGeEr3s6Wql+lSlNfWj7vvT2Lf8vi1jJ9wMDd28Xj83W7t8+XL4vu/7vvCqV70q5rKACnYt5U9ODVi+9Vu/NXzv934vk2pADbOGYpJvfvObw63UTuM1utaWg5V1czWuFmTUgaN1jucVr3yrAxElpaW8eaM0Kj6tEBgoCQGsUqHKiz9KgrwUR7QFET/Sz/JxiwbrmuMkAgNNsC8tIvmClNNKbGLf3UCF8PT4+KySIW6E+UGHxeHMiINx2xg0w/hElJrkfAJEwMMWcCL5H6NJm4mk9K4zgVruFzyfoGvY9RhA8teI7dcdmzmIXwbcS/feoih5pK9uP3vOnsbiFZ4Wju8AZgW8F+klpf39mME9tkU8P36+sCMvKUYRLIdFDfpWbyJJ7Fowr4uihQom2M8O6qsgGRz1QgIVvVCgkgUDEdVQ8GoJ15SH1doroA1SHa49FRUm5IlozorQhTTSc7kb5mfGodXX/I/WPMz6Up8EkszIkSH1DJQzvVwCAI26oI8ANKR/kRom1DRfgwXHQNTn6MoGKUKgtPEzFSJgbtcO7hOA2ITXCSDP+YlRoDnrtTR3xirPLP1sHTVD6wSRl/8/e+8Bb9tVlYuP3fept+UmN40QehGQYgEUFRWwPR/iUyxPsaNYsYDKE7EhPkWx9/rDCghWFBvtIX+UoqiAJpSY5Ca59dTd9//3jTnHWmOONedaa59z7k3uTUZy7t57ldnWXHOOb9Q5TdamNFt2wAmgS3xZGLQgjLPX/LgO5IAKfVldLYYBTlGY7ylMSFzH7yE1X1LnrdO9CBlgzqSDc3Bf1FqLcUNSTo4sF8tyH5GEp94FW0cdkvqOHdrmvECIWnZ+Zykp2NLly5/2AYu1IbU3YH2r0k5oAIHv7N/XmbhojiU5YMqoSlNRZ25UCdd4X1WalUUZ/roC2bI2aYGcPv43tz/0QNpyj6T5Af5dQgT/9oc85CEciOvHf/zHGbyAXvOa1zCAuWiABRkrH/vYxxaO93o92t7epsuFFpXmHjTVkU4vClZs1nbHuIUaAO2nEis/1MrMoxuw/m0dR22klxiTWZWtPtWnOv3XNs8xiVUdSb6tLyZVSyfpSm/wKdvp1ALtNud4feyPMm5S68iQI0XBbAYMKJvyrMO/wQEPYZZg5qX77pJETtkhl/1Vdrsus72EaJ41sshSKJcdpTOJqWOQhiqSmIzbQQdNyMapAqSmcurEbcd9mTpzfQBWcoCt69f32z+byyHGdGbvkz9+xdq2M+NDxCw8Q86D4oDFofUdD1pcrpz+yoh9PuA/wiZRyPrdm/Annh2e0VLfRSATLQ7+Di/v8h+k2jgnIaq5vdB89MacswOhrAEW5uc7zsl+1ZlCuWSVzsa6vTqm7qqz4+dQ2N6Zn/vWzHOs8PzwfiogaEm2zy25fktYZj8mE6+xQeABaDSyEM9+jm5vIwLZjLowaWMTSTfekhfGjYcLBIDQxPicrM5odGTGAGve9bkiEJxAQk1LmxNme5K3RM+VKuAQm2N1wYq9v45wJLUWFdfncG4jsSyeI545fDL0nNRlx/xB5HeZJiB2nT0mmmI818mo7fye1DWVfY+YdTGTbvYpO14I+Q7QUkY2gIc430OLbdcS++xTcyG2BsU062WU0l6kwNBBalhSALrsWWngJ7/Lrr0n8mj3UZpghfWc5zyH/vM//5P6/Tx6HlKfvOlNb6KLBlhuvPFGeve73104/vrXv54e/vCH77khlzOlVPz7XTQWMSHTzLpIl+XPhvKNmYwdNNOZKqdKQyL36s+69cUW9Kq6MsljSb+1yp3rKkgw80+eAyizRGIlf3VCa+pyRVMgSR1husJmW605O0wPNns02+ywDX9/dRiAE0QBg4QQfjKiYcImDJ8YvmaS5+rAp0i4YY6DULQYQrE5B7PoQI2LTCZ/rM2a5RosPTYXi6oAqTWdEIauzvtm7d+t1sS2oQ5ghqYF2gMpB47SIEieuU7/jPk+b4YB0y4wbTiO35zHByF/O2P2PRJzQtHgCPURBWzufEIAYGHuxOWwFmbqniuY/EmTTQt5DnRm7CcDgsM/AwoE4Nruegf7RmbWlmWf98kjOVSzj7SFubq72ef7RjsdGm71WDMITYdz8HcBBXiMvFmdfj8QuYznow8MAC0OQJHzufEg7+oNmp33qe3hLA/8jjYB+HXhE+QADa8TDEpyrUpmkgfwCZMwiRZWMo90XqXw2efzZS/S4hjILfW7ykyi/Dm1llkgDoK/E0ycXH6jtKS/jsAldV2VuZsAdswV+GYh1LGAvEXGTPsV5u3xz1GNj46AaNfvlGO/EDTR0E7LNfa9qvIVkTpigEdT1ZhVaWr0NSktb4pshLIUQCkzV7OR8+xnjGLX2LX0knC6P4i/S4je8Y530Nd93dcVjl977bV08uTJi+d0D+T0vOc9j3OwzOdz+v/+v/+Pfu/3fo9e+tKXsr3a5UR1zcHqhrCMqWJTYW5TIYVdu8rbUwg9qcCKLMgpCVmqjipnd8v0lzlJLuL8HiPtSF1Vhm6HZj7L+mYdtWPPI+XM7dpUZMSFmbW5NywzW7VRyvPTG6uVmGXO+CvjTDo5mbVcFu8mUXN9TOvLeH+xDjo7bAY6MAPzTrhgWDkpJCIJGb8cNilqT+n82RXHuM7A6E3YFA3MtUR1su2egjdEHhAwk4g+1gLTWw1a0kBxP35fuUQyZvaSMh9JhQ235n26ntjxuu3DfQAt570/AWsyWDPmc5Poa7NkoDrrvAv3C0Aq7efISBEw3PFR5tzzy7UUIPYJgXYCfek5QARzK9akkDj5uwSTAQPMEbw8wwzAMzNjzmGQnTaHCM72TWZQ2RSLjbfJRQNjk7c59VacBgdgBv4sAibgdwMtUNub3CHz/HDojuEc2gmfrsa4wVoVzssy8H4vcPyHnwvPZQQAkEhu/I/ri4SVxrs2c/lK5LmWBV7R2rrU+lNFuo5F7imUIeuYD4gh7dPlQ+POzPyCwEAzlrqtKU3B6c0VHsdj66FVht2XAGoBKnEtEuceVdfXETwIWJAIjPp5SDvxLmxvOw2fvBsQrNTtP9qx3C0mzy1rl71fk7y/+zV9ssBJH0856cfm8UGYYLm5X6RF55h15L/HE5p5EE29RLqrLa42NjbI0gc+8AE6fvw4XTTA8tVf/dWcb+VFL3oR7ezscOJIxFp+xSteQc9+9rPp3kT2xRZ1st4EFn0xy5hgKVtHSbLn98PQLRKRKxXtJlWnzd2SMdx+g6gCLTFzsTp5OWLAy/ozpPwiqtqiQYveBPSmKJQzkIp5WQCslNkoazMGtuf34T4hqZa8GOyY3ZtRuz/hBIUoS6SCcL619uCDcYd2t3q0eoVjEJHVHP4EkrgPGzqYR9yF58haFgY6AEsu4Z+VhAlYsQEPOH+LmmoWnJeBwzpAPgVS9TOLmuMZgUEqAlksspC13dYU1fQlwovGQAszIt7p97D3dZFyhRD6GmONiG3ab0Z8GXT5ehx0yGVXjwNCOztLLO1ePbbDWjbJf4FrmLljTYgzlXIO8+3APAd+OAxK4Pc+a7JWBvdOWCMzZ2DNplxTF9ks93txgETMxzJmDnlkRi3qIpM93+tAy6ztwPwKR8rLtX6sFUTffXZ6hBfi5JHwVcHYIFiYD2oAjQxrVwAOfWhnB5680MHnubFMun2W9v3P1o19alU07cXHktvuB9j2QYeQ3ivFGGDLbF6xvkW33XmYbvvvo/wM4O90xaEt34Y8ASeizSEUu8stNGd/ljWe8/GcSSkTWXsNr/serMDRXgA/7oPfHuYN8lmlTK10P2P7fFVUtzpjvN/nUEXyTGLakzIhrAU8McAln2XjtxfB70Gbs91HF4b+x//4H/QDP/AD9Id/+If8G+/rRz7yEXrBC15Az3rWsy4OYJlMJvS7v/u79PSnP50TRQKwIHHklVdeSZcb1dkI9OJkwYNIqvR1+kUEkxkDHppikn17rXagZOlQkMvDmX8FZZb0SzPvVWAleT+HxIyblQVaCz9m4u/AC1EjDZxiC2RxoazHwAYajgpEFwM0Gpzp8L15+219uZ24BispSi3wZf4W+TUqJDJCzW51qH1szJJxOBWvrgz4Oow55grmh/NfcfcLswCJ9Oq608LAwR7MIEvrkUBy0uJP/LGjKq7vhIyOAJRszIzUHyR5PZa8dDK22WfvkHlOduOq++yz+2WeZ+9g3r6YtlA+bbmpHC9VzIcFpGmfJ2mTC0MLQgjVw97nJLw4Lx9mX3yfaZ9Ij1MMhIuA5NYm+LgIDUcd1tRw4AYEZQDw8GZ/DE47TiMjAAX+M5L1Hswf5o88o5bP/4FwzRz1jM3Z3HoAxlX6DcANzQ1nZMdcG7ioYF1odmAKh7/mjLWH0NJIIsyVlSHPLfRFkqjubnepszSm0dibVwCEwJQNoZmbYgIm49nksjiSnhJCcX8nTVpdGdaKYmTnU8xfJcWUppjARalM8xPTwujPFNU1BdPneT0w11131Vk6eXadRqeXaNKc07ntJTq66vLzSB3QJmImu1DaMB2cFDRGQV+1T2QjrtWW7wAqmM8QxLAADeXPXS4poTrMNtdT5xrbVv/sdR3BOlRhSlW1ZpRRds0CoKiOKZZe16yZm9W46+P6d5mG55IDK/dSDctP/MRP0Od//uczNtjd3aVP+qRPYlOwJz7xifTDP/zDFwewICrYc5/7XPqP//gP/r28vMx/lzPVNeOKSfc186ZfSJGIp8xLLIMeY+RTmobY8VQf7GJp77dUZ9MU0BI7bkmYgHzsVHblRJ1li3GVRikmqa9zT+oYwGLMTExLlSyzosGKcwQt9inFrNh5pPO9CAAUkADzLEiJIUVe6o3o/MYa2+rDdEFrOBywcJu6BsjNptOSaA0SmLVJKzcZwzEwxgAuiC6mj7O0HEyAYmKdFNOZ2+h+wO+gqZjLuLYhnCtV5+tS9vwS86oqwl2Z5LsuGKlD+lowdWUkWplUOaE9fzinEO1I2qvnHRywxT8Kz4qfs9pHWTGjQlxLHayBQxLI7oTvwVzBJ899+Nh0ADR8+GMtkcXYdlyuGTjccw2IRMZ+VM4hm6PXbTuflFmzwZHLEAxga7PPwAfzXrRLnCQTIKUzJxq6HDcALTBrk8hf3G5oblhTpMC1l0DgPMCSUAwwW5OmWPCRupr3vYKUGMWYXGu6dSGl+bodug0njmzQf8PXaLdNk24ran7aXkHo6LkDwH5Mka/LlhXTUMac60G73kmeA4Z47R/mJkfH8870seAcdUw8Uwx3HWY72IsjGgd97CC0DVXaDN2uqn7Uma+yLsbMnMvqv1jz88DpXgpYDh06RG94wxvoLW95C0cMg2LjcY97HH3ap33avspd2CTsYz/2Y+ld73oXJ4u8N1DsJSk6Uha/V4GVKor6LdRQIYvEJOobo80+BFxEbPgXle4tAnp0eYEWRoEW2xa9WezFBty2yzK2YgYRtrGY1M1qi2IRZ2IMsAYrmqoWYL24a2mVkyQWzYbQPVnYIYmG3X/v0JB2h12iSYPWjm1nPiogMI5LcLSWyE0+UR+YASkb18AXYH11wNmvdT/g3yIACRs8TMusKRRHsvJmQ3Js4k3Q7Luh+6OfQ0zDEQ9bunefljKqsseve/+FoJifk107UpLN1PW2vSfPrNOJoxuc0BIkIW9lPOTZ2pLDNTAcB92OTnfi1658LmfzvtHwDv6Civy8HLdoOmzT2uEdZjLPnVsmQnhivCcbbZbYb42XMv8spwVypmUz8f/xWnAAcdbieMCFT36/5PvMOfGjnYiaFqNwDwjXwkDQVLKWhqZ5BwNWrO9Aam/Yi5R9LxQDTFcfP0+33nScAeWZreUAkB9a3s2CfcA8T+cnKmPmrbBIH5djeTJSlwtITMJWFGh359N7qW7HXpnqsjFNaReq6qoyO63SHNUBMin/GPtb9i4LVC57sHIf0Sd8wifw30HRwoDlG77hG+jbv/3b6b//+7/p8Y9/PK2srATnH/3oR1/Wj6mORCM0/coZNZY47yH7t9509iJRkbotMydMeazd+TX707jEfDGkLfpcWSCAFAMQC5lch9jvoISJyExXIqZ4KRMlSzHgGr8uLaGXz9SCzeDCgwSrUmdb/M0WjRpdztuxfmIz8x8RLQiYOYAVzkEjkb0CUOcYOuS3gAZmbWVA5zeWmXGDeRDfyx1tZiYfcJCWRJSQVHIkJALjmc9BSE2lLdJ2MIUW7IBszgj9POzzv9ARx6psu4Vi/Si75iDBSt16UvfGwM1VRzb5+2pv5LKQew1Ido8SAAqD755FqF2cTPNQ2Hzcg134P3HULRXym4ELO+s7/6tsfs9gSthlUy5oXDDXhjtIiombfZXLU5qNWwx0kDAT2iGZc93ehMaNNvvKIOKaa2czB2Itl/RSfCYyIYEP8bwXqjsv9wNSrK+A/h4TDFxMqprrON+/codGgzZtn1nmJKGYG8ggj3b3umPa2u4HJqaxPmkTMBtUQNoATTDnmoGWT4A2sPKswWaEiI5myZpepgQX+jPFhMeOW+FNzCRMryN7Zd5DU9t6c0K3peD7WQKAYsA7dk2Kn6nrF3R3zuta5IXIB1LOJUZ/+7d/Sz/5kz+ZWWQhivC3fuu37kvLsjBgEcf6b/7mb86OOQc4LApQseaZty9lSr0IYiebcuwWU5gyXxNNMQCjzcIW2WxiC5w41aX4a2tmo83EyphlTSkJrmburOmS7ZPWslSZcrlsxypZg7ouq1uZN9n8K7bfqfGIkc5TU+UjIxtl6vmVScCyfqhxs9dY0x38Ru4TaEQ4IlN3RstrA9o9t0S0PHQaEYQqZbOXPLxwTOuXmef5qE7IwTLypjtyjP0d8CzgpawS0lkginUBDIKTYOd918xVbFyqfHZiTrcXgsq0ldZsos51oLpzooz2C3rqMJK2ncLk8Xl1XN5xSUDpwiA70y+QJB3lqGLeygoBGlw9PiElpNya8ZaxQ9AIn8kelcKfZYaod7stmq42XYJLJLP0ZkPIP4QIYLNDM44khvYMBp0sCWZ/CQEkXOQw1ir65JCslWy5drh3PO8/wPpezW9Cs1cZ2z0VVVJH/B2qw+CXXZMqT9N+JOC3nT5E1xw7T1ce2qTbp4doNoHvUpe6KwDHy5wjCEB5e6eXaWoRLMTlkEpbB+jIfSBOiOuTq7o1yV078kl2+R7Mk5FjiRD+GxSLpldXcGGpSkObEnRo7Y3s5/bYXtaGus+7Stui/RNj98dM60B136dLzm9FERs+HIBy6FJTMP38z/88fcu3fAv7seAT9I//+I+chwUgBpGGLwpgQeLI+yingplQheQ9FbEopXUpA07JOhawmU1RXZAUYy5jpmexfARaCmO1LGXBByx/nfLtyetWIYDluIqUE7Yr1c/FzI1SjGwd22cNQFLXWAJDCOd4lD/edHb90LIMdrrUOzTI7ycn5eawtBEJmZOEO0CIDV5LbsEkIEHfLvxjOFiC06CIZsYljxRfFR38QQCw+w2TME1a+gkfivBcfKwuhOnXXkjmbBWDUJepq6M12Q9ZSXxZO8q0MzETNDxz7Y+mGT7n1zINpLNLvQHn+cG82tzqsyO/ZcLY/4m/zmjeaLJmhIERAM64QetLAzo3RY6OOTvVYw7imsm0l4UoRiby7fN9op6L8DUcdGl52SVE5bZJPzicce5zJQQn+5QJ0KJjl19zsKAlVp+dS4H5aMW9Zcct7cdcB9o7Gcer4M+ye5TIg1OsQ9DoYY05ur5DGzt9nmMcoZAmBX9BvQfFxhYAdThqs7YNOab4vfXzE34sON/zYdxZe12yB1b1eRH/kjrjHPPXWVSTU6fuOnP3oGmvdd7jtSv3YvqRH/kRBibf+I3fmB2DkuPJT34yn9srYFk4cSR8V8r+7gn0cz/3c3T/+9+fM2x+3Md9HOeKWZQWfYHqJDOMMdP6u03gWCXVsn/2eF3mLgBdphyJOhWjMomyOx/6H4TS8aLKWO5PLUSp5I163MReVv/FtBZ8PFKWNi2zZmZas1InAllZPwNVe0IaldoUdd+EJAkdInjBb6XhUd2RI9ts5iDhXXMTsvxZibRRxkbqECYA90C7IuY8yEGBuiSilAMtyOMCh2rnOOs+XR+g1eHcLVnm9ziDLzblxf6Wj/NeGb+9JECV56X/XBuL867OO2vfVSFbji2zrjlmrD17BSsI94qISnyNKisD2AqIij+IZpZ1mZg3AL545mAiYXYojCJIsp2LI78DLi6cMbQpyJly/EGn6czGCmtEoAHhucqJIptE3Rk1z3Y42tfGVp+1LjAtkznm5q3zW8ARMMicgFOBFfxeWc4jgmmqMmXJTMlUuPULRWWAo0zyLaTnh9xTNUesGVQZ2Xlr69Nl3u/a09lvzsmjtHTIHRUTHOk55j5dWRs+uaqr1/noubXJRbbjfQARKv0zx29cI8ly61JsrCB8sWOzH22M3K/XnKSAb5+mhanybMLRRcqsmlcyJz7xqpuC35c8WJkf4N8lROfOnaNnPOMZheNPe9rT6Pz583sud2HA8id/8ifRvz/90z/lqAB3twbmD/7gDzi55Ytf/GJ65zvfSY95zGM4DPOdd955IOXXWQzKsrhbqnoxF6l7fxqVsBzLuNdhqmKLaqyOGPMk5iRCTlpfzQSm2hFjBq3kSUBLCrgU210P/MX6LsyYXbR1G61mRR9PjYEFq4MzSzS6a4maK2M6euVm5k9iy5PxkD/22WmWq/VhUoaysKHz5u7BCsKDyrUwBZK+Sr24BkkpAWikLumLZWgl2phQDgiKY21B8MUCLWVkx2yRd7sMvMR+L1J+2fWx+RW7lrUYHfd8cUZr0SzjqcEnwGoxB0x+nzCRuE6ATjY/5Prm3GWY9+AYEcQQXQ7XDre7dG5jmYY7SFw6ZZACgNLebNJ81KTxVjcD8MjdwnlWENlY+TFwRYxcfF1e2p6PUe1hNmN2Yc1dqhjAOvOjDkBJ+WjUbX+sLbqNd55fy+Z/G/mdWPvh6gOI2PTgY7k7ykJ2R9uo9lgIaZC7yK1P0k9XL5uHIfAc5guH357RCnIWtWZcx9awW9Aibo+c5joG5Mve5ZiGvQ54scJDfUzW7arxL9uP90qpPbMuyXzL9568bW++44HZNTFadM27N9JLX/pS+piP+RhaW1vjsML/83/+T3r/+98fXIMQw//7f/9vOnHiBPuhI4LXq1/96uCaM2fOcPqS9fV1Onz4MH3VV30VR/uqm4flj//4jwvHX/e619Fnf/Zn77lvC5uEofPis6JJ+7EgKsBrX/taOnLkCF1sevnLX05f8zVfQ1/xFV/Bv3/xF3+R/vzP/5x+/dd/nV74whfuq2xr6lQVMrdMGrFI+OA4E5N/r/K5qEuxa7U5j5hypKiqnVKeLjd2vZiQxVXyef6aRcfDqtTdjXniytjzlGdnAxTEKCZNjdlAV6nAqzai0DfI5UkB7Wz2qDFsEq1N6PDhHa6j6zUbMpbCSAJEFMCij5yjGcYMhLRlo3GhbUG6r2BGcRRMp7sPEnKnXdHEpn8qeSQ0MShP6tUmYbm5R715vFemsjJp6QImlilAkKIqLWVd3xc7p+pqYMraZc/baGBxk6P8Aqu1s8wamxFiLvj3RPycdBsCAYMEcxg6p+zdQZdDInNCSvZ1mdNgo8eJCBHkYbw+oyaSUG512BF/PmpRa2nCmhoJyyx1ZO8CNTi8rfjaVI9hfL1hhkxHD8zqCQUg4vNYl6FMmUAtet2iFgRljHbKn6NsHluCg70Qm+2d71NndcQiVWFwAVrWfELQ2J6r1988GaSbkwJYsJZhrsHBHoAbDv6or98dO2f9eYvXrdW2C+MtgMSFiXdAHIAJZUODg3KPrORRzWSsV7ojbgMENXb8qzQkqTGMjWPZmMd+yz2LAuW9+imVBRooMy2PgehF19Z7K73xjW9kkyuAFuRO/J7v+R7WbPz7v/97FiTry77sy1gLAmXDFVdcwfkVv+ALvoD+6Z/+iR772MfyNQArt99+OysixuMx89Rf+7Vfy9dW0SMe8QjOt/IP//APnHtFfFje+ta3ctCun/7pn86u1f7wVdSYW+RRw/P/e7/3e7kxCHEMgsnV//k//4de9KIXcfzlr/u6r2NTrF/7tV+ji0mj0YjzwrzqVa9iYCX05V/+5fxwgO4sDYdD/hPa2Nig66+/nh73qudTZzWXqKRMrGz23Lq0H61KStpcb4Otn302pglZRKIdailCzYYuU9MibYpRKBWr1y63kRU3Fr3ZlzEIljnR+RiwQcYYvxiQEbJaoNQ56QsiIYF2N/pEgxatX7PB/dFgAeGMs+AKsxx0sMmFBwsS6jMzkTBSctGoSJ8l4WcqCaqO0IMcKzBXk3YIEyFZ0/X14vAa67+tK1ZvXbKJUlMJI8s2+CqTjL1s8nXNcVL37mUT1wxJjDnBse1h10mn/TOwwTM02MC8z9vk10cV9pq1m74eCfpQjPrnzVK9sz0+x7uQsTXY8Z7P77apveYk8tCeHD22xeG34bhN2y2ipSkRAM64QfP1MbWQLNK3lZ3rvbWFfOK9hJ9WXZPPGMmc18li9TimwuLXmSt1gcaiILmKqhjj2HV1mOKYr9+pjVV+FqPdDnWXxlkgBqwTooVLrZ+SnBL3INeKTV7LZojeNIxNAL1vnlsv3bXdNjTJedvFfKzMZ0TK1/NafuNdkLVS+pli2GNll9VpqS4Q2QtoSdW7l3KsNYE9XgVW5L7p9pDe+fkvZzMjaALuKQQ+ErzwDS/7IWr2Qw3cXmg2GNCHX/CiPfXzrrvuYk0LgMxTnvIUPra6ukq/8Au/wFoWoWPHjtHLXvYy+uqv/mqO7AXQ8Y53vIOe8IQn8PnXv/717DSPCMHXXHNNaZ033nhjrbZBAHrzzTdfOA0LPP5/+Zd/mZ70pCdlxz71Uz+V/UWAvv7t3/6Nfuqnfoq+8iu/ki42nTp1iqOUXXXVVcFx/H7f+96XVJ+95CUvKRxPSf9jx8Q0RbKeXyywEpPWVTFu1t431qayDe1COztXAaoyhqx4XEwA0nXJJySuYT1O+wKSDVPXH2o5Gpy7RMJp6nkgPh16AwOD1uaQrK5O6au+xpJlIuX7xqCXOZHOJw2izqwYTc37FwgwYGYti56Wm0pI/9z1+fiLr4ruP/5g4uX6mWseNRgRabtj3FxEMR67rOwwL0IePMCZhSHJpWVwY2BF7k9p2VLPP5o/R5WlJeCpclLvuw44YY/HmN6YH1PqPVxEA1PF7NQ5r/10QBkTyIEXQiBi789CGvtrcjCcM5fYtCxY4qSsuHZGNPHzmO9vzzgJ5HjQptmgRQ3kaJk26NDh3ayN8GfZgqniuE+NYYta202a9jH3G3wtMthn60imWXHtLAMrqTEqG28b/TDmzG3nROr57gVoyH1Vc2qvfbTPrYx5ja1rGIvchNSdv8KHM7516whNRm3q9sZ5glJedyYMnmMhiIOol7y+5ush5i00KcORixiHa3EMvnk8p31S1bJ3SI+J+APKNdrUlgGRF+ow2Go401l8h8mZLntRq4VYm/R+VMts/QA1E4uC1EDIYdpbMC1N7LuXDKG9B9Fm0fZtbASHe70e/5WR+IwcPXo0Owb+He4Tn/VZn8XmXn/4h39Ig8GAPvmTP5nPv+1tb+PjAlZACEfcbDbp7W9/Oz3zmc8srfNCuYYs7MNy0003RREejglSevCDH8zg4VKg7/7u7+YHKn+33HILH1/MNjxnUOo4o+1144nVmzsyS9n7t+2vsjfeLx2kFsUet3b4MUfusn7YcbP22jqvjpaY8fkg9LL7Do0CwJBoF5BckUMK+40MITqlTXLMOmSLVFb8UcSnyAEfJ/2bjFrU3GmxCYwck03Umdq4jRsbM/KvcBt9fRLpS/dfAx0N5mKbRllkNQ04hOl0Evo4KNXzDOML8AK/FmYAfNbyVJ2puV/nWvuZtyf/q/J10tfH7re+UEHZCXOHqnduLxt4yl+mDLxAiwcmj81opvmcYN8nL/WWXD5h24lWe0Plkybr1jzQNtp5kEWfkwiCU2c+NtvuOMf67TY1mi7k8dr6bqE/Q/ittOfU3GnSrDtnM0nu46TltT1mDhNFGeC6JHM71pfY+2L/YsIIuTfme6Yp5qNQ1y9lL2TrqzsHy4RlMa1yd3nswqircPvufmKzLOy1dr/V72iuNXZzFdoVJNGVugBORWsD0JKvgXGQqNu4qxzzY/3HmjXya7sQzF0BViBcuvPcGt168kiwV8l9i+6HUVPnezA1aszfMs3SQfvkXEp0/fXXs+ZG/iBwL6PZbMa5TxCd66M+6qOy4wAoMPOCVgWAB1ZR8Dl50IMelPm4QCujqd1uM+jBubuLFtawIFnkd37nd9Jv//Zv0/HjxzOV03d913exzRzoP//zP3lgLzbBFq/VatEdd9wRHMdvOBfFKIVQ7UK1iGYh5s8SK79qIYq9tHWByKKakDo20RebNENblKDPFzJzqxrrfOMITVsysKA2S1u//i0bKCdL9IyZtbOGJE82aWc3HWoo8jaVj4+EMWapIMK9rk5pbW3Am68wLDYHDeqbKkAgIgvrcC/XhH0MHUG7rdC5WkjKcv1z7WNTG28aIUwEM7oewMR8nZBZXdqwMUHiuJlnVBbfmMveG6uprBMFUDNKZc+pkOnczgVVRpmPWNncruNDYMuyVMZky/WSx0LeNQl/7cwF80SgzGB6p3w853M7SwUtjWgahcRkJvSB8X1qwQG7QeNhm2jcoOlum5BCCGZes3aTtraWaG3NaVhQ9+bGssvdgqhgx8YsZJ9D07IyptkoT1wJENRqey2iN3mUest84mLgQPokpmA6caGlOsxWmaS8DtC0bbsQ6/deJPux9mjzIPiLIPcK6MrDm/Tft1xB7UOIDua0FZwoFJEQvUkrr9dqvGXdxW9oaLGGwCQLmm7MUyS8zeapN38VYIxcU/Bf0u8HwMX5nSU6cXiD88JA8IRrVvvDUs0VwIk9J2s+BFZIQgqTxLvOrVK7M6Ur1rb5PExnY+9nlbnyxaALDRKqfAV1n7Xm5R5NzpDgYMohYoG6VhhUaVfgy/Le976X3vKWtwTH4cIBN4m/+Zu/Yb4ZPufwYXnzm99Mj3rUo/bf3PmcXTP+/u//ngNeAThpes1rXnNxAAv8Uj73cz+XrrvuugyUYBAf8IAHZD4iiCQAf5aLTd1ulwEV/GzEhwUDhd86HnQdKqgmI7lE8mvD37KICsUlsxdGJVteZ/z+3IznwiyCMW3NQVKdTbkOINOgxR1LmAEpNa/VsljSPhJ5XWlfDF1/zLQrK3fupEyS/G6OcLMjp8nR9tgyd6XerExfv547ADPYtB3AgDlbw2e01xqWvA8wccgZUSRbm7IWSTYTlAPgM522susAWsQkDI6piLwT+s44qegUmcw90ysJBtEOaFxES7QIaLHPtK7PVzbeEUlumTbVhizXQDYZAj1RnGX2Y5QBhQW1l/a9SPomePABwvyC07JoP5x/gVrvfP4TTciXAuax2G4XrQvPNDeriYMnOD03hy7MLRzr2T9l1qDV1d0C08wO+qMWwY2rsTzh37Nxk5ow+QJoRn84aaRzxBafLt2uOpSSxlsqezYW8OzZ/OGAyba57H3bj2Rf9xnzBKAFn6z9XR7TaNCm/vLI+a8w0GjSaEpskoq1EetW6l2UBKbSRgQhEbAsGrHp1CWixHpkCeshtNent5yzMiKJQWOYn3dAe6k9pt1JJ9Tu+4Au1h8G94/bXvPedeBLzwGsqwAu46nTysfapctcRFC31329DljRZoF1AGxqTy4T2thr0p6glydgWV9fr+3DAp73z/7sz+hNb3oT8+vaSupnf/ZnGcg88pGP5GOIpguwgpQgCFQFAb+NrAsHfkQOSwn/NUGr80u/9Ev0KZ/yKeySAbPfg6CFActDH/pQjjbw13/91/SBD3wgO/bpn/7pbN8G0g7vF5sQ0hhO9rC9Q1AA+NNsb2/xOg/UAAEAAElEQVRnUcMWIftC1ZG8iZ19VSSxKqcyW2aKUi93TFpRZ87EHQJ1O+31xTKK19R3Mkxdkwo0kDpXVl6ZBKuqzpQPQkqCLr/1ppJJ000FsXL1/dI+3gy9WQRsucFMYmOfbyw5JiyTPiJJpHsnrc02t8/mxpiLlNtt6JoJBXOAzVu3U/qBc9hYIfnUTvnSZ2y+TvKMCEATdmqFdgihQ8GEiHmR1nLYKE3yHnD29JnLRJ0lAd2DtmW/vlg2ihy3I6FVtcxUDMQKLeInE5aZg5YqshqZqncR5wEQBz4nhuQsgXmVnGdzLYCCuQOnU/VdrhGzsbyvOopVfl1gnw8JuAev/HliQPPtDvuucJl9fJr2wsynRzQGEEKUsIyrkVDaeZAH8qZgGpRXMWdlwg8NTPcLeGJaiItNd4eJEcCKEPLz7OzkQFdAAOaby/vUpFnTrUGaRFOHeTuGa58yQdRmpfi91B1nPlbRvWHqTIuX+6MMPIh5sDj/a7AipAMDAITYpLhsuksNXjv7nXEmAMB1aCOEOeiHAJgyCveXdHS4kJ+ZH6hmJeX7Jr816f2hbG7H/FhsOfdRUbvxTd/0TWzihShd1gF+Z8dFtRN+XQjWSaIJQWQvaGD++Z//mZUAoL/7u7/j8wioVUW/8zu/w1oUOOkfJC0MWKSjSAoDBx2opA4KPR0EfeEXfiGbqH3f930f29p99Ed/NEc3sI74i5IFI1Y6XcYUWefeGANSxkzXjRQSe6HrSMhiUbOkD6m+XWiGsLh5h1Ly/dRXtrBbYGDvSUceK95nraVkHrDdvzddqNN+3V4BE3PYxLRzyff0TI/mK1NqQwqtsouHWrNcKwLNh5juSDQxBA7gT+8bw74vsBP3YEVAi44kBtKRv8Sspsc5M5wpGLQ+cj/mvvZ/yL+H42tNzbhPxrkbYA2Msza/0GZ8F2NZqhPquuxcWTJZHVK7jMRUT0BLjPbD8Lp55ACyTsYn0mv+E58VTCX4luBPzVvJVaHbJ5HnNEixz8zNtVxKDS0JpivysMDkazpoE6065vDs2RVOlMphs1Fue8bal/O3r1OjP81yrGTmm60ZS9a1X1pBk5kFp/BaQ/+uxHKcliWJXNScxq49dUyIpR55Fosyc3WY2UUZRq1pqEua2QV4gVkWwg8jxw5IgIIIUHitaKbXUhGogESTB7LrRow4qenakNb6Q9YQ7gy6HIKZ/Si8ljfnDUKzZF22Bhy4tuP9CN16nifHFIL5Gd4NziWzuUSjvkv+i2OriTw0i77jdedImYN/jOqaptYBK/pTxvhSIjT3IJq8SBnPe97zOPQwLJ6Qi0V8TuDzsrS0RA972MPYVwV+Kz/+4z/OfiwwCUP4YmhkQA9/+MOZx0eKEGhc4O8Cjc2zn/3syghhUhesrg6aFtY6A2H94A/+IF177bUcGk2iAcAm7mKHMU4RBvbDH/4whytGRIM6iNBSmfSxvrlA/qnv0VK4YijVYlZYliQmMmzHFiB9r+1TldNatbQ1Xl7supTzf6qOsranwIo+tyjp8bXjbY+n+mIX4yjg9NGwJOGW8w+pbr8wSrKpsf32uE2bm0v8iRj/kCBiU+X2th0DFvoJCDOZPy9tjib1iNmZ9knANWAKxEyM+yKO8z6XivvtNn+dzR7HYS4BKSHuR/0syfT36XFCH2LjK9c5R2YHWmSOwzSMpZzTJjuEA4jhGEAMAxlvm26d4OuSPKsUIKkbwnyvCdbqS+hVXSpwQ13mRa6vInEmX+17CbMPcc2Z4tV7wokffXJHkRqnNMr2vdJO+wJYBRhn/YIPSh9aE+8v0p3S+bPLdPrUGgOV03etMzDBefixnLtjzZmEwRysPeOcGywwQLQxDmfrkplqZ3kZDzwDiWzH5kMCViLP1PlqxdfoRcz0Ys9OjtVlLjOfo5rPts580WuJXvNiCX5tv7TDfKzMWP3izwJCZK/pxAlK3H3FOYI1BqAEyUR1GZK0FEy+flfEBwaEdUMCkeh7oQFGqHi0H1phrDVSnoxDYIaoPgWond1e4n50W0XfFDjuY91CP7aGvWzOQPsMQYyYKa6vDvg3NOMQDsAxH/dBEFT2vGx/9Lso5nCxa2MUc4qv41u1Fw1dXf7lknC+nx/gX01CuGIEkIJC4eqrr87+EBUM1Ol06C/+4i/YB/1zPudz6NGPfjT7pP/Wb/1WoBF55StfyeAGUYBxHPkVESG4Dn3/938/R9/d3XXmunebhuWHfuiHuGM/9mM/xuhLCBEIYH6FbJiXC1nJiTWziklSrEbDhl5118dDqsZMTOyLGzPnSC04ddWuwmCmnL9j47IIubKKoYFj2o2UZqXKaTovY5E2xShdQKodMYmT7ocAD3tsUUbVJXucEpYAMGcnbztCh6/cZGfkeWdOy4dyUwppgzioixQemxRCKmeSSh+KWdeN32x2oSTPbEoBDYmPKoarRNuD32AW5HpINJEDQc93XIsNOmNiPHMnYEmPHW/Mer6ygzcpBtmViQ0d17pcN2EmdUhD2ba8CykqLUx6LPaT1VnKSD3XWPK72P2p9sUo809KrA86XLP1j4kLaPJjbv7kPiwSYcld6ICCS2ziGS8PMnn9lGfuc2pw4AUPFOCnlF+nQnN7x/5MK7LbJOpPaD5pMlgB8IBJEHKwMFCaushhbA7UnVDv2Jh2NpaovTLma0cbPU5IiPdnaXmYgwq97gqA8qHK7TuvtaNufMrXxDL/lTKNRaZVygBUfY2GXqvKwE5qX0hp+m2/5NMK+Ko0MdLOFKE8aFdwDbQbmGPjcYt6vUlhvkJ7oX3ydJAcJ/Bw65c2yRLBC+adCINazbA9qJeOEQ18RDAnEAjbbftwZmuZHfJ7nQmD2KOrzvwGaxx8UgB85D5c051jrXTCF0QV2/UCqW5vkr0jOLe6NKSZH8MBQj13oO1u0MBHFUOdiwTdEK2mW4OrKfasy65LUUoDJXSpaVDuiVQntSIi+drM9pYQEaxOksgYwYH/937v9zjS2P3vf38GSZre+c53XhzAAiQGlAXU9dznPjc7DqedVK6TS5GyDVJsXxOgpIqsOZd2ghZKhUS2Pi8aNNm2loGWg6AqjUyVP4GAFntfmZ12KtRsihZhTMs0Nimqa+6Rj0nO9NrFuk4kOb6GmfN8s2BGvTeh4UaPlg7vsnaFGbrWnAY7XVo/tFOQyHLEJq9ZQZliwiWaCzBgIl/Exip1yT1T2fTh4NqcsWaHWo4xxjFoezjksGdIRSot2cul707TIvlUpo7B9OULs8GSP2hqPNeoQYiUg3kkUcZESoj7AVwy5tm/s9C2uMzUcj9ddKqrLUlFISszHdN+UPZ9ETOx4D4llLCR4coYTX1czKjwvDKTPraBntIEE2MOB80WA4bs+fGcnNPcM2ECSvTzFSZKnKRRkPgyIaM9g6FDE+/QP+P5w2MAMx+ZO6x9aTI42d3s0eFj27SDCHrTBk0QBWpt6HIDGeGCFipo/yQZy5ggKlu3S0y26vrDWFChGXpdRhmwlLbFTJZjoKWuFk4zqan1Xa6JlZkyV8z80hKJSvV3MP4nTx+iwaDD80r2Em3uqu+rWtd1mxCVTJ6DbgvmJjQzDFyI6JrD5+n09oqPOBZqZFydOUCxz2lmNI5CWL8Q6hjgHhrp83et0crRHdq6awUvNzXGTVq7epOToaLfqBdgBfctdZypG7RD+MR8RQSzFKW0IugnTNQW0YbYuVn3Xms2p4/FrgWVC1vv4QBnQe1IaTmXEMGPHP4vX/qlX3r3Ot3feuutWaxmayoGO7fLifQLI9lu5XddquN7UhaBLNaeWBtSL65svrFFQYOpMuf8FEMera/E8beur8ZeaS++M/XGPX2uVNqkmE9r855yzq9Dw1NL1EQW70MDjuK1u9ln34H+0thLE3Xbw4RbkvcFKyCYzU5nEmx6cg8k0FrDZ6Wowqi6pGth7gnRSmpbejCo7JitGAoBFyJV5zGI+AJlJiA+THJ2vfK1YXDkzUswJpCK4rswFjFNXZ1nv+izidFe7rdamVQ7bDjXVBhqSww+4bVUoX3V56QsPAMJFStJIxlCzJrZeDvfFqdVkWM8Dz3QdA76oUZXNIJybW764wBIozGhybBFhw/tsL+KnnNIJon8LJi3kE6PhsjTMqed3S476CNAQG91WPkkuI0+2Wk29krDY+fkfikFJGJS/MB/IKG1qNuuvYAV24aqa20fJHKhpphJFShmWbCyMqDN80s0brQyU8FFhIcFMyldf2K8QQzOwdAjwAhHExs6X74FNAT8TE07ZI0EAbTg+IlrzvJatnb9kM7v9Hl92zy9QgQzXfhvNZGlfNet3RASKfPy1L5dBSYW8S+y5S1q8lX2jFOk16h7PEC5B/iw3BPoz//8z+mv/uqv2IzsbvVhecQjHsHhzywh5vJjH/tYuhxJa1vE3rkOxWwsF33BUxGGUnaedcqo29YYlfmfLFKW9nE5SOfouqZjB0UxO11rk13FsMaDMMSfHbI0d48OqHPDFkc3Yr+R1ox6h4d8pcvBIgy6smfnZH85IJHjkOrB7EUSXLJ/ipiCeV8ESwA92u8l73f+6ZhTAStOIyLETEJmj55/ig+D3C+CAoAw55uTS+TlPgFO0PIIWOFM1tAEcbjQPMnbPSg2yMJ+NHXmUEpzGyP3nPeeCBYA1+UsmuXPyYeM5SAQCpzit67HzUUcE7+VSMJJcx8z9qyR81HvOCO9lN9gsCKO9DAdQgHN9pzGA6+BhJP2wJmxTSY+D8aCZlIybnv3/ytqlYM+VzwLyyim7kuZqOmx3CtV7V/2vNXyxNpbBoJ0GdCUXnPVOeezMm5VOoDX8R3S9cZMu2W9kU/xdbFJIXXfiiaY+bhbE+hgfntfGWd2OWVtDbQyADEnrjpP64d22fRx4/wyC2Rgfoa1GMAGazEENjA7g99gbBy0r5nUC+d+3q/hT7sP8HdQdKEtRe6ji0NIeVI3/PIF1bAg+hbUPdC0QKuC0GXvf//72VRMIgxc7rRotIqU1El+L5oXwibKKkjzEzbv4BG1X4L+tGZrMSrrc90FrE6EMVdete/KXqla03Mw9ZTZjlffG28nGMQRsjWPWpwTgI/BNn+nw8zarANp4IztowuSqciGyU6vMheaTnPizKvyRHpCmCMdJJ705jMxh2pJWikkfiaST0XCjVpfBaFcE5K3nU3PZnkkMmu6gWslYhXO9di535ltiA04TMO4Dx5EifN4HToILcteaC/SSE0SOjsWVQ/LBpicqbcgaUNaW1GHZSwzUA3zlN6YM4kzEOL8JuK74kzz4DeFuYX5ps1WQtMQ9VuBFhYQYS7CfNGHMxaC4zyYV5hEuuhgrm7k8YHWkY8PWyyam8/m1OhPqO2TRdr3dJExrh94Ja0Vj5HM7UXXvrrrr9WY1XGeTh1PhfgvAisKfOPqtEevnVpTi+/HD23RHWfXMv85bS5dJv0vA3H29ywCUFEeAAU+IejRZmFFDVz9hxcIbXRbG3PqdZwACeOGEARXnzjLQQIAWkAwlZwOWzTswZ9rSkv9ES11iiGQY/lgTp5bz0zY9PpWtW/lSV4PLmpXqFGPl3tJghajvdtXOZcQ/cRP/AQnk0eEMfiw3G2ABUkj//RP/5R+4Ad+gFZWVhjAPO5xj+NjyMVyOVLV4hMzq0jZC9tFU29MmkEVk5CUw+5emCguxyxc0tZqH5TFF4uY5Ewv/vp7KlRxzNckBgB1XTFG39r3l4GWvQCl1OYvi68GDilG1D7nWPsAJFZXB5nDvGM+naNzb2lMO2eXaPnILg2GHVpdHnLyR+uPFYIWF+JYxkTGRfISyHGQaDu6zTFHqHEgIi9TQIjuq5h9OTBhbM29L0MogQw7LQBKzwMBUsIA6WtcwkuXiNBmY2eAFknCeU8lO7Zl1wjFAnfEQIv2j3Jz0l9bY2w4GahnorhdDeJwr1o7J6Z6AI5yXDdB/GccGHXngrlgGDnW9nGHvc+Hn0/wlcnmZ3vGmhb8AaiwJH63zUkm4cPS6jp2EFq4OpRaA9hXxptFFtetdJj0Krv9KBiskfE+to7G1t1YOXV8EepYBaR8Am00RBmzVH0WtIRleQEGnNBXhlm+kpiwrY4Arq6fhQZM2D+nM5dTRRj32HpS5Zwe2wf0ey7ABZoc9Fd0JjgPQNI9uslmaRvnl/j9m+62qXdkxFHxZse3afPcEl179Vm+x4WWd5pGibwGwQ18clxd4Vjddmadrjl2PvncNejU41QHwJSZoF4q6/JCxAvZAZVzCRF8V5Dv5YEPfCAtLy8XnO6RgPKi5WH5xE/8RI7ZfG+kMoa+ypRAKFyowuuyxHv+cjhE5/fVMxcrAzN8TaPMGTze9rJkd2X9y+qNOFwu4vdSJ/fNQVIYZSfeJvletfk3SxZkGSsJmZr0YchCUbrf7bnLQ4Djh9Z36MypNRrudphRg7NxZ2mSSbSFscyiwnippzD1VW3Lxh7zCuXAd4GQNdrlZRGNSBWjnYNFB5AdE5eHJ9XJInOpt5ZYmqzsmQmZj2rmo/hIOFD0D6ZiDdyjElQetB/UQVBMiLAXKS1LoSMO+jZJqfWtYvBXsSvm83nOWjn8FHDI9aoQtcyYiukZvvukkXAcZr8n78civgg6QIA2F+TrxKGbEZbx7/DanJzJ9H2D7wyCA3Rc3fNmg83IGgoYpwCaA2F5CPCUXEjn9FiE8UoBldg6WAcsaC1GCmSFpk/h2pbydcoiukVAQJmwJ0UpLcxeSPKaoBzx9cC4W+2C7UMdsloSeZ5YS2UNyea8CWxRB/DFghPEfqN8OMPPJ85cVwJDiKAKoGm03GLQLvcvH92l7a0em5DdevIIzUdNuv6GU5k26MjKDrVVZMgYXXfsHJuVQUu/CLgr899JHasDUiwQWuTe++juIUQMvhC0J8BybyN5Kfe7yNryyhbVqKq+xDk/pYUpowyEqG7ZhUGDlbqanZT0sGzTiG3WMUfpOuOk75XvVdcscsyWG2tjrG1lC7s18dNjjg1K54PI7vFhLWECBZHc7HyXwxsj6z2c6UW7AZAjTI0waZI4Egwg2zD7vCWuXKf5EIfqYsQh53ht88noa8UMTAMlDZJwDGZIbD7k6xLwIWVpvxcNfsDEgnqdse9jntQVYyK+OkiFKWDN5ZXxGoBZkzZ3exwK1FLs/bpQ5mBW+2bP1S0jVqalMk2tnBdzvTrvKObkeNYJzAC5Xm9yB9KfM9b05T5HMs4MZvgiD3gUYBEwI8+Qf7enrD1cW9tlrQ7KBWiBj0o+Bq4MNuGBA/6gzWaTzAB6MAvGlnNgqOhWmvmSfBt4d1KMkdZM75WJiq2LMQ1vyvyq7FjcsT2swwXpyIGejR63aBSosvaUgQdryrUIwEBdEEyAwQZ4wTPue2abfZaM/8miFHsXBahoLYymvQjWbL+lXvgXct6YeSiAYMf79pTWl5yDvkR+nPUndG57ia67+kwGToLxVS+5mAprmsxzs01EL0NAgCqympas7AXuW5QWEejcXeQt+w6knEuJ4DZytwGWI0eO1A5LtldVz72Bykyk6ixwfH8CtMS0AS6PQG6DK6Y0lgG3jIwOpVzF5FQtIotseHZ89uvDYrUzda/X9ZdR1fkYcIlJiwIQkmAsbb4UyIpxn0TE6q6OaDTuc0QkEBgubOLYeDjPgGcUscEJc6/ND8mbTmXAXJlrsSS85cMae2MF9EkYARk7GROOGtaZc7uaCR8FiRiUafYCgJQzjtio0Q+5RvuxyHEOqSzjKaAFUscOGORW6LDvs50LMxwDxfbZVoH02MZZdxM+iE23LoOnzUyTOV8qGEo9Z5j5h/R3gjUp91sBwQMlA2PK1JC1JAwlc4f6zBxGzxNoL6buXgBbGc/xqEuTOdFyH7lUfJuQ+R5htsc+nLbPiM5A1QMamEvubvWovT7IwIzWPLob3DHN2C5i4lKXQUuNbV5mrJ7F1kMLDrJ1WJ69aqtoilKhrmNU1Y7UfKzLyJc501tCvhYw7IgghmhxeLchkHDmgnMOsIDPnanzsUIfe15DU+f9s3NfhDIpsJI6VtaXsndYr3nYw+EPhvUdfnkAZhxVbMkJX5zwqc1ChDvPr9GJwxvxtlQIM6Vvq70hBy0p07bYeV+mHbb9tOZ3lx2hWwfRtUtweG666Sb6jd/4Df58xStewTlZ/vIv/5Lud7/70SMf+cgLB1i0euf06dOcPPLpT386PfGJT+Rjb3vb2ziEGbLd31sBB0iHLbSbWExyUkZWWiHHmDErCVcqi5uEObQMo/0eY7qrzL/0ddZZL3ntAgtSdm1NE4Kyc7GN1Tq079fJvkyaKO0re/4x0JKiMDcP3+2kapgZcCYetphxm67AAdltcOIQLRteDJi5XCt52wPfGm/+IAQzsHEQOlknWXXnnb+LSyoYC0GqNyr5RNu6newtyjQseUbm3GkeZcai9TnmyyUNFFO10cgDGzDUkjCxcsNeDLRYKtuEFwUpZfb4sblfBqB0H1KmY9amXT61jwRf13AAGBoPDvjgI3/Bv8TZ+3v/k0aYTyhLMJmtQZJs0h3n54bbkW9FBVloeHCCes4juV53QoPtLl1/9Rm65eTRHAyNWsy4AtBMBh1qth0Tu7w28HOmGZjHzuZ+vi4QATI2tppSZq4xZm4RgYot30bK0mtNKpN5ag6VgZVUffuhuuZuVXWhf4eWB/wHHw2YPzXazlfJhdp25qCYA5irR0yulKr6ZR3IzLUTbRFfETjmB6arah+AiZfNLaWvs/3stx3YYl+wOeao+PG5fvG67e9b6oxod9xl7SGu2dns03itleVYCXkVtwby+6nWtphJooCVRYBFyl8r9hzrCAWE7jMHuzTojW98I33GZ3wGPfnJT6Y3velN9MM//MMMWN7znvfQr/3ar3FU4QsGWLR651nPehY73H/jN35jduybv/mb6Wd/9mfpb/7mb+jbvu3b6HKmMo1BvqmHUgP7ktaxT7fmQwKCynxNtNN5qu1l0rwqHxm5PqVZWNTuPrYQpcbqoH1XbB8OOiJZisksc84H7UXShHuvPnyePnhymZrDJs0RzhXZ4n2eEmQll/ws+bzKmX95pjnjkjM6DA5Um2xWegHPvBk3nU8LSBiELNqY165oXwd5tmLaIGY4mV+K91/gcfNt1X41LvKUYzZRR58TFaIdbp5jDKBhQnYotFh8KVCCJM10Y15vnBc1h7TChoPSppQxnam5lqq7ar6VCUZkeUBkol043YOhA+AA+PRAlQWMXkuXtSMTFPi11JuLOXAia4wL4NDrTnj+siM9tC29KY0HcLpvsJYFyVI/ctsxuvbEWbprY5XztDAwHzdphvDGswatHB66+ekj1mUgSmkbqsDKolLgUFOcljbv11/KPvcUQ1jGMNZdW+uZ4paXJe04CPNqa4aE79C22DbDHwNrDIKxYw7AXApzc3enS0cOb7vIda1p4d0BGMjTCBT7IHUvd0a0M+7ycfY5KeENEHa4arw1MBxMnNklA2p2wnc+g5IjC20fIghBb8hrs/iqHG6PabOzRLtjF+I9CqATjyC1F8k8gikl/GcWpZQ2MgXuLwvNywGZhF1qGpYXvvCFrNh4/vOfT2tra9nxpz71qYwVLloeFmhSnvGMZxSO4xgAy+VK9sVh1WvJTEy9aHKPMG91ndViZkT2L+bYbiUdut3yXf4kSlQsYldMO8NlmDcp1qeyPt7T7VT1mMTGpg4JQw86aOCF9mAT/shdR6l/YofBynx1SsOzLhqM+G6A+RNH0VBzkpfDjFsiilxKYih9EmZP/FfYDyabC3kocO14DwJIEb8WBim+nVy+SNtVOU1tHuQ3b3ef8mPxjKAOOzpBpnSvnq8LHvYKYGNzvao+PUfKjlWdk+P6Gdljtl1aI1w3ia0OLw2C2Y1oR2YTaPfcdXq9cfUo8InrvblhfjwUJoDRRBJICVcMkNLuTqnd8eGy266iO8+tZc+1uzR2zFhjTmvHwJC6egF8ONmlD0sr7YLJWRVY2QuDrcc1RWWa7irSa7crK3+/rbDMHt8PxYRKddd43a6yPXQxH5bc/LAwn5Fwsjti7QvyuMBvDaF82fdjfZed9yFoked/dnspMxfEuaPLO+zHAfMrMamGJuP48hat9wYMVgAqpL0AJN2WCymv+1q2/mvBgtXK2/cXoARkfcH4nA56MW/S8SObdO7MCi21Q3DhwsvH1wlNeu5KdDEQxgXntoa94HlVPbMyoVxdzct+eIm7heYH+HcJ0b/+67/SM5/5zMJxaFlOnTp18QDLsWPH6HWve13hOI7h3OVMe3lZ6kq06i72VRtgbCMo28hS7Yox6DEgw/cl/FxiwCX2PUap8wchmVvEaVV8YPTfXqmMAc3rW7x/GKtOZ0pXrG85Rm3coMaoQW3PzAmzrwGDq8u3yzN0cq18iikXR6hRm41kttfMkGgfJOu8mHihDDAH+MNGCZMMAS+cULJgFpbXJeMxj/x2fil5KGWJOkVGe+KSR87ZfIjb6vu0hEAFFWSfdV2TsP2CbJkn+51vri3Fsm09uY1+CFqq6pf7AAR2Bx2OyoVnCgCCaHVI0MjlKrPCrA415xzQMSAZfgYdaMzCsNaZP960SdvbfZoO2y7vyrhJw60uzQYtGp5eohkc7TtuXgiDpjW1EvGuitHSmomYWWeMSdbnq0g0SlXR6axwKRirxDobu05fvx/Gb5EyYvtR7LztXxWoiWkAYu2JCQKgIcAfvkvIc9x7xdo2a0mEtkY9Ory8y3/Q1rKZ66xFZ4dLfA6aFRDm6Wp3yOZgAir0HCibY6lzsb0CvjcuNLv02Qdl8eumfpfR1qXVId12/hCDFm0qqMdJEuvaNmuC5soCDgDBuhqzKgHuhdgX76O7jw4fPky333574fi73vUuuvbaay9elLCXvOQl9NVf/dX0D//wD/RxH/dxfOztb387vf71r6df+ZVfoXsDxVSbZSr3Kqe6WLm67L20a6/X1V1A9IIpPjOxSFeWyUv1yY5jrH11xnA/dJDhbMtMzKxEbZE+hQERlBlXa0a33XXYRQnbaNGsN6fBVo+anWkWUWmp5xNNejCRRwjKAY1Vw4vmQpuJSZvZzMKbcWUBHtoTjmqjTRidyVZurgAQofsvAQIg6c7Hz5mE6chhGlRJBDR8F7MwfIf0D9JzLhuZnyfwi0GI5xaDOgvaYs9tUZOwlBlYHYoxU7Yde/G1Kru/zA8va4d6l+1cDqLNcYCDJudAEdMvp11hlR3N53mulrB9ef4XbabI8xoaF0TAG3bYtKwNs7Bd5/i7ud33dbi/BuYfqvLzkNoz52B/atnZ8Q+6uXM9rveAFdH1YlHiYoTxAlMHCX3qWcNMRiTPi6zbZQIhIaslSe0RdbUV+vnX3TNsXfulRepNUWoPTp2vak8M0COTvDjoy1jqZ4x1rd8d0rjRom0PXlJ7Z5lp8CKCON0eUuBK+uv8Ed37AI3kxtYSrcK/ZdLhqGETarLGBCAEbbAO9WV7tAXmrFFSIabL+If9PHP9jC9JDctBlHMJ0bOf/Wx6wQteQH/0R3/EAbuQZP6tb30rfcd3fAd92Zd92cXTsDznOc/hitfX1znLPf7w/S1veQufu7eQlubUeQnrMqVVqvuyOmMvc+q6uu0tk3BZRgjMTSo3TF0qk9odFFiJ+a/sB6yktDBlUmqRhpX5s6TrK0qksUHBVKZzdEBz8PI4vdPihHnMrPlPITGd0uZX2hk0M98x/gci+ee2Z8n/8vsAVlxY5Lxf+rxjHkPGXABRphVpTpUUXjEQqhwBSgKEAHgASgBW2IdBRT2DBkA7zqbCdFZGfSvRsJRpBPeiFUwFi7Dzay/3L0J5rqbwfrzXkjtoecmNJzLOT9h8SzE0yMQ9bmURvWwIVWfm50CKq8dF9cLneNDm7N1s3dWYs58MzwnOYu/AB/+xs36TWkgQOWvQ4ZVdov7UBwJw89rNW8/AenNCm5cn9t4J4BawIsdSeUHqPvcYaFxEG2/XyZQ2ZVGTrpTWYj9MYtoPqmjWvBfS62GsDKsNqyrLggOAFq110det9QaZ356937bFmnsdxN6W6pPMP8zLh524g+7aXeH3YHPU47qgMdJtkrIWtXwQsGLrTbUxNiaLro+XkrYF3T2ov0uJfuRHfoQe9rCH0fXXX09bW1v0iEc8gp7ylKfQk570JHrRi150cfOwQLPyyle+cs+VXk50IV4eC0oaBwR29mJepr/bhcVKB1PM0KIRlqR9l8LiVFfik5KSxxbrRTVxQhwtrNGg8dKMWltNmvWIZqNWpo2Qa6w20IGWlOOjq09Ah5aIS3QxcZIeeedVsK9gLFFvls/Cf0q+F/whLLI2BWu33ObHUcYEkHimUoIE4AskgtIn2QxhrjEcIbjAzEUQg5lQ5vg/zdrS986iMa3BhSBth16HdLuqzITk+kXJ9r0MOOPZxN5deafxvGGisr0NoOIlgX4+IFCxAAvJTM/9wn8mRHXTzi3MN+RtGbfYX0VAEJ9r5GCZ6+TycwBzx+l16q2M+F5ONIkYet4kDaXwbJ812C8BOSz0ulkwTYusqXWZ3pS/QjCOkUztKX+HlHNymemXtMe2PyXtFxPNg1wHtfBL6jiodd/2K3Vf3b00Zj0B0AJNgrRd9xUmYeKrp4FRbE7FxqGOqZgFFWX9i91/ZrDMn2wi1hlnfo1VwswySxJ9ToKt6H4vsm+n5nWMLintyr2Yut0uW1x93/d9H/uzALQ89rGPpQc/+MH7KreWhmVjY2OhQjc3N/fansueqiQQ+liKDsL+WH/WJQtg9koxTUwZVbVz0bYcZDSwRRfnKgZTOyjXGRNrGw7pNPVmrGVhycyuczLGcUioQdqkyzJLuiy3AYljvIs0o8EKl+UZUfZXacxZGolrsMkjwhOb+HjzBOdLEPONmlO/O84k9k1dvvhZqDC4AlbEAV/GAj4U6JMAIhdowEVJE7Cyl+AJnHjNMO0xvwU9T/V7Xs8htaiZi18XmozF2hG7x15nNYLa9t2WZ+9nLYiEQfVJ6XrIizKE/AvajybNJ02aTVxEMHHGF/MIASb5XEDkOHefaGAARDKzm0mLWl1nzueSRDqRozj2Q+OS+Wj5HQ0mZCDObs8qGjc/eM54Hxkc3xzkjsNVYye/62hOqsCFnRP2PRQTR6t9KJPMx7QuUtYi6/oi66kdm7K5WAXctc9KTOtStndWPRdQzPqgCuTEzlvTKHF41+2MgRc7FrFnGfPbKdOIxfrHa25EkyFO+dKuKkppHC1IHE3b+xrvumDlQpqD30cHS4gkvLOzwxqWz/zMz6Qv+IIvYLCyu7vL5y4oYEHiyDvvvLN2oXCqufnmm/fcqMuNrHOrphRjcLFoUXV81YYWy+2wXxMx3c6ydpXRQTnO5+WlmbrYtWVt2ivZ8Wh5zUJ3fUgEExtInREd6dYVNheDiY2YwYhDfKy8UIrmfsuGLA6qQmAAJbO8hCeWbOICcIQ5xXEXESzsB0CPlM/mYR64SBnOV8LlleE/1VZOoLbT43CfY4S/VZFyJHyyAysuN0EdKstVUpe0dDTOaFWbdi06N/azfgjotDb8wgiWrV/ynHnOgdB3n6CTf+p5ZsBiYPbHgKTBUcbyCvJxAHAJqKHaID4snq658hxrZph5a80CAM5JSj2wtWFwY++WjAvmtzM5zJPw6rHRTKjcXwZaNAixACXliG6pyl9Ct6vMlyV2f/WaWg6S69YVu0bXX7U3pTRSsTbFGHa97lWBF31PVbvs9XjGEpEMJmZl5nep8suOaXBk3+PUMfmO8McyV3QZqedWJWBNaXCkX4uuVXVM1O+RdC+NEvaSl7yEtSqWAGJw7oKahM3nc/rVX/1VWl1drVXoeLx4jO5LlVIvZp0Fuu7LGlNn11VxL0J1zMQsFUwaEj4s9vheGcFF2rJfOgjgGJO01Ym8lDGBilLPWudRwRUAJvP1CbXv6hCwRGunSaPTfVq5atsxW9MmO6JLu6y0D8BC/Eqk3WAhhUkTEmd3HncPOAAY+Lc4UHtAI1JTSSaoN2S+R3VNbML1OEmZYm40N3MWDKgLi+tM0QQ0ST6YRagqcWqK2dGbcRlVm3nFtTaxuVTHtEMfKzN70pQyD3QOvUVGi02uAGYBNhq5mVaznefe0cCl0P5M45Kbd7kLZH47M7KmMiPL+sQ+MM5/hbPet/P8PQKoRMvHfYP5oQLVqUR+OSh22khtCsf1z3K/q2x+K+ZWmwOmmKzY86hiyGKaGfsM7fNL9TF1fZ12lFEOEPM1OfXeBO1U/dHMKZ4egnrE5nUZmCvzEVzEzE9fZ7VYKSAQa49eUnqtCQ2n7awMaw4o4EHPJU1bgx5rjTE/bX9s/+2z0HXiT+dVqTsWdu5yeRX+t3X3tKpneUmBlnshzedYD4vzCIkjjx49emEBy/3ud7+FIoCdOHGCOp08VN7lTBcCrKQW872+7LG6Y+raRckuonVs7vdDKYarrE2aLnT7LKWeX3Hs8/aVSQ3Lnr/zDXGbD6IkNZYRJaxNnY0mjddn1Bg1aTDoOPOZ1pwGp5eod2yX/UE0KyObmjb/EhBimXL4hmgw4sCB802RsMNCLioZ83hZn/XzABM581HBpK+6LvfZdH4R0PggKhmHrG24nByDNmuRmHn1eV1iZjQpO3qbD2MvIYzrb/TxeVgmhKhaC+z99h1PmYLoa2JRxGImODOHO7PzAAq7213vv+LAA59jJn/OTvfiVO/KwD8OpDhfFmcSJv4vADlynYyV84jJ72XQ4p3v8dzRrsmoRbNJi648tkmnN1ac/0tXAjhgbrrQ174avgfRkuBQX0aipROmv8kNmrMPzFJvTB0TJlZ/B5MtTv+WybLAncs2oFd/LzM3qyvhts+0jnlbbDxi15atVbbMMsZW7p/tcW/STH7qfNWxsjGu0mTI91j9ALzQrsAnBlERBxOsi9Ms2W0PERMBYlhFSUnQkq3NSBaJ1aoEtKXGry7THwMiewHaeh5rgJ9qmx3/2J54TwcubJZ9AE28h3czsMYCUMHfQx7ykAC0TKdT1ro897nPpQsKWD70oQ/tuYLLmaoY57KF3zIVe2F89koHAVYuJqXGaVHQcrHASrWEPW7XrNunmcfUolzYMCCB5ghZLkrWfHVC02GHGpMGTdcnND/Vp9axIU1HLSIfNSzVFqmbfKQZRP/SczaXPucMIdoM7YYLlyz5WCSnR8jo+h5kTCA0PnyNcgi1moR8bByDi09kt0edIy+9dIyoC7eJ8QBDCcYgZi8efy/d/XsJFLGfkMPh+f1pT+uAm6p2xaOMFQ9i7AFWABQYfIDxkuhb0PohOhgnk3RAmQ/7BJHsh5L1VdUvz9zng5FrQTAXY+2LGUPMaafRmTJYWV/dpbPnVhjEcKJJn4GcGcCsj/kciJnVgABKBNAIkyVzFp+DUYe6CbOysrlmwWRK2r8oUyhl2/vqap5T2r1Y2/W1WmKfKs8y9ABzsTbKM7dMstZCVI2DbWPVu1RWXgwMxrQhlmw7EVIYYMQlx51xGGSYiGktCL4f6+/Q2cFS6RqENqz1h1lERZQb64uN/KiBVt2xtONQJTS089leX6e+KlPHS4ouwSbvlX7qp36KBadf+ZVfyaZfhw4dChzx73//+9MTn/jEixsl7N5K5dL7YjSQKtqvOdd+GZtYexYFB8UyFgMGdRjDRftXxojWoUXMA+q2r4wpqVtGXdtz3sIaREev3KQzo0PU2mxREyGOezOabnSouduieWtO49uXaXx4xMnFJNO9a5sTgQrjIGDFSUvU5gptRpYgckaTcTvTtHA7vZ8MpNM4xiDKZ7IXQCMk92QmXr6P8FvIAUxuHiRmXqMxzrsyIMlv90fsy4J7Ou15lttlkY1Zgxa+N5JLqEyCXGTaaE9UpUU5KIqb6oSgRZthOaDpAOXuDsAKVGdETcyvIaI9+LKUWRdH+fKRYbkcgBcGmRol+Xt0e6QMr43x1WegqLM0cd+92kTmCZhhTqrnE4diTkh5ep2zkl47rlr7ojV2/D7UHN8q30X5rbWbi5RVZkqqr9caaqvF0X3cjwAr1f46GmNNWa6fRDl1KaY5qVteCmhqf4oyPw8pv6XugRmYrH0aAPN61ZoyqDk37CdNwfTvftslvtwdd5MmgfZ5xkBLrM2xYxpYld2vr6kal70KfO+jeyZ9+Zd/OX/eeOON9OQnP5na7XKI8aM/+qOscUGiyQuSh+XeTGVSstjvS420yns/m1adKEyLRgq7WLQX8wN9bxmTWTauRQYm/66delOao9yszDnegw71dzli2KwrTB9RcwDQMGfwAt/2zof6tHvLGg2HbdrZ7bLEXIODWB+FAEBc4sn82sxsBhmhJy0ONezKyEMb642O88dgo+ZM9XkUG5SdAR+f2d4V5JhOPaajUZs6vUkumffBB2KbeJ1xDMa+RMJ5Mfyo6tRdNe/KyN6rNR72Oi0BZxMs+A1BWwfzvCVo89oqN0o+58QBXzPIHEEs6JTkU3F+KFkEMAln7B3lXYhkd6zdm6hElbkkk6ON+TJB4t+EOVGXYS4bR7T/zrNrnDATeWZiZcq4WiHWQcyNMu1Jao5bk0D7zFPHY9ccBBiIUcqhugoU1J3TMTMkqbNMoi8aZQ1W7PW67SkmfjJvZp/w08P+57LWz2m5Pab17jBInqvJmg1KHShHIjTuddzrXh+bWykfKk0a4Oh7Y++Kvlb317Zhr3296HQvdbr/pE/6pEqwIvlazpw5U7vc+wBLamBKGBK9YFgb5EsRtFSp/lNUtVhYpme/4YTtWN9dZDf41AZpv9v7Y1LW8K9cOh87r6XGd26u0frRbZqvTjMJ9HTZZQZnKTUsw/pzau02iT68TNNB2yX689JzSRgpSfZCk6HckZmlobMGhzEWEvChNS4gcdjOpNUq+aQ8X8yrfm/MoY45l0pM0ql8VRhcNefU641dxLGJZwK64yQTFBvLg6CUdq+6/sUYMvs99W7UkXSKnXtYbv6nk4qKxBbPlPuF5wB/JXaUdyZhWrOS/UnUMHVMnOylXEuSq8WdD88BrHBunnEOcsXkDGZo2frswVOrHYbAXnQt0WNzfqfPWiUkyXRBAcI5Zhm0uox8DIhoxjC27uh7y9aTRfsIKtO023JT5lFVGqHYMZ2s1K1FtZpf2sYYILMgINU+u+fHrtHPemvYzTQoovFa6Yz4UyKFceJVmKy2ncmqgJnldtqfKiaAQVlL3XiQo5QGLdYH+2mpbB3FPdr0TAO8FECU++Yl4LqO9uqeTuLDchB/lyPBfGwRug+wLEixhcxS6iUtY5z2w4jX2VCqaBFmZxGJV528F3sNdVyHDjKU8X4Yy71ck2+yi+XpEAaKNRzjNvUPORt7mIa1N1rU2m1QY9hkDcusN3cgBskXb+myNBoaC6lbEjGCslwX3vRGZ55HrhOYZ4FkbvS64yyUMZz7rQmYZiKw8Yp5BPoGzQxnNvdRvjIGmW/wgMuHm51nIMVlVnc+LmGOmfJnED+utStFMFkNBMrrjEu161KKQa2iWLsssy1gM9VXeXac1BNAhc27nLM88qDwPLGR2bI8KfmfbrP4qWTPmMMP5+Zg4pQvEcQwL+CfIr8RGYxBCUcMm9Op8yvU748D/ZgwSLpeG/lOxkOPiWbcZQ5LXwCOypjgMiYvGJ59SJFjwCUGJlIUa0sKrMTmg4CKOuAkBVSCfXVB/7HUfqSZcPzBry1mIrdfss95CYFM1BhyLihvViugBj4n/daETcAOdwfUbU5pZ9KhO3dXo/52QlbbjXOjSZvNw2y+nUX9eOr2NUUpzQnWdg3cY/NhUTPISwGs3EcHT/f5sCSIX7AyTYtaVGMvYtJkxNQhtBempayu2LErlrbp2uVz9J7T1xbOldWfkp7tra1FBnGRiEyL2ljb6E/7pTI/FE2xcymbX7txxiSd+bFy1bu1z2eTFTBxx4c02WlTcxvO0Q12xOcqwQR2HGiZI2YsGJBRiyadaRb6OC8/f36WSQI4cfV6qTzbKLvzMMUBeMpyV/iITSCAHIAaJJwUbYwXyGfZ6vEHBpUTQ/pcHAJusjwdMwe02BRswTDGB0X1AdLBvPeW6rwb1lk4ZX6RYnI0QwyTKIQyFi1H0+fPAXCYiRNU0D75UvRf4TmlwAOeIeddkahZAKDwlfEhrZuIDOYj3skrISaHQoPdLieOZM3iuMX+LKiWGUylvbHjI2Oix0rG4fTmiutrG2GUw5DZ2b1mvOqQZvLqaLbtc0qd1+2KnSubsynQE7s/e++TocBDoVWqfVIWR2KL3C+ftt0caMNrKZz2QjS3Flw1ifzaU8YkawsKOxaxe9EeEarAFwVtQKhgrGsAEqgX4AQmYBil5c4oCwYymrVoMG0zaNHlo5VN8eVR81IDIfzutidsGsZhkinPRVUXoMi1iwDblGlctrZQMUx9GR9hyz4oMHm300GZc10GQ3EQtCcNy5vf/Gb60i/9Uvb2v/XWW/nY7/zO79Bb3vIWupyoFPVHFmYraYlpVmL2sDFTAP19EY1G2QZ5anelAFYWkRSHAKsaBMQjIO3Np2UvYOVim52l1OplNuZaKlXPTCzdf9EsCHAAU4aQv9A+IBM5S4SXZtQcNmi2kpuJocj52oSmazOiO/vUXXbgY2e35/wUvJ8K/ExcPXmEJS2NFyd8XCeRcFxiQA8+/LUAKOyz4tsp/eSyfV8Qkla0JWCMcT8zW/BD8O3Ipd3OfAjEjv1+rmwNuvuKLqPnY9mcqHo/Y2Z7e51nqXticyO2diwicBBTD6eZyIFoZsbhc65IrpVAOOB/S0Z5HemL+6E0d6C21464k06rAoCBa5zmBM/XaVmaACFEdPSKLVpaGdKxI1t0/PAWz/cOpNuYf2qe4J62N1fUkm/MTZ04MuZErddwmIIFpoyI6LS+Ted2loL7Yut9rDxLZSZYdZ6VZQhjfzHpvW3vXD33cI0K57LMi2JwBguqim3V35GME382caklq2GWvEAIow4gIO8A9uZM60Put+5vSmCQWpdjYy1jhb9ua+JCFXvGHElsQWgXQAvqXOsO2ewLJmDwV8ExaFRwDf4EuEDrcuXSVjBX9Tokz+v40jaXA+Kw8+S0NlZbWjWXqoBYHVp0vtYFRotaidwT6T6TsLsZsLz61a+mpz/96bS0tETvete7aDgc8vHz58+zA83lQtq2clGtQmxDKnPKs+YA+jPmcFaULlVrdvS1lvm1i8KNh04HbSiWEf+eurYK3FQl6tNtv5CBABapp8xcLvasyuZQ1TxLmXzE/ji0sQcLAjJ6/TFHSeqsjKnRm9L0ugFB0DdvE82RWHLQINppES1N2SF/uNGjwZaLPJMDRTEFEttyB2T05p074ed5WVC/AB1QwKS2XNZnaTdyurCyhBFUDmZA2rmZGTLvV8FmSYpZ7nRcmFANhlLjXzUvY9HBFqWDDKUd28DL2lTmrCrHyuZi7N3l3/zF/0ZmeoQuFm0a+4qIyZT3GwHYkLZ47YozPcvr5+eoooKJ7ww0a8ixMxnAGGDOzv1idra53ec5c3ZzOdN8YK6h3xlgURiIk1sqAGETiuo1V8YOeVo2Bz06u72Uhxr37RYfKoSXLRv7upRipGMaDctcZ/mDIpoHzejj/RRgYOeEvO8xwZRm/nWdYeJM56MWzedDDljoduZzzPfJh7GOaeDtu6iPtbxmT49dbC+pDART02Rbg14QgMr2yAlHAFxg/grwgD8ZA2hQjvR2GWTgO4AJ/lBWtzVl7cpqZ8TtHkw7dGJ5M5uHAloscAEAwr0wucI6Cg3LYNxJ+q0ssn/GhB8WbMfWj5jmibXtiWACddtSJtC7j+49tDBg+aEf+iH6xV/8RU4kqZNDIoTZO9/5TrrcqOzlrHV/RGsQU61mm6iSSsnGUs9puFoSX/Zyr3TzTfemc1ckN62LlcvknkxlUrf90l4Acgx8Yj656FtT1mjAiR0MHBhC5KXoHhrSdM1F1pp1iZqjJjXOOwvR5oZzJh6dXqKNs8vBRs/mGF4iKBoV0bS4OmfU834rQgAu2LC6fNwBKpt5m31OfLQbfhdQrjexgOkNgAiDEBWJjCNKgVlW5kBsPubHYLk7Kh3LOpHs6lBKYl7nXakDguz7vAhw2hvjrJlcARd4Pk02yZuM2qwB47b4+QQTKa1BkUSROtJc5vAuQEb9BQEdfOZ60HTsTMFQ/tLakJaXRhw6GVHGxrsdGm122fkdJl8gmB5iDnJYaj9HGbz4eSd9AlmgoZ8j2gSgwm1Q0evmJty2XCNUV8hV5xmm9p6YhoG1CgrM2Llnf+NaGSNpj/TNzucYYCiUByDktSW67ZacJsSAIK/R4b+560t4fa45ycbGM/Apf5cisHca2f2YGWlTLM28w4cE7QB4gHbFmUe6awFQ2D9l3GWAIsAEtNoZBmZgAmRwbKU1ohNLIWjR/cYzX22P2MwM7cF9AE4cGbJiLGKk26yPVWmgbB3Cr9hrdPLhsjbUCRct7ZIcNJeESdhB/F2G9Imf+Ims/LhggOX9738/PeUpTykcR4KYc+fO0eVGYgKxH8o0CLXNuiiQOJVJQsvLqVffAw+fou1R70AZ73h79u98v1+71v1GKktRmYPtXqjOgl1X4s7AwgOG5dUhm80AwPQODWm2PqGG5MfwGcZnyF9yskvz9oyaZ7q0uemkywAhLreK2/jZ7Mubf+noS9hMIfWE86lEHANogU8MGEr2ZxHHbZiDeP+WjCmUELSe8RRzL7YUUmYdnH8DWiSYvXk/F9wDib+MysUA2HsBmQcpIawyMSsyImlzzfhxn2U+m3tes8I+Jg4s4hk4k0Rve66k+rqcmLQ3D+qgAUzDJTjl6xqcvR5atu3tnks4yQ7/3pnf3w8wJfMJIF2Xq6PT4e/QcnmyR2njzM9dp01xmj4N1mLalYNaw/TeExWS+FmumVmQABd3Lrw2Bj7w7nGepFmj1DRLmGWrcUN9LmeK0o4pMzJdX6zvGgBIXwW4VJlnlR1PUWYSWPO9jQkLoM2QMvodOLy7cZGIXZiHMP/aGPXo9q11OtrfodXOgB6+djsd7u7yH4DJ8f4mRwZjRt+PX7c54b63m1MGLTARY62hX2dhXiYalrYHKzL+AEa7407pWMm6a7VpVttm74ntOanvZdrBRZ5XDCRlWqtJLjC/x9K9GLDcdNNN9KIXvYi+6Iu+iO68804+9pd/+Zf0b//2b9k1f/EXf0FXX331hQMsJ06coP/6r/8qHIf/ygMe8AC63EhvGHtlSmTh1WVqicRBRM+KLb6aOShbJLRG5SCYbmF8rBnWfsBCIKFdQDp5MRnICwH2UlKt1GYbN/nzEkY2z3L+IxJqmPNnXDGipo+mCQd8as9psjaj1labZkdHNNnq0Nnb1+k8A5fwGdhQx9q8Q0AIwgtD65Izfg705OGSwTC1stwpmtHksvg+58MCfxx9jh28xSm/60ws4A+hn34dLWWdwA8HrVkTBr7OfE4FZajSqsbaGDOPrAvsxCdFwhiDhjud6JpTDGsuYahDh1rxkQobJP2ZU6s3obvOrTqfGTzzrtPmsHYNbRk3aTpyGjq+1WtaQM480tXV705ofWnIf7o9fJ2a16I5YcYdbfNt5Oh5rEkszvv0u5f7/NQhzZTJfXavyMywIvsDwIMGDva5skO6NzHKAIGYegVR8apNswAqnBN5fj7Tfnogw9d45hhCDN3msndOgmqktD2xNut7GTwX+pMz6/hzIM392fVUwEHMBwnRxiCUOdQduPZBu9KesCkYCOfxG5oUaFjgxwLaGvfpUGuXHrh8Fy214Mfi1rT7L52mh6zfmfu2TLtcZq854etADz10p1vb/DqozWMBXHAM9cCfBhEW92a+WgSHVUIzO+5ShtYO7mdPjWmX13uDWqbW99HdR2984xvpUY96FL397W+n17zmNbS15fyy3vOe99CLX/ziPZe7MGD5mq/5GvqWb/kWbggyX9922230yle+kr7jO76Dvv7rv54uJ7JmK3ulUlBiJI4pW/vYd7k+ZcOszYPK2mbtomP1pCgFQmLH9SaYuq8uSKsjUS63SU6XG6MySaetd69Uxx/IAssy9XwZOd8SJ4WGk/1kdcaRwwhMID4BLGDWs9PmSEzwfQHDuLW1lDGjErJYQAgITAD+wDAilGe/M8nmJ+rEPcjXIkwka0uUlFWCBWTZ0vHbO+yzwzWiR6m8LuLnAOYZTHQoJSyOm6Uy5m+R0KqLUp35FLv+4NtR03Qt+OHyqTAz4cMKM0Pq/Vckx0pZX7X/SKa1kXUIABRR7GDO1XXO+YhElme09+ACGsFh00UX8zlZmFFlE8R5MOeg3YPJjl03dPATTVpzAq0KwArmfwBUgvbHhQcxSpnZWBLHcfE7qTLLdRr5XDuRvkayyIfakti1ZeVI+3OQ4o7BNAnvvgABMWnSWh4BMvIH0s+lbO+tAumxcyJAkahhZf2u8rdACGG0f3PU4/wqIJgnidZlrTegY/0d/n5Ff4uuXN5ioHHd8lnamXWp3xzTjct30XX9cwxIllsjurK7QTesnKEnHP4QHetu03pnQMe7W3S8u0mHOrs8jjesnmVtC4CQrFcATmJ2BhIzSEspK43U+O4V8GjtFUjPjTLNjH0nUtdgvO/aXqVLhe6tTvcvfOEL2X3kDW94A3W7efCbpz71qfSP//iPey63uZeGfPEXfzF96qd+KqMmmId99Vd/NX3d130dfdM3fRNdCPrQhz5EX/VVX0U33ngj27s98IEPZJQ2GoVJlv7lX/6FbeL6/T5df/319GM/9mP7rjuXaoWqzbq2ynkSrPgCqyVpMdvjKtCitRm2fbresr7tTyNRPFaUQNYray8MYtXCGo/GUw6cYmXWjVBWdxytX5B2jI1dq78vIlXSWhY9T8RMptuFE/OcGus++Rik1940jH1ZZ8pRGhLJkTPpQj87StonY7bUy00iZJwhaWUNjwKS4u+CT0gmmSlVEcQAptAumK7hXmhWAE7cb9du7hNM1GCWBq2KGheY/OhxW2R+lzFqlsqjPtUDxnXm1V5NIcvmShnTVmAwpJ3y3oApwm88l3GLhud7bCol5mBiQqXLC9oljuve10WDlSzJpPhp+LDJkn8FwITrRhmYqyhi0HLRysAws4O+G3vMJ55XNf0XAo2698vCHMO8Z58p327MNxv2+6Ao0KSWaBNS2oXYvfJbNCt4F22EPq0dLZv/okmxwjEBf7LOFP1oHFAJJfn5mhYT2ukgAbE+2ustWdAidYJY2BLRoKSIzbIa+TqD8rbHXTrS33Vhi73j+xX9Heq3xnT10nnamfToqv4G/13bO8talY63wf3QzjHanvTo/GSJ1poDOtLepp1pjx65eiu1G1Maz1suySTW2saMjna2aTJr0bHeFmtSAFIkUtjZ4RINJm02CXPj1qw0zSobL/2M9mPumhrPWQ3AaQnPaWPYZ8HDhRLgHDjdS03C/vVf/5We+cxnFo5feeWVdOrUqYuXhwVale/93u+l7/zO72TTMICWRzziEbS6euFQ7/ve9z6azWb0S7/0S/SgBz2I3vve97KmZ3t7m378x3+cr9nY2KCnPe1p9Gmf9mkcFAAD9pVf+ZV0+PBh+tqv/dqF63Q2pfUYnSqTk/2+XNo+OC+zGE7SMkdVZl7i3KavlbL0ZxXpumOmYKDYBlZoj46CUjNyWF7+3vKz1G3bhSRbfy1NiwnVGdtwUgxacNz7gjAjJswj57Zo0GxtSs3zLtJN49CIzWFgnsOalYZLhpa1wfu3sBlHc04dCbk5d/4suq1IZikRxsT0AqAFn0hA6XwhXISxwbCT+0XA/AjnoWXxGhdofyRHCyKc8WYX6XNRC1U+xqlxO6iNcrG5emEm517mfcaYtvAMEK/aaVucZiyPKre2MqBzG8uBT4rzR/Hl8D9gYF3YYnGa123iZzl22hN2wpc1BnNVoomNm9TsO+AgJmprh5xE2mknXGjZQLtTI+cEZyRvT3MABt8oAHXO6+L6BFPHsrVfr7+6zswHq44AxJhQadCR0qCHZnlmbfC/telYEB1MCSD0/YtI3dnXTfU1BjCiQQFE2+nHKmZNIO3LftfYo8vGqUwzZoGM3Z8kO/1duysMVLAeStb6I50B3b9/mjbHfdqddmm9PSDEQNyadTiSGADK4c4urbdzJ3k2BWvM6UT7PIOaFs3ozHSFlltj2pl2uJxrls7R5qTPfi4gON3DWR/Apt92WkTkWzu5tWbUomoMK0jnrtER3yrNaj3PVDVPLM8R27+CMiusHu6jex6B77799ttZyaAJkYWvvbaYB/CCJ46EmgdA5WLQM57xDP4Tgq8MnP9/4Rd+IQMsMEuDxuXXf/3XuW2PfOQj6d3vfje9/OUv3xNgEZKXSqTDWnMR2uzHF85Z4gWsMlGpkrTnkvIQYFjgoOuMtWuvmpCU6VZZGbatdUg257Lsx0W/isbC0iU77nthTuss6jHaL1iSem17Yxuvtb0HYwZmf9pussCab8Hc5oiwvryWd3JGJLH+nEGESNCxQUrkHwEtwrhi43NaFBfuExLAwahN3c6UtTSc+K+BrPadjDkU23X+9GGU9bMIpPwwVWPm2ZmMoS9wvIb2ZT/jXTXXUvMiFdUpBgwOEvwcNJW1y82lBs39uIOJB6horwAUuKSjAJRbzZ7XTnhJr5mD7Bkifkgw52s5/yTRYGRJJCXnD0eMU8CHM8y7OcCBF7pT1sQQopX5OsA4g4lLMUF13leWnPemrLWZTwAYANqd9s+WZ+tI/dbX23U6GCMzbzK/E+Ns766PayAKfTc+KPb6rH0GINgycUwYW62pEaAhQisWSqj1WcKh67ZaMBTT3MSsCLJ+FNrh1iXbZ4xfKORzP2Tt4PZH9nEBK6zZhRltY85rWZuQINWVMfSgAYDFjW2Dbh8doqPdbRrO2nRmvEwr7XU6NVqlR63+N90+OszHV9su+MNyc0RHOtt0tLVNSDvZb4xZ0HOIdlnrImXydf0dumu0Riu9TdqdOv8x1Iu8LvL9ipVtdsaHw7/tS9nctPxAbH6WvTN1QUuVabht7yULWg5KO3KJaVie/exn0wte8AL6oz/6I1ZyQOHw1re+lV1HvuzLvuzCApbP+7zPq10gHGwuBiHvy9GjR7Pfb3vb29g8TdvLIV/My172Mjp79iwdOXIkWg7yyEguGdHUxMhKm2LnRY5cFac85mdij1dlDnb3lh/Ti4JebFJ+KnUY5xhYSfqjRBbHRTUt+ncZI5liBi1jWBWmOjQXC++1i3AMGNWRYO0FoMSeVW2AqTLLW8ok4F7D0hgBXcw5TwtAy6wzZ9+W+ajpEkx6hgSAA5u8ZKgXAvAQwNFFhvsZnOmdWQ7oyMoubQ2dJLHVccwkklpCc7LeH3KEm0ZjShNCJLEGO9ALcIEk3vXd2/MjmljHRSqDn8F81mJmSPLF5H20fd4fSKwCG7E5ZrWhF6JeS3sx5SjT0HH9DDU849d0jvfzWZumgzZnn2fzwiZx6GNuA0ApjnnfiRiNhh3nRM+IOQcp8skMMswP2VwMixnqnlNDwlp7P6YsulxzRusIf6zMYmIMlBVkxAQbfMzPNTGD0+G8U/engIiQy1dUvDZ8FuFvrVXRfarSEmjhWt35k/KLAxM99c76gY8YjilNqP6eA4M84IKeZ7kpWBhtUaKd5W22gCM9XrJPseZvnt8XA5a4T4KQgLkiv1b2fH4T0I1rZ+j8aInvPzN0n8OZC2HMQh+vRUZ5+A6HeZhvbUz6/H2tPaCbto7Tke4Om3oBnACYwAl/a9rncT3e3qTtWY9WaEiHW9u0OXPhXnG9gBUBOA9YuovOTFZouTPi8jfGV3KY462JW1vxHZqXq1Y26Y7ttegzTY2dG4fws4oW8aPkd6dkPZDy9LPC3GkdjEvxRaWD8j+51HxYfuRHfoSe97znsWvGdDpl5QY+4U6CyGEXFLAgZLHQfD6nP/7jP+ZjT3jCE/jYP//zP3NI40WAzX4Ipmg/8zM/k2lXQCdPniyon6666qrsXAqwvPSlL6WXvOQlheOykMakVWUSbc7unTi/CMUka5qwCHNbTGx6OaaZfruQx8iaGGjNRlBvBOqnNtzYArlfbYKtX0vPUuEzY4xemdbFghbX7voLchkdpOmZlsLqDSC2OYs9vmVgXLQcp+2g3ozIR1fiFRIMHzaX/owacGhe9tnCfXI+TVrKqs+JMz0IpjkAJqgPDA2c78GEgFmAkzNMKgQMAfiAcE5L6plx9FJ+qZNDGnvpfLMzYz+alOax7jOoAsdlzGIV5ZLLtCQ8RnWuqWsmU91G83y1kM9Lz/kpADhwDhZ9sV+HlMYkTxyp5ooAFP4eciNOe+afFaaizEvMU9aqeKl9y+dsAQCG/5Wf69rsJCYx18fdelckXMOaQNkHxLfLh0W2kmleL73moQyAbO72ad2EVdbvbtX8rJo3ge9RxCLAapi00Ez6HRsLvMvs0K/u12uQfifkz+VcKmpU4m3N/d1iY+GudUC2inht8+DaHcitJHQfs+fmwY2sV9CWXLW8RUe62wwIPrB5Jd9zfrCUaY6xdkJzjDws+rkgHHEe+GVGt+wcpoes3cl+LQ9ZOUlnxyusIbmmf47BCujDwyvoxt6ddG3nLP9ebgzZLAzhE27s3UUfGR5zQh6ac796zTE9pH879wnABfSv56+h9c6Q6xnNWoSSYZ52bGmbtS+7424w7xfzhQz3mioti+t7Xk9RUKs+I82w4F+Xcx/d8wmKA+Rq/L7v+z52z4DryGMf+1h68IMfvK9yawGW3/iN38i+Q83zBV/wBewn0mq5TQTI6Ru+4RtofT1UP9Zx4IcGpIz+4z/+gx72sIdlv2+99VY2D/tf/+t/sR/Lfum7v/u76fnPf36gYQEqtKRfFvsiCjUSPiGWUpL42PE6UbNkM4oxWDHwEttMmUFr7M0Bvo6GpXoT3hszv0hUsTJTnqrFO6VtuZAq6ZSWKGbi5ZxXc0kkSDaWGIC2TApLjjk5Y5vNfdjUZoo/J9Wed2ZEoxa1lscuzKv4eCnNjX4vhDmQsMW99iQwQ3GRwmbss7LSc8EzcJ0kntwe5ppSgJtOz4UsRsjQmfedaaG9nGm9ye3tLY0PFBjWCcFax0SM76/QNFZpT8rOxUDKotqVOj4KXKI24eG/BjUwNxhUwHzKac0YAIs5RDA3nXbE1p3NdWgvONqYMwNzF8g/uZ+VlOOudeaIrF3xfdga9LJ5VdW/2Nie31nKotFh/okpWhOmi5EoTEKiebBriviMYB6tLbmAEGWgpiwZ4l7WHHlfQUlNUglZYCNgxWpvg2dZ4kNXJhAU8OPMysJ1FvVhdNhPxmh1NGHdcQlEc6A2iQjksrIbczq2vM1O7HCQR/8m8xabbcF35Mr+Fn1k67DLPQU5DkCN1xwjQIiUA1Awmrbp9skhOjtYouNLzjTrfRtXMZgAWDnU3mUQdF33DGtPdmY9Oj9bolOTdVpvDXiurLSG1J1P+Rw1h+ywD9CyOe3T0fY23zeet2mlCU3MMa7/xNIGh04eTDvs44L+b016dLi3S2cGzp9M+5GFzyRtnWGPVVl+gKD5kQAAMbCi+RKnPcmFaVU8wyUFXGQNPIhyLkECLx3jpy+aDwt8RJBzRcAKCN/B9D/pSU+i//t//2/tsr7927+dnvOc55Reo3O7IITyp3zKp3A9v/zLv1zID3PHHXcEx+Q3zqWo1+vxn6VMEqWOOelPehHW95YxDVYtftAUc1jXmohFfFKqKBVxSyQnsljFAgSkHM1T4GVRUGMZzjLJpJU6xXyJYs8sZXKmy9pPH/bmY0DJpG0W+MifS8BH1Bo2aNqCjwCSAsLsxku1+wAsMNFyoYxDs7u8vywFlESPXprO+Rcac9oa9jItC0sykYjOS2BhWgaJJZjMoeTQaMyp3x3zJgwTo27POU87M6Qm+xX0l0ec4BLMKvqLXBspU6z9PIu9+rUsYh5Z5QRcVvZeTcAsLbouuTDGc5qN2tTsed8hZgCRL8VryYZtF9HLXzuf+DDUdj3NtCleM6Okrw4khKaekhMGwFX8LES7YYVLmsq0L/oa1tx5xy5nDucxU8S8Mmbvr8u+885DdOy4MzeuE1K4SsO3F6atqr9JyXZEoi5+KDHn/Kwu0bia8YqZq2mqApYALbD0cAlx4+MowsOUJQQ/VuVzc9X6Nmt4r+ht0/nxkndm77CGAsz/1rjH5q0IUfzfG4eySGtYq1Z7oyw3C+jcqE9X9LfphrUBlwF/F7QDDvPv2zpBD1s9yddtzvrsqwIQsjFZogf276TBrENHW1uZYAfXwEFf6FB7hw61dvg4/hAmGQRtDEzQED0MgAmEth/vbdH2FCAK53LNj37WqX1Kz4HisyiurZoPAFhBLhoOsGLy4eioddwOaI2UyZf2j7Ll27l4T/dhubeahD3rWc+ij/3Yj2UFhyZE7n3HO97Bvi0XBbBMJhOO2vXQhz40GslrETp+/Dj/1SFoVgBWHv/4x7PGp9kMlfhPfOITOXrZeDymTsc5nyEGNNqZMgfbD6WkQ9Yx31Idyfy+nbBLwl/yC69seqs2SQtmyoBGaB5QDQb20v+yhXQR0JVizFK+RGX3LaptWdQ8qX655YWJTX/u8JszKZAcQ1sxX51Sc7tFM5iHNT2TCRq0qLE6puGwQ/3+mDoMEKQcl+9CSCeu03XjN4AJPnPgMmdGQK7fHXWybNEusWSbwchk1GKHes7D4hladrQWZ/tpkyONibTOjm9dW+wUVUkU60jvY2A2Nr/0fWXrzEFRmeQ+0MpF7/FmXt0phzcWrYhzyHfaNQEwugBOwOiBp6mRI39lkiKZVl6zwkBFtCxcNzQxDc7J4kCLv42l3W1aioQe1gxzjIkHsAZDzhqbFtEYgIsLdX4sq/0wnL6QXvvEvEnmDcBKyszWdTN8BlXvcpn/jT4euyclwda+jpqs4CNL0FlIAJo/S3FiL/P7y31b8nXJ+h/G7pPfYDdEE6M1LTL+2txIM8BYH1An1heYoh5Z2mHfOYQnRrSvs6NlHgdkoG/TlMEK/EGQYf7csM/r0/bI+YpgfuFeaJDxm5n0aZtODVa4jKM9FwUMIYihVQH4uWO0Tlf3zvNxaFDWWgPaavVcmORZj/O0jKmVgRcQgM3Dl25jcAOQIiBmMO+wmRhyuVwBcDLpMdjaGPc5lwsIAOYRR++g/zx3PLpXxYSKluJhquPHRZt47coG3bGzyqGIRatVRtqUskyIqufvJcbH32voTW96E33/939/4fhnfMZn0E/8xE/sudyFActXfMVXcE6Um266iREUCEkkf/RHf5TPXQgCWPnkT/5kuuGGG9hv5a677srOifYEzjzwRUHbgOoQ+vgVr3gF/eRP/uS+6o5tBhac2IW2rJzYNSl1qX5pLZiI+WtUbXahJMy0IbFAWLCyiKS62sxKt6300uyalDPgIo78sSg7royilNE6l5bdZ59D3ehkewWoZSZq+jkLIxKTimUbuQ8dO0EuC2AVONqjbRzyZU6tzRbNVpzju2NG3G0CDpDnQvdTGBYOW9uc084IzvT5xohzbNYxc87W+I3oYRyBx4c2hq9LZk7kmRKRvkN6z5sgpJy7Her2XVhkMRlpQEvkKebPtSiASZmH1Q0EUQaMY+9BSvq8XyoyHXGQUvA1KLme3QqwBgK0jFrUQSLSYcsBC47k5VGHf5ZNmNLAN8SHpnZ/ziyHI9NhTqEa5f/CvkvwV5HAC9D6yTgB/GTIJmdeef4owBJI/yMMv2aEEMRB7mHfqPacpuMGdRDWWN6vGhrUOmaFKd+7OpTyN6kCKtV7RRGQcBlG8i0aFLsWxbQu8j3m05CvRaqcWa7NivVJ+8mEvnnFsdBgUnyToL1Fkkc8IwhQoIWAY72EJz43XOJnIw71YLyhLZH1Lv8+ZYGJhHNeao85uSNACnKmzAbrrs55i5NAArhc3T3HkcKE4IQPYm00TN5oRodbOwxIzk1XGMSsNXdZk4JyAGBuHh2nB3Tv4mvvGB+iq7vnibpEHxoc4zrG8yb/wacFdO3aebrNRA3T41mmaSkzMU+Zot98zgVFwtjKWC2yVuproc06SP/Pi0ayvh1EOZcQwWdFB8ASgjIhFdjqggAWAAaABKAkxFkGXX311ZyXBSZeF4KgKYGjPf6uu+664JxIeREE4K//+q85MgG0MFdccQU7/OwnpHFMXa43c7soa81KbCOIbZQpBsqqTcvKXVTSWya9sOZk2iExr8OWHR635/ViqH0qyjQZupyUZGcRWjS6WKztKYAVM7UqK6dYb/i7yuG/jOLXGqbDACrO4j1uUbs/dlnLYQ02yZPyMfBYnlGnl0fNCeeD6xufU/WzvfesQWPWrjQ46z1H/oGF0LzBIIYdV2FmBok8X+sc78FsQmMijMxk1HOZzJHjxYMTmKehHTALA7OAe1CWfk/tmKZ+L0KxQBSx+SV+Yam5sRdTrtjcqnt/ynRmYa1NDPSIpqU9yxI3IgwwSPxM+L2FBoUZU3+DBSXwD/BzjMELmyp6ybmP0iWRxwBaAFZYm5OZIEm/IkIZtd66dS0fAz2GAL2TQZud+Gfogy+rvTKq/U5abUuZSa4dy9ganqpP1hXd/lgEs7yc8vam6guFRbH3q1HwX7P+CKlIXWVmRwIE7HVskiXzxDy7bBwSkRFRzpVrm5mJFMoCuIAWBWZUOAbQInlWBrM2bY16fAx9w6eY9HEAkabPwt4bZX1GWQAKt+4c5vIOd3fovzaP09VLG7Q97dGd43UGHoj8dXayzH4pKPPMZJWWm0MGKrN5k9ZauwxUHHBZppXmkMbzJfrw6AoGKziOPwAaaF5QHkzDDnd26NbBYdauIAgAQNdqe0gPOnSK+3vn7iptDp3Df0qYFXtGVpCailwn53DdSAJmJEi/G3FTMwRQCIMmXDLg5V4KWB71qEfRH/zBHzAPrun3f//395UOZWHAAlOs7/qu7+I/QUqLOtsvSvBzqfJ1AT360Y+mN7/5zQdad2DWkkmPzYsZASpVG1rmtCgvqzfT4pe1ZOOIt7GoZq/SssQ20LKoYGULWkpdLOcsUIvZl6dU0ilflrJr9iLxzsuOq8yljbYNKXCxKGgJ21AOiBadB6k5wUAATH5nymFp4WvA2o7jQ6JTvSykMXaLxhTSZefIKeZfFhCwtNMfEw0Lm19Mm1yXJJqEdBNSN7kPvwGapEznJzOj3UGHer0Ja14mvYnTsKCscZOuPLaZASHOhA3G1WSc36v2Y1FKOUhzfkMFWupIz+tEqEv5Tdm5tVdzw5R2RZ/jsr32IYsEBq2H94dCuOnpqOkidzVyXwPWqggDCi5EMtVjfLxGhuvh8MiYeE6bIqCFc62wUz+AkEviiHLziF+uxXa90rk6rLmQpdX+kIbLbQZeDIzwLNnvprhuxQROZSFh9+IvGDM3tutpCqDodopm05YtWgkthLOfeRnlYCo2FwUUxPtWLKvOe6K1RLE5qwFs7Dmc2lqlIys7rA1hx/nGjP1OdiZdBi8gMNow77ph9SzdPO7ymiXmgshwD385hGAfjtouye2kzeZlfO+0Rbdvr/M9eN7IeH/9ylk231ppD2m1NeCQxqD3b19FZ0Yr9MDlu+iG3il2pu80JgxCNqcIoTyjf9u9jh67/GE+jthhcNjHeSgWkWjy/YOr6Uh7m06N1xisnBmv0NHODg1bzocEbYC2ZTJvs4mb+Nvk4xcfZ+1PEoCTxDPVz2/R9Te7NvL4eW5GtJUXY32/jxan//N//g9HDYYl1lOf+lQ+9rd/+7f0e7/3e3v2X9lX4siLAVTuqSQOYmXOgmVMZlSNH/EtiZmeLQKKUhTYcJf4u9iNta4UJnbPIk6iZYxWyMjnn1pyWsW0pxj4KpO+GJX5IMQkkHWl6nGNU1qTE2MwGwkTMU1iUtXqT2i62+aIT8ykgWGEBFvysKjoTM65GRns840JpP1HHJBwQAV/CDWMiGDoNzQnZ7aW2RcFgIQBjYQlbs8YQMEkB0wugAz+1ld3OXN6tzfhkLAiyfUGOnnwAEVWS3jQlGbC8meiLWhSzFjMx2svgNXSIiFyY2A3fZOLyjWdidbDh5v20b24LwAZLWSx97lZ/LycTb3JFu7D7uM1JnMvDBdnegAEB2JmbI7F7YKpYtv5xmhfFpgp5n5ZuZS9532hrIY08zHx8zW2NnAUu9aMc8QwsBJQpZ5VzH9PvgtVRW6sYvoOirR2ROqwv2NgJl5WtZYofa48LG6sbHlOuZ9PeH3VfJVnk4PVBoNS+KsI4w6NSHvSZa0INBSitcI1N28c47UMkQvXlwacRwpCFPjgQaMrWhWYOUKjAaCz3h/QsaWdLBP9cntIo5ljt9Zpl/5r50pabw84AtkDlk9xNDIGIJjPNKNuY8qhjaElgp/L1Z1z9N7d6zjEcb8xosG8QaN5i7Ur8HM52t6iU5M157s1BegCsGnQ6dEKrXd22Rkf4Ga1s+MioM2aNJh0Ftbe6+eTrfuyzmaaGv987bOpud/aOZpZZFQkkL4nElp6EK29dHrs6HM+53Pota99LedjedWrXkVLS0usUPibv/kb+qRP+iS6aIAFuU44uVKCbr75ZrociNXBgXo7P8cvDNvXhhKvmGRKq8XrMOxST0o6rx2m65RbJvFfZGOs0n7UYY6s1O0gaFEp8kKM2cKhj0Pp+CKANVWea2e+iJeVK0NRAEv+WDNxDjQdtlz0phFRY6tL864DLZjnAC6No0NuDySJLrqXgwoSMUyc351EDkDF5WsQqa5oQrgu77PSbM05JCibfbSdXwxH/5q4bOmufGcqBrBz7NB24NQZSrK9862eY9k43n369JQGI3ZdzPwwNZ/KnGfDuvZvPiFgQ9ftzLW8H4e0FSGs8cwQ2njini+ATea75J3xsX/k7XaJJvHcGbRIZT7KGI45QOPMxzjni58n8Jnh+az6Kv4rOC4+LDEJf/ab1/HiWLL2cYIgAg0OAtBZGdN4u0OrhyUEd3GcrECnDmMVyx+lNR11KGXytYjZrAUwKWFIimQNSK3rZaZo+pqqfgcWD/ysc9OwsM0OuAJ02vLxB0f5fnvsIhG2JrTedQ7qMJXCb4AMmIzhOviocA6aWYM2By6iKNYsFvaMnL+dPHtcz1oV5EcZLGVmZxvjJQYRa+0h3TY8REver+ThK7exKRd8UgBY4KMCanrQAkACEzEQwhp/YHCCwQv7t8w6fF+3MaFrOmc5ahj747RGtDXt0enhKv8GD3OkvUP/dPZ+9LFHP8wmYggKYLUo2mRPR9LD8VSE1EwoZMzK3H2hL1xdwBHjfXR9e93D7xbizfeAyrnE6LM+67P47yBpYcDyrd/6rcFvROV617veRa9//evZj+VyIQ5riU0UDseNWSGxoo08om2i9TUxKWpq8a4jCRZVty6zDi36Yks7qja9Om2ObaIps4VFqMwUzPZXg70qbU8MCNYBGXXbX9c0LF5HPeaBr0tItAItHcypBi1q9qe8KLbPt2jan9N8ZUo0aVBro8X+K73+hIZDmD5MM4d23gx5I88ZFZFMOm2geyY4D6ADaeRg1KHWzJlu4Y6trSW30UHS7c2LWliVkMey40IUdzvIzYL8HjpgQjieGf8Zee7YsKvm6UEw9nUopXkTquPbVWUetsjc2vOG70E057AXAJOdc2CFo4DB0dL7mEiIYDYJy9A198Ln/vFaX0R8W3H+AOJDJX4xmCcIYzxF1DhoBnsuFwZLMudz6nYmtL3To6X+mPre7NCOi5j2auGTZdZES4NIdDPv6N9eRljtOhHj3DMr06KUzUcNWur4rKQ03/a4FoYFJs3KPKjufEjN40Xmnl2DY0xxav/J6mPhRy440clmsT9LMFFJnOvKnNPxla3M9Au5V6AJ2Zm6yF9IsihmXdBCrHSHNJ50eA1rNCZZjigIVticrOWAMyYrtC4AKdBgwHEfURGRgHKt45z7r+ptsO8KIoMh+eNw1uEM9wAo8E9BdvtOc0IQC23PuwxGTk/XWKvysas3s1YFDvb4xPUAOf85PMG+KzAxO09LdMgHCRh12rTWHtDmpE/DeYdN3qDJuW33MH/ntjdnnAxTjzNMbbW/SOx526h2+llp80M7RziZZw2+JRU44iAsTO6jS5cWBizf8i3fEj3+cz/3c/RP//RPdLmRSAok9CKI4xBphgkSZ/NiyqYThOqLbUAmgVUk/HhA1vY6xXzHNpDUdfuRQMdC2KYckO11ZXSQal8tLbLH6twnpJ1oF6EU41FV3yJ+DWX1Wo2KrptDt/amLpTsuOHMv8CgDWDzSGwShpCyKAtaEG67YrTkvdBaRZTPmpF5izqNGU3bCD/skkKCYDLB+VW2ndOn9lvgcMXtKZuBQYJ4ZG0nCA8r9aeYNCsdjDngx8bXjvNeaBFmbxHKHbjjQKfKp2XRfqV8WFImQ86HRTneA8SO4Rs15/w5eNZI9ilme8wgyzz294mPC4AO3n6AFpaOs9bMmYJh/jEjCk0OwifvtqixNHb1s4ku0XDUYZNCABdNMbAS9kU67z6Q3HFjt+/mY8dFxtPhd205ZblVYsClaq1PaVIXC9BQPKb3pqq6Uu2qEvKIBhXXhiHGc38ZGT/r+6N9UwIrBWNuLefnQTLJHKwIQcvGQhZjmYC8KaDD3UHuXD+Bo/yERg0HRHY9WAEA2R4hD0sz06ywqSsnxQUvkNcppoZnd5fp6jXn4wuwAl+Yq/qb9IGtq+hjDn+Qjra2GWzA/OuuyRpd1TnPvimiYREazLv036Oj9PD+rXSstUV/vfko+tiVm/g+RA9boSHfg7kF/xUuszGl1daQtSznxkt0arBK7caUNTw3bR+n+y2fYZ+ZK/o79L7Txzk0syR6xHPheY6AKQkzYr2eyvOxgpIM2EfWpSrLA+ufdXdqyPdL3jLuQMq5lAjJ5BGh9w//8A/pIx/5CI1GYSj4M2fO7KlcGwR/z4T4yq9+9avpcqaqhEXhC5ubwMi5zNmzJpMZSDQizHZMmmz/dJ2x66VO+6fthcvazdmGzV/VdWX3yl9Kwlg2bvrvQlFdxm8vbdiLmVy2UdZoi2U83RxtcihazhqOKFxzou7ZFs3hLI0s8kfGRN0Zjba7PstzDrBFqqlNHzVQhoQbUkpxsMdmf92Rc6w5gXSyCz8B2ICrJHTsowDpZHvGYKWuP5Oe86nxjM1PN9cunHbFtkmTjF3M/6aK7D2xMnT/s4AeNeZnlW15eLH6ZN8UONs7cILcORzBKwO1eTkSIEF8Vizh3tGg7bUyHswiKtOo5fxbQMtOss3AxjverywNaVnlSYmtg4GgqeTNWV2CDwHMFmfsYI3fUmaMZH4h6R/+7FzLhTZF6fSiJoT59fba+LkqU9XYfhPbc2LrqwA5FzUrFGBwQIwgNLzTXrnkjz7wDAfNkD+fu8e0zZoB8TMVH4EyM1nl05SvUUR3bTnTrzNDlyQSGeFlTgrzDf8VfCKcsbNsgAkYIhvmY4D5YUM9r/aGvFbiPgCj/zp/BZffa4zpkWu3MVi5fXyYNSRwqIc5FyKC4Q+aFJh5YfZAYAMn+8csfZitPLg+dp5v8+fDuifp1vFROt7ecNc2J3RFe5O/g5ZbMDGb0SMPuWiuMEsDWLlzuMZmblvjLh1aGjCgg7+NjJH+1HMq4w0y/0QH4MRPUV+vtS3ybOXaKrBigYvd1y/0Hn9BTMIO4u8SIqQYefnLX05f+IVfSOfPn+fE8nDCR9CuWH6Wiw5Y4Fhz9KiLu305kCzwOndKaKrhLhBbelkI5eVNvpiGMZeMtlK+ZvryxaG4eKTBRxxkaNCiNyP9qY9r0KLL0H/F80XgEwMRFpSkJLd1yiyUnehPFdm+xf6K91S3Z9GFVW+amizDWd6XOCOU/UkiR1U2S8bH8FchGh2fsN9Kc4yUxW1qdqfslwBiMwvlPwLJnPiviJ23+2vSyMfeB2gR6fedm2tsGsYbHqSVYAgRLpnNLRCnfZplGK9jflPGcNr5nL3HJeC6LBLeInXvhxYBrjHgUlaWDU27H+JnBo2Inz/sZAsJt8+jIho5zAfWsnhGTyLNcaZyNdfZVn7c4j/W+AG44LcPiwqgAs0LfK3ySGPeObqLaHKTDITYUOzZeGjtoAcV2syQ11vlewXwI+G1w/Fzn2VCmtgaGrumat0Iv6fWovi54j6wOFBNCcjydsfvz03b8t/2fgEo2d6neLOU32WmOTTXOGAUn+/5nkq0vjTkNUhMomACptddmIiJ7wnCrPO65u8HIOZQxt7EkQOGTJvs74TjALZndpY5Twt8ZDot5/8CnxiABICKj4yOsVYEkb3EDEz8VEAwGYNJGAjgA8kkES3s3GyZHrP8ETrc3GFQ84fnPobu372Ly4BZGcIco+zllivrys4GJ49EXQ9YOkXHe5v8Hblgbt05xH0HEMLYfOi8S66t+RihlFayjGxgBL1OyR5hBat7WQP3alp9H11YeuUrX0m/8iu/wqlO2u02fdEXfRH96q/+Koc5/sd//MeLZxL22Mc+NnC6Rx6UkydPcjLHn//5n6fLlayNvrXxFKobkSi2EGuzBC0NqiINVsrrzL8HzqFJ6VQempWviwCUqjbVUQVXnasiK5Gp62+yVxOgqraWad8WYUZjPjTaPCiQgokgRtcdc2JVoU35k8WUuZQbOVhgGkarU5oPm9TcZfdP6l6xq7QqeUI3mDpgU85Nw8LngLqx+c+bM9aqXLG6xeYSYDx5w584qTxMgbB5cnhj5DRYGdTOXbGoz0ZMYh0LS5uSXi8yZ2I+JdZUzc6Xsv5oDWzYtmL0u7SmJD6HUiRzy5bt5o/vA45jCgzh6D6lTm9Cw+0utTkcdZODJojZF5jF3aFLJApGz5mJIVSxD5M8blGj47Qn0NAA+ADEwJ9ktK1zOjiHfS5n2qQ+ItqZZySgN8ZMF2zr2aTLXTdNjilV5p/QDuiyhoIESElUpdRaaQUw8j5pyb4WudbViGlQZPsfk3Dbtunf4Tueri//DMen8Dz8FY1IvwPJerSnus8C0vJxkqhk0taN3R5dseYCeEC7ApMwSRaJawAuYB4moAXUb08YcJwbLDmww/4xeahuBGeA7SLmNcA41kdce+XKFt2xtUZXr27QO87cwAklb1g+zWCC65p1GDjfMTnEc6PfbHLeFdeZpnOsb45pwEkgHbs28J8uOWSL3rT5MPr41f9ikHO/7uksh8v5yRJrdSTZ5LHONp0er3htjgJ+AiwTUUElJLIlGWeMQzY/AkFt+PwcaImXIaaC2onfBhqS4wcZtOei0CXU1IMiYALkYgGtrq6ylgX02Z/92Rzy+KIBls/93M8NAAtUPMePH+dM9A972MPociLrLwKSlyhLaKUihFiyds3WUc1uRtl9C4QAztoZPR46qIWbVH6dbXthkVgAqMQotehoSvW3jHkrmPwUQOBi+VvCc3VAT7jg12n7os92z476EalqwfTGq+vhwzJDZnJEA5sStbebNB80adqb0/zQiGi7TcfWttmmH5u6SCJZqwJzimGP3wWYFrBmxSdWE5JjkLLDFhz3LUFy3Z7Q+e2lPIrY3GUSn0xcpDBOAmlW+xTIrHrWKYpJ4mNjnUuJwzZoHzQ7DyzjZ9+BjKEtBSjyWXwHy0BLFZWBlirAk+Vd4YsBGhrs8M7hiHfbfN9wsxfMQZFIM5OGRKWcw8VpY5jZ8zldWNPXzbPJ9/tjlmA3uhMOfY0wx3wOYZUHbWouudxAuMaOmc01Ie3QoMD6JuZlhP6Hcg5gwzJNZX4daEvbh1/Ok/DGtfaxdupysiGPAm4DJKNrfhEgl4FlzTDGgMsi5rG2LUlwI5qT2JxPlF9mUpmBJS9IkX7ctbFKS0ddNC+QOMrjPHKswBxMIh5K+fDxAHDZ2e167ZDy0fDXIBy7AFaAFQCixxy/lc2x8OyvXz5LV3Y3WENyuL3tnOwbE7p9fIRu6J5iEzEeX2pyGGNEBDs5OUSP6t/COVww/1YaI3a6f/rav7Jj/v88/E46M13m+67tnGGNzF3kUk4ArAhABjACaAF4uaVxmK5a2qSt8bFsDUIsFf1McT1gDNoNsCYgXT/7TGui3r/Y+hEDyzIncn8Y/dwkCMOlrUW5t/qwXHfddZxY/n73ux898IEP5KTuj3vc4+gd73gH9Xou0t5FASz7sT+7lChjonwEGZtVV87NGk5ljMWEpRFmFU9FrtIbktj95tcVoyGlQJFcE9s8YptTXVt5u7HHykvdZ/vCx2mx+1IMumYcY5qlnBEr1lEXoNQdo9zkoR5YOSgpkX7edbVW3CcleRSpNjQdkGJPJ50sSu10aU7z3oyaK2OabXWof9UOgxXJIi80GCOOP1HXm3i5d6KZgQwG9Bw2dkaHOyPaHLmFCpHCAG4QQQcO9kNI2yF591L1qn5rLWbMYV60lTGJnpxPPWPr9+GuD3/b+mKgJQVWpTxt2hmbr4uA6bL5WgXi9f21BRGNfD7xB8aTEz3OiRDAAZoSyXKPaGFeAzIetml1dcCRlARksJYNvi7IteJ5y2yOtl0eHg4Mgfnqs97z+EIz055z9DAkNM0Yp8j7mNJw2edhQaXWDORmYkWz3GbiGWTAaeqi5AWhXSNJHG1bY6AgxujHwErYh3gZddbylFlmmZAs1k7d1iqAnJrPoZ4mVmaxHBkTBG6wdSJKGPoIECLmYQAta50hgxYJEIL1Db4omAMD5JJSQFYIc5TrmTY5RwvK+8jZI/SEq2+h23YO0dHeDud32Zl2aGvap/OTZbqi44KOrDUHnEcFmhF0Ydxos5nXQ/q3s4blwb2TfN3p6QqHM/7Q+Ar2W7l5dCU9uHuSbhkfcSGRacoCJFh/AKigTEQPg1M/fqNegBXM8euXz3GOFiTQhK+hDv0tPj8TCBKU47teT8P1NuQNqvbS+JwsPm+rmYtdd6F8Dy9leulLX0qvec1r6H3vex/nP3nSk55EL3vZy+ihD31ocN3b3vY2+t7v/V56+9vfTq1Wiz76oz+a/uqv/orvEcf4b/qmb6I//dM/ZcXEs571LHrFK17BGpMqeuYzn8mJIj/u4z6Oy/jSL/1S+rVf+zV2wP+2b/u2iwdY0DEgpyuvvDI4fvr0aT6G6ACXC+mF0DFkxWucvSds8ae1gYr+XidyVyyPwOJ9qM+IuzbkfYiZdNU1u9Lfy6TelinU5dd1vNa/LUNftSmmFtxFqUyDkurjQai3gxKqmAmtwh+1aDptU2PUoObImYRxZLD2nLr9CS0f3qFz55dpZWXo8qFMWyyNlLbDvl8kkRJ5J5PEIXwxOWZ1OuuyXTci7QD4jFgSibDo7SzxH+6BdgWfYFS187SMX8zkUqL26D7ae+S62POJMaGaFslnkaLYHNYMaV0/gxhQTpn5lNVdVm70nJRl6uGoXmD8/PjD3wkJSDny3FaHgzVwpvv2jE26MBcwZ0RyLYPLbeRoYIgU5xJHzpD/BDld+ALHDLLDPUB2f5Ill8QcykwaI+trHQ1BHETa8YgDYKk3PreKGeP1eIuEPgVa08KonFG0YXvrkgbXqfo1+Jd6df2adBtS2mdt1pXNKd8GC/aZQVZal6zd/pgct6BN7tX9zOanB7w4Npq1WAMi5mBiCobvCBQCp3n0c3vU5fUK6xbuYz87MPXez461fT46WbfnNIIT5GgZtukdt11Pj7zyDgYr1yyd4/nBfimTHoOLh/QdGEEuFhjfgpwHy4zG8x4da28xEFlrDuncdJnetPUwznh/12SdwxufaJ9jMMKmZY0m+7oA7EDTcnJymM5MVjixpDjqy/yEJgdJMld6I7p27Tw74J/ayXOzoC9W45hpYqBlN9r6mKAmFQmzar/TJn2p/Vr7Jt6jSSbqQZRTk974xjfS8573PPqYj/kYmkwm9D3f8z30tKc9jf793/+dVlZWMrDyjGc8g777u7+bfuZnfob9TN7znvcwMBH6ki/5Eub13/CGN3D6kq/4iq+gr/3ar6Xf/d3frWzDj/7oj2bf4Xh/ww030P/7f/+PHvzgB3NSyYsGWOCzEqPhcEjdrpNKXC4UvjRus7KMBb/YmXSvXC1ax0ZY7o1pEvZKdTeymCRZ2ljlH5LWahQ36ioAUodBrHNdTCWd2tgWWfgWdU6Ntd3VHd63mLN1UbJVvKYIwrhuv3mDAWQTmyY84l2EsNEhF3Gpf2jATsy8QSFyF8y14CztNY1wtof/iuQqkvYDkIgTPigLZewllCBs6NC+QNIO07Ctrb7Lr4GIUpMmtTouWaQFJnVBe0qDop+PSMUX0cRZjUsqEZpmROX6Ku2mlT7X1fgFcy1idhYXspTngtH1WlOd7Bz/I/l+VLQk/N+Zsx9K89Aoe54dmHRB09B14YHFYZmfc2fGWhk48Pf6I9rddpq4zpJzdm96Xxee79DYdCbOnwV+Lf0xz5215dznKTZGdden4rVpzYm8g4FWB/EA/Pod03Yw8xwJZmLLjX1agJW12Zsypfwqdd9kjliwImWmxiifnyUakAqNfEE7YuZUVDsk67O5z5aDa60BYKwtes285exhump90wlgEL66MaPDvQGvVXDEl1DW+Gw0EB55RjuDrgsW4QWUnB+IQYtrh5unDdoddDjSIRzx79hdpeNL2xyd60TfhTrenXV47fivwVV0RWeTgQdCGCNKGEy61hoz+pmbP4V+7CGvohNtZKcnemDnFGtSwGestXbpQb2TNJq3fZ44QBwXZQzmYtN5j4EMIpCh3J1Zi+9FHhaQJK78qGO30ztOXs9tlrU6BQ70uMb4wMJ6k83bfN3NhE4iPEqsRzEzP82Hud90j6e7wyTs9a9/ffD7N3/zN1mZ8M///M/0lKc8hY9By/HN3/zN9MIXvjC7Tmtg/uM//oPLgQnXE57wBD4GYPOZn/mZ9OM//uN0zTXXFOqFyRe0KkeOHKEf+IEfoO/4ju+g5WVnqvjxH//x/Ldfqg1Yfvqnf5o/4b8Cb3+tFoJW5U1vetNl58MSk1QKkxNsGLzwO1Wrvq/qxY/n2Yi/iHYz05tL1b26Hn1vTLqrf1dJnmNl6zI085UDgzoq42L5FmxoUJdiuOwzqMOkpcq5EGQZhCrpkwW7TnJYP9BfVJrvM4j3TrVoeHRGdGRE86GLgjMYdjhKU39plGWxl3phz81mPjMXtljstlmK15zy5scgRSWVxPVor9O4OInk9rYDKzpjOsIdQ5pZJxBE/k5aibmW8Mp4Ff0OUu9OTJNjz6cSoc0LJkdxsGLnb9k8LqPQ7lz6nbo2bFNZ2YF2wB8rAy0Zg42EkXDsHbc4NPYc5jLebEZCofIYNedsJsYMX2tOS8sjlkqvrg1oa7OfmSuOhs70kMNv77aoc3yX/V56qy4aEuZaDHjIZxlDLkBLz5PysTDg34wrO3lHGDwxLdagUoRddaMwxQRm85rCDm3+5szb/PiokOJhm2P1F+d5TJMiV8m80RrB6HuQOhAxm4vtqXZfSF1rr8F38V0BTRpNWm2OWNOC8RzBvKs9oc2tFR6Pze2+ny+UBQfp9CcMWlhvxFplzH+XOFXytNxxfo3NZ2UN3Zl06VjPJXE81N6laztn2Y+lT2POrbLeGtCfnHkstwlmYu8bXcHf4fcC/5Vpo+GSTzYH1IV2Zd6mfnOX/WGgXckHhxjEfnBwnJNUwgkfmhwAGdQ9mbfoXXddS732lPPNIBiKjEs4ZjKexbEUilmgQOuN3DihlYefcx7Yx8rSYOUer0G5yLSx4QCvEPxBqnxCxOFdovjeeeedbAYGDQrMxW666Sbm3X/4h3+YPuETPiHTwBw+fDgDK6BP+7RPYw0M7oXJlyWAnO3tbQYsCGv83Oc+NwMsB0W1AQuSwICArH/xF3+RTcOEoFm5//3vz8cvN4qZX8gLpTcu+zJnqvrIC6df7NDRTMrOGfvw2tzBX9tTxyIcpdqlr6kTJavMvl63oQh6ItIyFYXH9rn8vrhpQbGt1ceqyqlrQreoFiXWn71oWywjvG/fF0i4z3aoOc4BTKPts9LvdtkUrNl0YWhh0gUQopl2bML6GYq9N45hs0R9iDADJhXSRs4ODWm60hz2egA8RDtbPTYBgsmQHXutvZS69VjaXAhVJiI8lkGkpaIGZxGNjpQb2+xjkmfb1hi4t/Ohai3RbRGuT68lMallGVUCGvUlk16LadYMWhZo8GDehWc+4xwqXK73dxkjdLFnStlUZtBhM7AdD2YxTwBa2t0JDbe61Nhs03x9QqNTS0TL0L5M2DwH/lBh3+MRA1PaNAH+mOep68rGoijUSq2JZl4pJm4R81ldZ9UzEtLzx84J2/4qSq2Z0fnv+8nalJK5F7yvkb207novx+17r4VB+l37yJkjnBtKRwiTcYKjOWi5O3L+eioUN4xVoTUcj9qufQxUfFvFVMzPAwSLOL/Tp0dcdQedGy7RendAV/fO0+6sS73mBp2erLLGBIkhoSH5p+0b6YnrN7EWROYKQhnfMkE45AmtN3eztet9w6vpEb1bWctyrO1yqWzPOwx04O8CM7Ibe3exHwuiiiHjPQALvsNM7ejSDp3ZXeZgKKzJ9OAtBPr5miLrdkMBUB24wj4bAHWAFiHWPiZAS8xvVpcl76c7RpcGsfrvgMohouuvvz44/OIXv7jUr3w2m9G3fuu30pOf/GT6qI/6KD5288038yfug7YEviu//du/TZ/6qZ9K733ve9lsC1G+rNsHzMYAenAuRigHZmMAPcAJKDvl74LwxhcUsHzwgx/kz0/5lE9hhx6gqMudisxlvtAF0kcVks8ymsLQRZ1wVQSS/Fj15pNihi1Vb3rpPobHisxuqOGg2uEz4+1ISaCrgUOMrFNtSpJTpdGowwiU2ZnL+TIAXAZcqkBLbF66QnIm0rbTJjqDKU5r4O/vzFli6Bzh22yPLe3l0MSI/jRuU29pkJl8YbNCWGMHUog/Wx7YhIDCmVY0O3MaUpuZUZhMdNrjbDNC3TrnBY+DikyT9T8ynnk/y7Ua+lzcmTjNCNrxLgSKMGWJ75m8Z2L/HRNExNpQZjpaxtSG71yx3LpUdb2fZqpevou/sHM8fuITUd+2O9To5BG+uI2Yj605zXENAphM2lm+n05/ytoXNrnxIY8JvlWDJjXXvamZB9Y6m3qxD2Xj5D7lfdDrWq6NLmb1LiOe5960JmxHERTEtPWpPuj22raUaTD0XIpqWCMat7J3x5Y9132LlMWfkfaUaT+4XE5CGhc68O9g4gnQcVoOPTau3yqssR4/XxaYdJi3ZskZPRMO3xUAFVzLApyhS8jIEQ57Yw4WAjCNOeraPmOALc8KprLSFqdZ6dDWqMdrKcDKW04+gD79mhGN2y0HOABYmmM65IHHMw79S6ZZ2Zl32bdlZ9ZjwIJjx1q7rGFZbw5puTmlB7ZX6T/HcN53bB18WODbcn66zMc2pohUNqONyRIttUYMWu7aXs38b8S/pyoqXWo/TT1fuw/bPThFdh1sRLSc9zaTsFtuuYXW110EOFCVdgW+LAAhb3nLWwIQA/q6r/s6BhiSrgTmXL/+67/OTvt7IZieAUD92Z/9GWtw//Iv/5JBTqEvjcaFByxCf//3f0/3BtJMUrO2pEcxQQnnXnvPIsx6kZlK2+DXASu2vpS2I2Z+VSp5jTCQqY207sZor021NeZHEnMEDPwZjJmQPV5GZdqlMganCrhwG5Str277XiiLsAVpmAalnTlN1mbUO9ukxqrzB3AbmAM3IDHPAgiRjMXSHjH5QsQv3ti9E6sc58153OZ7hEGDRHyOULji+zVr0EpvwtHDAFzE1l58Y/S9PC5qPPR7Gts8Q5CR52SIXR+UHRnDYvnmXhOkomASlohgpX0K9H3F+quTiNbVEFb1rfJ6XSeb9IUgmUEJIn/BZG7UJFqa0nzU4pDFDD6aDfZDYXMsPJP2jIM8cNAFMJBbPTZpIUlM6TPeI7s9wArPB+UjxWa5EWGPBSBhn0PhSuycgG0RLFmmPnYvtIii9dHjm2Lc4utauLbH9onYs7bXWXMc6VudddvWx0keq0BHvOjS8vnxehDigIcqTI+Bz0OT1atApXzqWzJgo/BNrhV04AW/BxMHRMbUCsoDEBZHezxTmKqCsE7xWteZ0ggmjdxkJE3NTSNbiBTmo2wBWON6OLWvdEe8Pt4xWKPr187Rf20fpxuWz3BuFJh53dA5RQ/t3c6A5H7t83R61uc19Y3bD6VrOucYcBxu7tJVrQH91fZD6KP7H6FDzQkdbrbp5HSLeo05/dvwWgZA13dO063jI2wOBkES7oV2ZWOOZJc91rDAnPfMcDkQFBUFkyEfwOtcYS7Hn7V+/wQIxQUD+TUxLUusPXZO3RtofX09ACxl9I3f+I0MHuCugTDDQldffTV/PuIRjwiuf/jDH85RvEAnTpxg0zFNcOBH5DCcixF8YH7/93+fv8N0DADIamn2S7UAy/Of/3z6wR/8QY4wgO9l9PKXv5wuNyp7iYRiIEJL+ssknTEQUC+aRhy01I1qVCZBrtKM7FdamzFlauFL1Zkaf2GKtdo/v1/3K1JvpC0pbxALeGwZMdBSJd1PzQF9b25vnrfDht2NMh+WkU5o7dgnAGZcZ5o0POoSoCFXCohNt2YNGk86LtHfuMMSRpEeC1hBSExIIUEID4ooO5x7CHlaGvBZaAQMAADJ7rDLfWw35xw2FGe3h9206Yya6zJ+NhiFZvZTvmQBaNHjkL1/+bjq42X5fmIbs0Qsy00vi8+7EC0wclyPhzX1rEN1hSGLvMuGhwzJM2sI5DBroE8OXMzbc2oMm8RWffBLAWiBRgUzhRPvuZwsnMV+RhxljLUxLUQNm7l5irmzPnbM59Q56iMohJikcOLJBPMezoGis7oc77Rz80a9JvP6zfb47t0X7WJWTglzpcuQaHZWs4dhkT0CdeR1W0FMXm+ZMCS2luTn1OOqWIeCPlTUY6+xe5oGe3IxAwz5qTUq3qRKkEYW1RA/eQhEACAdCRvhoGwE8MjaYdrJvnWRHGnItwJQImviWn9ImwOXX0g0abwOYT5CUyigHdPcawD596xBw0mH7wHYmS436SPnjtD60oAO93Zp2G+zb8lgdITXTpiHAbx86wefRs+48t/o3ZvX0+ccfTf935ueTt/0gL9np/o7pn160vJNtDnr8vdbJi26srVD/zi4kSOLwbQMGha8YyCUvzHp03p7QCd6G+x7iGPoL8CKA+HptUIoFpAnRvb5Y93PjgWgUl/vAax6B/T7yc9ImZ/tNxjRRSE/Jw6knJqE54hQwn/8x39M//AP/0A33nhjcB7uG3Caf//73x8c/8AHPkCf8Rmfwd+f+MQn0rlz59hR//GPfzwf+7u/+zvWziBUcRkhotiXf/mXsz/LQVMtwPKud72LGwF65zvfGSSOvLdQTEpvJekx856ySD0xu1pbh72njllCGcU0JZZxSdWxFwYnRinQIBu3Jh2W1Eqi9X2LmlTEAE0ZmClre7zOtHlG2djq82UScmsWJnbiVWAlMNHwpjnTPjmznJHLSM7hi3c6tLw+yLQriI7jfE/gJIwQxs7cMc9w77UxPnQxwArGFeYWIpFm7Yk3DUO5QTZwmJ21p4X3KCZN00BdM6plz0K3MeavEtaVO0ILU1UmndZSertOiN31PJL7I38m/lkFCdlsHWFf8nvrCDWKv91cqRg3zVhEjgf8ovFj4E/fCW4izLnwCeDSmbJvyxTSaZA45kNz0pmx1o8TSo6cvxPPUzjwu7QVHPp4ZXnIiUfL/IzKGPJwXrlP+FhpfxidONL9DkFoWK6utyhMceVLsIHcV0bmYm42mGsOdTJhHiZVZpmU2UaO4zGLhXY2vgeBBikBTKPvWiwKXmH+Jp6TBmXet61wiQczkrBUwEyocXSaOG5HkDU3DOMufdNadWu+Kn3pdScusMikxZ8QqtgEiQgw0ZhLLisXEW+KcNxe+9LtTZwjvl+rEJwHoOdBx07R7VvrdHp3hf59foIecegkvev0dfTxxz9Eu9MOPXT5JIMV5GB558YNHJb4yVd9kMMUI6LYmekqHacNOtwccuCPznxK7x5eS9e0z9LmrE+nZ2tsDgYa+ohk6PMVnS26or1JHxicoDMjZL1v8HsEDXlsbbF8Qizog54rKa2baCnd8wnnREoQWQxZX9+v8N4MWJ73vOdx6OHXve51tLa2lvmcHDp0iHOsgH//zu/8TjbfesxjHsO+J7/1W7/FeVte9apXZdoWhD3+mq/5GvZNB/8Pjc2zn/3saIQwTZ1Oh8HSXs2+9g1YtBkYENu9gViSVvPacuY+fn1MShu7v560NJ0foC7pNjUX1DCltEEx8BGzxY+BO+mPZhrEVMhqrUIzn7SGqUwyXdSQ7F+CUwZQUtfGgWG951sGNPm4yoGQMYqIaDMhmrp0GXTtkXN0863Hae3wLl+CMcCGjc0Ykm2EkeVbUZY3HWPpNIf+9BJomEu0pqxtAeF+MGn4hAQZZjzwhZE5xRJJdq4e58yLcv4EaebPSqD1HEnNx6LUPT7+MQCvtTu5hic06YsJJhaRCMr94vxd7ddgfegSkmxDlmmoIt0MC16spDo7qN5BZjS74NiIGrtI8uM1e2AiMc7in+JNFeGo3+o7iS+TTzw578PExjGGre7URRibtaKRroK1zIPGPBKYO27BgLsvZ8JkzoYBC+qZZdo1SCIopZi/8FwOYPS4xsxxFiG738RAid1jUgKXmOaiOAjl7UkJ32Lznq/LtC6JwC8cH1ffFP4O6sE4+mSnIDZF9T4csXZkAUPGDdaqMBgZuZDu+D700cCkPLTFZbwnGsEHyyc8BXBBHajv5rNHvRa7SWu9AZ0crNPVKxv0xpMPoqee+ACdnaxw0kcIh7YmPXr/4Gp66vq/0cnxYdacYP2FFuWa1i7dPFmnD42O0/27d3FIZIAbgBU46Dsn+wl1mhP6qJVb6f07J2i5OeT+//vpq1hIBC23HmunwSoKg1LAWK/j4kOkga8f8mzdke96HrgfsvY7JiT2Dti5ckloWS4y/cIv/AJ/fvInf3Jw/Dd+4zfoOc95Dn+HI/5gMODwxjDzAnBBvhVkpRd65StfySAFzviSOFKiBVfR537u59JrX/vafSWJPBAflq/8yq/kbJdAbpqg/oEaCk479zbSjH4olajWTFjmqswUrGxDSTHqcZCQOzLHgEip2VTE/CrVj6rgALENSP+W/motgUjSYu2zDEByw60FKuNtrgolnZLoBsfiRQeSp5TkvK5vjV3kQ3MM/wlmctykaW9O0+MjomGLTm6s04krXRjErYGLHIN7V1cGvNGKVgcSO913Pub/tEM+VwOwMm5TvzcOJM1gGuWYY+ryTUz8ZNz9fg6bOWhDacbAb85sxjV0lrnl75EEeHKd9M2+Q1KvNXEQk77QTC2/JgWQqjQn9npL7r2pTia4iMbWAhXhWwtaPDwviQQnvif47E+dOdjpHs2Wpo6Rw3UALH3EinWO9QJM2CxMGGuYImIc27PMRCdm6ih9Ecksxn86c0BZ9xe/BehqwCOht3V5TiuS358acwsEpinNZkQ4oaks8EpMsBJbf1JrnzXxioEWvi4iWMsrVTdH7o1RbNyq5p3saW5cY/tf/inaF2kfa2UipoFB+xUNBx3q9XOBiaYsWAaCSTTmtLvdZVDSakw578o1x8/RXRurLg/VuBXkumojgarWEPg5twuN9axBR9Z26M6tVVrtjDiR46OO3k53jNbpfv0ztDnt0/uHV9Ox7jattQb01s2HcOSyI+1tNhlDFDAQfFoe1ruNTk9XOSoYA5Z5h85MHejB7+PtTQ5vvDvt0vt3nA8DqNua0NntpcxcF3Mf2m8WnLSc744WzsxLhCbopb42c5ZXvkp1nz2HhPbfM0CE5+BNkmMBJO4NTvf7yZVoCTlYdB4WS4gIVidJZIwQaQy5WN761reySZkkrBRCDpi9UGNet3cVme5PnTrFzjhwzLnU41xDdfbQ330htZZ7UabbMuYge13oa2DDICc2AkVlTGkKtNSNCqalwlXXx0xTYkx77N5ilJ30NcX740yYfOp+aLMbe74O46fLrqvtqrontSBXtaZR0mf3aesJmedYdLCsPRZkTnw/7upRe6dBw6vHdOj4lvNN6Y7ZDAz1DgddjoaDjRdmEvAdkCR1YjoFDYtLsOaOjyZtb2rh6hqOnP+LaBHYFKEzYekepHza5M9KpFP9r1q5hPGU9y8vKxy7WPkamNvABzHQmAVxMJJ8O3d0SNm8H2E/y+ZsGUgR5rMuCLHMaux8iizPqusTsMI+WKMWa+KcOViLWoeHfIy22tRCzh+MxVS9qyKNhgmY1IDx7jhzQeRokXkEqXdZUArxn5LnJSFpuY0lfoXhmhX6TQkQ0uuLXdv1uMYYPDuGug7bFilDmLawPfF1iYUKpmz5LkA2MCetILd2WI6zmunUVBQUVNSXKMNeY9/rfO0Pzfe0X4TVxLBZ2G6HQ6pnWhITEENAC2tNRm2OpAimGhoWEBj7OmMUA5xrKwN2fl/vDajfmtB6Z8Dnruuf5Twt0JacHK1Ti+YcIv6hy3fQodYOO9WDYB52uLXNOVym3j4CWpX/Gl7F3/uNCQMc/EFj89bTD6D1zpDazSndvr1Od26ustZbzy28W5kjvMz3cNii2m9QKgiKgBq7ZlhAYwUjcqzh93oN0qc7Q/rAl/wo5xqp64x+MfnIx3zZj1Cr621Z90HT0YDe89vfc4/rZ4qs34wmCA8ltPIF07DgAQDb4G9zc5P6/X6QOPIv/uIvDjwiwN1JjqnQUoT8nDZByjZJ72ybvUhKsqqZ63Rd4curna3lGnc+jFoWK6sMQNQ9XnY+pg2RtsXDhFon/rQ2orAJRzQPVpJpmY3U5h9ri74v2YYKqWVdssyLJiv55GPR9hefb4FhqpGcE0wlTGsmOx2a92ackI+l3QI4xs6mWbQkMAmDxC2rQ5mpQRbG0mwlyWY/FV8tgEuvO/aboKuj03ImYgJWysIBh8xOKDWNjrOJvibMZuYnYDV2wTPxDK0yy9GZzKUZ8n7mUmDFMCqgVJwj6Tmk52zV8wvMLozpRaaVoAtL84jZDijXRhA73CMPN7exPaPpRtfd2J6zFgU0RrhYNgFBtLCpizAGUOLBH7634fychdn2pnNqDeYoYUp4ZP3S3HP3+Um1ZD4iWLFjJ/MHxBoYLSyJjEvhiZsQvcK4ZecN2AnulTml1oO5lOP9YcrAa2yN1WCluDZH3qtCozyjjwAWxhzTlVFXq14+x+P3600xzO9i173gvjKtFZslNgv9xxqWgV3lWwGwAmKzRA9UZN11fanZD9/+ja0+LR0ZswmtzNduc0rv3biGrl0+x9G8kOjxqt4GHW8N2Qn/Y9Y/SOdmyxzi+Ghri30GYeqFsMfwYZnO+5xYEtoVEJJGHuls0860R9vjLp3cXOMIjhu7/QysCEjpdqY8zwWISLJMvbcGe5l/Ftl3Pd4KoXCf8W5n94QvS2KaZcdd8AvnA5mPY/VY30cXnyQNykFTbcCCrJdARvh7yEMeUjiP48huebmQtTkWyjZMxdCAwKjFTEJsbpZYJKvkImsW/kL0InWtBlUxLUiq/Cq74tjGltJCxOy0U3WmMrQXGPmK87JY1gUTVRujXnztPYsClDKq0s7YTSFPMlfefnfezT0s7lKeftY8NyCh3u5SE06huy0uvrk6ZrMvARGQZIPP0loFYQzhPCqE7RumCpjrqD43DXOVrrZHbjP2Zga4HxqcXZ/XwI4Jb5IeNCTNOtRYxcZPiJkzzdCbcKrpcovAwbZVtCl12qH7l6KyPsaBf9HGXOZNBugNc8zXJcBMrHV1gHXWrkihDpQ0aTpqujDHntdAtKfx6b7zZYGPCxgiJIrEk4fmD+V5BgcEsCI5hITpjgcmiTPhOkdHjOS49fXQYFfOZxoHP0dF22jLaRgTpWwsvbKzDHCnaB55zpo0mEoJZoI5a0MJC7MZCMsi5VVoWOzeZdegWiTPzZB95yyIAQkYLpy3QgoFZKbwW/Kmh6zlU89QwmcLYGUNgx+nIK9Vpt2Jv69Wc+fMx5p08vQhuvKoi94FAQ8iLn74zBE6ft0WHzva3aa7Rqt0puEc5UFnJqt029zlw/uYpZtpm3ocQWw0b7OjvSbkXIGGZrk15N8AK5u7/Wytdu1zfIzuT25G68KNB/1QC4leX8NnaH76Z5pdp6K6pUB0/h65+wCsbKS+eyo15nP+O4hy7qMFAAsc76FdeepTn0qvfvWr2b5NZ7q/4YYbKqMHXIqUkgJZsKEjyIQLqbNjF+ZNmzBY++MY82PPxzaCGMiIm3OlzcH0Ob1BWYbIftemCfb+4oJdzgTGyGocktcoCU/yuop65xVlVzEAderQ15TdVyhXtUOc8KOOuRIKFIcgfRU/D7kWjBN/wgjbScWbgyZNV2acZZx6ubQckrbR2DkfM4DwEkbnPO/DG3szG57fCEnrE7E1Zi67PW+A3vleh6Dd2u1FtSup+akZgBRjHyOR0MUYexlX/u2/C4zO5rAty8xtecej7641a1DR0qRP2fHsIvseF9+pwjnNfHqQV5g7qg8NwzxoKWZh/CJrQGzepoQYnM0aE6MLgNymJtv0N52NP+YftHYTpAgX8bQsFA3qLI1Zms1zjE16iu0JGL/gucTXmvx5yf2hyYvcL0ypZfCD8vzAibmQ1qzlgUFiZprKxMoAl9zfQa0ROjGiGfdpBIBL2Xb+xTKSC5hya4YyH1OazGwPqvCtqTINzvpTQkWGNwebAsAL57lgmT/uWvGDsm1x719YzninwyaHiPg1GbXYT2oCfyr/PPorIxoh6Ij4fHKWdslXFV/D63x3754f3zmxtmMZeVoabTp5fp3Lvn1nna5c2qRTQ5cxvNWa0FpnQB8ZHmNwf2Vng5qNGb17cEOWeBJaFhyDCRjyu4CQjBKO/DAvQ4j6K1e22EdRgBiX7XkUNslFRLNmHoVTz50AWPDEKRe8Zd9VUAOtHc72Jj1bI++Gva/uHnC3ktp7913OJUTwdS+jvfq61wYsn/RJn5Speq6//nqOGnA50yIvgjYZkN96c3OMWtHEKwYo9Kd2WnOmZfm9IAFC6bbqBSKUEsoxbb5l+22Zk9i4JBfm7EtoxlVsWVhWGUPKDGVEwmt/5zqGkALmMfK77JxlXnR/y9ob62PhewJlFZ6rSJ2z+RN59up49Fn5gemtDjlD8/qhXTq32aHmME8GKfNZcq3w3qFsud2ccc6ZAl4wv52W0edfmbsQyfiNTRHXyfVsVoEwoCpfidTrkkTG+xdjdgJJdmTsgzEw46yvEWZIl2fL0AwTjmimNlm/Oa7nUfz55Nt2SnCg26w3/KAcX7nObcGfmgmYh2Ya0t7YnMrmvhQdRPeJODsrJgaMI55n79CQRltddrxvdIn9omy9EtWLk+95cydxtNXzwmo1IAG2Elq7foYA0JiEmfHTc00Y04C5UuFz8V0zdC45a4qJs/UUJczhtTCDyXrKGkoRKGRjnoHVvNzc6D8cJzDyQT2N9NpUNLES7UC8T0Vzr3n1nmIl7nKMKzLjwcKWfM0I6hQTahHWeU2BmCfq5+2O5+PdBSDZ6XLOoBa0fT7vTmfJ+e3BkV7IWVY0qIH40zX4hExg5CkYO/MchsM2zzWZtzdecZpuPn2Mjl6zQzvTLrUbMK5ssMZle9JjrQmEATD1Oj9dogd276A7J86/AQ75kuUe4AUal6s75+i/R0fZX+aOrbWk9ifTBrKfmANqsWvraJftuUwD6U3w7Nq2vDSknV1IzdJCHzm+l2h599HFobNnzwa/ERb5ve99L+d2gdLjokUJgyYFtLOzw1kxR6NRcP7Rj340XS5UJTUIrwtfaA06JHqYO6fvK6mnoi35bzg7l4MK3qjYxyBfPC04qFOvZi7sIiILWJRpN5LgQJKXAESW0czGUw5brrIRN+0o61swRgkQlAIptuq6c0X3x5pYlJKSsjpmKazHMpoF507wUD4eBjakwdk+R2GCY31rt0nT/swl6fMguNFw4ALAIpdMukJFKic5CeScZKRf6iD3wJyd86VNy/0Ra1Wkq1o6mT0zjmoVtlszHDEGXo+JLkueZ8akGcYt+ky8WDpg6qU+DeyFHzRmOdH3STGWsU1fGN2sfM8G8/uk5mB0HtacR9ocyXsfhQw1VxhhPsz65J6zSgAX0RoAXGRCEJU/wzGTRL11Z5Jim8u8dXOW2dPLWIo2CiRrmESQk3usxjnatkhOiSDZZOIVlHaItiQmcOAxzZhs5+9ly3AaophwxwkH7LO1IMCNL6KeubKKAErq0u9+Eczq/ufgs+jPU7xJ+9fE10O5rnCV0Srk8059+ncseP+VdkX6xofZn6IoVXKH/NwGKFFzMfbO5+PstHkQ4CAgRAvO9y3n5+fqKwpnbd8yAaS0V7RCiXWdrzeiFgAmLNE8H5pzun1jnef7zRvH2CEfgOVwd0JLrZznOjNeoa1pj67sbtK/Dq6nB3TvZM0LwAoc8DnL/bzFGe7xCYKGBeXtDhHp1Zv7+vLwPsHkKuukjnAY8wG1L46K2GZ9ejTgzM+HYwCw4szk/PGmWZsyAUPcXPCeRvyaHUAzL4GuBoQ8LJaQdPLrv/7rg9DJFxyw3HXXXfQVX/EV9Jd/+ZfR83DAv9xI1sYyZju+GYW/q7QVui57XQpcuM00Hm5YL7M68pItL5BaRNqWga3YmGQHimY2eQFxJ9PCGJiFT45FmYSCaUAobdSS4KAPqftNfzJGSo+rWsDnKam4Lq/EyV/ujUmpYvNKq941oxybK8XyFMPvzT/aq2PeQGACMYd3fHtObTjhj1s07To7Ye63OD4rKbVj9hzgaHtTGA0odkadLDysgJbMX8WPoZaAuxDJOfMubS48n4QJgH7mOeOo3lMD6JPPIsWIWUZOLjOmJfZZZ9LsRtyXIss1o6SNekMW4BLru02il7dBxipmzuWuDRhs3x+uTzN3HmAI08bd9Ux3MGe9xFrO83yR8ZbcGMKQG38JAWXC0EvSRt1+TmLKOS3y8cpkFsokDyTawHws82SqOhkdj7l5TzgClHdu1+th4Gtnl5x5OCZZJCp5zmpeSBCXDBioa3KNaFi+vj8fF9G0h0xh+Iz1gbggI/YeWRPl/Ka4OVrBx8TUk5k7mfc5n2fFY4XrbdvtJmSbKiCeckFFML6qzfl+6Ma1088jnM4zbUPCkqQgFDRcZQ2fncJ5ZvabXDdq3d7p8fzC3IUTPkxtoWnptSbZunnTxjE63Buwf8qdtMYmYA/qnQySRgKovOHkwzjPy5W9Tb7vtnOHgvctb1O+DvgmBZSycBDwL9r5WD9je2HM3xZJYVnLIvPCr0X22csaeY8mO2f3U84lTrDKev7zn8/5Yb7ru75rb2UsegMSzkCt8/a3v52zZr7+9a/nLJmIu/wnf/IndLkQS9QMA6ulnWWk1aVyL8rTWXJjZJllfSJ3di5K+Zzk0f3Jxsiqb399LEys9EP6aY/rujUTrM/r8QjaJwueHzS2h5XjhQH1P1WoUF789LVZ29SfvyZor31gZWNt+20cVouSQyXV1uOk+pcKE23HLexLys6+WEY2nqo8ux7mDE2+abJEEoynYhbR5pWVoWv70oyjOY1hkrDbZlMuyXAvdUucfpnXLrSsZ/ZYKu4+cZ8cz0L9Ckj24IEZQz8fyt+kNBX2es+Y5GPgmelpcS4VALB9FmoOFeZYWSP0PDamlprCiFblzz541tKPzFwuLo3nOvBcVRsyPw0PMIJ1AmsH2+irZHHzXFNgzV3tuLfabi7AaXmW6n8mAQjHQrQqYv7FCfomLRqOMA/dd9d+r4mKjJWsPxbIZNf6E2LOKOuLAEU5F1sfg/dLaUI0oyX1YbwC7Ypi7DVYsUwwmwGp8WKmVf1xOQkhT3Z9Yu3RzzqfA7E/DRaKjLebe3pfSK11mkGVg+G6ne8L4fXBfmA/ca1JZBhvgBkjK6DKtLl631D7jh6nzMk8fLdSv/M9Kd2uYFz0OT0mMEMbtHk9xXy669wq3bHtonrBIf/0cIXNwQGxr1nZoI1Rj/5r6wr64NYx+sDOVRzmGH4sHxpcwZqVD+8eY7By/dJZet/GVbTUHQc+VxrIi/YyZiopmEH2P36Xpo6vSe1ZBZ4hELrofEf5fVeubmX5ufQYFfbRBUNr30d3P9100037Sn2ysIbl7/7u7+h1r3sdPeEJT2DEBBOxT//0T+fY0C996Uvpsz7rs+iyoAiDI5Jtd7AYPrdUAiwveiEsX6jdsBu8ZkhYmmekCnMRZBYkPm5pSb3QsujIj0xoF2MsVCQPKyUN2qwk3CLFzSReWvISlQLaMXOlpLQTsWvDvttrFCOqJN7588zPZc/ERH/Jvhv78aQtsDDlSsoeb3tONnCD7YOWwqecHV0Z8yLj6KcdHJ+Rc4DNe7Y61OhNs4ziBIdTn/lYJ8uTsMU2TwnK7bUnWT4W+BY4swLnvyLXsu23GuqcIXRHRQIu+TFi/l3aVEimai49DeenzD3uQ2TexTa9UBKYgxgZgyK5LO2sUeDG+PuVViqbAyqsrXy69SDUamTaD/E/SfpCCLBImEb48mdTmftmnZE2BRJndx2DPM+AoV2tjuQ+KDpniwRUr41h0j6vVFLjyL5RkH63XLAG0a7p8RYQovNgpEjmg322DJDVvdlY+3EVUz8Ze61F1c88GH+1RqYEDrHnIZLz7HxBIJJnCgfTypnbgz5lEz4wk7RAJgft4TH9vOLO8ZgPJkSyEVw5UGWcp5XTeDBGWb/N+2PfwShIyvus1+jo89DkQ+8Gz1g5lYemmj47fbY2uHmf5WFpFB3j7bqU/S5IT6Q+tb776/wjDMZM90fWd5jnQgDAwHrSpDtOrdORpR02C8M7MZh2WOuyNe7RieVN2pl0+fgHN49y/hZoUWAq9pazD6Lrls7SB7eO0hXdbQY8d5xf4+ZIckYEPwFJfqG87aFvVHFf888IwjAJF16wfIho4WQ+Gg2pzNUP3nmM2u0Za1qgZSrjqe7pmod7q0nY85///OA3AnYhf+Of//mf05d/+ZdfPMCCjPaSb+XIkSNsIoYwx4961KPone98J102VCX5FhvzhORLk7W5147MfMxsNqnyJOa9BjB8POK0KW3TgEiXxt/9hh19+dVG4hiCnPGLm5rkjJ58D6VQ4cpuF/444x23+w4BQv5pN+nkYiaDYTaMKl+AQjuC3VdvSuF4ynOLmvWZzUqb1+h+5Z/qevVMbJslSlgDUWI8quUEfV6zAund5lafozS1zneoc/1WkGsl1Wd5VjOYULSn/CdgBYQNEVJxkboNqZ35JWgGCHWxZkZFzhMn/GLdEcm+f/8KjKx/Bu76xKZWeP5xoKlNdlLEEtlME5H7FxSeqTaV8m2IrhfKDEt831y2+EbcTt68W9H5Jdcq4BJlWjVA95JwNv1DpC9h/PRCEqwRTcOYu3YIYJScHRgHRGQKxzDUQEjRAbOaeCUF2GhwyNeb5xC01WtZ5B0DBc7oHixy2T6pZZ1wuVFS701lYt9sfXcDESQ4VVpCnvNi8qbBjWICNZiZV7Ul87eQCkMA766Rh2JBR2T9jL1v/jMQHOlLjBCsUI4295X2mGuzuV+IvNYMwVjAlPviYOqLkOsKtGguMfrsUluMPW721eCnAYWBYFDdi7X7A7dfSSeObtCJlU3OzXKos0sbjT6DFgH34C3ede56Tj55y9Zh5g1Obq+xJgaJIo/2d+m/p0cCAQq0mTqUcdBfGVfrA+ifB2tJMumRev/1emX5KPs81DolQqjJpEkDCkMzR4e6JHLdPYIsmN9POZcQvetd7wp+Q7lx/Phx+omf+InKCGIHClge+tCH0vvf/366//3vT495zGPol37pl/j7L/7iL9LVV19NlwtpCWNMOi4SAk2xVye10YoJQ8OAh+x8TP2NFzpIhJcvbk7CmUsIJdGYP519WkmklS7bPkowuNx50Zgd6fFQtQWaAg2alOQ1GKdELoxYPplcamjbEGuPlJ+S4tkxjpcRAwyF64RRjjCjcn9KCxeWg+cSB2W6PxZIxiabi0KkTML83IMOBQ6mzf6E5ksTmozatLa2y5tXI4vi1cxBcQakZnxspTei4aSVRZHBtZkTvjjky3P3m5M0D+YOYLLYnMhHCyvXZNQTDBRDOwvjoQsKP225GbAqAZX5+BfvD59R0VfEXpczTcq3RJ6TCpUeddYN7PJVO+RTgyTznhecmxMMJUdbmjSohRwq/nfWJ7lNzIXYj8OGkhXTPGFS8nPiUO8AR3GsY3lWpH+lwiTpSwSw6nmW+2fl5zLg47VM+UC4H9NxkzVOUka0bj4YagpjjFtwreBBs1iLJD6bS8oHJtsv4MTIOdIEeOn+hs831Iz7tnkHZjFpSr43MpVUMAWraQ/mvKoPoL5s7XPVlUmJ8jrkd2Fv9s88Cyzh6+V7Ji3W6JX5s1kzLxmXwjUR0G7HwApFUv2JHg+EKUrIM2zR1rBLH5kc5iiMt7QO00p3SNujHmtfzu4sB0KfnXGX+p0x3/O+3Svp5s5RNivjuc9JgkN/osxcUZm0O/PJJjXmWPdz8JKbMLq6Ao2gEYrYtc7V628osUph/8e2E2SNxwuzqvfR3UhIg3IhaOFZ8C3f8i2s2gG9+MUvpmc84xn0yle+knOx/OZv/iZdTpSZGlkJb2RzdceLq1BUMKPU847XUMxAhHnTTEwercVKVFWYTR+NI7Y4a2Ym76Opw/QlNNWw2pEi4xDY12sHSyVBcW1Q+Rdii1awgYfnWQotDswRE7usGwFAii2Mcl3hVKT/IYPiAIgFXyHI0deDAa1LGeORkPLndSrQEtsE/RhxxJx5gx3rkbSRE4d1pzQ936XGyoQ6XWdXCo2JhBwWPxb4Esg+KiGId0cd51+QtceHwRy1ci2HZxAEGKP+ydD5JLQ7E6dZUSYjfI135hdzrny+yQbqzBgyxlpPWR1IQpyS2U+mROiQ/RCmreiDUDCVMcyNXCvz0D73gBEunMsFACKxdLb9nolvWhAUtiGPLpYzOylgHUinY86vzrY0q0czzwCZTQ7MkNsfO8anGQYNkPdaV6nsImDq4QQh3u9FgTKWEKtIRTImotUoaNQkfK0KbmC1WGlTzPzZTKehtiU0ocoZK/EBg3aw3XG+WlF/hawc55OQvQ9Bpt98rQ8YfdXmqBApM+UrMrVquyrV4oYPJ18b7XwNtMbqHH9KMIYSgB6AXyvEycYkX1OzcVBmhvraKOkxCIRkRcuGORKSqrby+pSB7nBflqJZsKKv8eMfE1gEZMYtGP+SOaP7lF3vy+PojqMOzTsN6ncmtNQZ0XDqWLj/uuM4m1AhuMmZ86t0Z3/E71Cn3eV2IqcWzHXvOL3OczeoLhjDeWAWmvcd0fmkTf5T9l0Nrimc6/qYrFHZMiQg3vpM+a+7gy6trQxoOnJ9lPYg9PHWdj94Z++pdG81Cdvd3WWh6/LyMv/+8Ic/zJHDHvGIR9DTnva0iwdYvvRLvzT7/vjHP54b8r73vY/ud7/70RVXXEGXG1Wa4uhFPeJzkb+ccWlcIKViRkKkR/ENy92ktC/KDlSYnOw+7wAYC5spfZNNwjJUmZRX1Wnvt7bY2VjpvmkyYyBSrBhoSKqTjd0x36uZirK2moSLhbaEguokab8Jba5kf7sxMG0rYZit+Zfui73bArFC5CdDzFROG9TqTDmU8cAn45v23S4EJ0eAGDClMOvCdxBi/rNDPedacc7Bkq0ejCUkXzpIQgZQW/OMqePoX57pZQa0nTtZh2MXPjenYciZeX0tNlQb3tW+f/xdIlUZ0xX93IvPxQOQlGBCPz+14WpQGz+vb7b3qbrlO4+rZ+oyBkg6p6rSDAenkciZfDlf0GBpZ2o2dSomm8V3aBSkLIw5osjByV7aJ47K1kcnGCcxidTPS5u0evMsAGBnDuJArb7fmvnoMRaTS+uvpOdM8cZQOJMD5lAYwclXA4bfPQP4F8h9AVDOmN6w/66jAPB5/dbXyVWQ9ysGtOWeAjDwfeYx1rl3gkABKpqeYtCLY6PXzXDcCxoUdU1MyxV0KgaWjJam0AYNbMqYtozZzqsMAJMirE153dq8KSLkE2zo/TTytdRoeEy9qfU4CR7Luqai0A23uzRqdGi7M6PT81U6tL7Dea8ecOUp+u9zhxn0Hz60zYFT2q0xC53OnF6lITSkMNGMhno2a2FmPirgV9or7ck1rblmxvTRmzQGWha9XtmhSfguYh+aspalSSv9Ee9dWqh1jyfd7/2WcwnR537u59Lnfd7n0XOf+1wO0vWxH/uxrNQ4deoUvfzlL+fwxnuhfWd/BIJ63OMed9HAynA4pI/+6I+mRqNB7373u4Nz//Iv/0Kf+ImfSP1+n5Nb/tiP/diB1OkYJv0XiXjlP3NGNv6XFxqpR2UcToV2lPaE9+SRZXQkGB0ZCCY68hdGA8rvDSvx/VGRT7I/iYNfauIQk/AaJkQtdLnEyh/z5dux10yb/hTmy/lpWFAi/hv5+EQBgz9v//Q4RbvrMytnzyKL6iSOxDnIDOZCVm5RUhuT4Os/y+QmN8dMSwDmfU4jbHijtgs7jDaPWhzOc6XrYvuPEUKzNc1y+6BshL9k52hv6rWz0+NkauKcz2M7dc6hqLO7PGamFpJojiKDa6Gl8T4MuI79uGIMaIGBDzfXLBSyZ071exhlrIxjtMz9oE55rlbal3jWxXdZduX8mMyHcI7aKDf585fvNjCFZg51BDJnspRmOLOv+jr1PgOIzMbev0m9cy6qmvvNWkxvziVjiXskGhaHxPbXFHz+RLSYhft1mgl2rs/GUsC5c8IHCSjW5zXjGZsz1veIw3WPW/k7aeaRgCwt/pR1Ugsi8rr1c1XMXQRk5+9b2L7c7l8d1wArMn8Lz1KeAd4zHXo24vuon1mgvVBjlDFTxkcm0EpINDUr9Q/AdzhPQyYtcjzbO/wfA231LuQ1hfuQAUr5OqvfP1OfboO3OpDnkc0biSQYa6ccC2URwfMIIgna8Yz9UeIaQ+G6FQb5wRyAqea5c8t0dnOZ3v/hq2l3u0vDQYe1MJJDC2BFP7e8nKKQKBtDDZ7Vfp+/r/ke796jSNt9BDFZS4oX6D09F564daiRCdEQIl/yfm3t9FyeJ9XuOgLG++jiE/zZwYuDXvWqV9GJEydYufHbv/3b9NM//dMXVsNiPf7LCOjpQhLiN19zzTX0nve8Jzi+sbHBqqZP+7RPY3+af/3Xf2XnnsOHD9PXfu3XLlxPlYmQ1rpo6VJho9EMSKBBsCDEazQSkalibbOMu7ZJlfq0xiOI0OF/F8xNCoyyrlhtTn7D54SEAYCK9FlLapLS6opjpdK1cEPJJFzmMrHbZWrmjEfgfOk1PjpKTCwSjzNd8CZtsUVftz9rn9Im6Ug/pMZVRZwKpFKmCp01REubYj4/xc2xwZsAjHtay2MeFyQTg6Suj4hfWSS7JnVp6rUszt8EGQIgpQND2F8aubHrOFMtibLkmKWcgcsl+fncRJ0tbX2lTAH0fLWSWzFDsr5C2pQkk8j6cUv5FQWPTI1fYMoTS4gac4BX/dDPgY9xuwwoVe+nu8aMhQEZWdn+Gea+KfH+WCfyoH1qXuVgXDkrZ22SZ+YZPJbe56An0yxYqbQeE2EMfdAHgFeYleE+gBQX+TAcF9f3PNmilq5zqRENQ6atgVBm5CKQ4bpZo0EtL1EXYJRHNXLvsPWtycGu0QywhDoXjnAd1sxVz1X20wrNVaOCHB+UwJKez0F7/Nob7DmJtVJrMLKxtMuVzAGxHij4/8h8tPcaAVywVtkNL7KpxvYa94DNb0V6f7Mke4BoZryptG2rBnK6npimLDcxiGjsZJxUv2MalAJvkDgWDIXVYpnytfk3fBERDU36tbPV4+c8GraVqbmYfDoeQPy3XBsi2hVlApk922wuxkNMFwJdmDErjI3hX7JrZnO6+vgG+96AtpFMcob3eEZHVnbo9tOHamun7gl0CTX1wAiJ5dfWkJiU6K//+q9Z2wLH+4//+I9n4HJBAYv1+E8RtB4XkpCsEp1/9atfXUhcCT+a0WhEv/7rv86qp0c+8pGsgQGA2gtgAWk71bIXJNg8g5CeYTI6u8haoBOTLFsGwDLYelEPGFx/zp1WjLJV/waLbbxfuW16BGR5Rierzy+a2eKfrUp6UYy0U4+xXSQtKXvYrB3zGokA7Vhl5/K6MufX7KRiQCM2+gETIW2Xr2pM7fMKxlL3P/JcwwapegwAFeASew150/LS4eXlIUvgADigbcE5hCYGSNkZdbkcaFVEm9FpTmk0b6lQxq683e0eLa0MM7AifcpAd2BimPeBTcK8WZGTeDfTc67CbCwcDzW+RptpN1ftcC1RbbI2G4lgUbhQItCIXJvN/QLgLzLfRcbTaVOyPipGpSCdz+4Vu8K8/YGPRDZY/jdj0/ye0Fnft4FBimdwtPmXXG+iy1nn+6xZM+8D0nbBG3h4fIQj+c7PB1oEmKl5cNRbGru5ouc6hUEqxISND2HMxElYmb6wVsl3H2G6YQoXRovS5lmG+RLNhDCKModaJomofy8LzJtolUuZbfeT3wm9BmQLnjCR1qRQ2mX8eIJr/Vxi87ycwc3mgS5LzZ8QSCT2QcPUptbtJGWPKAFIImu8ZeYzcJE1M+93dosEDAjeU3eDZagDgKnfXW3iFutTrP9isqpDageagiJTHxVWxdY3+/7rZ6DwmmgO8wiUob9psHZp8/JgDprw4JovsEDXjEGKx4kdh9BsOOrQytKQxvBpm8D0uEW3nzocDM09njI10gGUcwnRgx70IHrta19Lz3zmM+mv/uqv6Nu+7dv4+J133skpUC4oYLlQHv+L0B133EFf8zVfw4Mgjjya3va2t9FTnvIUBitCT3/60+llL3sZnT17lkMwp0zM8Kc1NZq0w68lbYojzI87rv0R4mDHOgRGpR11SW8UUaYvvy4oOgIaYuUWFlHN7yiAEtaZb+yxxVuPQ3bYMP+hFKYonQmASmSDDMY+stkVNigDIjJpc7bmFJ9XQWuWSao1WIkA18jen5JAxc5ZAFqQuOpNV5mBHDuxQUMfcWV7o0/dpTGtLg2dI/24w/dAy4J4/+3OiAaTDjOJnLSM+domTaQecahX46tD8OpxnkuSPowNmERv3iWhewsSRasZlMR/Et3GAoNIRD95pjpUtNzX8loifs6BpsdIMUu0Mlb7EhMCBM/QSteNuU70mkI5wcsXgJLwJfDAS+YvX6/DB/o2+zCuzMCyqZnXGsaYJER64mhhiuEJOqjmog6oETDrXiLMYWSV9sGHupa5ClCrtTeD7S4fg19UppXx5bUQWtubfwmQkUhe4quBe3SiSKkUZjUIyYy2xJ6D1rRy+OpsPZtze3ju+HugPXIAxoa2lvfCVB/RkGS+ASrSVXEOhM8lJPXc5ZkU9hNZ60JtWzYvuFy9gBWqyEmDBHuRfR9K1uponwLQEbku9dv2J7guB23ZxQLYA18fg9YKnLth8O3manxwsrq9X16hO8H6ZxcO+aKvCUEpv5sq9LiOlHjj1afogydDk33NewTvrTchtWtpVn0EwPCp1DMy+2PMbLcAXObEeWdOHD9PvdaE96NRr8XBBILw7JeKH8u9kL7v+76PvviLv5iByqd+6qfSE5/4RD4OhcNjH/vYPZd7ScSKg/TsOc95DjvwIGHlhz70ocI1J0+epBtvvDE4dtVVV2XnUoAFyS5f8pKX7KFNaWCQM1PhCm3NdmxZ2caWnWhURp7JrzXfI4tKAC4so51ino35SVFroiRQKQFcalGxmgZ1PFjwVTmFY7aOwtjmjFIoZc7PZ8etJElHXjP3B1HYYuUbxicYp7KNPgISc+ZJgSQFEFz2+Pz6IBqZN2MBjsIt0KzA/wQMXLs34Xvhz3JuvMTn4KQJh831pQHf3m27qFDjaYud8aU9IvV2IMKbgInPjpa4yXjgzzN3bH+NHCwxR2251TOGInmX/iO0pn5HQhO4EDwLw5c5SiszKQ2otXRdjmlQqEnMJt1jyv0dYu9ZGYVCAGOfn5rf2XHNVEYkvdKezMYTYV1zpsSdVwy5nm/+vjnHXPDlS+ACfIyavGs0wKxn/ikeUHrww6CH50GLWohEB60GmMSWc/ptI1GpD8GL37k020cbUwlLszXLR2aCs/vUMEcSel1rxjj8cJc9o4NjAmKDeQBQk5mIhv5B6CdHTeIcRbCfx8sExGvmajbm3ifC1ysavExLVnj2OXNZmB/JOaQZZlnLQy2hTJOc1PPFOKtADiFzLmWbjSrLS6SulahZ2TSrABaZqZH+biZ7dl6DLTV3C+tlFfqp2pOcJs4B+VhZeiztQ1KX2P0jeyaqDN9e9/yLa3l00y5eVDzG72gIYLI2NIg+dOcx85xD87dMwKD8cPR+pQV3WTcKjvtWlpJbDOi91QreCgJLBW5P3nmIbrj6NGtbtgYwC8M60Ag1uGWP/x5Ayk1u3+VcSvT5n//59Amf8AkcURjpT4QAXqB12Svt2+l+P/TCF76QzcjK/hCB7Gd+5mdoc3OTvvu7v/vA24Ayz58/n/3dcsstfDxw9JaNLOakZs5Zx2xhaApO4NHy5YJQelO4Xq9VKTOZwIE0dAi05y2zFTAvyv9Bf8ZsWGMbg21DYbOuOi51RZzlU89Dt1UzzSmwkpWV6Jet19YRSqvC8Sk8G/UMgt/6eCTqVkYWaGZtUfNDz59g4yHOswKCfTPuHw/bDFIAWpzfiiNoW/C3Per6pI44rzKOC1+hAhNkYEWNgZ3LltjJ2oyfZs6zCGSR546/IDCCp6w9KoqVHgu+D0EHtPOyGnv5lISQwTNX748rK58LgTOzekbReRwwZGGZBZLHIg7u+jj+mBkO+5F/l+eh5oa+BOeycn3foXWAQ/3YM3PZw3aMEZh4DfjcZzh+/H3UpMlWx9Xp8+6wKZUP1qDDFbOPFMJox7TR3txKz28GvWPnj+L8VnxQBz08DFDcd0SoywJnZOBaAVyv+ZnudPI5jLIRnMCDvRnaPVABGvz4Sf6TglBC2qE0R3Z+FJ5ZGWXCDg+y5LmLdi0Q7pj5oJlrMd/T64sxnXL1yJwTUK4ZyvL3Oqsr48Ej+2bgr+mfrQ/MEQRc8Y7bEmwiGK+kD0j+fhTu0eutFizpsTJCiCDoiQWYdoyz7+a9DK6LvK9RUGKRgv0SCjpYGKAOZ33T2FNCkZvgMIWqfbnZ3FUCWqsp0W2IdsMeskAHSwTMRH2+Jz7cnNMtdx2ljd0eDXa6eTlKwGEDqNzjaH6Af5cYwdEe2hT4rgghWtjDHvawS1PD8u3f/u2sOSmjBzzgAfR3f/d3bPLV6/WCc9C2fMmXfAn91m/9Fg8OzMY0yW+cSxHKtOVGmVStNtXHAie8eMK5KFMdoYLJQlZQ9b2hStloU+w1NuRmQWqFfyyAiK1k+pJw4QzKMoIjCT9bABAF9Yhph1ysTNGsNkJrLiol3VHppl9x/UfQJj22WgJsbmdzDuswq7piQWVQtep3zKdI5zURyZcuz5nEhAEOsqhrCB07dD4rEhmHHZFnTXbChzZD+oTwkRPva7C53XeaGDahcm2QKGDBu1BgxHz9kLy3VVJBn69FzGm4H46HDcZawtUyU6gYxID5ySTmuWbJ2mXnfiTwlfDRzDImXzEsevxFawAzH+M4nWu6FNg1YLbAPGr+ghuntBf6+VvGxjDGBSZK+i/HvY18JvmeKVPHzPcr8p4J8NDmMmxqkjOmDTazMoBHmEuvjeDfmFtsPgaRaD4eOMYatinWujZ1vIYPp3kuqaR1wXeuxzvS+/msfQycmaB6jpLAtDWn6a4PZCH9GflyO/kxBqbo46hJc1zrgSqXhetRLxhBjB9L4914w6Y+kGxLgkTve8NmZnqdaESiQUbW3mC90MWr5K9FH0YZZPNc9addSmP7ktHwW0Eba3J5/hZvzTQ+us7oNVpQZ/seaavpT8FcT9Y4vSxY7b1dnzxIZVCuQVVWfwjqbALWYN9Xczw6/hq46b5l/ILdO23nI3tEpgUL63Pr6pyWlke8fsJHkYE7z8kwGAcnbFXzN7TuMJ++Tv+WFZqV7Yn+XOCfqwtRe2DMx2t1dUDbOz0WHmAvv+LoJm0NvJl/NsYq+uI9HbDcRwdKdytgOX78OP9VEcKg/dAP/VD2+7bbbmP/lD/4gz+gj/u4j+NjsJH73u/9XhqPx9TpdPjYG97wBnroQx+aNAcrIwmDq53co1Gu7AJWAWKCe4Rq2OhaVWq80ZFDEUbSRoAJd42IRMcuonahtNc5rkidKzJIeX/Uqh600+zIBeATEeVoUKWdRtWxQt8VONH1yQZYcNzXfY2BM1Vd+CNnboN2atKmftF12DixR4cgHiFNM8NY5BHKmDUsg3YW6no4Qex+lzgSISVnHceIw+dlAs2MYgqZhTdawGCc8BcwFuGm5UxxnMOyYzwpCQLFhCIPxZn3H70Nwn9rZ1kDMDMJbXatH1PlqOyutUx5swhiC/3Vg6yeUeyT0ZVfF/CZ5eZQn2Zs82hialzRlpYZ/8D0SBjMCBiS5mYXe787rHvil4HfAmQYCIXmkDwuA+ccr5k9Bqi6Tumf768DPnkuE2byvckX59ZB2Y0wcpfzgXKAqNlx5oT6ORc125SZwWVtwXMG48ZjZAZC5Q9iBhV98CAW/Wvstp12CReJeV0vsW76cc4SaiLnUXvmHP7VHNdmM1HK1mffCf8ehT4YnkSbqfsvYbJxb5CJ3D8jAeny/CCcT+wtQdRE6S4XFPGZ8X0OujLzcwuCC+3jZ6vTa2wsMaDeAzLmV55vIueRXK62usy0uirHl26X3dd14eGXSOWR9suBMpCWIgMkeF6ovDsIcYy5/KATd9EH7zrmEvpGIl0WtEvBq6GlDQYseemHBuK67KCpSsAXPrd8/iOhMebM9nafc4WJxvTOu5yDtvim6f04GtX0HkYNzPvZwZRzH10iPixISqlpddXFFn/gAx9I1113HX+Hgw98Ub7qq76KXvCCF9B73/teesUrXkE/+ZM/uac6ndlIaMteLv0JpTlhwiSJDmKkY/zDiIpMG4Lr/DEt9Y868OnIJvqzIDXRF8RWVd1GW4ZxKCwwREX/k7zRkQOxMYkt7kG7Yg6ZCeYxO6cWYLlOzF4K9xc3Pn1Nhsti4KcA6GKmDPN43zX4s4XpthUF3nnCskjCt/bKmDPNY0MYbvSo2Zuy0z0kbTD3ms7mrHqHw/Lh1R0eF4CXwbCTzWNx0i44ZxozsLlI9XzG+wxsZb/zcXEKB+/ULKF+FePhNmL4BeT1ZmOh/U5QrjIfy7Uo+eOdUZ4V3TnbKuYkpnnQm7TxHXPvmfwwdv9Z23JmWI5noAndxXfPwOdl2rmTmofm/dO/2QxrHjJzWVdUYcLkgQmXZcMyxPip/TpgKgUm3udMaIwbNO/MMia4gWSkfp5KuFWeDzD38IAhMxcEMw/TMPgYwfyqmdcDHysJO9zsTFnbxUBg2Mq0N259Fgd/r92RXA4qilE25yYNaqCvENoyk+79e2RIJIpY5vND1MAxlOVNscSnRzSHshaG0afwnrgxgWZpKk7R3sdFR1gKtOAxH0btd+JBVeGZR6LbZXIbmetSJsZAF2+i3nH7TCLRQGBXWK/w3BWolX4oIV6Gc2BuyGOWWr8VMZg3AiUpV8vZCsEs8muyNpq1vEwyH3vXMvAvmhkFfNwXmQdqPTBl6XXNHYjsySnBQnRP0dfkkenElLXTmdCpnZUs4IT2F3NtS2vFw8otUDSLjhmwgrWFbXukLyw8222zIK3fHXO+sIK1Ckf2kyAhTmNU13rlbiP7LPdTzn10aQCWOnTo0CGOQPC85z2PHv/4x3MiS0Qq2GtIYyZrEuSpoOKMMPRWaZFmREykHXM+q8MCmFScc7uZRFofNlT6EG9fuCkm2phalGx1wXdzU2yh1vXGys6YzAjjHxQa67+pMxZOU8BBALDi4CE/lkufgvqDutT1Ked7E80p1vxw15afJqy2Mr3jRH/eN4MXfHwuzdkUDFGz2tiIe9CwTL22ZUZDmJB552ox/UlJ6BiwZJGUlNO6jF/EZBLO3WyWJhGW/KbunJx9GcLfiMmkBgxyiKNERZhxqTPIFu8ZT5Eqe0CVPeJmxVzMnrMEErBzUT8Q84jADMqlYj7VxCas6oi9M8FjB1jw4AFjnsoCrphG5qcyLUnOzPNpkcxqhlfWK5UXiIEMn1M5HXw7G97cywlrPIhQoWJFqxIIWGxoZtFuMDBt8pxw2gTvLO99ETgXDMAL+8AYIQvaC7MXeb7ejItr9RokJvii2PVSQs6q4nKNle+H96ngZwBzMZiRdSUimdPCsBaoP8nXAJleHnxpM0XXrGK+oWzdybqI91XnGfIdKjGVzEhHrfTzL+uvYbp5/L0Wj8GYzB+VnyoTPEheqwx8GH7dCNx4SliKMPkBaeAjzRQtoDwvud3Pbye0Vw7+Uo4eG7usiqVbSdqArMkB8DHvgupHoM1J7Z1lv4MGxvmM8J6ck2j1XLCLw/1dOnNmNQfTKi9VzCw7m1P6/S/s71V7oG5nNaeN8Rttdlmgds3h8/ShW2F1o7QxEV6iNHHufXTZ0iUJWO5///tz5DBLj370o+nNb37zgdSR2aXH3je1h/ESoRkhvykX1KAVdUUZf8XkRl9O2QjtRle4yB83i1vhEvtd/5aNRZvAWeBgo4kYKVv2XY77iB9JxmxewSxmbUiUE1tM9eUi6YyBssJCacZLg5zCNUaDE7RJJovyr7DSt4K5XMlmoVOjKwYo2JA8Q9/sTvmTnYcRAWx15MxW2lN2xufIYa0pdTtTbhcc8XF/u+3U9fB/yTY8PW/lO5gcL0HViRuzLz58qJhgFcIZC1jxUu7AoV1fp8YgEwSINNa3IzDlVPODfRg0oR3eoZdLZvOY/FmBSZQkhEF9ao5nCQR9pKECg2LnrY4cI0AA94qPSHB9fPEAc8aMpTDh9v0TUMZ2Vp7pFO0TLlXMLysocC36qk3pJHoSpstMPyPPyHutAzOQbsKxpiUQIiinZ4AWmZtw6uc2QfqL78JMQ8uC8WQtXovnLA+zXA9Q4/1EcrM+52ujtdhZ/9Uy4cbJD6DSoGTmYCL95wrDNa+wjOl3d9eZtnFZPFYNmm93aI5IahgP5Z+FtmdaFf3+6HVCAdDMBFCtU8wg8ziYtc2b1bnxds/AhuwWrRtrwjwYY5M3DzB4Xgixf4fam7jYeQ765DErE8UM3BZyoqg5r7R5PFZqfKJWV5G9j8sPQIhvv37m0kzUEdsW1To7jwbWMOtwwS/Gf4j5sAh1zCurhS4Fs3KlsYlGW9M8iJiQWq1UZH+ZcpAJoptuuTJfs2PLiQbVJgiCRBDMx0vzKBZFWCquWzGeaDZtUXd5RL2jI9byf/j2YyUCRNl3JER+NRi6u4mH/QCaeQl09aLQJQlYLhplL2j4pmfhUiNghc/r7zGndinbFVI4Vgi7GbtPbtYrbeG8vyZSR7TuKgldwCyHYETbTBdsf3WRmqEIRFXFTaRQv2LqC07IKSbfjofZZINb9LU6eo6YgdgyYuBGMTM5nolvFtahNTcrUhtbKgKL/R3YdPgx0vNDnIvlTGdOo60ugxaEM+52Jvy5BN8V/xwlchii9cHXpaDN0/OTmftmQQGUj6f69AyKmCmIUyuY0KyNCqzk/YpsYv43dznzTwnHdy7MlzCe2qzEazmyyEnC/AoYkMcgeRrkXpHkii184Vnq9qU2dX9afEak75lWI9ekcBGxXUuwCvj6VAANn0RROpS9h1kdOVjhesDA8m83r1hyrTBI/nxsnolckxJqPJwGCSCFTblg0uUZZWG6A38RaXNXnPjVywfTMjHNwiRtO80L3wOgq9eFeQhKrUmfgJVATiAMbwZMw3coewRazqGYb26PaCa0RNuv6xmYQJ9Mss2sbRNlgibMIYoUMCXjE9lDMhAlz06tPRkYVV3j18A/Azf2au+SZyHPBYBOhEy6zWoss3dE2inzVu+hRhDozMnMWGZ9iGxLif1Mrs/whWgf7auDtSpYWs3iXNhzJbhFeDi8Jr8vDLUevyZWlwZKBVO8YAAMZcKa7CI/X/D+cPbUgv9H6HenQIhtXxAi37RbrwWFZ2L5jtAHkKMCdqfUbo/59EpvRONZi/orI9rd6BfLNGMlv+/xWpYs/N0BlHMf3QdYkqQZ6wKnKR/G+dbYI/MxMfky/LSNoBF3NLZ1xph5/xnYzqtz9n2OMNfRhcoupLEILsoOPR+DRH2e89MO09pBWOeXCSJcqesL0nJjay/3ZQ7cmgkVBtQzh0WmMux7tvFLBeKQWli00xo0K6nLzSk8g55wPI3ajUufpV18yGi8MomY3TGLc1kSjcFPC6Ekdwdd6nYdaIGTPeyIex7EINKMAG8bjS6bl9Ca6LZJXYoJtOZWOkoSAxVmnBLvitSnJd/6OWTfzfOxB/XGrNrAWgIPYDJJsS8DYMANpbfVj0Q0y6W4dq0Qxj9TquUMuR86llh7CyX2B+lqDtof5347B/cMdGFOcsjfYnuyceI6YuYV/otiYgWsBMPF2iU//3X3MkZ17phYYVK3YBblzy87syhoILgJ/Zmbd/gOLZwwL+g/TANlXPWzFVM/TdpfQMCltC14dlQ0b/HgJpuemuG1DGWM4ZS+R5gpLnfszfukLzttmi+5aGgBjfyzhDlZ0F4/pqx1c2trtjYKgBfwIT5b9vnynPYaT70HCGOr55RdzzhKml+v1HsnGjnWiorLUAYcI/tO7D2UdcGeh1aSBRl5P1Kys6x8/UzlmAWjvm67XARlZnx0nPHN54p6l2LkzVuz5xWsj+oyfdwuTxHgGd0HIsJEWU/4Oi9gsMlbs1t8aO+8k2FZ7A7jTRt1YuL4M43wIvJ9HgG0OIw1rkG0tDrkurDXnDq95oVT3k9SgK480xgwwXnFQ9xHlz/dp2FJkaichQEsvBdqoaxDBqgIo5c5xcqxgMHXBejVLCFJlctSGy33yzgOcl0VL71sWpYpk77E1NRyPjssIEF1Vu0kgZOmBioVIEDtOOEajLbi00Rg0smnNLjhe7JFMhUgIQRY0u6CRK0w/v9/e28CZclRnQnHq6VXrYCQhAGBAIMBAQIMvwBjNiMwMMhmGGMbCeawGBCYzVjsizSSQGBg7MPusQBjzGKzGYtFDAgMklkNGBC7WMZICJDQ3l1dVfmfe+PeyC9u3sjMV1XdXdUd95zuei9fZGwZGXG/u05akKRlMceHMQXTg88DZTgPaleO9zJjpKBAzTm0GZK4LQlQ2UF/o5aDFQzir0Lrc9vWhXDtdZv4L12PWcDniuBa+5mGkUXbcfxC0EwlmXuB1BwRaqoD/E50vdi5RkYSx239xyzYk+YsUMG2JzF/ZixHzBtKboUpyhjp7EBXBrD7Lirzjn2b7JiN2gUB9Twlml4hyxehhvdwqAvTl2lmtJxK5XGecL6KvjAtQx6TLELUKWWqVUrP4EU0Q1fEaI1aP4ExBYYzLK0XU6QADL6Ogxgm0qYoflWARqSAyL4bnj8YPItkymQY1s49eB3LwzMtSf3VvI/3GTZ3ovB7sykoQXy+M/x8WWNBzDokvuTP4lQczeJaubhqZ9QcStdCI4k8YyHR4qjWENeLziNp1fCaghEtSPepmaLupdQfEQAl/yAFRniGOXPXmUj73HT9qk+aMswalMIzZ7LvqT1/5HnxrwgWvXNSBQ4iDIgay1wQVxKQeFa8fMmsF9uv9DmrQA/abl8zQVVBq9ACWwgyoc8/KlpyQaT1iVIfQpzGUnRUOIPagdt91qghdV3L5kHh9A/YujP8iiKBsU+KU3e2v3f9INc7VZOwtaUKWMZSdrAhYy0OkxL6NGldMr5rHCDIPpfeyQIjn9/rmBLJ52zTwrY6B4K/MahUVN9E1z7YuScxdZaJcO53QYLZ3DPJFx48hlElm+v4BUCLkbJqnRjlxj2E0yGdAyrfobKkBWiveYot215WBupTJsc1waO09liPjJ8YQDorOMoSMVDk6D67mPJFkA/L7OwSa1W2b9vJt1111da2KsPEd9pQUrCojDgfUpOy3xYdVsrMZUntQBKoTHZJw241odaJHPvpAJhWiwFSYyVllLUJGldiBMQ8jEPxSjHUWiRxMdqXtc7C/JMyoACuGJARA4V5ImAcKuXOcrDoWjTvg/i/Z+spvUrsL2KiSGWSZQArWicwswmo6RQp6HT2lCSlR0Z4ogyyGSNL3aUTS/m7F5+hw9i5GjWjMSsx1t4eaKnvhc32HbNv0bNcEHNJ+o/M5iQpZxSsgJ8Ma3KFeSYfGJpKNddTYChgRoM2RADT2lSxeaDki8GoZtDDFpyiPwlqy+meRWeftXOAr7aCEdwr7Zzj9wJTz2sSL6lJIwLqzpicZ5i0grkPULaWoA+pu+YMjsVykGK3dzQvi8+/3VewTRSe2N+ycdhxSUfy9xsEJ+q7hJoQrGe5+yCS750GG0hSGwNsevgNHqaJgNoGcYCicuZu2r7AvpDLV8+Hhevmww4KnCEAP4F+57yzfWoHEdY39fFr09ZTqQKWQbIMU/oCGyzmANBT3oKCTqX6ux4Y3ona058uD5gzdEMoAvurm1yHWTGSpL4NHDc77JLZ1LHerqq/dZq0EkzvvsyxM9UBN+uh7jZm2mVmwYKqdk7Rpt0yaVmHDUjxxojS+ExyC4woAjFlOlFqzloYhyGw2o2kAaKyckDNbVvkCDKz23aJlmnCmpQlqGjHwnzYSaEldU695aRrAh8WS36l/CwyLbkZVgprK3Vrfgw+2DSpnxO2uePMnjFP8AzsoQ2Ap3M/OMymsS4XwD+BFWDYk38FxwnQdSc2/xqRKQE8QRD0kXwdFjXiEaxrZ655WBitS/1L9B4Yl4IC1toIMzvDjJusHXWwl8/Z8xXpO2k/2n0BQA4CwIy5c0AOzr0+AngXeaplXTIoA0aVSQI0sKmhgFn1NVAtDTeY+ZY1vu+CB0w8KmwR2TssACQlscRtD4Fw0kZoViTIt6N7GQEyeK8zoEnCBdZCybXFSZjlgAQSpQ0c5vkZ7ZTvZGonQKXd2i0olU7ofNF80juH65xIzILSJChwTHPaHW8iXa8YMED9xXBSUegl7x2vB+ov73E6t3BW4r4H/oVp70wPBp+bkdbbvQP3e+yfgKXMpE/PAwQ9dvvPzhE46y31ndN9QEbfS31k6HM1wfDuPQYURrvDwygBekcW0AGA+Bn5JQmyQgE0dl69Ocxt2RWWN1MAmEm47tpNbZh3r29ZnZ7pemFslfZJqhqWEiXmp2f27CaYiQiU6dJN1qnb3msZqr52Sww42J92fio5xBsgYPdxW3+JPAdhy8d39hw9J0vXLE8+ND/KITJDACYBoOFRhlqBVodRRBEa+CdkNt+lZ1ACY3ZsOGDz3DvYB82VMtOllglNDIJmHccoW1RIIqKROdji1dFUZ1kO4dm5mPWYNCyURJLKLVwL5jypU+Y01vYQ0OEtnKgP5kTyUHTGLe8H+5NQPep0LCFqEYBkfj/m8EJgmzOZ1izG9AEr0IR6CBRgrDFogHSax61zjKBNnOCp62z2I/ekAzx/9ggEqO3lLVHqqFq0aD6VM2PKkGvfzJKNvjDcppF4owBB/XFkPrl+BZJWSGHBBzKGnYtO2SyylJgrqcRZ5yAxri1gTVGrdPpQGIHAyGiadC7d/WIskyPrM73qWJ/2G4VTuF+pRoSBg8znIqwpDckrUeusWWALvjRaG+5BbXvJLIwAhwIZ1aqlvbidI30gDAqEqc8k/VSOQa9RI2gdHsNqKZmk5u1mz0ffMdD+ZQWsBk21CfTZOv6n6HxGQJVFOLNCREcqYN6PvH2vLGidLKXxm7F74CbC8PbiCGFjDsya/FY1DYMxdPLGBNi7dR/XvdVrvsAHdBJtWlDIQgU1kxSBCERzpPxEvWTnwlNvrWNSnLUW9VSqgGWYjASl/exIbLLy8KIhQ+xJKpT6opAYxkojK40i5a+sRsJsjtneAL+l/cHOhSnep4FJ/dDvfXuyB9zMAZBX3FPeVm3mOJPAJqAk41ZAUNofR4CTNB57X6HvnkYmFfAOVS/nBklMIbkcS7c2x2R+FO6SzMEoTj/R3KaY8Z7+zcwsh61bdoXFpdmw0wIQZZRKz8aSMqPJlpoc6yVMrWhUJpPlFClMQy2rtI3/t+GEe9aeSuy7EnVHImfrUaYqaR5i3ztaN2Y6xe9J7et1jpWxTAcqgBWaC/pMQ8TrOAZghmckezwGAMCQvMlhXRlWnW/jOpMFKxAmLfkhafs63whaYELJLAvbUaDU7gm4jkG7hn4eCFbQ7BLnX/+q/0DfHoAkviIdRtOA1A7Yc+rvCGxwvyr22VmQ+ZTkew7u2ar1QECnjuegyUAMl73+OD5MfomDSSA5nx98V/jvgmhZ9Jnyc4iF2+tWUGBAuD3bSswa9luFRxoN2/weywgIYy0VTAAmCE3vte43sIYgMmHx/c8my/xgL2dgBYo6/R/LaHbe51TVMHhJZfV4AD9Vfg9xPapmVn1aoD0V4HXOG7ex7I/hf4zVhoIoDa0vYCW13yP444+w5jq+oyPA3V6lGiVsTalqWAqUzFN0U+5IDpzPWQWFa30buBWtZ+Fx7WkqL22SAPcfnMXP2l7nQAZmydngO611Dhn7uytWyqVeduNKGx7sjipFw4PfhtEsMDqZbbn7IAAglPZBMxcZgzzynt5TLB3GwOTh4YgbvJWuqbZI7ycmluzlKffKTkq014T5X8yHXYftCktXUp6IJiwtzLKKnpI07to1G+bnlvgfJx6jvCvaLTQtmzgRi/BZJqY0txHinBsCmKLkLYZwXZZwrxrhJgUOEGl/ylyO8yOiKzzgUSPVWVtICbDLP2L2kFG0axSYu6jNaoeWzKs0Lwgc1klqjuGW5Z/kD4Q+S0MAUFhiDIBC22PtCWukuvb+aqqS1e1pW5Hp85YkJC5NPhHGKqPYBqxJDCyQXr2kPZCxGbNN1SZ5Y8l4cgAqmYbJClgScGj9CBiUeqCDTOhoi1GzRByn9XGDfQXN61IfQHCQ5kKcu5MmKT030DYIqNV3KwEsZ5u3wqDUXzCzSZHeBDh3NI665YG/FBchYEzmhxi5TpNmcjAA0DA4AKCTr6VV6nQfJk407mtWUAHPMN2WwvqadxdNysaej1mfcP9ASQCYhLrAB74roMr2beecKvDt6Xyx75wGdLBlM+DhnT2yd6Efp6kjA0n4TDzyBGgIlvF8FP9JOgOyPd2cu2jGZrU22SNT38dK+w1VwFKgpCalDZuToeGP5kXE3ywzbRJJJaavoCnAyBvJPlX64oVLtKZfRXvVPknEGClFtlN4qAB+a/qBUGeTSxu4ORQ8hmKaPmP+FJwnPYCMdDi1LWVQWJRpMBzfil5C04GS1Kpzcpjfs4Mx3+jZOdkwnRHjTqKjvTK3CzNh1/UXo5RrbiZs3rYQp4bMkGTjp8gtlJR18+ZdYQcdipo7gqC7RlhjsJKD2jS/eBDNQfI5/m0SHY4lMlhaywy85RClaEfc7/LcpGUF17MpdRj0zlzaJZwYkDYhIx+eGG2HiCMvaaSq3OQKmfdoxpPXlTGRykBndcGigzltwYjeLJ8TeOquqQ6Qtu8vlE/2+PosFISl/4TJkShKLqOftaW+J/LTXEl72LanEaEmLJGc+KF26bICAJs0MRPemHZSmTbfS+KcdS4R31KTxKQT4ERNB4TItcAVgUoCLzjNOg7pX7yeM42q0cvnU4AVSuC9fUsrsKGM7fNV7RX302GgBSQxWKYkl+oLtBDrZR8aEyUtDlreCwwUgo9RfKcUqON17Xp8DtI/q2ko7n/SdZ47qTBL/mrWf+bHYz5717gv8lnfNZxf7ywpnXXu+wL7S++5IM/B9lPK2FvbY8ycxyA0yARcThf1Fixnl1sxyaaCNW0LNNjq29feAn4vegn20raxHhO8dUrZfrnKeipVwNJPhnlJhI6E3kKyoYOBEHy0Fx2Awh+wL4VQv2bDSFGxsjIOY+dJbTzq7FDAfA4x7SUJN0qr7DiQYRsiK+XyDhw0ZcLruqHaMaC0rqRosYANN2tn883a0w6XmA57wJYIDh73fnKiVGZAmTxiwK6ZCcuT2TCzZYn9VGbml8OmzYvJd4W0KzMT0rzMhTnOeD8Ju66bb88hXYM2+lKnX8h0AHO8MzIUzPzRX5Us76Kkg/LOWOmbGWcGVnC+vHmzTLsyaQTksvdBnrcwZTq2yER3z2MvIABK+yNDDfuASrkzxrbNMJ5FQ+pb1zjPuqb0eSgzqNntFTjos0vgBsAQh49tHbXxmdotqgMKvX4p47lcSl6JdTgmQahZVMZ44J3IAmLoWLD5LDxtPn8ZCFSQmgK7QV8SaIExDTEjlrHV6nDurFkv+BS0fRbHer0J50jrlvFnbWf15iBcTR5xXXfGYi6ohg9zfiUzSONDlEBW0pZJ27YJzwzamdNuzhh4vbRz6he0K/f5itEfzUCQse40VgAxbthsnByzp9NXNYu1+3SK3mbAuVdH+k06pHtVFnjBF6JljxD9OEecr6ixwfnOKJ13LaKhgDBqchZDLft7RX784zPp8isdrc9GIe+MXGk9laqGpY80Jn7nYEDVbucmiICk5DB1faECXS55DKDAa4UdCc9gdxPyGD5kjuyhYe9ByVrfGLUz9l57n/29xJDa/tqylnnA9mxd1h4bD6XQU6bvmdt2dC69tdTHdNvxeKCQP4u0WkPwKuO8ZZmBC2szZhoGJWQKRlHCSKpKwGVGzMLmZpfDlZdvZ81MbL81m7IHYXd8+AzM76z1EcaSJa9NPHQ1LCfgkyjNbg97X5NiGTmTbRu1nso4o1mJw0+oRDgx8qptsYklYVoSo+nMjTLkGROQjUEYSGDis2WAbXJf8jWeooYtyW8a7laBivUT0Do1klmHubFMNt0rAzCmWIlxhSFjOp1UL/UN9weY5zSPWeSy3AwxmcOheRnPYXtv8n/ROhDQ6OPAnEDAVOs9EyeCGoaqTfPt7EedJY9mUehX4REGPsA6cOF4e4PZI60iN+uPA0wsj5w0PWByZN+Ptq9tItV0tiQ/pm5kOU9SP5Y6ESTh+dJvy5uiAETLpnngSHwwVl1nqMFE8NVHOkHoPxMKmk485zxCENY5i8waSPV1wWoydbb8CfZX7skBNwjX8H32zvisb22f7XpVoE9aei6a3rN2HywCK5eXyfu1kbBKpbWnahJWIlF3pvCVaoKQLFzMztvZ0dt6XOm+y/ijOr1n40yc3KRX2ujdpl3VsXjMVdavPoBgx9MHVhzQ1pFSGyapA4iw306I1fRb6Z7SYV8CLva7B4K8MtgXe2+nbkf7443DBVChn8zvBFK2XDwXdt50IYTr5kJD4Y2XZtj8a5Yc88leg83CJmHz3FK49JKD29j+0tcuU4sMmdN+53kY0EcvmQYkM35J3JZKzA1TnOaSD2uJKqaJ8qhR1NKY7O3cXUfql851ZsLIfj8mLsTus6kQ+CVoExQ6ODLfrdO93simUQLOsjnRqYOklOmf+FIkfkM+KPiIc9SV+HM1aLuPTKS2bcAGlkufcS7ke+RFWk2JmnwhI5TwcwrPnbebhSJ31i8yNK0gPH9BOWgB+JiksWnIX9XwCLDLgihkzGn8PZuvzvo27y32217PIm51x5buxb88j6ptLARy0cnQtVHqk322hrlP1zztOGjctE7vaEvMPX5HUIZ/SyTaogxUOWsoM2VrCsKMxDSHMLMzBqvwKAMwqoUx/UxR86Cf3YqkDxrRrun6fKU+IzD2zrlUZ3d+Euna1vqSehbrcoQkKIUA7Vob5RAfLNxcAj7alv1eUNlkgV8K1fWSVxbBtt/suiNUPq22nkoVsJRJJTPALLS/teZeya/EhCotMrNJ2o2H5MR3fLOSEiQjcXaVKmaj7OQtsZtcKPXZYWg8Mod3us9u2sjcepu5/vUGlTZfc2qlvhkO07Zhw2V6oMLeX2JmvHlQBgu0EZ26LMNTrKcwL9invr7QT8R0S46TBAiumw2TAykHS2ANi4IVig5G/iwUdvLXlx7YARlWs1CkvvUv3E4GrHdMQtjUcDZwzj9BDS0pAzrJGXsah3FmZ2aE7O0RmKjPCH3nEK5RAptFFLL9BU1Myv2BTKA656e5gKhY/FW4evH1UMah1dbkYYQTmMGuqIkcMdKUp8X6qAmAiLlVsseTvwqGMbaaDWTeWyFJ/o5m0nGH2c6czbFeXfa2TUgYqQXtK+w6sGPuGCk/Q3lHcHxzCgxNfyQRI/+1YxY/lA64QjAWRr6Hg0x6Dv5wzcWp0EXUBTRe2xlYXphwkAAOm6zrK00AzH1nbci80Gd1DLdRo3qk2vwsOHR8rvFqQbbphzlv0loxZnGugiBbWK0vqAXdJe2RjiMDRe6+Kx3F/mVruH1OsaQ5HOjPDGgiMZ8TmIW27dl3CxrTZ4NNeJr9TvRPM56kRRFhAycQhlwpFnRgX0oMRseaIAeUOCVpn+zMtdNPOw48gzzt1XonEmBhIufV1FOpaliGKGOs0iEnEYomwhCKRDZjzoPD7OlBTZmMlXmTjTeTXsP+0nbEiLVMFvSi5Fs3++LhVwAqSDarsPcZN16cg97NudSnMMCNwbxquFUtpna9Oq/6JUmDASx6QMSj0u8eeMD+le6z68QDR179XnksW2J0pI65y+bCzsMXw8wB0aOdcqRQWOEdSzNhLpmBURjMnHHhsum59qwXBKnZWoC1aNeq3kpOvQsq3pRDWZ22gWFlEgDS6SAxspKEkBg4lqwvYUI9EULYZ6/vpoIS6H/njE7hNLtjiPlSYM2BmZYCF2VcS89Jx2qZdp2XJLXU/UjBkfNo8N7MJAbGnYAXV9bHyLVjQfONVsuSM62RoczXZdoDgUFt85XEv1b2EJli4bUIsFotm86ZAJJ2fK2PVHTG7o4/mgXJs/GGje+ffeZWW6YgzjyLEgOd5tojBSTmvg64kwIa0Yy1RWa/ReCVghsEY3oo5lGZpknnVevTfRb8X1R8nI2j4PfXRgxDxr77EvEYVbgi0cg6obDTnAMg0Dr1YWI5abcj9S/uu8YfR+epB5RmAg4No6zvFioyPP6Ao/CBIMW2Y/cqI1hwz9NsrcocIjjVulBjazU3NgKpNwF2vWGYdRs9Uq6755cFIygpcs79qnLYP6mahA1Q9n7ogSERadgPoGSapMy0OXWsRDK95Phiy0uNGZvTJsr98KVgmbpUJTzeYHAjQAbTowJz5o23KA0ZIo8R7uxhsc6kijf3T/qYdjzlcQ76Nnm+z+kn3jMW8OC9abw95bLvZuO2GqTS4SblyY9FzbrmrpuEpYPkp2YSNm9eYJMw9V9hoBJCuOLSA1wp2aixohkE3jdmrPY3GbrVJmThqZGxgN/ZdAuAdmKYwMGcr6f8KZLZm3xJ0AwDmWI9a/U1TdGtWkFGy+AByMPIUX3rjca6GMIyaQtKc6PJUKUfNiRwppFRQMOaJsgKbxkmx/TDKpRT2ewCMOoUTVGBUWKmWqf53LfEaqwNg6PX6L4ZyGGjTDIy6zRX8ryyfnJ9wECCxkhBWdI6KAjT/htwk565J0zwPpe03TCubBoL+0gf+MkE0ssj29KIgijt1/K8VvL6MF9Q6oua2IG0H0N7a/Q2DemdwG1pPzDS92SSlmkSHCEJMu52r0KAo+sFI/SBRg1Bsc4Z/Z60Vyo08cAnRKHMwB2RiQiY5Y/JKoHx6vck2DTjMuA43udEJrWkZfRdyLRHTjv6WZ+bAhuvCe0LBmNInS1ECbXj71Phlc45bH89U99ZP209lSpgKZJuaJoLAM0GiFQSpAerlfSjKlgpi1ajpjEWqOQMR8aA6MZkQiBmG6Vl1DUAQHY4OTbMJWbfHn6WaS/O34AkxAEpvdpnE3s/le8bO/aj1AevwVJZb9weyLF9GprTTls9m7xV06e6CpFi4GDfceRi9GERB/Jd87N8xlCWe16Lk+VwNYEVu3aRISgxbQPUAUA95TJMCQEDeA0468bVbOLPYIqVJdhTxlXzjHhg2PSf/2rIZb1XCRkHPcRDwcTICB2xjpkF+J1AFDgHZ9LezCfEeaeBUVPQEpkz45APg06RqEqk3Dtqb/SSIyRA34F2LcpvEiAgCxhgNEvka0CgRBk4uwfQXDFzjHPS4fzz/Ua1SdyMI8fIhtsnlCgJPDwmqzStuNYLW5arkewDKeZaC4wgeIUIMTITMgd4qQmk5rtgDSa9TyDqTAEl0M/Ty4+RAIV87gjUIOwykufrmE2GGUNpv0yAXkAM9Zc1ThLwQ8G9FQqBz02qw0Swy8Cj5//j+eOUNhsv3DQA7wQgEIgxqMdD0wAc1AhS2/b5eOeb7ov2DMvmGspb4aeeT1hv53zqWScrATDrjHS616KeShWwDJOaKegGhRFwlGBDyhgqUZlndsEpQZhj1+lJSmx9fS8zSnG4jzn4SX+HmGcrwSkdzCWGAA/eAXWwt2+72eih0/ypZ+PqMGEeI2APDduJkkRsiGy/PCDoAp8uCO3DWp1CPRwXa1mkPIGWyaalsO3AnZxzRbtDWhb2yUKw4oGAEuOGYb7RVCOZHQ2MBZrVoZULwV8zl9YkJjOz0qnSUKtsKiTMh2pE0Mek76DFfmTSe8cWu3TYaxnLZMm1ZO5lARkySZbhLSxnvaigx9P0dkxAPHIAcQbm9DKZoZhr6fUHCa9mU0+SbXQ+V7Mtff9h/yiZ9lhAq6ZL6ZKzsFbCUPRtxd6zLr7PhuHN+lPYq4vaG/N5aA/JAaZ5V3XuLWOLZo7mdu1vcZyWcF0ro2sY4GzvVu4P1oenOUvtpflqo4QlIYgCac39EkBjRKCMfZtgwlGzqWdM39jc80zXuRNgAUGOmK1y/7IopTBB2rXF6L+UCUpwbp33tXj+Z5126sJ/yvPo/HiAZ+T8uGXxrw1eMGafqrRPUjUJG6CWDwRHOs1qzddRHWyYcyKbxwX55BGMayal8Mqh1EHt761jcdPVAuXmKs6OIiFdOzHskQb2iw5QMGInVMuPEiF4QLFwrwdSupYvfac59BklbhYEFtVChTrtoZr93tY9tt/tWnIahAMmmtW0B9t1V23he2Zml8OmLTFMFfmwpMY9pr00LgXyEqWH21JfLywz4uDqDMN7F5qCNsaseWSisLyWY+n+omWgIRJXidH0ov+IeQhrCUTbkXxvLPDpmU8cQ5pHYXpw3/CAWVaPccRFXifuBcOC3oxsDpKSIEDaSaY0Ovdah8NnpH2AvixNYnJCMM9ruy77FwY+SP0rDyJ7Na1WlxeC16F+65XeuWtGghyPmRyqy9v/nHY6n52OtiG72xvQpC97X/r6B/twtm8Zc+nE5KM5ptkLLWDqdBvOu2w+8X232zRoQlNUOCxjzZ007LleU3MqWBf47LvnXHumdZT3kD+lnSgcT669zM5sAVeqUYzjafhdW6ZIi/jcS/46mOepRKplQsACfde+JDClPBGW7dvvpwEwWj4Dotq/aSvaC8SJcNegn2tRxz5AFbCMoQQAZPNQMwvd4PULUofRBYdRtJntZGAvHL4WECllYlXtlGWqDTCxYSg77ZQ31aycsZ/nj476vtOMNTXCfvZR0yMlKo2lp048kN2D0fvcacOejJ5XLEZqMX1LjOxYzrGwT0PbHRCjmi/y65hf5kAR/FxmJmwOtri4HBYXZ8LOMBeZ7EXTz9SGGTOubzLdoRwv9Hdr/OsxuaPHZdtQKSdqSmwkK+vwb/ttAEFkioT5BT8yDVGsbaOSlJ3OMcoVDkBBC7ahhbzz1QgjrGYxAxmGIfLmzpZPZT2mk0CF1bRgXgpsD0FPxgQbAYzpW2N9fZqe/kDfef4xsaF5dTIzwRHUOnw7P3p7pd4Hez6uBU8N6II381un3Nh3A+fR7nuFIRV5OSsAwI9iysV5blQLyfu80x84VzrXvLbRshNAfOkJukEierZlKxzI6s0YeTMMZriN4EGZcA3WkeqAxKQQqUz7ksYngQLwyO4EDin0z64/rSNbQ+QvtpwH4NDQ6DFSIn2XvRI1RdqW8jH6/HTMAkDYVE7rR4DjnZf0l3N9jVgDY9c7CleV90oJnbU/TiLadUhrhas2AjbbE1QBS4nQrEDDo6La1jrtjllhHBZVVzHY6/a93PZadkCY7T7lodAEeeZlT/eK9BIYNmRGEwbSzQ1CvbpMi5X455fK47Hnp3df4Z5OdSjBK9RfZEoAaJV4IMsfeed+kpDZH7Dtvu+9CKrb9y5uAE2B9oWcbDX4FjswCyeyWUT2SzNhccdcmN20HBavnvdtz7VtK51OPh+yPiRCF0X8yjo4crNttR9wH4roLcNj5yStWfhNrzvkSp9TON78GXASTsenButSSa7Dz3YH6oFu/DzAkyPz3xmPXRvwbnh9wnc5e69V2u6ZaJbeZ6PZwfXotVcSNHjbm5svwz7j0vepBCMOiPGEEZh9Xu7L9lQFV9mgs9v98VnmvBm/D43VOnltxv2X/DjojyRjJHMjIxhIzLdoKS2wzdZHz3bY0UDgOvQED1i3aF+y/dtSYZ2hg3wGip3PNohF2h9TPyY5P4CDVS2NY/LXt7Y7ZW0ZCOeOgin+o1ERE5jR6IVQFnyXMvMz1myC9hWCk6QoqBRFksPIxwfEsEwBnuUlvHfQA78OdddKwdLD+kFV2qepApY+0qgqRPk5lWkpkhOn9+7wSw4JoDSJnJWwDR6ihiFDZzj9XUwpOhJ9+7KjhEW7WWBUYxK21hGywyxque5ZXpSo2A17jNQQ78W/en+SBNq+jZlbaBsVVmOllkUJaigAmV4uo7tbI8/eaddjBG1BcCqPv5EH/mwIW5bSIbO0YzZMNi+F2fnlsPTrTUUgbbuKAMNqdfoY22K9pZPcRHrKSNrpFbp7IYqx8SHmLmlv9P0yzrjAvHbGgovCgIL0niAgs322awnjaHjAx1lSHem8YxqmwCZ7x/pyN8F3TzCQM8+wX41839O0zXTHHvfmHq1Th8szf0vlvP5gny2AcTqcMbk9a2tIajpmvxlVn7cpOZ8zDYWuBZnjpDngz+1uptHhdJyZNH9i3l28btdpiqqnWgw/sp49Z+zv2bvkaTtLe1hpqpz9JisDkcKQUBCI5VXgYQUfpfMl3eOdZxpiPWug6YZnp/boO2nOcFxmP9KErEle5AmHIBS2homP4+3zwXXeP/vsCudNL01xvuw1Wqs+rvdx7iGqgKVEmi1ZYphn0hy7CD2Uj1LighQx+2sTKXYOUrhInwlIKWhRNTdGWNHNVPuRRR6BiFtD0l64lphTj8HWmPnalsc8DzAnQzyjJz3MpJlj/eQHDvzG6XfnMLEMjFNXZ82kx2huGBj4EGPTSyr1ZVGb6S+Blq2iEpBDd1lMQlLEnxJDZ5nPNEeTUfxS79i8a30Hmq0fyrqgCfMsJC4Y6pJnpOFb1XQizUmpLstJWUZChAgUProNvuGM2c5xgcHKQMsIKjF4GcNWCtM+pg27d5XAwVBdcL8yrco8TWzoYYx2NqbOFVACc1nYVhN6d1rqk4Cs5l5XMzuw3/S9K+BszolXWbhlysB6z0CmZVah7iwMsJSRowmYeX+Itq62H063cE2aPbsPJPSRB/xtP1og1hbmVAhqraBnqVSY9VVuTv1T4SMkrdQ6oslX248sFQKagWNSXe3jktkC2UIDigCAnVmQxLzajlidaPhqNuPE8O089oF5Kv2mABoFfZkAtmePWWdEmnnWzq9BPZUqYCkTbm6NkVhkYV9NhAwtE7yY8EMvbYFJxN9RiocSRt0hAaRkm6CJPJJt1nZDN/1Mm2uqrxsa1jomZg77hXF72pJSGTP84tTZezvam7GSnKGyJQaz0Pe+a6kaxwzIlVJnFZb7k0ngEeRKFnk+gIQJT075m5bDzNbFsHzdXDyUNJKW1xfb7gCh74c7+AKDbMFfNgeFAyuTxmtSR3w3bYGsL1IEfNXwlqx/7vqyIuBu56JJRt5216SnUI2002sTP8RUjSFvbY0p39ePsZSegYwVpxXDH8s7ipJg7/0ZJQwZYILSOsSoVIYJzPdFs3nh2DzBBXZ4Whoa4EA5d56QMU6O1qJRSEldgQH3cuAYEJzAP8x3Zx3rGZIFyShsig4QiWWca4Uxe9ODbad9Y9pHg+pSTmCq2qhSeW0D9p0CEE9nJ5nvJTMwEECgwz22KYPSBLtYH98hPitpjdv+4byJEId9ntI4jcO+uXfsuuzIfPAB4Nlc+fj9iqqGpY+QwbESI9igO4yx+ovooTTiMGylsPo9f4nxxUWpYrvxT4aZxHTgw0ZqQZYBMTbvQQfMWNW9ZkGWMbEEJh1MrfQnA0FSr5rUePxeMkkwfckkSpYcm/KpNripD6ie3zzmxtwTpWkFBtV+HsNMAqiIzUMCQWXylmaSuSILkK+bDc2m5TDZtByahZl4jQ4wc8BlQxtgCnOzhjJAKDEXyCS6Y3aAtl1Dy3NN2HTlJCwcEm30rXBgSNLqgesOwyr1tfMBJhKeNN51xM/bLPKhgwxAWB3ZsY2pzzKLK6Ghdwj+lgQYfdfsM7Xzmxg3K8TBe8176pql4VpvppgfO6g+IDIWpPTRCKfgFii2JtIZ+EdgodoB62SuQEbOiBRhCs851ULicZjtmZgLBfqGz6nPl8V+N/d6ClJ8tvg9+5x8SbAtPyx8Z33JZzdqH/bP9LmzJ2IZek76WcBEFB5OkvCGb6E9fSJ+SkqQDFv37ezMTlYUsHeKVj6bI29NlawzRpwhSduiE7gGS3+PWuqsRT2VKmApUpbtWpgN9Q9Jm0e7CWQSOmLUVcLWJ3XE+vWv3Syd7O5W4tz7sssBkRJkGQawtCFnBxmCGieSUWYHD+2yCccCZKnm6YAIS2RyA+BJw7hGyZIxw7MBCjLQ5IMWrd8eNNj3ldBYqW3emYHv0wKSaRhSPFhRxZ7UD1Hbwkklb7KQVDOTuRhRjNcNatW02ux5wyE5luCdcbUXpXscIauOD/uTfhQwvOtAASvZIMrtFTUYCuZ7mOY0JhsF0Hu/cBBmbG7dffNk189KqQRWSpJTT+CxErJMvaMlzQIIrACYlfYDrr6zN7f9cTV8zn7cCzLH/DakoettpFC30+/RVSZg0Z6Fae5l380USB0BQ3fCMsY9RQCEMN54xqIPZXYmO5uA7To+k9IeDAAUj2ILmDraF8w1pX4dMi9qEpdpajBMs3m/XCCNzw2fQSporqmZlwYkwIhoBCqcSGUIjvSsTPlopOL0rNG8LWnY4tnB9ZQEh06Ddu9LPjEFMNn2Q3ghCYKy3p3uq0nY2lLVsAyRmlip+Ns5UNJX/gLMjEpZOtTuoiXJX2JoxG46Me7qBG9tUpWpt8w+giwNWyohW63EMNsLRZrSicgDGykCmg64gWFyyEWdOg1JqEnxpH+4+UdgNGGb30RZBnGHY/DOd6OhsoeqRyUrjaQlgIu9EvC8a4Ptdjsyslyx4RK4gwLwTOj6zhsuhbAwkyWL40NbwGLGLOizK3HsHjBPASFMV3E9oaBAuol5UVQaqd1I93kTawCVSwOA0Eo8s3d9gKfE8WX+KqadPgZ6atod53dfnQZMrIrsmhFGrdUuG+DgMaAlqbT8XnxuA5qG9JPDSKX6vEiF08yJrXdos+hh7rCMna9Mgj8AvBKwKNTLgFx8vfSmuN7hWufe9pxK2gIPVOh+kfreRRWYgd6OJWuubyphvegxn5h0sw6z99TMewIIko8JBRsdfytvP8B9GoGITRVgy2s72uYyHJc7J2F5TnCfaFLSGJIgq3X8Tw+jR5CamiezYvbLcV4ofI/NA+rkiMKQ1KU6UlnTzhiQVGmfoQpYSkQvWSYdHVZnxi8OQ5/Ka5lcY1KUztkXFhk/041sgyOgkWy8JVkg5Fhg0DAbWjtWjfwxZw4aAkUa0tlQdgh6h6XDLOT3+SGS0zAVmMBhwMDJy7WhjqHCQCfNDfaj1H+Yw75yK2Uks2UzcMCuhYVH2/D4MkndzqnuoRMCJJPUzdYL0bI6zKJZx/z8kNs3DEXnHdK29CCG3zrST2zfG79di2PmSPqYPz8AUGFEXRgIKOVdcsY5zfoqjWV3UIkJLtG0fbJj8TCnWRsdzbDeZ/dI7/nr58I6cZl1b830MI+D77EH5HEctl9jAGFh/+1o8GC/VXBgGUUrhLJr3Woh0vtohEgdU2LLdFpwYsbZ0U6m8Xc7m+0D5jf3+TljSXsN+qw4/e+8p3Yc2IZdk1jes3Io9NNd3yUy65fPHEqGqwETEJxQ+5pwUoWndm/TAVPwIWtJAXmn1FSd1os64Me9sn0x0JoCNWkoCy6OP11vUXT0490TG+EqCPmy1dZTaSOk3tn7lF4qZozMxoySmFDYvPRggGvMCKrvgJUqm3uzeqUP2qfUN+vfofcS07kQE0tFBz1pWxL7sX8CARz+15MwEsaR+ltgnlx/A5yn1G43vj8ekPz7IiQyLCUGVNKEXgiyqCyMKXuE+oWjNslftP/1H3na4MdKxVMdchpOA4K8MtZUYVrK1o1ey9aB/ONnDUCltEZxPeizAbDBz0/WTSlPBxO8D7gucnCCbfckzvHGadfgiLnsCA5JeqlJ2qxAwTI6+O578zfNM8T1PIZxWQ1NA4qmAVoFUOdeK7xbxffR3jsEGnSd2X00FIBHz/O147Jr1RVcmbayc2SKZ+veC0yrbTftWeYd64ynMIeusKXENHaY7lZoZuc+MaHWZNOr05yF6TNUiHtz54zGbpWueWc2pyQw//oAjN5jnzefv1AG5sKdO/vZ4znsGaz8ijyfmZ2TMEP5sYQnYGHlBPoBgsH0j89emWN7putU0zmxGOvjv8Rr0Gd8RgkowTshY87PY2efM9fxnOo8o/Wc6X4t/o2kM888M/z2b/92OPDAA8MNb3jDcMIJJ4TvfOc7btmmacKDH/zgMJlMwgc+8IHst5/85CfhIQ95SNi2bRvX85znPCcsLsrht5eoalimoEyL4R1qpU2mVN5Ih0pqdJV0xZdVi+cVEROV2diKGZeGYm3jwkfHyRRZxEr74GDhjX/WyeHQM2Zkxl17XY9kw0UHfi/fC85/nwQUGYYMnHTsBIQ6uSbA8ZBM17wwmwqMwPyuqzGCNrI5kJwdXlAAj0kuzF9pOF6ZkkYPDzZ+3l6bmSlc4ZBOZdv71WY7SdBUqqeHlQJUZJL0YyGvStbfVNj5XCArQXfJzKsnVe2YMAysce85TKVVGQseViNw9O7P9gX47El/p+3TFPfaeeus94FnMS3A7wVFQ2Owrovg76R98bajokZnoJ+ld8Xtrmd6g/1HgUNJ8++tidRAof8D+3AC9aV5sJS992aRYJ4T7x3GyU4D7NlnISooJgpNJmzOPERtQrzoCVvS+DwAbMeoZTCbPPStY0qXFM5wka0QTCcVdOwic7G8Xwoq1ULMM2nVaxraWH1Jl+XMLGonEdB5e4q3Hku0mv1uH6VPf/rT4eSTT2bQQgDj+c9/fnjgAx8YvvWtb4Xt27dnZV/72tcyWLG0tLTEYOWII44I559/frj44ovDSSedFObn58MZZ5wR9hZVwFKgKEkFUxOV2tgNw2zo3qanUoS4CRhggvahqN0wh0LMPtxualngq1nDzNHvRlKFG4hKxDrMIEtJcBASCll8ZtBpkIuYZF9a59jDMzvsjUTdLefMu2dK4I2tc3gg2c1YP9vnVAB3GfPvcSPYTyyD91mgU2LkCqdqV4qb96HMnKPJn+M4j4ctPieHgemYl6jvkrkvrZ0R0rE0nRh9DvtlP5uh2blV86wEosxB766xrEPd312ps2FO3P1hWoAxxHSv9PAeO699wNDOI34e8ayK9/YEGikKiyyTaHJu9ILVvn6V5qMEnuweDt9Htz+ZHrT0CTh0/ReBkQUjBmQN9quP2fRyNdnypq/4Xcdqy2aMMCJDLdqXJ63we1pnPRtC6qMdoxe+HYVCNjw39t2edU2PEK6wlrMjC3yEYlZ7/0xA/xe1u9H7eXpQU2UaIu2K+rPg2tdH4Vlc9L6/fWtrg1FHc7aKeoiuvPLKgLR582b+h/TRj340+/7Wt76VNSRf/vKXw73vfe90/atf/Wr4q7/6q/ClL30pHHnkkdk9H//4xxngfOITnwiHH354uNOd7hROO+20cMopp4SXvvSlYdOmTWFvUDUJGyKQ4jDTtDywMJU7MaAA7S0zxhRNZYzkQTUq1gwrZ2yjKZc9gLQb+C97eUovEjOTsa/RLGiSNiVS9+K/NCYn/LEymJZhLL68aZ6cLqGUCftpy3PEEmeseIhpn+1OQpstJtySyCcddbXdsG3YQoPYUMWeJGQaBIH+ZchT+1iYIy0z5mGPoQysjDwk4LDFtZn5aMBaTlpBPMgoO7asGVwnHa1PWt8msaPhIYpAxgPlljEojNWTimbtIwM1crpdIF5ov1POu3c10kVvPZf6UmLIS98LzyqVLYCS4j1a1AElHkOQMbcOUFwRAzHtPR4wHXhm7mtb6LcdexEQ4x5Y2Ie9eu350NVSlMfRadu0U9TWm/s9YcNU63fMPmhNXgfqzc+EXIjiCo3sjyB4ydIBWILnpebKowjNxTv8RhTC0j/XxwgD37h1m31c930+1yJCQUBJv83u7JpZDwHr4jxsRBCzxiZhN7nJTcLBBx+c/pH51xBdccUV/Pd617teunbttdeGP/mTPwmve93rWIti6YILLgjHHHMMgxWl448/ngHTN7/5zbC3qGpYeog1IbiheZJSVwzU/pakEniIp/AceXsdCUanQ8DMYTsiGUe1Ot6TN5L/7Ug68FYjHcGyrlRZGXEo44GWTl/wu84BTmunY/AXs7frQevFp1d/cjCN440WE2yhSYF3OGM7lonUNjnx1qQsAe3YjRuxMUbRQp8d7IcjRfTXTcHuBNuwdUNoyQysyV9dA1n4Uehvas5IGbPQ1yJlbN+N9n3IJJrZeAEEOQdeqkvKlqR3nuCzJM3N7i8AnKIw0NHuFAkZWu+30j1eHfbz7qSBvWrU9TXqa3FNjCDv2ffti+WKBn7rqQ/b89rOwbzzW2khahnnbPDmx55v+XvbD2I6+0VW8ZTzWQCaxTqgv3mbRjM+9Ttm97FuBWlP1HNPNPOYvyRqOeQDgRZ+33Nz4mLIYac9v7/ODQa0cD81QqeUbx3jYdzAa3DuHbvG7Ge5L447+szobzSuZY00iuyLNz67ju1ah6AB2dmzn9BPf/rTcNBBB6XvVrtiaXl5OTzjGc8I97znPcPtb3/7dP2Zz3xmuMc97hEe/vCHu/ddcsklGVgh0u/0296iDaVh+dd//ddw97vfPWzdujUceuih7Ey0u5yEJt7LrE5mnnSC/lmTLiN9R+mVx5h36jT1t5LnnMnRw2iUtNfZ7Kz0oiS5tL9ljpMqaQfNUGxPNQ3tjq6SdXSyThIbBDhW4mMOa7d/FqzgfHDm9ugcmEzstF9Wz07XQYOk89/pE7bjMA36TIpSRTsG1fRgfR6TN+Z7Bm4neWKwQqCHLLdAYa6z561zqfOJhYzWB98bq63MwAvmOjLj03Js8jgwNxYsW2bPBd2lw3Ik82vbHU24J+D3Me1799j6zLXe/pU0JkPX1or6GF+9XtibVtQcnpXtpAAAimtJREFU7GlTKSlLz2rMfc7z8dZr58zgH0c+Iy2ue7EzJjvWvrVrA8XYcmPnf6rn5LRR7J8zrx1BXumd6js7+xaFnmnOvo/akfR7BgoKAVgQZNhzyevLwHdsOwVSsedadg4bjQiYiblzF1qtOVGKPqrzLW3yP9G2dIL7YFuda9rf9izj+9X5fh0TWiCs9h8RgRX8NwRYyJflG9/4RnjXu96Vrn3oQx8Kn/zkJ9l/ZaPRhtGw/PM//3N4whOewA4/97vf/RiI0IPYbU5CYLqCas52M5SLaoMK92UEm2S7iQkT67UL0TPsBpukNGnTcxJNYj/GgCEYyuiDZIjZkbY1o26rcsk/t87srRO6dkI3IpLu8Lgc5hmdtjvRZXReSlFnrLmX9kmerwY5sBLHIbONbB7G/m5zk3jRe0oMipXEevbp/EMb2jr7HTbEDPA6404+KuBYn/epsOCw/6Ad7EjE0c8F+tOpVq8hw2jme8Z5dll5vAWdpLGuAam1panfnyFA6qzPaRjVqcrY8nb97g6AUprfIaA2dp/z6i0t0QFp9pBkf3T7XGm715Q0galcXx0j+uk62dtmRvi+dLox09MneK4rBZGdNdAnlTdMea/gzgqO7N7g9WNQCChnlW5qtj4vV4izH3p1FlVLeJYW+zVCaxbaXDrxt8JEj4nGRQCCHe4htwr2RfN2KSAj/oA+SuCarK8S0KYz/iRVmOK935s0ZYSv3nqmpKc+9anhwx/+cPjMZz4TbnzjG6frBFZ+8IMfhEMOOSQr/4hHPCL8zu/8TjjvvPOYj/7CF76Q/f7zn/+c/3omZHuKNgRgIXDy9Kc/Pbzyla8Mj3vc49L12972tqt2Etq5cyf/U0pOTfJCZMtEXxJgNNqoXVLG/u05cL1DJiUUh003Sj7yt9MLSdmRiBuw47WZGHSXyTXjLo3HoQ6z6LWVOgONdTYmP5IWjjv11WzIveOBMXXCSpuzIt0z4uC3/bKCLx5Lz0HuMecd6Sp+N/1K06cR13RuEQhDH5M0TEzmyFzAG6uGk0SNYyw2YOvh9dPY3iuI98xg0lwZX6wOw+cA2kFmyWOMx9zjDHeqtvT7GOA/dG2FNNo8Z3cAFVv3GEYdr08D0vpAH+4BPXVObRqmTRcYxtSVAlix5fxO+X10BQylKqYxW3TeyxJA6dvfxjeCHTVtDzwze/alamx/nXp6BVL2/esID3rAR0cF4/fdb7OQCw2AQYf/8PqLP9nrTkJf7L+NMGb5B22P8rF45m1cRoWQKhCUvx2BZZTMdueT13PZn7FSG6r4aU97Wnj/+9/P4OPmN795QHruc58bHv/4x2fXyF/lNa95TXjYwx7G34877rhw+umnh0svvZStlYjOPfdc1uog372naUOYhH3lK18J//Vf/xVmZmbCscceyxENKHY0alhW6iRETkvoxEROTUTW5ClelL9g/pS0r96G0fcy6cuG5jWqklUtjDCJmZN2H8DQLkxh9lW6L1OlY3+HCA4uTzCUta3O/Tg2qCOrT1XKqhoWtTCFc6Z/Xrz7IpOI827PEYiElnc610a4wRccU6sOYBtzQNo+2++l9abAAoAbl8drtj9kD6xmaKqqxzlKQQPaw4b/qmmkx43Z5wl9z+YO15g1Tcj62H7G+wdNuqah0vr21r/ZD0rrvFNH6fuYe9YArKT5HWOytjeZgb5nMU2fLLjHerzP2IYBG9PS0F5b7E8Y3qM7z1D2g+673d/manJY2PfUFfJIO7sD1I56z739XgPZmP0frajsHKe5tmDF2+s8AAhnXd98eO+mPWtsmY6gp2//9cp412Ec6Zru9RiQB82pNSiR5RtkrjJeCgS9bW4bEFjiOeqZha8FIN5T1Kzhv5FEZmDveMc7wjvf+U7OxUI+J/TvuuuuSxoS8mfBf0Q3velNE7ihMMgETE488cTwta99LXzsYx8LL3zhC7nuITO0sL8Dlh/+8If8lzQlNGmk5iIflvvc5z7hsssuW5WT0POe9zyOoqD/yKnJo0kPk8uk13BTdHw82gqV6XPsgq3Nv6PithviaEakQMjQekz21PXZpJjOS5dtYLghoXRlBMOAkvcOY9734uuGiAeC53RuHVZNG+ke1CBAZLCUINObAwfgZBG4CgdI5ksD/ehc62F67Bymvts2Onl8UKWDB1oYR3LYp/diqfssZhbyObLzkTETfYEC+gifR+nQ79PUQdnOOl/BQeMSanSnuW0lDN56ommAQt+cl55fiVnT+Z4SqBTfp0JZlyHuETb1tjsN+PD2wBWujWSWaffarIMrq9t9jjhHq2HwHCA7dH5aCy27v1oBp6ct9p51qV1PcDP2He4tV+AlsvrtXyPAzeoS6wf9h8LcmHQSyuJ9RMojLJGmH85LO5+iKXSFbus8ceSkadbs31h6wxvewLws8cck3Nd/7373u0fXMTs7y3w2/SVty6Mf/Wh2sTj11FPD3qS9ahJGqqlXvOIVvWUuvPBCjnRA9IIXvIDt7IjOPvtstst773vfG/7sz/5sxX3w4lgzwcanG9DEhiEciJrC5DFTUoea38SXEsW17cdivaUNbOiwtmU7au0BcKTFRhxEpXFn/ZNxLPfZRHv9TveLhkYfUmI68khfg74o2YZNKmrRPhRAShYlyzkgPf+JrC40S7DMEuaFGZJkotbcY8IG5jDzlUp96SZIy6LlmX5YSu+LYYySiQqODQ8f42+EoGW5FPbdq8v20ZuXvu9DvzkHuktm3Y9hhkb3YegWs06speW6J1y7fet4qA5LpXoKbQ3NlxXu9PmC9HZ1YHx9/Ziqvd317C0I8t69Mfu5R9aUa637Cm10gInz2fs+LXnn+SANzKVl5NHPyO7FQ/0qzYN+Rx/CmCTTnsvwm/quZBHU8vOf3xtKz0AcqTljU591DwUB5Vosh33RJGwt7jnqqKPCOeecE9YT7VXA8uxnPzs89rGP7S1z9NFHswM9EdrOEcig3ygyGNGaOwnBS5deDi9cLl5CxjM4v5sQyYmyjWbS3TCQ0XP65dWTfS8BBu879q+HUejbsD3pUmdMsNlkTHNf32CD64KAcRqZrqSsB505trupWMmZ31RpzQw6O20hwELeWM9v+Iz65rDEvOGhgKAP5rMDBMxnbw26h33POuybTwUvGWjpARKqpSLiDM6rZHSmZRan0fLsDrAy1MZqQQsy5oOCgGIlU4IVby9YKfWB0AIjOOQ3gWXXjIEdeG4rBUZj2loVja2rrx9GsJGueXWX1sY086N7h34t1TFybINrZmzf7NhxTqxFrnlXhkBRh+HH89WzvYH6s63ctin/2jwzLd+j4Cbm5mo3jbavrQ9lx7RMBXmU1Hus0Gg/drrfF2mvApbDDjuM/w3RXe5yFwYo3/nOd8K97nUvvrZr167wox/9iFHgbnESKoXXkzcr7SMWPNiTvHQYwAvuHSLFzaZH6lOkade6d1h4ZUo/NSOvW1A2gB9sXzoAaKYLONI8i9Yl+wlj43uVeo0QZaZ6sh5GJ8LqFtJNPpMoOePt3tjtutuHkpZI/5PDUH0d7ZyXpPOlZ6OAYXnOA+TTARVP48IgxHlfvLrI1MAj7dtYCbpXbuz7N0azUqrfPtMVAwSnzZVS2toGmPsiTdMHZGBTB8LKyYIhW19hv+591mvB8I9kjFf63O39WMdqup6et8NMd8CmN/epoqGGnPtKgpqx62OaM0zb8Nq3z98DDCtcv1abkV0v8Alp3xjh65etJ/TVKfXRPlMI7pC1Uxpvth7yBdjMxQhjaRwm5woLjJHPUp5sPZMArDWpp9LGiBJGoONJT3pSeMlLXsJO8QRSKGIY0SMf+ciOk9BZZ53FfiurcRIqHlDy9qD5UCZxoA+YbwIiqpTsLdMmMdCXNZfYDJUZqmeFzNKQxLr0Wx9D3iQHRKOeLkRCSZqTEkfojQ83WDkt3MNAY8Mj969t94nevEOkMwn5Zy4Ch03HxMvWqyEs2RdF5g7zvpSG3AewhwIXeOZQq9iASyBkqjoWI2gZa+7jfV8tFU0tHIbC0noz6xrVn7XQvqQGoWwfSC/du9LfPeZrGia8r+7SWPrIY5an1AKM1R5592ft2n7Z63Z8Y0CKrWct130JlIwpi9ftOpjmftuFZkotrtfUANjt9GkybFKWfodxZpoVABN6BmGY+iSQc/a1pgCG1HwsaWVU+wILthg9tNI+SRsCsBARQJmbm2NAQtEOKIEkxZMm53t0Enryk5/M2pbt27eHxzzmMatyEioDAytmNqH2vHqmRNl9G1cvw9h3IHgb1moOgJ62+qSviaku9CEzQcKpxg0QNknVAqAav8P0d6R/k8GQjpnT+cA8JamPfRZJbeFw/QXS52txVKbBczrGToqmnqQ7lwgu8ZARsJLml46C3OenMwdOYIPUFTjAsuASNpIezpWZ371BBFqUkjZoDYDJGBMifIz4ea1B0R6hPulxiZlfK1ppvZYB7mOIS4zt2H231L63Nw3dr+uk1NYU+7m3lUy7/qYBzh2JfwHMFLfHlQC6MF5r2Vu317YHFgfaLf22VnvMGKFgW4nelO/jto2SpqhzHlvAYwVmBsBkJmjUjobYF6FX24F2bJi7LZ5j60xyY2hah/m+eiptIMBCCSBf9apX8b8SramTkHJZniQvO6hENdm3ngakJsWDonCAFTUyfVLsEnixB+e00s1C26nKHkllBkxK5Y3UpdOIbnaGse6z9U6YU+t22szmuDQGAgEIRDzCflAek6wujDtvtHZZMflNtXl9EblYY4JhsiUuPh5wFoipFKs0FMx/UiJJ1qh1YthvC673NlCxhCZmCTiQA+jsdPUMMQh91oZD5dclkEHGXftq39WxQpJpGP4+xnVa/qXUbmnfGdLojDkH+uZnDPgr9XOyNhq+MWuts3anABMus41W1OrjQARS+Y7J7Mj3wo5pSLNZfC/tPJfO4UIfVmU50XN/6XpRo6J/aT5tckeztlIdfevSvEODz6T0HgCAiXMSBWtZgJsEVgp9WW/Ea2QNOrnex7mHaMMAlj1OwliVpC+jGIiR94x+wVdTZkwdpUO3dBh5UkIiLzqJlQx6dZh7Wqc9p494qcdW1yM101NQ4h2eJROpDimQGCiTaRXg4GtN2HLwkrQZDHKMBggAVXaIa+JHBTRmXEUNSukwgjkoavygbuoLh6eUd4e0FqjFWNckzyQ9ytndA1KmKYfM024xAfOee+nakICkD7R45fuu9wkK1gqo4H0e8zPNGPoYuD4aA1Z6BD6dzysALZZWDIzNHtMLfAoR82ZtVEANcz6wDw3RmHs8QGPNWvW3oeqm1aa4wMJoIaYC9L2dg3r7BEf23Tfz0/FXgbWXnaeFdewKYyxwRIGaJo20z2V9K1gqrTFVwDJAaLc5RsrcW88YmrbcGGmj3TQGd1xTzivfx+QCI93RBpmyKeOtcyANAZHMyRr6XNzDHCYe27H12A04a7vPFQXBDjpB9kiwkjRfLriHpvQVpV6ZrXGqKzZkwUjRxM07jEZIegmcsCnVJIT5K0JY3J63MzOFQ/3eJB6HiSa2HnxEpurDSrQBfdd73tmOoGLsvhJ2U7kSsOkDPEPCmT4QstZrw9bnzb3Vrkx2b59aE9R8H+xjuFWznZmzOqB2jA8ahjTnW2dbuU5sNK+z7cwKgZvDWPdpQIaAWVG7MbYvCFZKfXXI1YjgPT1zo89btct9AVG0Ct7/zTMeBRCtoMz2H89x0/csP80609Z3qEYJW1OqgKVAnt1m9pJNsQFZk5j8x+nr6z1Y+8qWflsJDUhLB6M/iYRHNL+uDW1v/XZDRzvcwkGDToKjxqVt9Q3DOZC9uqy9rz1wU8CArIzErDfrj29B0KJa8hkIxaygA+crlA/gxgM/5v6OMyWZal4TwtLmEJa2OM982jW9lwj9VwbflT0wphJY7aVpGBtvD+pd5AN1eIzz7pinoflYDZM4pm2v/sKawPe25Cu1or23j5HVIqvQRvQxvith0tciQAbXrUy09sG0k/raJ2QbQ8451LESgGfgCaHcOg1l4KdwVqoQq2OuNsU56V23Wm/NiZL50i1NEbyEhD0l8uZmxBjQCsIK13rN9tYbFYDZiuqpVAFLkSwYMAzgEHXsgccwDyUws1LCzXQF0hq+beTm4Emjeu/Dg3eoD3oLjCVj2gf6hN/7+uQx9amvtjNe+zjXLGaU7xg1DMlKjiCEZax70lGPd4Aa9iVtjuMXTpKILvsALDNJAuno7E4BKpvbw21IKreeCP1TkpnHGOm19wy98lPsE32/jTqY+yT0Y+/tu6cktdVrfXvYWtFaMyglAcnAWDomQU05tHbnsSQt6gr7q/f2nBNFsDJWIORoNzT/UUd7MtDXMWBF52TMvpHtM9674Y2xMO6kVXU7NeIdtue6Eez0aeC9MfX9ZrefDPQOURKGlec87f1hZYTPuTOnfTzHEGix/iueEGeDCMUqrQ1VDcsAlQCH6/dQunfMC7sCMDGKxkqLC32ZNrLJ1FK9klTMYaRWZI5XkpYNdatQLl3uATTxALANCwDIHAgd4GElKQUA6Ek5O+Z3BfJMG/rMBOwamN0RgUqn7AYEK/x9JdoFqymbTAcEpl2Hg+B/WrLCgjGga3ftUdNSad8aM2fTammcesdIx937l2BZzDpCkSEhyZTvducer43JMMiwAGZ3vIcq7EChR8qGjv0V4rIaLKPwTIcAk/6enkWpLbMn43PzfPRKW8Ja0Ur8AveUQkLntFfrMgWQ7uTt0r8bBKjUKGFrSxWwrJBW/ML0HSBrQcpoTCuZnVJbMUROoCv/t7XQPHllhw55r86RmiQ3CpnHADptYZKtXlNB716HYeqUnax+bXlRdYhBIMalmYvmX1n5DapZ6f44poI9ePqPoF4tTJ+U2GOIS6DLu2dv0YCQxa7bUQ6604L8nrW+5VfyrlDwieUmLM+RWjIy39cd1gUvvB6NwMbbG0rBX9z9fuw61r+OmdBqSUEAahyG9ohkAqX7iQp/lqNGl/s6E5nhbN56AIpqI+auA03DpGWos/2gsH/afk924360UfbRQcIzcei96zsz+9byFJrsvUbVh2VNqQKWEpVU31YiuVrJZ98BuxLCF31sXQXt0GpsoUeZungaggGtzig/FK6kRzrOlY3cNEsS3OUR9eIaMetmyHnVuz5Iq93ALdMH4UXnr4pM1+Kmwq0bBLR4fSy9JplDaUkTOLayVQg5ht7DVZtLDICA1dCa2ZuvhXZnhPbEdbAeWNebrghh7lpi+huOdEXrZnZXCFt+uSssbZkJMwsN/53dORM2XdWEy35rpr9uB1TbZ58BmD5tmLcm5B7L4GsAjV7thIAGjE7IGhj1ocNxzRohzWwbSTDtNZAPijS3VGZZTL6oXo06iO9eZoI0K3WTIIX2JmP6NFkEQc9iDL2uCQzV7w5NzBTUlACc3ecQcFB/NXiHfa5UjsanY+XgKUuxvIZVpyAly2bOUFMxtA4xKqPOdbQhk/7twYiN1Faam7G+N977ade2oxWstP9QBSwlwpCKY/W8q3yBpj7YPeaixLSWpO8F0GA/rzUNAZoxvxVDK3pj9Q70vk3UY077JNAmd0sGrEZoUkbPuwFRHWnsEODqY2TkoKSDnRgAImIOZnaGsLi1vba/UOZkbOzAi9Tz7AajDDrlbV/6yqwpjRA4eH2y/dlTzrErFaqUhANDzOFBFzVh4aBJ2HVAjI63uC2EzZdTctYmMYaL22aZaVzaNBN2HjwTdh0Yws6DJ2HbJZG53nm9Qr9G+IRNM63J5wFNmXZNXyn3R98DK9wADYqCkA6QVkCjwp5dommCFAK014StLdOPmhn6zGMBYRHnxaXnqPuWAphJ1w+C9i/OM6jgSkBUGj6MqaiJxfEKeOJ+ah+XwOcH616UfxrlUQLOUHnWHgllCh8CcddpBU4IewKOs7EPtP6w30kDVQCne4L6/Lkw91X3Rvlb+n0jgZaqYVlT2s9YkOkp26ARtIxgQlMdA7+vyaFuTZJMv4acRdcT4YHdWw7Bi/1gxzSW2Swx9B5j4zA80z7LFfn8mPuLjHAJ0PbUzYffVpHG0aFMUWA2D4OVjaBdWSl5YHKl7+xQ0IfS76PbW60Z10hhwRiwsloqaRWmeWeGyo7VpNBetP2/CHBE34lrbzgJm6+IzCZpVmzI8BkxB1vaPIlahaUmzF07CTO7YlnKrzR7SXxeS/MhzJFf2KbAAEhNLueuiX3ScOFI0+Q44khOJvys3p85cFvTMMMUkpaVyqd1CtriDFwjYKE67TMQpl3LJeGI5m7aBdoQeOZ0bW4BBEPKtNM/6jeAEWbuMZmwMvCzLahhoLFsnj3Ui/OnfVZghv1XIEXfWbNAmpR0cyvwSIBIhKE2nH4nZLP5rHOeplPmnwCSDSKgfkd0bW+AlSFKIfE9GvN+j9F2rweqgGVNqQKWHkKJiz3MkoTAMIKrMZ+a+sAvaQ9WKK1dD5RJZabINr5q0xOrpbAMvqPF8HICeD4qff0aZMIK2hNkGEaPq4+kbgIrRMQ8ETPGDvbEQI11otyHyK6/qdfYCsyrVguIeqWWU773Y8frhg9fAU0DLmJDQxWWy/Xlb9h8udwzQ0x6DkYO+kkTrj1shq/RO0IMKq2TuR1STrNaU4jyJpqILW2KOZEmSwJWuEjDWoFmdhLmRKNJdczsmjC4YaAjAoRNV+WMtJodLVMOK2H+6PrOQ0fMRUG7onNL7zwDAwFQKT+RgAdl0hGEcD+VmdczEYIkYj6tpF0A0MO+cQQQaDzCyCcwIJ8ZNEg/MhMxukcZefjL+b1MKPm0Z9p91JaJj6e9rOPCHFhGoz67VGjLeR9wjPFfrITC2ifND+QnS4Fa9FyhNSC/E9OvJm5qQscgeHOrfZmGFNjtifwmmfnaFIKc9cy/VNq9VAFLgYZeio6EAM1H1vqF6mM2pohLvmb25LuJhkI8euBltJmOB0KyBkZew5/1mUtZPaQY4K4VgHI0OFp/L8NW0rg4ZmKeWZkGEphgBB89RNE0YT+iFYUYHkl2z+jzZ1oRQFjBnuRpD/t8r4aurfm+MGAWkjGtA8TO8svknB1NumZ3Nun+6A8QtSNc9tdN8p2IgKUJy/MTvof+zl+zzKZhYZmAx0y8T9692Z3Lsc65SVjcIpxmpvFoRPK/zGCGxyHtR8BA/SLTs9ju4tZYZnHLhH1pFg4eHmsWwQmAyubLKNt8E3YdENsiR/UlASqYAyXdh0y9w9zzNfAN4d9BK6PleZ8Rcyk1c0pl1DRb1gGBudQFqZDmWueEtVlNQRPkaDMUeA0xzKmf6nMDc+dpArGtDqWxCYBN2pamBV2imUlrQK/TWqAgBFJmVkzhEs0IiEHTsAK5gV+c82F3kwag8DQu3jmaad3WO3ipeVjWlCpgWcWBiRKCtSD7cmr9JdVpksCM3GB2C5haIyraagtQKc3xaGDgmcoVDpMkhcPNG++Bz170Hle17/XDHnYFbUqxvEelOhrnoF1qzULULMMCIZLUkeROtYxkh58lmNwPaMXmWKmClUsLx4CBPSWIGLt3rGqPwbkaAhumHXJ8T8zaiPkgBn3+mpicFc2DiCmmz8S8p6aIs2VGOAKTOTFfIqJrUcPSsGaCGduF5TC7sMzmYtpX1rAIkOH+XjMJy3MzwqRPorZFzIkIEKmyJvA5EL+wtqYhwDQJS1snDFg4apbs7eTzQCZryvDGiXQc7FVzIvOgpqBUX4xwlocuJ4fwdhzGv8toHTAsMQMIY3alwo9YsQE/6LfC9anmyjeDZbCSGFiaW/UjEtsp0FSkthBQ6PchawUEJ9KuvZ76gfdZjQ2MU7+rloVAF5uQ4VzSWoFzpqGcXqhNovFB4sekpZI55n2dtHH6TsAYLajKtEJ7IYiKOurjXjZknbCeBbBENazx2lIFLAM0TUIrpGlATImBSQmeClKgsS/rIFM0henVtLQWm14pKsuqGTYLXLxDa0CLkebW2TwxjGYRqJQOyj5Q1Udj14RIfkg6R1K65WV/ftkGWkwNNMIPO5WqFmlm3/Rf8Zxxe9eY/a3pCh3QxHTN+rlKc6w9bW6xJmtFtQIL3Wvz18Q1Scw2rdPEuNl9g3hDcpCemzCoIKaa/y6K5HphuZXCk98JaVE2RS5bNS8zJN1nkEL3RcaZys4siIaFAURcAGoulpn/UNvEqM5ShyMIIbuf6AMTQiDARECGGf9JWJqPHaJyMZrWhBlRZkabdkxL6qMB5jYW/NF7TFolvY/8aFpJf3zvs2SyqiVZzv1d0LkbNRE65tQ27LHMxAkg0WdB8xHbaBigoc8HPl94fOly7F8swM+Bn0+eDRa1PrhXZ+ctXssAklWh5GWsrw4y/oPnBt8b1476yvKtaM6m5enzkpRNpmNgRqYARvxzeN3sEtOwpKmT4APz8Hzk/Oc9fq59ZhrNTf1g+H7jC7VWpACpT9tSqVJdFruJxjqOc9kpN4AxzAlKcvr6gFIvpNUAmN3JwJbAiz140HkUmUXXt8TTpKxAg9F5jg6jUKyzpIpvVi7N52J97VNoz63RuXf+uhAWDgFmTKPfLLZzqcCF5pMcgUcnB9uAZN+bQSBQeE724F1rLWdJy6rXiYHXvpFDdyYBVyZhRDtZQj+bO2LRSp/jdw3RGn9sNaXJhGUKcKXAmE2wdE2j2ZH8zpqRHdKHa0OYv7ZJPiTEzF57eGSMyXxK+6CmJao5JHASmc7ohxJmCBhMwmSxCfM7oqkW/04Ag7Umat4TgQ1pUOJcEHghVBRNvNq5IHsrst0RVCHMNYOUmSYszZNkQBjtXcthafssj4HAFYfBpfbnQti1NYZPRr859NNAR3DWpArjSe8xmYBRHfSdwEp6fhM0vzJgR5ln1Xiw34SOFYAJmsRqiF9HM03lNZQyATfPdwL36qSVQS2Bmn+BDwkCrUY0FLq/qjM++71kCyxfjiV/KQuiOsAFjxLVghgtVDY+WSudMqV3Q+dUTXMZGMs6AnBo/Xn43aM5EhCjIaRZi6amj/qOqfkvhHim9iiC28w10bfJ5uJaLVmeYci6ZMNQdbpfU9roy2G3kapVV12Pzd5byLI9hokZAiqlOqYZxxig4jH9e8PUbEzIT5YcoY2vUTlnUkIznj7/gUFNDf6Fe71naA+zUeZW3qHmPAM85DvzJfdrFCICLvqZDyxidMBEgxkMk+tgI+VgWW1YzpUcniXflNWAlyJ4EsaMfA8yBk3Kx4hWbfhXzIGhDApKxdVnyYJ0ZIZ0TFkODrXLnzWhbG1eCY0ShaFojZ9AkozjuyWAmhh8DKWLUZs2XSGMtEjd2VRsMglbL5VcH8TkLrZaleQQz3/VTIwQffxO0vOZXTQp0USLfQvIQV00Jqo90fsjkKHByT9kxCmZJM9JE/lMdrKfjeZNy2RyJqBolsIm04OasHka+ceoPwmBQY3kR38ZdMhcqikWjYfNvcRhnYMDXNeEXdujhob6pLlL2OQLtL1JSGGvL7XAgvcGcKiP5aOmSMvps1FmWPs3ywBqwoASNQQKErN9UrQvrVmaVizaKDUxkzDDuG7Zkk/DGuMe6CXvTS+Yea1KYMO9twtAJoiOnN/tb9K9ts1sblrQws+BpysC7OiUrw8C6pEoatk8q7meZqYXzYk9n1RrpKAz7ScS3Q2tCIai7GVzN/K8KEXC2zDCMgbMa8Ac6T6zn1MFLD2EDMpqki55ka/GMiud6GRGW8BlVrGWV6JJ8ZjutMHtweRUY6iTpdiRKJfixXt84WpMZkt1JwdJXRNjzcFGPneNHKOHeqnuBNyUKZJDgSXWCkyIuZsRCZ0kbNvXqHS4ZsnQRmhdVuKfUiJmtGechHkZs6cVw7NW6bIyN8Iwar6IpI2UsLGYFDD6ceRj1fWpTH8ai0ZxgvM5RU6S+9VECxlADF6ijDUz0UCq7VMGGW30dbxRK9j6O2AEJh0fNazzpUx1NEOJ96lDN9ehmpMlACHKUNLfTNMj4CTdT1ycalvi5/gDAYV2ATXzMwmYsNZkPuZtyZhUkcK3Tv+x3zSmaw+jz61ZFDpm00UKQ6xaE2bkJ9E5n8vidYgMlWlL4FnqHGE59M/BCF8zkotGzbKYMSaAQloq0fiwSRJpshRcJWd9iMqW1qyYkCUTKDDzYtNAYdjdqGCxzcwRXuu2L5kRMMVrzfh31bvfa8zysEOCp6QkkgnBOhC48BilsGjHtH4N2pDADmqtJqJxg/Wj5mlJ4yZCK4pOpgIEfedRs4rJR5E4EpyeKRDK2lo+jAYyArRYa1Rpv6F9kN1YQwLV8zRx7werXWptRZVKAEY3jyTxMqpSdZoubahDko1p/Fe0HzoXq2He91eyyb9KwC9+WSVCkjaS86yEEE1SbGEwNHRxkoLq2hIGkQ8aMLnhA0eiCNFvlLRsX9KyeOaRrunkQNS61QgU5q6O5j506zw5k8+3UlDSLGy6Os77EjpXAxDgrQsYev3MWhYBAOTgvfmK5bDjkBlm+iiUrt6PgIRD3QqTrKZGRMz0k4aC/CbY7Coy1iiFTXNB/RSmBaNApX7DPex4biS7ClKS+ZcCFGCWch+LyMUR4FLGOWlDAkjy0VdCQIpej8+uccy9iEGOzt3pPgImS+Y3/X0mOhZEcDIbGjIHE8Ybne4XN0dNyq4DZuT5xE7Qc1GApXlKFg6IzvHqcK+BM3SNUCjkZNapkb7mHPMqBeKiqciFawDgQNuS5Z1JZlF5+GfURiuwmYUIX5SHBk3DsHzSkPBnfKGokrjetA19zm2EAmHO1Y8Hoqqpv0if9mTqcL723TbrPtMM9u3lRquO/ciED2ZuEbhMrOYe2m/4BUHt6KTFPo6wwwZtSN0UfoH2BA6drEENaL7V9E/5Co3Sp5o/0QpyaG7lWYxQg80U15nQc1VUTcLWlCpg6SM0S1hjGnopMwbQiZKF0oix/Rvjp9Ln4G5BU6XpSQHAkMaqfQi2gqEG8ntIEs9MG0T5YbAseQ/4DJ8TIGMyPNOBNKuMoDAzbH6yuTUPS7bO+3DUsGmAmGc2OI3pVyP+FXzAC1iJDJ86Wov5z7b4zDb/OjKKLD3fGstsuWyZmXli1HYeMhOuu0EEAcRspJC9wlRT+U1XL4dNVy2ziQ77NW2ehC2XLYaFA6M5En2PDHsECeRLccCPrgk7D9/KQIX+sZSbmEuKuSpMo/p2RAY5Tgr1ka6xtF3NrtLkiTO6+rqkSFGtpqQj+U/O1d3f6Asx/eR7YtvJJ12fnUqn5DMAFTT9YpM0GSd/V6BC4IM1VcuhEZDC4Ynpc9KgkP9Jq1nhfxwkYEZM1yI4oZN51/bZMH91Oz5yuqeyu7ZNkoCB319aE1vbdccAE839bOQlDeaiCRxV6yxrVwFGAoCqwdLrCiIF4CnYaRsQ7VQ2t+Z9UN8SoFQm+V5EQKx18pqCaGftmPK6WHOTtC2kWfBfPivdz+vsp9yXxakfNCGJdA11HGgKIEe/ZuaZ8gz0tkxtP8lBC54FCiSsJsbWA+9qSsA56fooLct5QJHlWNsu2viZa1vNLQtHdkL/QHtLwhYyQaakxItbdo9ly/ogEFystp5KFbAMUbbR7kEpsmdGNhgtayBaWeakbqRppfvWq6nXnqYOyFDmyIToVGmYJ6mzTH3fQVn0l7FUOHSwn3wASKhTIjpIbL+IAeokSgQH5kx6LSBHbd0bEwJ1X6eSH1qJWrOabh0UipeABzGcxIwl6bGG+KT3ng7+0ISZqwQILDesfSFmjvOGLCyzrwN9pxwgBCp2HjqXGIHtl0RQM3/1cljcFvOCEFM3f80SR76au2YpMnmz5D8RrxFTvvnyxbC4fTZqPIjhJ0aagcMk7DxsS5i9dinMLEzCnGpVxOwkAp+WmSUmPObKaDUks8zZxzEQWCLncmpLmV/qE/2+43qRe0n+JXx/Xr+afrUgpjUtmllczh3hB55XAlES5SteE3MvddgmbYownQRGJmE5sDeKmoGpUz0Vn0SNCkUEU5+L5c26uWrUpjYSGJVh4DIfNShRuBB/j1q2KEpXk0B6t/Xdo77PX91mOde1pOZQ6v+ie1fyT0ngJIJCqlvf+bQeRcMWHfk1fwjMqTwTZpr1GQmgRNM53hslWEE76fAAuJ5WO4L7YIqwxkx0BHvxQtuPDCDxoDGDZbe8FSZElr9AnnamJFDymFQA0h2NErTbOGCjJBRCszAdSA5adPJMF02gjmzUZDqZOfarVmSSR+eTYA78m2hmNMAD5u1apND4ZE5GoEZA8uZfh7DzEPBFacqWLUQ2iI69Vmn/oKphKRBLpr3DTaVTe9j8xTPlKv3Wd9+07e3PZl+9Sbd0I/fKGGfnzs/GoZn/ogp+rKTPlGcTEDhk2EE+6zRksceQsPozjkUyJ2t/1XxMJfQTSlJ3wCRGC7PtbCDyhBC9JpYzwwIve5AS6KPyBDLoL83ZRK8txEOby4j2TaMzkXaFCfxM2EwImJSZnctheXPMvL71F4sMOHZcf1OYv3opLM/Oxlwg4ttBztyz9BkSGRIwYKZ+cTkEjiC1FGavjBNCGoG5a8VnQLNwW8ZvR9P5LUbREpCSTKEowtUkTEhjwJMkiRDFb4HNt2hsJFWnHCY7I4jatos0PzPCbNNEEJcey/E7JMkckTGO2hEx51LAArkzNIRuiSaULVHHiYwnXaax0Msq0cS4PgInVJZA3yYa64yAvob9VLiqxTbPBg9fx0VMIEivOQIT1UGgjhJRaghjNvcibZcACtGqUWhiAjgLB0bzN3RGVtMv9i1ArQo4y7daqTaks5qGRS1IBMgx+WXUpCV/FnRcV/M6mjsB1Wk+SUsCADNzIFZHctGgMJDhbO4RHCdQgsy1AlXQ8KD/VNkXsHHryqgENICJtv4tvWTXEFxv5yh2ODMhzRz1zd9Uh98kmtR1QAz6wBTOGTsnSXNHWlRZRzG8/SQsyv5J/moaKhlNh+kamQ4zmJaQ4/Rv4SDQpKC5nD430y8v4In6461rqiZha0oVsExB0ziF7Q+0t/0WMqdfG5llDSO8dZwp8TAENXd+M/QDDvbERCgIwKiUENEGmQysz+ujKzUTfxXPBK2PNGkc9w1BsYKdzZGh0sOImW3KiL1l4/ixWO1hChwwDWC0tuoF4mhWErmIiEwo1KyFDnJmMhfjAU7zqCFESavBzCFotqIWpM0KHjUty2H+6l38feHg+dDMxsEQ83/gFYth56Hz6dkRE81MtoToVYdyZSBVO0BAhbQIkyXKFCrTolJtMm/C9e6E7GUmc2KAjmgXtEzGoKRJBx8SARkzO4kTiqGFGWikiE8iwdeoXmJ6hsxkZJoArCiQsQ9ONSeGsYz1AcjhyHli8rZMiRvnwsyOpahloWSOW9SEbjZJo9n8bfOMOJzH8XGGezDXotDA7M9C7xL5+cieQgCvBSeqhWkZTSpP7+Omq8V5XZza47y06zTtNyAdt6Z0VouqTvAECFMwAg1AoNoJmjotnybNOs7n2o+uIKD1rVCAxHUQ8OFn3ALcdIeE8+20rYSMP/LCjqbFNc/S31J9ETz1UYnJx3oyDZ+53uHRNfIXapgKQKajnYdnnxG/O/mkjBJI4rxJ3QRQ2JdpaRIWDmi1e7wmCaRIAlV6Vhx5Uk2Ide8tBYBB07Rs3ObcBUC+ronXzRqYc9UoYUwVsJRIpTZEKGTb15zCVgkU0Ekuk4KoJHGhm11Zr6EtdV9oxN5wsrKRJebT5GCxZDUfoxjsIUbWbrzEE+6MUnM160jgAySBWjZzjoYNm/g+dIhkW3UNKzwRcy2Sikp2bw1FnLQ1GjHIUHSihr5DPgG0a2fmhp6N5jloxHRMo+6o/buq/zcAWCFKIcZxXY1UJaYwoJAp3JJKuTlKE/hhYFADek4ctGAuhpol0zCe70n0USBneA07ukSRnVLYXcqZQ6d/XECLW2fDZJ4YZvo8E+auW2awQgzw4gFzbPbF0n0GEWYsxHyDw7pKui3jHk2imEsPE/rA4AMcy235GdKITNj0J5pMeROJN+AL1mpHtF4yO2OzKgYNolkBE5lWW2D6IUAq819JGcrhmq5bzoPS9gmBGIembaQfYrbEWhICKayRj3+jI72YbbHPSfRXYad4ShCZ+hb9VdTXKEZQiuVIC6YPSyO7oV9A2icnbeQvblsjN6XnJn+hLDpCW7NVDpWskdhkzlIYYxO0INOOQc6Y7HlAOGfVtmXE+5Tcm/g6ieQmz2hCtkYBAAxdy8BvDmZ0bmP9lpNPvYeLzQhBhBdSrEDWJG2AIlghg0IBanDGpOeH50sC0Hkd5Qbagumc1bq0y5bph7M09VHapn7yWpYzhrSAm0TiRiaofObNkvAEtMkYptwJXqKJiLO+wFmKfZ46KEKlfYoqYOkjR2qyGrBiTW5SDPsRZmYln5WVxjefloqgQXMrwCaHzLgybypp9ihjPCAvQ3TyFU0B5hgwbagWQa9rCE9ObmUOjY5DdMEe1krhFSSouluTKqbvoHnhouD0ysw/btroC2IPkMwmGcLWShlibHGutF02GZmXMYt9emKW7SZvoiolACLjYrt1/Y0kx5RlmyLCiGkKRwjbISEu6VDatjEPkmKMf0fjgjbVdJ99DrTmdl4vXqPfVBquax7nWG2/dx6qdt9kBtWGBGWTO5l/MrtI7YgUmjRcKVSvMJXEPLMp1Q5alKRBWQrN3Kw4dSu4gHEx2Fw2knBhMD0TFgzPy1oKqcoCAGaQCNiIxD9NNiZqUQYbIm0hZXVJPZQ9XjQ82SuD1arvSaG+BFxKpjzUnjp5Qx9jtnnJcj8bAQgx58pss0kYaFw1oST/ploR9UMUZpqfMSmPOOoXOeyruZU8VwnlSww74ybxxWD/INCisCZWfGB0UlKiRgNWMn5df4f3lvPaCFiJ68tEVxP/Hhq/9pnXNRnJiZkhl82ihaEmQUCLarSoLhqPMWWi9dyCm1YjwGF9U13ws2jXOgBBfWZAi50AjpVYK7hBcOv8XtS8evt4KPjJWGsAERQkgFC09YL6Ct3o3pMDnKSlyXyDpCi8S2g+hsJALc+8kAgNSNOyi6LWiaZYfZ2m0rjrnqSmhvgT+KqlshuFyMEzRYBYZT2VKmAZJJC4KNNceglLvxX9HGZXlxPFKz8G/KyENHZ++s42rG189XQgT9HX9kf5w7bL7bUYPSdn4NNhLGBBTbL4oNW6+MCH/CMqmZQIWV6W3lL/rDNn0ojQ5ppMSdq/KklPZez5h2ps/L0YErSdG70/9Vm1KHrQqwmYHt560BAjrBmvJdSpEkb30UM0JRFjBoYcseniJEl5l7dETU8CKhvpABlBac5NdKWO0yetL3FMpjXFCRsRgGs0JcEK0S+hXWtk001Mqq7tTVcuJ/8VJY3OtPmyhWjStdgwKFneRGZH5LvS5ggh8zCOUMV+D7QIyYdDTHJYih81NXEQ0b8jqvFarUZiFMUsi78jgFDzoGRiBSDBhJidLGo2OzC9Aan3ZKStP/dRPkemU+oVKgKfVMAAFdTiYDGTdI9AVtx6VN0pzPp1ixGkKPMGviop3wVpS/QaR3drndHpfSKtSGsuSIC1DdHMwCRoVvu4fsj/iTUg4ESeMZpNG31NHetxH8i0UBosQ/Of6Jogh39ajzj9IGRJa0kCKBBAjiBG/Um685lM6XQtqVaFGFrSWCXnblmbibE2oaOV0UbggtoDsLzpCKVwv5WADJlTORECGAU0CPDVbBLLYFtWozKgAcmu6dmWhgrjM+A9u2cMTQrmaBocAc5WLa9gJZ0v+BfqXRKgrGfPjsPE9GtezgZ4Jiis5P3T5BvKnoUzRxv2nKk+LGtKVcNSIsuo4ubU54zdk9W+U08YqdZ17h8qv9siaahpgYyTNyJw9mSGWJPI6RzAxo9SGtcnCDY5tKfOnPF0/kDSqxoItv0mkIOHsgCfZPYkZlR8n4CZTEOAuUuwX1RWzdlU09Pe0t4O2pTsfvmbOdvDX5QG0pvJUipTeSZJhBj8au6R8lwY4nwNc6J+F9MXnnsBMul5in+Eamg4ChEzX9H/QkMZc1QrDZG8j6rqeX48TZs65hO4IM2TvAesEaHyYvKlQFbB6+YrIvhIpl6bJzy3m69a5uhei5vJ4Hs5SropfPCmSZijSFwcSjie5pxtXbQFs+RjwoAlmssoWIkFQIosDFgKJQsO6OqTEQcpdelXYxbVnaBWWt5qX9oIWvyZ+kgvIEoIVSqh15KUwjPjoXHlAIXLgAaEmXgEHFym0GcEKgq4tClTf0P9Z+1JBHfL87MMVvjdEUZkaZMmpYmaIH0/OTSx7tW0PtjUKTJ4nLxxueEQz1yG+9rmJdF8N0kzo2GFaT0qoJXnqPt8ljPFABpk/jNhhWY/Fyd59ZHS/DbJB0i6R9oQ+krBG1om22x0aT8C8JcsCVp/Jm1PNTManCFqTHR/kshs+nz0e4ok1molsiWTzhs9hHyfh/SuqFmbroXkMyV1KZCyAEZCdyNowXN5qsApjXcJK2uBS9FfxiPsMwrDUIjQSUAbx47X1EeKP4tJWIwYF6ugs0EFhwRWNFIYkmqnkwk5BGvJwArMY2YOBrzBaMBWaZ+iClhKZFXMqL5dieZjYPPq+91rs8+GdRrTNbUFx5CjnXwtSRLX5vRQ0KLSPD5QIVxusqUGCQsy6HLeFMeXARfcqPiCkyEe1MgalUn7zpJt0S4QMdPtmKchcJjHKFoICoSx5+WRJHbmsLKSIbhmJWvWtCsNj6JxidaKmOCUQRjPTuPzEgfXlaoxw6RjwCABAur0LwIt0qDQffSXM5Qvt+ZmSfOAJgLWJGUfoEzDAozF1l/EMe/aFq+TpiSFj6Z3YQHmBzKAczU0j5uiMzWBl62Xxx9SNKh5CjtMjHI0t2GtSrMcZq9bZIaZf9d3UplvjVDFIEWZvWiyxFGodB2mcMDCwM5Qvoo2mlfUULb1xRtbjQuTahrkPiZm9nR+zMuMYCQBBMhhop2zTs4OOOkAG9S4WAFsyZka+2L7q5ob8ZegSFWkBWAiYDdPD00ZOglBvLAcM9YLiFmejVow8QtnIlAa98zokxH3EY01jIxhbCvmOWoTdWamOOiD55jJZP46PD792eQq0UcnWhPtEwcv4PDV4AQPzHME3CYKWDK1wz0qX49Lc/QyNRy1TkNM67hIW8i361JTnxjQHsfG8zGlswQj1EHUMjcMMa4L1LSo5krni+ZFm7ECGRPtrLPSFMxxn1ETaAvmc2bJmo4loKGTg+PCvnoh8UGLYh35+Scxq06/oWZY/Kv0vKW9C7PWK6/E1hZzrZ+V1ZioqVim/QftzSiwt9G0LNXpfk2pApY9QKMkLZZgE8siagzU35eBPnN+gzCa2lZykFcNg2oVaAMCPw1m2EVbnTJic0QZAS4LURrIEZEwWo36SYhjuGZYTj4gyOCbsXVADX2n/kLeEw1Hm2lHFnNtCIM58XFppc1tnRYc9Umz0BSs+1Dy+jOtS6ZdAdMDnSe1YlazLIx3L/5COhZU2acq1FQODy9wkmfgBuBI+6YghSX8i5S4TtaCRAArkTVhynySHAnieqaS+SZ+ZnMHAeTsyzMf55Tek01qUqN5LkIIu7ZGczpNvji3Q5Iwir+EOmVr+GGNjpSieBGfv3k2MsfgdG7t8D3HZvU5YH8DjQKm64U1JBF8JCJfDQ4bLFoDBQPqg6KAhqTbvP5bk59IFBkCAAjXI/aTrIoCSXYWMtiEEmZwQ/2QkMH6mwdEUCvDZTTiB9yHVAJHtg9hpo0KNkvzT1lTm9BsmeP5JGCpJmDE4FLyR17/AhLVhAyzrVM5Zv4E2GMY4eX5yEBzzgrdV2UtsYM+g1IxwZH1N8HzAaMMGo2x3fdbZr+NmaYO9mmaIHJXMlXMnh+YcgnQiPl2Wu2KhpBWcy/SFFKwhyUKFEH+WPKXx6ZaKQ1fLdrEti3HdMiYHHa0K8DE42fXSqEgQEsAKJvSQuQw0OrwfKGZWwm8FPqBZmIdKqxhTwiYma21VbeRyOKhA2dWXAe6ZuNaa8KyVET+mEnxKrwCnfm7DgyDxKAFnOxRCDcE4DKygqRK+wVVwDKWUCJQ2NiKzPW0yQC5si6jlK7jd0MYCx3vVe0AR5YSyb2apihwSGZBBDhESpL1BZziGNywlAkYcpwHccxOTLVhjtUMC6XYakaDqmYFJJoojcupQzI4Ryf/CzCj0HspG/jOQyKTkJKlWZtc+9w8TQhVaQ6+NF6sw5h55ddbR9DscUOGYT70SUYp2eixbgZbqtnSOkHqlfrNOSMgpwjyImh6JsAm+SFJm9ZeuXOA6DVnHSaJbZYPoDC364A6ARbMgbjtZ/Evv1uLIWy+Mkq/KSoOaUbID2VxW0z4p0ELKFJXXGtUlqJ3tRJfBR0aApiYuTk2oRAfgRSqF8L2Sm6QljmMjAZXycn4ItC1lJLtMWhRRl6BjJg7RRFzBMpsdtOWU85EQc3EMoopzDCAkMlsbna1qLFQSdQO6ibOu6HxdqMEPv3rRA5D73AjumVfIQtaHJAiUcZSmRIR4KG+apQx6VMzRwmMKIfOYphM5qNWioIdMLahuaOcOLM8V+wIT8kfRSOxpHlVBDiyD6BqXsSUM2rB8hxNuiYZ3KrQAa3rILiHZ5oZTbykrIlIuIzmy2q1JwBEtdb6nFkjSKaJNCZadwZwo9lXrC/OgZqVKViL+XhikAL1wdLQ10nrQ8DcPh/E1NQ/fY7CdGcgBgEsrH8140r4HHw4YoRF0BThHt8XGKJ0HUy3+A9oZNSULN0ykicoCs/6/LccE7LUJwtcRAOVrC5mZe7El5H1bLSP0HfN7wOBRcbSDJiQo7DQmtYNmr4b4eK6pOrDsqZUAUuJVAqpoS6ROfMY3hEb0Io0LZbhs3XgQYV90ARPEmELVbdoxoUOwiqBT2ZPGM9dbajxwHQkQ1yHfrXJLg0Tn0wa0AFP/W56soPrZzJPY3tZGqM+DzCx0HIEVni8yGTLX9WSdPrpjCv7DuNXbUcCEMsFoGKeGa4pTLTH9u+gNUFtEOcegMhTKtFU7QubcImqXp9lFvXKanPgUMCgCnb8nbmxf/GztTc2v5WAzp4gXEPqo+MJBg74SWQwCYhsuqq1tY+aqAmDlflrGzYLm9vZhK2X4ULN6yP/FCu1VjCD1PohRIlzChMLmcNTWb4GE4laktRYBCHMhHDdLXNI4CVpXNSHgqsDUxoGvXHCJvLSa0Z3nb8EJDINjGhfxK8mzLOHdQQnbBokwIUl6cT1yNzhe4iaFXacEEDD5XK/G9cxOflQGHBD84QaG6Q0x2SIL1xZ/CFMFiiR5c7QiM8Ka1uoeclZs0zjMjkyeM2IGd48aWA4e72AFnV251ta7RcR5bFIXcKQ7xDRj5tQEI37OO5BAnTIVwr31FQf7O8USjlqfTTaVyvQIGZVTcW4Xk3YyNohCNggEemS/w6BE45o18Rp1+Wu2jg1PVMQzgKl1t8m7oNqxghBBtT+1zt/VatBlwQ0KlhKvlwY+EHz/VgTasjzsiJz7b4cLxAKekU8wTQ0oIlJ0wbalbhHwRwDoNZzbFn3G7SyGEFJu+LwU75mK2xsKgHeldRTqQKWIuHLgn89Zmt3LCYDUFIoXc15Af1LOTiU+YbM2CpJI0raBZGoYcZjJgiXyV/VoVMTHCpPYtrna+Cb4s1HZje7bIAFgKk+xrY9sMRxXqMuoVoZ5iBNn2EgPTBUfAwOeMG/CAYzIKfgKZkgtB3SZHHESGQMNDEGbP4lh4Lkc2C8KJoPPicQZOLBIhoYNClJoU+tqZOjDRyUZuFffF6MMnUM7S2qDbLrKIvBP7e6SHnTUAZ42Yk4juGAn0ZtCfWP1tMW8ivhnDOTsOnKqOHQZ7HpSnKCn4SlLTNhcXPMLk5M2s6DZ8MsmXrJAYWatqTlUA0fmpIYB1M0y+HIU+r47EpXQcosGpvoOK8SaPA1YJMsBUQKdtQXBtYmX5b7WGMXGVJNjhjLiR8Lmz5JvZBAksyn0mfy+1BQIeCB62FOXAav+UnUx0UBDL78GECAwM7iIpinmQhjGK1sgV4IA1KcEMsdvx2ePwEuBJboHmp3F9n0CZgSZ3wCfzMLS+yLQdqBpS00/lYLkKTFok0gcBB9mMQ0jAAezbWGPKYIYZC3KZnMKkhgbYuYiBEokPwpSZstDKaK9tFPkbSBBJxwettoY6oREoHQzqhBpIABaS0LoGl0fZIZI13TSGGs/YjzQExtTB5KPoTyDlFVBCI4sESUIrEPkCQ0XSKpvvZb3qVMg6PzKM9J91eeY6pfA0uoCR6BRiouGpZkSun5txSod18cIBeQjA2RPG29feSAJ9fPJZ2ZGI1OtIKcByw+Twp0EfMMickyJbu9JoSFQ/Pca2ROvOXSaC7GObzw/IA2S2e05QOwbq5/Lwm+Ku0dqhqWEiHD0ePAPlayMDWZFztFcBKGVA8vjnal5lnKlKkEXw6p5NQpY0kmYyChU+poB9IPuTlcMhGD7x2wkvNlLWNmwvqm75BzJNN82HaR+USNBmpYvJDCRFPGckfNSTYnZpzMKyCghQg97QRECTVJ7pM53o42hwA7XpMvg/hFqJM7RtpRAKqmdAhCbZ9YVS+Ou5M5SGBpNS3KxIJWJzso7GGC41ZANOk+2+RLZMxYVKvB/YcIZUQKtL3Q09NSMfjFJIStl8Z8KcT0Eeggx3lqV7PLx75ZyS/59ZANfmSayDQsmibGl4tADJXRhJsydAGWkP07zQlkAYe1hY7TLUgA0IvXec4hIaFqY0CyhwAllUsO3MR0tOUw90kEGuKjQoyjViHlMgDDTLeAE/bjiGArBQUgonZYgkucM4RYxmhdXEZBEE4ORSuQhJkEcOY2y3cFPk4IWIpQRnOB2h8qz/8AACnoEW2S+q/EiFSiOaF7CIhR/xeXw4SidkhSSLWf0ihbHCCBTcOEKeeAFaTRak05oxluZPp4zxJnfO4SmRZClMcUkYm6pUIrYuxFIxKDc8jzkAhcydcJzac0yaS8j4lhhSAAsT9xrRJzGgNvxBDMfG7MdutlRZSAoBR5i0IW0++Qk4bGRclNObGpak9EMJO2DRqHBgJgQCwaQX2ZpG4FH9n7Qz5F2j7s3VyG3mUVJGBdY2gKpngQSNgoeGtdf6du/wZ89m7dkJwTz20VfrHJo+7bmp9sNoRNl8s629YGwNl1EAl6QghX5u1kmGWmLBRTH1TXR2a9R6esJmH7J2D57ne/G57znOeEz33uc2FhYSHc4Q53CKeddlq4733vm8r85Cc/CU9+8pPDpz71qXDAAQeExzzmMeHMM88Mc3PTD3PTVW0IWyJKiMTkMHsrpT6fFtYcaP4MMV3hQwuARyI0WQMmshO73AkjTNGz+DajnrWfO5uM8ggoQXRiqes4VdtgGf8szKTdxNRPQxvGwwnHbxhtO6/K2CfTOQUUWOe0mgbDNI5ZE6hST4nZ4EwhZln9IJaXJAQqhRImPkrdCpbzdZmSacI8ZIyIzo2O2YSZ1r53nhtEtVInb7R/z7R7Ov4eiWFymJXvDJwhWSVL7ZQpWpLEjBpyeqkFFtwUCbspR4Uwe5n/lJipZBot0Wpde2TUpnBdOylvynI0V5mLpis8bGHYUlhOtQRjkKhl4rNThk6BB9WXIihZgCvAIPZLzVzExAYjLgkASgAH39eUM6I1IYz3oB2mnfvo0N8yapBJXCXUcnOUynfRaZuPRdqUcmweloB0yzAn3xdel2L2g6BCPreAEspgOZWEK3CaU9MyCZXMIYcVyBgHfSqn5fUenkMBQxoMQMsmgIPghi/GNgjMCDiaUEJOFqhQthQqvxTBmtj/qy8LaV00uz1FxyKfjbnrFsPS5tk2kzznsZL557wWcey8/7OwKdaZcgNppDcBOMmhn//GBafX4zsrmgYpxwkrYX9sHd1b7T21zZJ05q/jfqQhiVUDyPloVGsiGhPUfjBAU2BE75esU044KU713F+Ohhb7zmZb+i7q2tT3AJjn5L8FObj4taA+sQ8mzbUmwoR3ZAWUzM8smb2uc44PRKmbFnisyHTM9KHbR7iOeVdUcKh7mQi96FmzVYAIcFRDSKaxpLXbRfuMCKTmrzLnrJ719vyf+Ocw8T4Y0puKbP51dywTiEy6Lok1zWuAqvrCy+9HtGEAy0Mf+tBwq1vdKnzyk58MW7duDa997Wv52g9+8INwxBFHhKWlpfCQhzyEP59//vnh4osvDieddFKYn58PZ5xxxvQNglQ9mJeleEvBETvzqTC2xqgxQNMtNXtKYEDOW9Q8RPOAFqDEA0DC9lLeDcffpA2Hmg+1w8SGAXtS3cfRGqPANCWbadiUOtewTvmcGFy4lvribHLWITX9pkJQuNZnH9tJWhZ6nAGb6Z0krVSdu8hApElMc8yE3XDujoUDJ2HXNmEENbAC5JIJVsCsbWGkTikTTZhMviB0kJf5QmCbzBBVKmuZcV37ajcPTphct+RqybRVUI+GVNZQwQwmKDiEmMcxUCFB7XybDyDeJ6Yqcijic8kYFGHatv8/kAayBiiadmn5ZHuetEDgryHPnvpASfyU8cuerWonhKnU5ZHMw7KXpQVSmhgR3UeYSZDcHZ12NDEgm82ISU56WLDmOeJXbv6CZko67tZkiHrYStiTCaj6Lmio2tSRaM7UjnXS9X1Rn5ak4hWHfKsV0aABal7G1wB8ZM8TQAWtUwIuGr1KzcnUBA7Mh5KmRA9/ybHSIY/ZZL8DaZPWKz0fyno/IxnpZ5vQ7IoaBZr3uSsW4me6zrmhopkU1UMamGQylpmKtmGANfpYNAtsTbKYmU9SIgG38rzQNCy9J5p7RdZ2+qxRGglE09zLmUDBIWiv4WSx+jghCMoSa8bavZjeIdbmigBGAzmwT4yAEl5HIlxQh3llejlstwKOzRMG/RyMQJKasqM+gSKNdpeCPESAw35CQnMs3Ijl5q5zfMo6IKMHBcwUIu85twyClcn02pXWlHig7sK9RbIalZTPCIRfErUw+bal8phMkua4CVf/xoTzCalQNQv4A0JBWLK5EBKEMNhFPt/kXPT63ifsrbTv0qThAOTrm375y1+Gww47LHzmM58Jv/M7v8PXrrrqqnDQQQeFc889NzzgAQ8IH/nIRxjA/OxnPwuHH344l3njG98YTjnllPCLX/wibNoEWYp66MorrwwHH3xwuM3Tzgizm3O7FE/yriF9rWO+TYRktSD4mzJsukmoWVeUZLXMHBdHpk+ZSyNhDl7cenzZNSeK/GY1MV50Dm9zyPpR2nv7NBd4r/ebvV6qy3weBybK2pFO3cr8GzDq9tlqglxQpRWZYAlaL5tjRKYl5mSIuRzUH4Q3a9SsuANs/6KpVyZFU1MzuKZaBQTSnbWMYAP9oky0rZYpbu9Nn9WBWDQ+BAK0b2RGoKFeNdSvnXuMiOa9l66WCZ6DJkFToKi22TjOVnNCoElN9+Jhnuo29ugIBDS7eXIaVjv/5JOAC6VlzhPAUX8WXH/CnHKuluTD4aw9HK/3Ymr7cD/62qRuof+FZSDAt6YL7uG7BtZQLYoChswUFb8IsEhaji4l0INAxjrjM6NvrmlUMgRMqH3R9jHSWDIbg3DJ+LtoURggMkhpo6TxOlNTMgEz2XwlJj/WqyBDgaqCXyqjZl8q+Y4ahRYAaHll8Jc3k2+NAICm3Uco8SOFYEaiBKVLW2dTfqCUxFEd8K0WH6J7BdUuSuZzXffaNvvbEFiD9cNhtiWoRNIQETiTqHgJqBtg2xFIJM1cvuY8wWGR2U97oz5vWDIOWBkLIrJ9h+vN94pR4KenjXxs3rU25HPxzAKwEkNrt3sjmw/KPeoPSUQCUTqXsM6xQry84azr3dtspEmHFhd2hG//zfPDFVdcwfzgeiHlIx9w2OPC3Mw43rOPFpcXwid+8X/W3Tj3NG0IDcv1r3/9cOtb3zq8/e1vD3e+853D5s2bw5ve9KZwwxveMNzlLnfhMhdccEE45phjElghOv7449lE7Jvf/GY49thj3bp37tzJ/3ChESXbV9h4OGSuMhP6skFYyIyQcfC0AeAzwAwQAI2UCdZEbdLDIWkL1NxlJs/XoRlkkblDjUIjuVfUrEoz16aIYnQNHD0TGcbdaqFc3shKdJDJxN+0OM6bkaIYfrJ7XSXLwMAVgQ189zbaPg2MRu5xAUwRPAEjimZWDAjaRIJqs66x71ViyhHR2DFcbIfRRMsxi0q+TEm9D3Ol/ZR8LRgyGrUrGYBRe3o43LLobvBZ+6I2+xr6OplwaBZ41fhIWX4dxAQy+lo5oFKlx5LjgYBE8sPC548LwwGGLLkVwJGkxLsEuMCaiMnOJERrAWQgCORfmUfI34QIbNqXt0GTMFgfyUSMfS+gDmLitE3aM1iD4AAFCxBk0Mx4gS9UvN6CNHWOTnOtDLcyWWrSB2Zj7KwPSpB8wDqPYkLGkyk5X5ShTy8QMahmAyWDeAQywODHLvIktFnniUS6n7RKmmFT74NEiFEDI6BIzcQQKKFpWYpkKAmoWMMA4IXuIY0sPbzFSZjMSlhe0UxpLhddE+lZ8P2U62UxD2ogQEdukitLLWhhZ/UQZuaizxTXq3uegBt+d66jQAAzMVmjPMs2ue9yAs+qQSPQgtpB/S3NuQCKBGI4EWYEGmrexfWwHxgA3IZ8fsz+ykAralkmEsa4oXIcwrsV6MhiTc8umlt2NY8lyi0JzA06b0NgpQQGxlBJYFD4raM5wD2mRIX+Re12BMGq0UrHkQMw1Ow17fEQnl799mh/VN9Ea6qX9afv2VjZhjeeJs9lFfe+7pjHrIG9StWHZf8DLLQhf+ITnwgnnHBCOPDAA8PMzAyDlY9+9KPh0EMP5TKXXHJJBlaI9Dv9ViLycXnZy17W/QE22AROgBmy0gU0OeqAF2S6LcBxNq3EXAKTlUXoWu6+0LjRRbtoACV2MzHSV8rM3cfAJ77CzpEnIepeyuvS+XNAi73fVo+AB8FIVpfdDHFjK4pyHCBWADKpbwbcdLUtxqHahnjWoAeSx0PNqDqRrCBRIJlJUWdSpmGRaKZIXJBADoExT4sCBuy/CuAaWAMKdmSOtQ5u2YSL7vhIKfAAMM6RwjSJpfyG/7TeZKevmgjRbmg/VfuYcjvIs1aAkRLkeAShv3VO0zWYKwphnCTV3LYkdCS/IvDVSIIDkUKrSU5H06lC6qXcrwXBawfsKqMnTsKdCFjG9q+Te4W+gq9R53cIVpFJqJl/RwatDbOt/icKxtqFA/ViF9FuXctqxaoZw4Ncw+JiUAGZTHTkj/MEwEVesAwsIYjpmJJhqEO6Ti9Om0umHQskvkwaQUWwWgbsKUMXwDCIWDQaGE1umOUMiX435OWRfud+d6Of8a8I7MhHxgJjjmAWGX8GKOxHI0wvARnOgzPhiHbIdMd9ZhJmKETzJtXMxL+qwWBcxiGN47NiLQnNy66lrh8VCo00zLAEWojJJgXEQVS8LOlkH6OvwMU7awvl3e8WrOA89vl/FH6zZ0AGPryw5H0alhJQseflAIhSU04Czxpuun03W0DSas7ErFAtPjihrZrMinaZ/ZJyYVam5S2R2TK0D51jW7+ITCGxLFhIl0117divaK8Cluc+97nhFa94RW+ZCy+8kLUrJ598MoOUf/u3f2Mflr/9278ND3vYw8IXv/jFcOSRR664D8973vPCs571rEzDcpOb3KSjPVAqvY8qGW+lT1I+SSXj9yxRojoQ4ktv20N1PIIHlX6rdFfKp6qWjUMaah5wY8EM9iUG3XPk1nJoguZJtYyWIzE9UE+mIcExOv1xeSQzriHg0ckuD+NK2oGeMVlS3wc1+0FQmQ4mPRAgnDOHNybTDXH0TlJuWA8JIKP5l86bSEjJpl5yfKXwuxEMmTWpzJLOvx5o6nOi0YhEW5e0JXKQoa9IlHq2gCKasLXzwYecRJThMgJI0iFI2jwJIDAHzrHMCHH0O5D0KcCBMNyu9sU8T61Pn7dqZTQxJ42XfFK0brbbByFA9CNSzVdrL89OxPRvNuZgSWtA2k1aEuaJ1Y4fQrBieFXRrsU+KPABJpUdyvXZRMl5Al09YV6j5kAYYGPqFdekgC3Seuhk6fxw8kjVYrTS/jZviLSlc89rttVIdJlIkIYnIABvsowJx52ASpqHNrll64tiWskCAkhb6N+T3n0TlQz7pUAmc/x3TM0gcWH8C9qX4GhgeMom3eSVSy3oiIBEGHKYz1Q2Tlb2fWI0NhMOSAD1gakaZ44Xnyd+zssUJEL7CXM8Pxu1l9ftir8z6FgOs9eR9n42zOxYitoWHaows0kbBqZIOv+uJhAozYGsvTI4gA1SghzEMXbL9zLzfYy1QxnAQA3cwNmQCNZMEoBCEJLUX6//hb4OamIyMNKaf6LwU/dEPJOSxljOD9ZgUxAY8Ufk7w1YgOj5kE0Y7MutfAU6L3ulGWI2lRBpccMS7zNrMIIVBo3Y12ivApZnP/vZ4bGPfWxvmaOPPpod7T/84Q+Hyy+/PNnvvf71r2f/lbe97W0MfMjZ/gtf+EJ2789//nP+S7+ViMzL6J+lhOqFWumiKSQgRBk4vZ5tYmpSEHwAoUydbhQpVGAKPdqVZHD9acORn2DT4PPBk3ro+6NMq0R5Uoa2BD6sXTvWV9yw7W/aFwNy7O2ZtsppLyNMpgaO+hYEtX2H3dPpO9ej5jQY6hfnDMBiNOVqD2k2L4KxZ8ynmlQBoOFoO5xMDhhLUctboIh+THmfOWaOMOPtIai+Eonxp7LgT8ICZ+O6kRzmYRL1/sXtEWhwGeIFt+UHlq7dlL1b16T4aLGAfQE0KeCLkzO1AnBY8+MsFCMU0GvMzECfOZKNRjVCJ1rJ5q1Rx9gEzfoVQb0MTghUbsVJb00kUFMTD/hJx+QyaY7AQZkfMQUVID8d8T+IYEaZen0o0hVlvtEWXp214ZqwiJl5p5VOavsdDYysv7Tm4YRofXLauWx/1H5KfeiSoiGR+afoHJ8FH1ENAJoiQWS6GGlKNrVkBtfmf0ltZIMQsCIapZStHoGJp7WxPjEatpgLAohI68WAmVDQwKTJmOn4wGTmg9Yxu+gfASBFyxmNDIM+FqYtZkFE4n4R531mJ0kWAGxSIswFCgog3Wkk340An7lr6QWeCWEngmSNM+dQSQOS+Ya02jyvTOd6OtuanvmxF8ple/s6GVdfryYEnml3z8Lv41FUL1gBIVcrYGq1ylgW98x4Qb7K+Td/dRTWkD8LBymZFU0/xZ7YDnscLTXZ34p8EgIXZ6jZbcjz9NCUuHOPE5k50r+1qKfSXgYs5EhP/4bo2mspxintk/mOQt+XRapz3HHHhdNPPz1ceumlrIkhIkBDAOe2t73tivrXeYH0L2hG1NSFD1QH5SQNCqhPcV/S+1XagNJJTB6WtBkaRYYZmLZ8svWEMI8ZOLHj0K/CHCamCjQDaJJW2mS6E9Vuki6Qkf50JCp2s8VbcL7gB53uJMVPpjytujsm6mvb5chKYMefASKV+sjzSGAQtBHq78H7PGhLllQKpeFBU0hmsWOnewUXMxMtz0rBSvwe70+ASLuVojXZOYaD0DCxCYzpuhJNDGlCtE5rmhUBFKxx0QxqZM/5q6OzpQYCoNDDOH8ohUzaEHjQmSbPSt8KjHBmR64AMNlW+47yaRlBe2i+YAMuWA2Izo8111Lth84ZA0sYRiZc0LmnspLbRTUfqQ0GGvL+oUBiptV+8NpFv5MYRbfdV5RZYe2CaEeSYEB+U6Chmh00V3REm0kDaQQtyshkjJ36QKSQzWBipn2DhxS1IC2oabI2pTxF3lJHX12H0FkENnJB3nt8rq2kPgIm1axAe5o8096n46QUjpnpGpjpacQwbQTLeKQMB4dhdgCM0lKXmc/+SluTPiZXAJH6znB5YP75E3U7Cw0vz26BHCEJdUfTsUyToNdMu572JL23ls/qCO4i4Em/ZSDAvN/mvlTOaFdcEJCduQgQC/029/RRar8ETAp1jTEzWw1HngA/v4MxFHY6NOUfJYBsQY22nZvckQCGIrCpbyydISqYSnscmP5yhFLRsnM/YD+MZ7DJLVaaJ2/sVsC48umptAFpQ/iwEBghXxXKq/LiF7+YTcLe8pa3hIsuuohDGRM98IEPZGBy4oknhrPOOov9Vl74wheyKZmnQRkifIHt9cSMgjNxkjSAnT+ROicnyb1lFFLFclmZIXRy1fKazTh0k0RyJnSsq+STIcxbMmGTelj6r8wq1akScyqgmptWCD1ImZS6Z8jpGtZtAZYds4ISNEm3QEzqYcsTMfNJJl9J4gMaCYgKlfwzMLiCPJMEDEFTQhnP2SyCTJ2QmdRQpOwHAT4U9LwoGZskmovjau36Mod6PHiAUS+ZWFgJV9I8yWUKGZyE4JLpPUnbNCM9Hi4gpWMTM10fcyHsEtMAvkdMyIg4Q7bMhc6jnZecQc7fCwyfGRGpaot8I2itl/M8QJt8ILMpV/veZsyNCYSQL0gEVybpI0opkXFj+37zvsWFlkU6S5Q5JmsZR/KfnqUAkhTyVJI+ioN31ChIeF9lnmhNw3hw7Nk1bA+1I5jTRtbpDGV374y7+2wS4ALwouNg4n1U/CHk5tiHSVieSDvY9wSu1IRS+90CGQQxrb+JA0jE/Clds3Ou7yXe4/jd5A8INS+2TUd8XzKTcgFUUw6Nyx2H69lazcFPBCt5/hxuJlv3S2WthOdTZbtvr1lzLas5cc250F5IgWzPmAeAiudUP9hvWHPWzNktB8+oY5lQOvdD2cwsmXAPgRa51/M1xbOD/uMq1YcPzNFzF0DZl0SwRmGLqSxFS1QVLtW764DYNxJcUaJINW3lwA4g8FEQoznlkjDEHcvAPM2MLLdeyGptV1NPpY0BWG5wgxuwg/0LXvCCcL/73S/s2rUr3O52twsf/OAHwx3veEcuMzs7y2ZjFBWMAM727dsZ4Jx66qkrajPFjzebVSatdTazlNAQX6Qlp359mTW8rFKJWVUGGvqnjGTyJcXNTSRoKmHJfBJESpL1U35jcxWPObOXejYM5V2A702VoBTb22uSM7hXwAKxrHK4JM562aYpm2m0x1Wb7ZbhjUAEcwq0DG+ab9OmakI40g0CTWROob4kgZJkcMrwsjQrSb7FyR41RzDfzPgn3bqziaHmxTiVZ9PJUbHiR436wkM2WrWk6TGHZ+rbpJt7paNF0fVuwEp8l+RwZNPIGNtfQZy2TXlo+HmJKVo7NrlXwSC+sxJCmPsK+QFazRUMEt9fe5Amcxgz5TR/6tBqAixg9dk93Jm8oNV4MChRyb/zhnB0MOl3R8sECQjTM6DfAeS4fQ39QCk5VKsWA7UZwJC1+iZgSkTQkv3WA2ziIMW3RvKSoDN2C4yS1KENlGAjnen+yZOlmicxP+I5gjFbbQuCN9QcKbGLjQMs7GfP7Cz91oxnTIacy/vMidBnxmPMsX5Pu+N8L4KSnjpczYbtkwEp/JvXtykIzed6tTa9dcAXzxQMz17HX8VzsM/Ic5h3AIjHc8Qy7QU00GvsHs4XvZ2l2wYJ4tA0k81fIciL+rvsPLjlHZKpM90z3wKULLAP8BxF6afHX3ifNwJgWQs9UAUsGwewEN31rncNH/vYx3rLHHXUUeGcc85Zk/Zs1J94sfDZK2PXqCe59RgkYa7TBocJ+7QePA+UiTcmRKiu5fMa/GQSIwpqWwRDnnbGjjfT9DjTkBhU3JecTSaLrITMDwQi4uuas0M+Y58RGGUABcbAwE6fKYAHngNMkqhzLXNITDTa0c9QRC81+VJgkkmkzRgTo6ehPKU+vcY5D6JpWBsyFhyxQdLWOpy7jyTNISfzwznFZ2UZAxLKk0RMzf2xrIBg9K9S0rLWfE3rxAeTOZJbfxc1s1LwkoBZ9AfiJHbqx2KAkNXMxOcl6xtN0DSxqjthUFe61oKooTLZPGtXjFQU3wU229LP6suhjieJqe0/hW1bfBc4xPP8AlCJcyNRoxCQGo2Kq7Wz+0AJmNkud/aLnjEtm7/GXMRN4prWlzK82h15dtIB1kDpFRMhmb+rJiU9EwHHyV9IOwHBCdIN8L0gMU5+I9l9QH3fPS21o3XrUJ8mogeEFOvscYL3neJ7+oMApQ+c9Pav20RfeQaoEuSBgakGnXDvd9rpWbvpTJW9Jt2j6we3WzH1TKamOKYepjbzEOqEPc770UvapaWynwvyGXTOLUleHe6+REskYEKfN121zP59CwfMhF3bY7hjBTRUbtulsodvh+AvGFnMlxm5fU6f7RjXAAtU2ji0YQDLHidlhgzQGIvq0YQHCc1t3DbpZ5JU9FWuuVuEGdHoHerTonlcMmCEpjJlYWcCFr3hIr15MAJX3ljzLuegSIuVBgqC1MSge4wxqLMzHwmnHDK4pLZO5lKSNZ5NhwAUxbkkp2iph8M7ymf00UANl+kzOs+rszfLm8VMZkYmKgOpqknRe8EUDcfTmUd7cBoNS+xamdHWvqeP1rREDzkBdHxQS06Vjr8HMFZqgsgmWxIiM3seMocc4UxM1Ra3Ul4KAVO2iyjM1jmS63OLED2t6UbR8whNt7w2snGnZ9zzhnbWH2g4sArNzp40imKiOOnpiwOc/J6AL0ti0MV0S8k4xhf7PyX1gpOxGgNrRiZhlpkguIlSq/ERhjj9B3lEkgkMRLEyIFHBPmtg+IPZ7EogIjPJBYFBaSfvk5j2+NdO/Wj65rnItI8AMaW6SwBmDDjp6VOvc3rfq2jLGo1apyzulen9aQp7pawZew/WmbXddMCL1uvtN20d+drO+Ao8c9L+AnuHAnfvoIdzKj5L8nXK93Lar1GbohoTAjGLW2LUQt53dzTsjK9jYR9H0pZfS3sxAZq4r6eku1K/pl1IcR9w/D08UvH7eiP2+1oDh/nqdM9UAUuJjEQ5XRugTPPglE+bk/dSGiAz6ZE0cIQjfMm9/mkUK2B21SSqw/zbKryNYYx0owcMpetWamIKJxMP3FCxD5aBM2Gki1oi2Ozb6F6tDw+V49C1oFVQH6VM06DMvPRFzQSz37jdNpdI8vGgvpCjPanLxWSPGHWOaJUirrRZ1YkSYDLzk82BWW+TVaxbvE/Hzg6XOD6SsiUzGwCkoAlKB5wwy/PXtknfUv2amA7MeWK4YwfdBkcSyICoiaAVeW4MPjFy7JkpRQk02HfUfQfMfQiYlVDj5ACmTv2pjjz7uxegAKNBuTQzEqx0tBrA6FvK5sRKL8qMY9YnQ1lUK8wJY0xouYyYj3WTY9KeN8v+MKmbCupl7WXPBQJiZP4wep+GqNd1wMKNtm+ZNkjmKgv5a8m7jJHNVgsM+2hMDhPuSLmdbmSv/J6i4GtE3/09qbTJTUkmAh9X50Uqg3Ov65fS83wcMJOd0xg90vglZbVmYfoHDldtE/to7a9RI4ljg/QJGX8i0RZZQCd7OQnxNAcYC5nYdwxCI8u95PsSg9E0Yf7qSdh62RLv61cfMReWtrRCV97vxe+RTdVFYJg0+H37+Cpfgd1O1SRsTakClgKhajNdyyR63Wtjyap0M6YEgIzduIYrNuXVfwJ+y3wNCjjErW+wsBTpBm7qAC8EFyVNlAV+uIlmuWsQUIDJVOY0n0mY23rx2aLvRroGoEVNtFTrkh0QwuSoyVkGdJiZarMIc7mFJub8kDwCyU9G7xMwFR2qu/NC7SSm3+lvhxzpXWbiBcy4DWKgc6T5RjRKmtdGxyxCGRa6PkOmAa3UOn8uOfIugWlulw9FATimHuyvHfeQyURXK+eAFWd9DJVD869sjIYJ8e+dzjzI9T3xCDUUJZ6L5wofpHFSd+9xmL1UXX7PkBN0MhlK++ykbCIG0ROxTtJupEhlAmhiGHF66XSBU4b1doycX0Tajft/YdNLWptWKxZ9fShgQHdt0IsTzSfR3tXOr3knDRh1nfytEzzSCgCNC4IKmgUu32cuNnXbYwpZcbztm/naF8HMea88zUvc0ya+8MLrohF2tF3L+52ZjyFvgdHG/CY6ZqexcH6OxIIQ/ZCVOk2ueWk7lwd7cepX38Il7B9EWOQ8W3x2ifnpUhO2/mIphfrftX2GNecUxp0ij82a0PSbro6a8ZjTa8ICLqqPfWfUbwbyxajmp9L+QxWwFOjAny6HmW3L/LJwHgYK5Se2m/Qykb0mqUE5++smMNESiiZArcNvURqbSUPKD6p0b7eykeAG+6rfreTQqS/TfniAxm6ytgwCMgsALfOpvieGmYvOzlIGPquNbXSEz02qcBwotUm+Iqm+NicG+5WoY71hABXEpGHqZgrRxvhYIOmr9EcH0M5dK81lXxlKyiUaBKzb0uBS8LQAVpJc4sPAjAwPMJKMsWZqfsLvBB86ktwxM8XzpPLBtJ+AysgB4TpJ5oE+Y5GNGcbkCRu0X/71gXfOAg1ovwNSvN+KfjL9IKVTBu7tHY/tfh9Y0To93we8b6iOHkrSbBwjOkZrHzr9VgmxaDRm87+2HH4nZpTWDWVwTwkK2TdN75VM7JqR3Y5ZAlpotvi2bvBP0FDSauciZn9c53Jk1HRvUJCTgnBIHh7+lQKEyPXUDpi3tR3Dv3aynGc06mzoFuo1EU6FmlVoakbU77XTA5LztuFjoZ+d9ZjdrodPty271jww0QExENUrryv3f+lMCwqq3PfDmpdJZDBYynHOJFhFO8C2fejjEG8S12dskM4FIsrZQuWXwiTs2oo2YNKGrGs6V+evXc4jllKO04VJmLt2ic/znYdIaPGlCHCYn0pa+xAmV65wA9pD1FBy1smezcNy5plnhve9733h29/+NkfUvcc97sEJ2ikBO9Fll10WXvKSl4SPf/zj4Sc/+QmnFjnhhBPCaaedFg4++OBUD/1GQaw+9alPhQMOOICDWFHdc3N7DzZUwFKg5Ags9vgzuyjMZrTBpxeUpQHsx0AvnDC59JJunmGJAr1YapNPUgCSqCdphCZ8nG1Dy6ptZ2aKBJuFy2AUDiJU72a/63d7+PS983pfl/dK14vvowEwE8u4AaPb0YiYehMIKIVrDlgXMIMWiOHQwPkw6zP7ZojfwZLPfGufdFNPMefR1AciYOl9vMmqBDeth1bzwmBlLoanRWkXjmvQGbSZTguWzYl2X9aofseEmATU6e+szFEWQQ0PRwUw0wKUkeMZC+I97YkLugugotiWXU9DJl9Qp2sWGVYAUEw/+/s7MJ4O82fWW6dtK86Gd15Cb1vNQCdSFIQ9zvye4F7vb6cu890z7+HvGgpec8Go072UpXDjKrCIWpb4HrKpqGYFl4SMdnwajUrvTdfnZtgkbXmO/LJExg3vGe8hqmlWwCPfNRdNeh4UJQ7naYy5TA8YGAVEVkJTalusgGHtoycNV2q1gC4tOQClAGZcrYx2pdBvBBcueUF6HLlCRvQuZmVlD7IgRcJeZ+ZkIkBLAkaz31sTXfZd2SlnmfA+HAxlUzQPi2dqDFxD71QWSCZZhMR7iX8ix/5snzZgcHFhDfxD9jGTsE9/+tOczuO3f/u3w+LiYnj+85/PaT++9a1vcfTcn/3sZ/zvVa96FacC+fGPfxye9KQn8bV/+qd/4jqWlpY4ZQglXT///PPDxRdfHE466aQwPz8fzjjjjLC3aNJksRkrXXnllYwy7/qI/xXm5rekQ9jm5cgYD3Md7fgzla+oTukQJGkER9agfByLMWO2tkXSbJZeE6BJ9sxaPyaqivlXJh7DDdGqmPmUz+2Dl6JGWprMtNC0CUycONO5JGOka5xEykaRMqAihfydDWHzr5eTBJOHQIyAMa3SjRAljvG6MipSNUhbMPxiJpWEBIkdMs+w/ewwlXoLbtA2U7FdD0ar4d5rJbV6IHgHz4D00NZXGu8giZnJKECAa71ZhWbQq9qu1z7t3hjGHZeSAyLc/k4LiozpV/bboPnYChziS4zP2Hkv+aSMvX3o1gEToyFn7g4gcOrIO+S1YfJROGNIQB1zNSHoANMy9YfJfGbkr/W76WirVwI0h8gzL+PKjOnZGA2IV2aa+1dJKzGxXhMa0/fScyzJjcYGKiiV7dvKJ9OPoRs0QPuUn6veedIRnkp71rw9FjZnKfgzoZ8LvnOpvNyfCzD9c5Ro1+KO8MUPvDBcccUVnCR8vfGR99v6R2FuojkkVk6LzUL45HXvXtE4f/GLX3AydQIy9773vd0y733ve8OjH/3ocM0117AG5SMf+Uh46EMfyiDm8MMP5zJvfOMbwymnnML1bdq0+jGthKqGpUAEGmYdRqFo1pXC5M50GM/MZwOYVg0PGD+Lo7VIG9QER8GPJh+ka3PXxQMzanIkOzqoWzFbOftKQNsa5YOdvCkDt0j1orlPl7m3eSJwHjKQIr8lLQCBMpHKc92kbZq06mK6yICHky7q5tRN5tfmX9A2OF5QvCYJAREgoqkQAhFbx2CZkCcCG2O2p2ONtsIjCmNf1ESgoLHyDyjzXSK92N88jUzRRMrto5QzwGQ0079ChgTrUWEff4Y+FNvs+HfY3wfutzSU/GuK/hT3ENQyINOuPj58s9YBTKnTfsmOvkOeOUsPdbS/KyEAFa55DkixUepdkoAPOadnbYbdBBpsHWshVR1J6kfTNl4QuXc0TnIZGUdjqmT9IXY3rcXcr4gkn09/mcIcFACMG4K6ZHI2wnfGacKUb+vwxlKcWydMPj933GjRbwU1MLYt94wRa4WCP/AQ2X6jUJEDAqxnYiuMNeijjPfKK6/MLlNS9KHE6ARyiK53vev1liEgpOZeF1xwQTjmmGMSWCE6/vjj2UTsm9/8Zjj22GPD3qAKWArE5l9moXUlFLn0oZUoyPel0kvcjJakKzMfc2Xk2pvJdaSJiXVEhzTJfB3MQQTJDPkF1xCyBJJFAlgyj9H+t856+Vxkc8JgCdTD4vA/SZoUZ6zSv2y8OkWwMeWAyVwrUY9/gntdCTOFA2Bq/TVaVbmdj7Zi05XBw9AwoGZd9Zok6RyVnNVtn0YweL1zW/htzL48OA0l7ck0DOa0/VstGHHvKRfK9ovOOnFiMEtG+LxLEzfEb1Yuk7qP6LNdp0Vb/3F1uXUM9anA7K2aitLxyVSM615jqMPu65Md79D3tWq3l3an4UcJBIzKZTJCIwmAPK+/O6YESKYBMtJGX5S4jglab3+7fE7n2WqwCIcH4D8ITpCc4DDFOV4BHk4BcNYr8dyuRVjjOM6b3OQm2WXyRXnpS19avG15eTk84xnPCPe85z3D7W9/e7fML3/5S/ZfeeITn5iuXXLJJRlYIdLv9NveogpYCkQ+DJiAD+1AO7ag6T/jH5A2FNCerMFhm/k2CLM1w7k92kyKahvNt2viPlC1zlKuCg8QpAFOx4DGTW6KzWOg7KoOw6F7jfahowGT5H7Jzt2aSjgHReewU2a0q/Do2OHmfe+GCi764ZSYMG/IAPSyttxyI2k3nBVD78dU/RsCIit9/4xkepq13Qs8s3IDfS+cgX0J8aZ7Pwck6itlKB1g3ml3d9JqwfrIOjYCrTXgWIt0E6uhUf44a+H4P7SGU7m+fsifgbWUaVc7VZgQ3yvpBxZzQjH3VZT1rPQ6O5VNCvPWO/+lbW29A5Y1pp/+9KeZSdiQdoV8Wb7xjW+Ez372s+7vpLEhXxXyZekDPuuFKmApUMcPxTg8l15Wo3Rf+ZPRpHKOhAL7k8rp5yk34T6p0tBvq2Yax9QxdIjYMXtzZq81ZWkSSr2Thgo0OtHG3ZfCdswyxClfm3S1PMbG3PrteM9gLNO7WxiVlYCAEQf3bqO1wiwrZGJXoqnycqp0aIhRcc0Kx002tzlYdHc/uD1L02r1divjvo8Aot3u77JKgNIpagQSu/U52bNipe/i0trl51kTM0bzTCZu3/DABaHeEP7zzty1EkrtJmqYV1h9H9XV/KCDDhrtw/LUpz41fPjDHw6f+cxnwo1vfOPO71dddVV40IMeFA488MDw/ve/nx3qlcjZ/gtf+EJW/uc//3n6bW9RBSwFmt25FGYk2ZeNcuNFrlmzhF4Dm7CNlJPvfP2bW8n+fNLjcLnWbEnpUOhVx3saDmX0LXigz94mZq+pFqOkOgcgaKtnbRvW54JG+a4J47BMhzwkY9pEMwNP27IepKzrgdHy1jE6Dbs26J6KAwEunKhax8ix9pq4dU5z7/7+N3DFgGYlWhpsb3fgFVzju6NeuxawCAqdmhFrYa1pPbw7Q7SGPiwrjk62ln0ovJulwAz426Dp6lQdyYWh3d9H1jMk5NgTZExUpwVFHl/V+rOZupomLK93HxYOR7xnM903TROe9rSnMQg577zzws1vfnNXs0I+KaSh+dCHPhS2bNmS/X7ccceF008/PVx66aXssE907rnnMlgibczeogpYSkRhdCnefuGFs3/bAhodpsDY9G249JNmRDfZm/UF1vwByblcPmtIzc5+gBFstBmpDyPh2Chf0zLGGYjqM2FSoACReJJGw0b3Ag1H5ggq31XzwYkUrVmXB46A4WzzH7RZ5eM8SlncCC2TY8IVtyZ6FEXAqM3T1+FJXNNDcDfR7jy4B6OAjbjXTZ6G10BTim11/rroQQfdrsc1fWYjAEynS0V7/BE3T8s08nu2Ngyj27/dpbRx6x1hGjQAZIvBE2Z3T9jd3Up7wKF+XUQDW2U/sPxUgUtGEO5fK6NmXT3jlcyzx1f1gRyPR9vf6eSTTw7vfOc7wwc/+EHWnqjPCUUto7wsBFYozPG1114b3vGOd/B3deannCyzs7P8OwGTE088MZx11llcxwtf+EKue8gMbXdSBSwlYoa+aOtVNN+wdqDNzHRcAScxU6bXhjbFbM420ZpeL5RxQ4UiTw7f1fFXr7lZlrEeIAVU/JvRKHB8L6izjT7V1WBRBkWtG6eefp9hkNH+ZSCH9xYiH00aiuneoqg8T0oOQnROOipsh9wkhiug0YdeNiFd4Lc7yY3YsgbkHf5jwUDJPM819zOfh/4OUcfMbwis7yHygMWqJa9rmLMjBQ2YhtaSN5mMmJdeH56xTNjeBiK7uf51LmBJtJu1DmsGwGxCyd1JVqg6pDm2ZaegsWMaPY82ZPd+YhI2ht7whjfw3/vc5z7Z9bPPPjs89rGPDV/5ylfC5z//eb52y1veMitz0UUXhZvd7GYMWsicjKKCkbaF8rdQ4shTTz017E2qgKVAmNDPkpeUjO/JIjyt0I4UmV+N8R+cv5Z5UKBSAi7wfYhx0fF5dvQIUtx5MG3YOhLA6DGrm3YeB8sLszjtMxks7zGl6WanjKfB8uoZ3cF4bwr0MBa8lBjroXt3Iygaa5rR6UOPFeQoMNGn1fCeZ9aAcz1pdXrq3QM0ZLa6IWk3JTlcEXjaV2gABA6uG2/q1ttSG2vGWTI99n7bF7RPer6pUFXnqffcW2Xn1nJsxKOsF1XdOjMJ6yMCMmMA0FFHHRXOOeecsJ6oAhZD+iAXl3dG86wC05+c3ezvYQBQlL57ZZd7ymUBAUb2RceDdfb1o9SnmZ52K1WqtEdonwEilSrtTkomwVOU9b5PyxuPPVv77g/OubsW7Xj3lMY35pwf24eh7cqrB3kP7YdcYz5tSg3EnqTFQMni1qieShWweJETiC747Mvr8qhUqVKlSpUqVVrnfBv5aKwXokzwFE3rs5esnYbiiCOO2GsZ5tcLTZr1Ck33ElGinZ/97GfsrFSKF75RiBypKNGQjd1dqc7reqW6Zuu8biSq67XO60aifW29EvtKYOVGN7pRmJnSX3h3044dO8LCwsKa1bdp06ZONK/9japJmCFa9F7M6o1M08TurlTndT1QXbN1XjcS1fVa53Uj0b60XteTZgWJwMX+DjDWmtYXJK1UqVKlSpUqVapUqVIloApYKlWqVKlSpUqVKlWqtG6pApZ9mCjBz0te8pK9muhnX6Q6r3VuNxrVNVvndSNRXa91XitVslSd7itVqlSpUqVKlSpVqrRuqWpYKlWqVKlSpUqVKlWqtG6pApZKlSpVqlSpUqVKlSqtW6qApVKlSpUqVapUqVKlSuuWKmCpVKlSpUqVKlWqVKnSuqUKWPYROv3008M97nGPsG3btnDIIYe4ZSaTSeffu971rqzMeeedF+585ztzlJZb3vKW4a1vfWvYn2nMvP7kJz8JD3nIQ7jMDW94w/Cc5zwnLC4uZmXqvPbTzW52s87afPnLX56V+frXvx5+53d+h5NxUbbms846a9XPd3+g173udTy/NG93v/vdwxe+8IW93aUNRS996Us7a/M2t7lNltH65JNPDte//vXDAQccEB7xiEeEn//853u1z+uRPvOZz4SHPexhnJWc5vADH/hAJ2v5i1/84nDkkUeGrVu3hgc84AHhe9/7XlbmsssuC3/6p3/KSQ9pP37c4x4Xrr766rA/09C8Pvaxj+2s3wc96EFZmTqvlTYCVcCyj9DCwkJ45CMfGZ785Cf3ljv77LPDxRdfnP6dcMIJ6beLLrqIGe/73ve+4atf/Wp4xjOeER7/+MeHj33sY2F/paF5XVpa4jmjcueff35429vexiCPDl6lOq/j6NRTT83W5tOe9rT025VXXhke+MAHhqOOOip8+ctfDq985SuZkXzzm9+86me8L9O73/3u8KxnPYvDm3/lK18Jd7zjHcPxxx8fLr300r3dtQ1Ft7vd7bK1+dnPfjb99sxnPjP8y7/8S3jve98bPv3pT4ef/exn4Q//8A/3an/XI11zzTW8/ghAe0QCiL/+678Ob3zjG8PnP//5sH37dl6rBAiVCKx885vfDOeee2748Ic/zMz6E5/4xLA/09C8EhFAwfX7j//4j9nvdV4rbQhqKu1TdPbZZzcHH3yw+xs97ve///3Fe//yL/+yud3tbpdd+6M/+qPm+OOPb/Z3Ks3rOeec08zMzDSXXHJJuvaGN7yhOeigg5qdO3fy9zqvw3TUUUc1r3nNa4q/v/71r28OPfTQNKdEp5xySnPrW9966me5P9Hd7na35uSTT07fl5aWmhvd6EbNmWeeuVf7tZHoJS95SXPHO97R/e3Xv/51Mz8/37z3ve9N1y688ELeay+44II92MuNRfYsWl5ebo444ojmla98ZTa3mzdvbv7xH/+Rv3/rW9/i+774xS+mMh/5yEeayWTS/Nd//dceHsH6JO+Mf8xjHtM8/OEPL95T57XSRqGqYdnPiEwXbnCDG4S73e1u4e/+7u9YDa90wQUXsBoeiSRcdL2STzQ3xxxzTDj88MOzOSONAEkC67yOJzIBI7OaY489ljUoaFZH83zve987bNq0KZvn73znO+Hyyy+vy9Mh0vqRNgrf6ZmZGf5e3+npiEyTyOTm6KOPZmk0mYES0fzu2rUrm2MyF7vpTW9a53gKIi30JZdcks3jwQcfzCaMulbpL5mB3fWud01lqDytadLIVCoTmSSTufKtb31rthb41a9+lX6r81ppo9Dc3u5ApT1rcnO/+92PfS0+/vGPh6c85Sls//vnf/7n/DsdGMh4E9F3Yr6vu+46tiuulFNpzvS3Oq/jiNYg+U5d73rXY9O65z3veWy68OpXvzrN4c1vfvPiPB966KF1aRr65S9/ySaL3vr89re/XedrJBHTTGaexOzRmnzZy17GvlTf+MY3eO0RiLb+bTTH+v5XGiadK2+t4j5KTDfS3Nwc7xl1rkOvORiZKNL++YMf/CA8//nPDw9+8IMZqMzOztZ5rbRhqAKWdUzPfe5zwyte8YreMhdeeGHmANpHL3rRi9JnkmKT7StJshWw7C+01vNaafXzTH4WSne4wx2YCfyzP/uzcOaZZ3IAiEqV9hYRc4drkwAM+VK95z3vqUKcSuueHvWoR6XPZA1Aa/gWt7gFa13uf//779W+Vao0DVXAso7p2c9+Nkf46CMyUVgp0cF72mmnhZ07dzJTeMQRR3Si29B3isiyL2lX1nJeac5s1CWdQ/pN/+4P87qW80xrk0zCfvSjH7FkuzSHOM+VciLTT5KgevNW52zlRNqU3/zN3wzf//73w+/93u+x6d2vf/3rTMtS53g60vVI80ZRwnAe73SnO6UyNlgE7REU4aqu5/FEey7tDbR+CbDUea20UagClnVMhx12GP/bXUSRwMiURiXYxx13XDjnnHOyMhSNha7vS7SW80pzQ6GP6SBVcwWaMwIjt73tbfereV3Leaa1SbbpOqc0Vy94wQvYX2B+fj7NIYGZag7mE2mp7nKXu4T/+3//b4oGuLy8zN+f+tSnrvCpViIzWjKtOfHEE3l+aT3SnFI4YyLyqyIfl339/V5LInMlYpxpHhWgkCky+aZohEaaTwKG5DdE8070yU9+ktc0CTgqjaP/9//+H/uwKDCs81ppw9De9vqvtDb04x//uPmP//iP5mUve1lzwAEH8Gf6d9VVV/HvH/rQh5q3vOUtzX/+53823/ve9zjq0rZt25oXv/jFqY4f/vCHfO05z3kOR7p53ete18zOzjYf/ehH99vHNDSvi4uLze1vf/vmgQ98YPPVr36V5+qwww5rnve856U66rz20/nnn88Rwmj+fvCDHzTveMc7eA5POumkLGLQ4Ycf3px44onNN77xjeZd73oXr9U3velNu+3Z7wtE80SRlt761rdyNKAnPvGJzSGHHJJFtavUT89+9rOb8847r7nooouaz33uc80DHvCA5gY3uEFz6aWX8u9PetKTmpve9KbNJz/5yeZLX/pSc9xxx/G/SjnRnqn7J7Eer371q/kz7bFEL3/5y3ltfvCDH2y+/vWvc2Srm9/85s11112X6njQgx7UHHvssc3nP//55rOf/Wxzq1vdqvnjP/7j/Xqq++aVfvuLv/gLjlhH6/cTn/hEc+c735nnbceOHamOOq+VNgJVwLKPEIUupM3K/vvUpz6Vwj/e6U53YqZ7+/btHKbzjW98I4c5RaLyVG7Tpk3N0UcfzeF892camleiH/3oR82DH/zgZuvWrczIEIOza9eurJ46r2X68pe/3Nz97nfnsNFbtmxpfuu3fqs544wzsgOV6Gtf+1pzr3vdixnw3/iN32AGp9Iw/c3f/A0z1PROU5jjf//3f6/TNgVRaPcjjzyS54/WHX3//ve/n34nhvopT3kKh90mEP0Hf/AHzcUXX1zn2BDtgd5eSnushjZ+0YtexIIJesfvf//7N9/5zneyOn71q18xQKFzjELH/8//+T+T8Gh/pb55vfbaa1mYRgIgCr9N4eOf8IQndAQWdV4rbQSa0H97W8tTqVKlSpUqVapUqVKlSh7VPCyVKlWqVKlSpUqVKlVat1QBS6VKlSpVqlSpUqVKldYtVcBSqVKlSpUqVapUqVKldUsVsFSqVKlSpUqVKlWqVGndUgUslSpVqlSpUqVKlSpVWrdUAUulSpUqVapUqVKlSpXWLVXAUqlSpUqVKlWqVKlSpXVLFbBUqlSpUqVKlSpVqlRp3VIFLJUqVVpXdJ/73Cc84xnP2KfafexjHxtOOOGEVdVxs5vdLEwmE/7361//uljurW99azjkkENW1Val/mepz+EDH/hAnapKlSpV2gNUAUulSpUqhRDe9773hdNOOy0DCK997WvX1dyceuqp4eKLLw4HH3zw3u7KPk/nnXeeCw7/9//+3/wMKlWqVKnSnqO5PdhWpUqVKq1but71rhfWOx144IHhiCOOCOuBdu3aFebn58P+RgQWK2CsVKlSpT1LVcNSqVKldU2XX355OOmkk8Khhx4atm3bFh784AeH733vex0TqI997GPht37rt8IBBxwQHvSgB2VS8MXFxfDnf/7nXO76179+OOWUU8JjHvOYzEwLTcLo849//OPwzGc+M5n/EL30pS8Nd7rTnbL+kRaGtDFKS0tL4VnPelZq6y//8i9D0zTZPcvLy+HMM88MN7/5zcPWrVvDHe94x/BP//RPK5ofGv9Nb3pTnps/+IM/CL/61a86ZT74wQ+GO9/5zmHLli3h6KOPDi972ct4TpS+/e1vh3vd6178+21ve9vwiU98IjN5+tGPfsTf3/3ud4ff/d3f5XL/8A//wL/97d/+Lc87XbvNbW4TXv/612dt//SnPw3/43/8D54PAoUPf/jDuT7UZNztbncL27dv5zL3vOc9ee7H0NC4Xv3qV4djjjmG677JTW4SnvKUp4Srr746/U7tPOxhD+O1RWVud7vbhXPOOYf7d9/73pfL0G80djIFq1SpUqVKe4cqYKlUqdK6JmIUv/SlL4UPfehD4YILLmDm//d///dZwq907bXXhle96lXh7//+78NnPvOZ8JOf/CT8xV/8Rfr9Fa94BTPYZ599dvjc5z4Xrrzyyl7/AzIPu/GNb5xMsKYxAfqrv/orBhF/93d/Fz772c+Gyy67LLz//e/PyhBYefvb3x7e+MY3hm9+85sMjB796EeHT3/601PNzec///nwuMc9Ljz1qU8NX/3qV5nJ/l//639lZf7t3/6NAd/Tn/708K1vfSu86U1v4v6dfvrpCWARcCPAQ/W9+c1vDi94wQvc9p773OdyPRdeeGE4/vjjeU5f/OIXc1107YwzzggvetGLwtve9jYuT8+IypFmiPpBc6+AcmFhgcEFtU0g6Otf/zo/3yc+8YkJIPbR0LiIZmZmwl//9V/zHFOfPvnJTzKAVDr55JPDzp07ec3853/+J68T6h+Bm3/+53/mMt/5znf4+ZMpWKVKlSpV2kvUVKpUqdI6ot/93d9tnv70p/Pn7373u6SaaD73uc+l33/5y182W7dubd7znvfw97PPPpvLfP/7309lXve61zWHH354+k6fX/nKV6bvi4uLzU1vetPm4Q9/uNsu0VFHHdW85jWvyfr2kpe8pLnjHe+YXaMyVFbpyCOPbM4666z0fdeuXc2Nb3zj1NaOHTuabdu2Neeff35Wz+Me97jmj//4j4vz4vWHyv/+7/9+du2P/uiPmoMPPjh9v//979+cccYZWZm///u/534SfeQjH2nm5uaaiy++OP1+7rnn8py+//3v5+8XXXQRf3/ta1+b1XOLW9yieec735ldO+2005rjjjsutXPrW9+6WV5eTr/v3LmTn9/HPvax5le/+hXXe9555zXT0tC4PHrve9/bXP/610/fjznmmOalL32pW/ZTn/oU9+3yyy93f8f5qVSpUqVKu5eqD0ulSpXWLZHUfm5uLtz97ndP18jM6ta3vjX/pkTagVvc4hbp+5FHHhkuvfRS/nzFFVeEn//852x2pDQ7Oxvucpe7sGnWWhK1RdJ47C/1/653vWsyC/v+97/PGqHf+73fy+4ljcOxxx47VXs0B2QGhnTccceFj370o+n71772NdZsoOaBtCo7duzgfpAGgTQK6BuDc4VE41C65pprwg9+8APW8DzhCU9I10lroj4e1DaNlzQsSNQ23fvABz6QNWikhaH5eMADHsDmY/T8hmhoXLQmyLSNtFlk8kZaNeob/k5mgk9+8pPDxz/+cW77EY94RLjDHe4w2HalSpUqVdqzVAFLpUqVNjxZ528yKbJ+I2tBZGJk60XTtDGkPhT/+q//Gn7jN34j+23z5s1r0Mtue+Tb8Yd/+Ied38j3YxoiPw+sl+gtb3lLBtAUEGoZAobq74J02GGH8V8y0yPgQCCLfGRe+MIXhnPPPTf8f//f/7eqcZEfykMf+lAGJARqyH+GTPQIYBE4JMDy+Mc/nsESPQsCLQRuyKTvaU972lTzUqlSpUqVdi9VwFKpUqV1S+TMTVJx8q24xz3uwdfIqZy0AuQcPoZI2n/44YeHL37xi+He9753ksR/5Stf6TjQI23atInLWSb7kksuYdCifhbkO4JtkXaA+qttUf+//OUvs3M4EfWbgAn52ZDvxmrnh9pC+vd///fsO7VL83XLW97SrYO0VeQYT1oomicimqshorI3utGNwg9/+MPwp3/6p24ZaptAyA1veMNw0EEHFesizRL9e97znscaone+852DgGVoXDTnpEEjAEJAk+g973lPpxxpl570pCfxP2qfABgBFnr+RHYNVKpUqVKlPU8VsFSqVGnd0q1udSuOKkUmR+RUTaZF5PhNmgm6PpaIASXpOTG3FMnqb/7mbzj6WJ9zN0X+ImfsRz3qUQwwbnCDG3D0sF/84hfhrLPOCv/9v/931gp85CMfyZhxcgJ/+ctfzn2ntihSFebyoDFQQABytCeGmqJzkSkZmTdRPRS9bCyRZoKialHAAZoPipSG5mBE5BRPmgaKJEZ9JuadzKm+8Y1vsIM+mWKROR21S+O66qqrWMtBNOT8ThoO6gMBNXKkJwd2CpBAc0uR0gjIvPKVr+S+UQADCmRAkbkoqAE5v5N2ipz8/9t/+28MfgiAUAQ4cqYfoqFx0bOm+ulZUyQwml8KcoBEUeEo6txv/uZvcp8/9alPMQgkOuqoo3j8H/7whznIA0VzI4f8SpUqVaq0F2g3+8hUqlSp0lRknd8vu+yy5sQTT2RHcnLWPv7449kZX4mc7tHJnIicoXF7I8f3pz71qc1BBx3UHHrooc0pp5zSPPKRj2we9ahHFdu94IILmjvc4Q7N5s2bs7re8IY3NDe5yU2a7du3NyeddFJz+umnZ0731BbVQ20dcsghzbOe9Swuhw7+5IRODuzkkD4/P98cdthhPK5Pf/rTUzndE/2f//N/2Kmf5uZhD3tY86pXvaozHx/96Eebe9zjHlyG+nW3u92tefOb35x+v/DCC5t73vOezaZNm5rb3OY2zb/8y7/wmOk+dLr/j//4j077//AP/9Dc6U534ntpbu9973s373vf+9Lv5MxP47/BDW7Ac3n00Uc3T3jCE5orrriiueSSS5oTTjiBHeXpfhrji1/84mZpaak4D9OM69WvfjXXrevm7W9/e+ZIT2uCAgdQv+gZ0DqjoA5Kp556anPEEUc0k8mkecxjHpO1XZ3uK1WqVGnP0YT+2xtAqVKlSpX2FpFmgyTp5OCN2e3XM5HGhzQCmitmdxJpI0jzQw7zGMygUkukfaFw1ZjLp1KlSpUq7R6qeVgqVaq0zxOZIZFvwne/+13Ot0GO2BdddFH4kz/5k7CRiBJeklkSmZCtJRHjTY7u5KhOkbUoFwqZmlWw0iXydammYZUqVaq0Z6lqWCpVqrTPEzmVky8K+TeQUvn2t789+5moY/xGAV0akYyyuqsj+VoQJbEkvw8KBEC+OhTil5zVKYT03iLKOl/KeE/+TCVH/91NFC6bQiQTUYAFjJxWqVKlSpV2D1XAUqlSpUqV1jVA8yKU2dwulSpVqlRp36UKWCpVqlSpUqVKlSpVqrRuqfqwVKpUqVKlSpUqVapUad1SBSyVKlWqVKlSpUqVKlVat1QBS6VKlSpVqlSpUqVKldYtVcBSqVKlSpUqVapUqVKldUsVsFSqVKlSpUqVKlWqVGndUgUslSpVqlSpUqVKlSpVWrdUAUulSpUqVapUqVKlSpXCeqX/H3f+IYGwUtP9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import fsspec\n", "import xarray as xr\n", @@ -116,7 +145,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -130,7 +159,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-global-deterministic-pressure.ipynb b/datasets/met-office/met-office-global-deterministic-pressure.ipynb index 1b2abfe..bec599d 100644 --- a/datasets/met-office/met-office-global-deterministic-pressure.ipynb +++ b/datasets/met-office/met-office-global-deterministic-pressure.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -42,25 +42,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "2132d393", "metadata": {}, "outputs": [], "source": [ "collections = [\"met-office-global-deterministic-pressure\"]\n", "asset_id = \"wind_speed_on_pressure_levels\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T12:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2026-01-21T06:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0135H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0066H00M\"]},\n", + " ],\n", "}" ] }, @@ -74,15 +74,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "edb71afa", "metadata": {}, "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -99,10 +97,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "fbc72d2a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_57719/3941445104.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", + "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", + "To opt-in to future behavior, set `decode_timedelta=False`.\n", + " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" + ] + }, + { + "data": { + "text/plain": [ + "(array([7.2782304e+07, 4.8538914e+07, 2.1626640e+07, 1.0100012e+07,\n", + " 4.9097620e+06, 2.4353770e+06, 1.1442450e+06, 4.6342300e+05,\n", + " 1.6529400e+05, 3.5629000e+04]),\n", + " array([ 0. , 9.80000019, 19.60000038, 29.40000153, 39.20000076,\n", + " 49. , 58.80000305, 68.59999847, 78.40000153, 88.20000458,\n", + " 98. ]),\n", + " )" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAHWCAYAAAB62mb1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO2pJREFUeJzt3QeYVNX9P/6DINgRCyqKYlfsPbaoscUQY0lMNBixJCYGI2piIX6NGqOgxhJLsJfEgprYjRorxl9ERaOxYkNFYy+ADRXm/3zO88z8Z5dd2MWFPbCv1/MMy965c+fOvXfunvc95XaqVCqVBAAAUKg52nsFAAAApkZoAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWiBNvTII4+kTTbZJM0777ypU6dO6fHHH7d9C/DKK6/k/XHppZe22TKPPfbYvMzZwZZbbpkfdAxfffVVOvzww1Pv3r3THHPMkXbeeef2XqXZ3u23357WXnvtNNdcc+XzxkcffdTeqwSzHKEF2siXX36Zdtttt/TBBx+k008/Pf31r39NyyyzzGy9fa+88sp0xhlntPdqdBh333132nfffdNKK62U5plnnrTccsuln/70p+nNN99Ms6thw4bl79XSSy+dC3t77713s/M++uij6bvf/W5afPHF03zzzZfWXHPNdOaZZ6ZJkya16L0mT56cTj755LTsssvmwmW8/qqrrmpy3meffTZ9+9vfzu+z0EILpZ/85Cfp3XffbfHnikLr/vvvnxZddNF8kWOrrbZKjz32WJPz3nTTTWndddfN6xTb4ZhjjsnBY3pdfPHF6ZRTTkk/+MEP0mWXXZYOOeSQNDv73//+ly8ytNdFpPfffz/98Ic/THPPPXc655xz8t+G2OdA63Rp5fxAM1566aX06quvpgsuuCAXJDuCCC1PPfVUOvjgg1PJIjx+9tlnac4550yzsiOOOCKH4ijEr7jiiunll19OZ599drrllltygSwK67Obk046KU2YMCFtuOGGUw1nEViiljO2S2ynCHW33XZbGjRoUP5u/ulPf5rmex111FFp6NCh6Wc/+1naYIMN0o033ph+/OMf57C0++671+Z7/fXX0ze/+c3UvXv3dOKJJ6aPP/44/fGPf0xPPvlkevjhh1PXrl2nGY769euXnnjiiXTYYYelRRZZJP35z3/OtV3xOeIzVMVniJqQeO6ss87K7/GHP/whvfPOOznQTY977rknLbnkkvniSkcQoeW4445Lffr0ybUd7VEDH8fw8ccfn7bZZpuZ/v4w26gAbWLEiBGV+Epde+21bbZFP/7440rJ+vXrV1lmmWUqpfryyy8rEydOnCHLPuaYY/L+ntnH2KRJk6aYFutx1FFHTfdyt9hii/wo0SuvvFKZPHly/v+8885bGTBgQJPz/exnP6t07dq18v777zeY/s1vfrOywAILTPN9Xn/99cqcc85ZGThwYG1avO/mm29eWWqppSpfffVVbfoBBxxQmXvuuSuvvvpqbdqdd96Z98N55503zfe6+uqrpzhXvPPOO5UFF1ywssceezSYt2/fvpW11lorH8tVsa87depUefbZZyvTY6uttqqsttpqlbYSx+Rnn31WKdUjjzySt/cll1zSLuflyy67LL9/rAcw/TQPgzYQTVa22GKL/P+4Ch5XZuv7CMSVzc033zw3CVhwwQXTTjvtlJuXNNVH4plnnslXd3v06JE222yz2vOXX355Wm+99XITg2iOEld+x44dO8W6PPTQQ+k73/lOfn28XzRxqb/K/N///jevbzQtiuYmcXU+mhxFE4Z6cWUwalDi6mS3bt1Sz54907bbbltrwhKf79Zbb821S7He8Yh5WyrmjaY8//znP2ttvfv27Zuuu+66JpvSxLpEG/xYlxVWWCFfgY8r1o37rcQV72iytvzyy+d5Y3s216elJfslPPDAA/nKe6xjLPe8885L7SGu7kcfhMbT4nhoar2bcv755+fPEMdR1F7861//mmKeL774Iv3ud7/Lx1vUJsT2ie1077331uapVCp5H8Y2a+zzzz/Pr/v5z39emxa1BKuttlquAYljc/311881dS2pJWtJ36Hx48fn/RP7sd4SSyyRP2u9qLF57rnncpPOqqhVid9/+ctf1qbF+x5wwAG5ZuXBBx+sTf/73/+ej91oqlUVV9Cj2d4111zT4L2ilice9f72t7+lxRZbLO266661adFMLJoQxXpMnDgxT4tjNx7RjKxLl/+/YUSsY2z/WE5rVL8HsR+ffvrp2vf2vvvuy89/8skn6de//nXte7byyivn71O8V714zYEHHpiuuOKKvE9j3uizEd544418PonPF9Pj+WiO1tQxEue82Gax32I/xfao31bx3lF7tvDCC+d9GMdjU5/5zjvvzOfK2PfRXC/W+7e//W1+Lj5bfHfDPvvsU/vMLe3fFvPF/CNGjMjbPc6DSy21VIOasOo5ZP755881aLFtq+I8OWDAgPz/WI9pNXEEmqd5GLSBKJxFc4toKnLQQQflP07xRzvcddddaYcddsghIf5IRzOlKMBtuummOQA0LuhXm/7EsqqFhRNOOCEdffTRuVATTc+i7XwsIwqs//nPf2oFtfjjHYWpKABEs5gIJFGYjeZD8Xt1nmhWFH/A4/n4AxsF2fg5cuTIWgHxF7/4RS4gROEkwkSEmii8x/KifX00pRk3blwu0FWbmUSBoTVeeOGF9KMf/Si/V/xhv+SSS/LnjwJQBKTw6aef5kAYhaHYzlFQ/Pe//50GDx6cC5+N+9TEMqJAFAW9KDRFgb4+3FS1dL9Ec5ztttsuFypjvuhLEH0Kqvt3WmL94zEtnTt3zoX51oqmSfGIJkbTctFFF+VtGAXBCIFxHHzve9/L2ygKqvUB4MILL0x77LFHbioVATZeu/322+fmTxEy4zjZc889cx+QaLIWy6i6+eab8zLi+RBNJuN7EX0o4jiM/RPhOQJ2BPS2EIXDq6++On++Qw89tNY8LEJw9N+oF8dO9OUYM2ZMbT/H9ygKnquuumqDeSPYVZ+PgnEch9E0K0JXYzHvP/7xjwbTtt5661pgqIplxXeocQCN18d38fnnn09rrLFGni80fq9evXrlgnP1+ZaKYzj6U8T5JI6ZIUOG5OnxmeNcE8dCBJr99tsv7+M77rgjN1+Lz9y4KVkE/ghocX6IYy+249tvv52+8Y1v1EJNvF/sg1heHA/VZqTRxyjOU9FHKy6+xDERx1icm6K5aYTqEBdbYp369++fg/Tw4cPz+SHOZxEOQpy3Yllxceb3v/99/s6/+OKL6f/9v/9X+2wxPUJ4nBMiYIT4DrRGBJb4PLGcCHchtmWct+J7ERdR4nseTfbiOIl9E9skzpMRomK/xnpEf6nq5wNa6WvU0gB17r333iabh6299tqVnj17Nmi28sQTT1TmmGOOyl577TVFc6PGzUOieUznzp0rJ5xwQoPpTz75ZKVLly616dF8Zdlll83NtT788MMG81ab14RPP/10iv121VVX5fe+//77a9O6d+/eoKlMWzcPi9fFe/7973+vTRs3blxliSWWqKyzzjq1accff3xuFvT88883eP2RRx6Zt8trr72Wfx8zZkxeXjQFiqY29arP1TcPael+2XnnnStzzTVXg6ZAzzzzTH7vlpxCq/t1Wo/p3Y6xfeL1d99991Tn++KLL/Lnjc9d32Tu/PPPz6+vbx4Wx1LjZnVxTC222GKVfffdtzZt9OjR+bXDhg1rMO/3vve9Sp8+fWrH3U477dQmzZGm1jws1vnAAw/MTbyq2zT2UeN1C7GMeD6Oi/pjebnllpti3k8++STPG8dbfVOjv/zlL1PMe9hhh+XnPv/889q02K+N9218jvrtWHXrrbfm199+++3591NOOSX/Xj3G622wwQaVb3zjG5XpEfu68f644YYb8nv94Q9/aDD9Bz/4QW6K9uKLL9amxXzxPXn66acbzLvffvvl7+97773XYPruu++ezyfVc8/FF1+cl3HaaadNsW5TO1fFMbz66qtXvvWtb9WmnX766XlZ77777gxpHhavidduttlmDZoITpgwITfni2aJ9d566638WeunV5eheRh8PZqHwQwUNQHRQTqaA9RfiY6rglGT0PiqbIhah3pxpThqCqKW5b333qs9opYkamSqTXbiyl5cOY6rmY2byNQ3r6lvKhNXvGNZcXU01I9eFMuIK+HRiXVGiSvGu+yyS+33BRZYIO211175s7z11lt52rXXXpuvjkYtRP3nj+Y4ccX2/vvvb7DM73//+/mKaFvsl1h+XG2OjtD1TYHi6m1cXW2J+DxxBXlaj2hq01rx2aODcRwb3/rWt6Y676hRo3INQRxf9R3FYxtEU67GtT7VeeLYi5qUqGGKK/71x0g07dloo40arHvMG1fX4+p49biLYylq5KJD8owS6xxXsGO/RC1K1LrsuOOO6Ve/+lW64YYbpmjyU23eVhU1bXGVvrFoulR9vv5nS+at1rDU17K05XvVv8/XFcd8bMOoEasXzcViW8U+rRe1n1EDWxXzRLO52Obx//rvauyTqJWtHjsxX9TOxL5prLlz1YcffpiXEeeCxuepEM3qmqpRbStR4xjbpyq+s9FsNWoj6z9rzBPfifqmlMAs3jws/thGlX2MlBIFiOuvv75VY8VHM434Y91YNAmoVt1Ce4v+HiGaBzQWBd8oEMfxWj/8ZTQfaNyEKgoB9SMK1auOiFVtC7766qtPdZ2iUBnfnWhqEYXYelEoqIpmP9H0IZoNRVvy6CcTBfBoTtVWom9K4/4KURAOUdCLYBafP5oSNRdEGn+Gxtvv6+yXaLISBcOmtn28tqnQ2Vhsr7bcZlXRJyMCX+zvaMrV0s/c+LPE8dPU+kXB/9RTT52i70fj7RvHRDQFiuVH/5MImTF/DAFcFaN5RXO8aP4U+zya20WzsGiK11Zi1K9oThTHS7WZYoS5GEp44MCBuQlRfb+QxqKAXO1LUi+CffX5+p8tmXdGv9e03qc1Yv/FRYTol1Gv2lyuevw0dxxEk9UoxEczqHhM7bsa56r4/kxtf4RoBhYjpcUFhvptUH/OiOalcfxHs9kjjzwyN8eLvjHRFLFx87uvo6nzcmjuYkFcgAFmk9ASBYK11lord9ir74zYUr/5zW+muCIdJ6tqhzuYVTUuiMTVw/gjHVc666/0VbW2H0kU5KJPSLRVj3br8fp4j7jnRP2VypgvrmrGBYXoLB8XGaLddtT8RF+QmSXWKWo/4mZ4TamGnKq2LMi1hWqfk2mJfTutGqKqGIAhCv5RQxLBqXFB8+uKQR+iBiYuJMVxEp2PY/2iD0TjTuXRJyHu8xG1LdH5OV4bNTL1gTAKvqNHj86F0OivFFfaY4jf6B/Q1MWn6RHLiwJk4+9D9ImIPi4RgiMwNSf6gcXV8bhAUF8org6zHAX66nz10+vFtKi5a6pmpPF7Nff65t6rvs9RdVq1v00p56kQ/ZiqHc8bi5rMlooBImLfRb+92LexLSJgR5+1+gEcYj3iImjsuxgYJI6vqGWLYyHOW02dM9vy80a/lqaGGp9WIANar92+VVHomVrBJ66qRAe2uLFXXL2Jq4lRYKqOyBR/mOr/OMV49zHKyrnnnjtT1h9aonpzySiwNRZXsKOJxLRuMhZNXqIgFVf6GhfQG88XoiNrc/cCiCYW0fk1CopRYGx81bCxKChEB9R4xFXS6DwcnXir392ve0f46DDbuJAYnZBDtelOfK4o9Lfl/Q1aul+iCU4UVpraPk29tikxAlJLCuaxTo2bETUlBkSIwBLnyNiX1YJtS5Yf4rPUXx2OWpFoVhgXkapiAIaofYmAWr9vYgCCxqKQHp2iI7REk7DoAN3UDUdje8ZV8XhEp+q4WBXHUnSKrzaL+jqiE3hTN5Gs1hJN62aMEeDjin0MNFHf7CmaSFafDzHgRoTLaG7XWHWQgmmJeaJQHgXf+tqAeK9oLVD9nleXFe9VH1CiyWY0t4uO5W0ljo+oDYvaxfoQHN+H6vNTE9skXhf7YFrf1fhOx2eNfdPcvZMi2MZxEbWe9SEwQktjsQ3jomU8TjvttDyISZQfIsjEunzd81RznyFEoHfvFZg5iu3TEs0NYojJaMISTUNixJC4Etxc4Sr+2MSJvjoyCJQgCpRR8IimNhG+qyJYxFXAaHI1LVG4i6uFUfBtPPRo/F4dqjgCRQSbKDDWv1d1vlC96th4OY0LmVHwqG8qVv3jHFeA65tpREG08XytEYWvqMmpihGG/vKXv+RtVr16GTU+cS6Iwktj8Tmn587gLd0vsb2iPX70iXjttddq80XBtqn1mdF9WqKGOtYtRnOKGpbmmgw2JWo/omAZF3YiNNT372h8vDR1nEQhs37Y33rRFCwuGkWtTLy2/kaMofFw2tFfJoJBLL++6dnXEef/2I717xXHcYxwFYXp+hGbmhryOIZujgJ0XNWvivWL7RVBpX60qeg3FbVG9UOOR4CMwB1/q6Y15HE0XYqQVT+8d/SHiKZ10SekWkiP4YJXWWWV3NyqPpDFCFVREI/ltJU4ruI94mal9WLUsHivadWuxn6P7RJhI75HjUXzsaqYLz5v4/dqfK6K963/3BHqG/dPiuaujVXDXvVcVb0w1Pg4/zrivBBNwCIgNXUM13/epsT5pBoIq2KbxLT60Qbj/zEtnoMOr1KAOE9df/31td9jlJ4Y9eWNN95oMN/WW29dGTx48BSvj5ta9ejRo3LSSSfNlPWF1oweFjedi1G+VllllTwa0O9///vKoosumo/Zl19+eYpRppoaBWfIkCH5uU022aRy8skn5xGRDj/88MqKK66Yl1kVow7F6EkxWtGxxx6bb3R3yCGHVLbbbrsGN9ubZ5558g3q/vznP+fRseLmdbH8WIfqSFHVkZpihJ8YYeqHP/xhnufUU0+tLSvWJabFe1x55ZWVm266qcUHR6zjSiutlEfgiZGZYhSgNdZYI49KVB09qTp607rrrpu34U9/+tP82f/4xz/mdYt1rG6v6ghh9dtjaqOHtXS/xIhiMXrY0ksvXRk6dGgeXSlG0VpzzTVn+s0lYxSueM8Yeeqvf/1rg0f9ObQ5cTzE6zfddNPKmWeemfdbbP8YNat+9LDq6E4xCli8JvZPzBcjTjU1ylmMNLbwwgvn1+ywww5TPB/77zvf+U4e6e7CCy+s/PrXv65069atsuOOO05zneOYihHS4hE3j4yR5aq/x76puvzyy/P7L7/88vlvQXy+jTfeuMkRsZoaPax+9K/999+/csEFF+QRxeL3K664osF8MZpXfN54r3ifE088MR83cfzWjxzW3OhhMQpVjPw133zzVY477rjKOeeck7ft/PPPX3nuuecazHvzzTfn0btixKz4Hh500EH5O9J41KrqMd7c6GrTGj0sbhAZN52M94rPH+tUPd4OPvjgBvPGtKZGFoyRs+Kzxvll0KBB+diJc9duu+2Wt0/9599yyy3zcmJksXivOJfEeSpGMQsxGl48Hzf3jO98bKcY/a7x9y7eJ46J//u//8v7LI6xJZdcMt8Q9KOPPqqNOhbH78orr5yPvxgtsf47PjVTG/krjovYFzGiWRxj8XnjvBoj9NVvn6aWEfug8fmj+jcg/pY0/rtSPTdDR1ZkaLnlllvytCiQ1D+igBEFp8aisBTPxQkTSgst4a677soFxbiLdgzJG4W1GDa33tRCS4ihgWPYzer3IQrb8Ycxhp2t98ADD1S23XbbXACK+eKP/FlnndXgzt+77LJL/iMeQ3NGgeJ///tfgz+MUQiNAlyEmepy4v8RchrfGfrHP/5xXlZrh+2NeaNQeMcdd+R1jEJsfKamtl8MLxoXLFZYYYVccF1kkUVygIvwEgWS6QktLd0v1bvOr7feevm9o4B/7rnn1vbXzFQdJvrrDJkc+zCGxo7tvf766+dhrqMAVR9aYtjZKIjHMmO+KBTGeTkKxM29zy9/+cu8HnE+biwKcxGWo6Afy4vCfhxfMcT1tFQDRlOPxvszwm58jjg+Yl9FiIh91dwyG4eWKLhXP3e8Pgr2EYaa8tRTT+VCdhTQ4/jv379/k3+Dmgot4YMPPshDBMc2iWXEejc3JG78fYyCcGy7KIxHAb163NcPgV4/NHNrQ0v1exZBtlevXvniR/WiSP0wxFMLLeHtt9/Oz/Xu3TsvY/HFF88XHCNw1YvhjKOAH8didb4YXvmll16qzXPRRRfldaieG2J/N/7eRbiJcBXrHPssfsaw8Y2HSL/xxhsrffv2zWWF1gx/PK3hiuO8v/322+dzaVzciGN77733rowaNWqqyxBaoPU6xT/tXd0UVcD1o4dFJ7poGx03jWrciS76sTTu9BbtWKOatr6ZCVC26LMSfdWimQ2zvuiMHzegjKGqo18GM1c0a4vBKqIpWktvfAowKylyeIt11lknt2ONjr/T6qMSHUijs91NN90009YPgIbD78aoYdFXQWBpH/F3MO6xIrAAs6t2Cy0xGlCMHFQfPmIs9hiJJjpURk1LdGCN+wREiIlObdHRMYZMjJFqqi6++OLcqXZmDsEKNC++q02N4lTfCbv+ho7MuuLCUow4FaONRQf4QYMGtfcqdVjRiZ+Wi/svTWsQkThP1d+IFeigoSWGcIybflXFOPohxneP0WxiWMO4qVTcjTdGyokhSOOu3XGDsKoYLjLmjfsJtNVY7MDXE/dKanwjusZ30r7vvvts5tlAjBgWF5hiZLkzzzyzRcP9QgmiGfo+++wzzdqr6m0WgPZXRJ8WYPYR9+mIq5jN6dGjR1pvvfVm6joB1Ithr6Pf7NTEeSrOV0AZhBYAAKBoxd5cEgAAoF36tEQ/lLgLdtyhOIY6BgAAOqZKpZImTJiQevXqleaYY45yQksElt69e8/stwUAAAo1duzYtNRSS5UTWqKGpbpicUNIAACgYxo/fnyu0KhmhGJCS7VJWAQWoQUAAOg0jW4jOuIDAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFK1L6uD6HHlre69CkV4Z2q+9VwEAADI1LQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAADA7BNa+vTpkzp16jTFY+DAgTNuDQEAgA6tS2tmfuSRR9KkSZNqvz/11FNp2223TbvtttuMWDcAAIDWhZZFF120we9Dhw5Nyy+/fNpiiy1sSgAAoP1DS70vvvgiXX755enQQw/NTcSaM3HixPyoGj9+/PS+JQAA0AFNd0f8G264IX300Udp7733nup8Q4YMSd27d689evfuPb1vCQAAdEDTHVouuuiitMMOO6RevXpNdb7BgwencePG1R5jx46d3rcEAAA6oOlqHvbqq6+mu+66K1133XXTnLdbt275AQAAMNNqWi655JLUs2fP1K9fv+l6UwAAgBkWWiZPnpxDy4ABA1KXLtPdjx8AAGDGhJZoFvbaa6+lfffdt7UvBQAAaLVWV5Vst912qVKptP6dAAAAZuboYQAAADOD0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAAAwe4WWN954I+25555p4YUXTnPPPXdaY4010qhRo2bM2gEAAB1el9ZsgQ8//DBtuummaauttkq33XZbWnTRRdMLL7yQevTo0eE3JAAAUEBoOemkk1Lv3r3TJZdcUpu27LLLTvU1EydOzI+q8ePHT896AgAAHVSrmofddNNNaf3110+77bZb6tmzZ1pnnXXSBRdcMNXXDBkyJHXv3r32iNADAAAwQ0LLyy+/nIYNG5ZWXHHFdMcdd6QDDjggHXTQQemyyy5r9jWDBw9O48aNqz3Gjh3bmrcEAAA6uFY1D5s8eXKuaTnxxBPz71HT8tRTT6Vzzz03DRgwoMnXdOvWLT8AAABmeE3LEksskfr27dtg2qqrrppee+216XpzAACANg0tMXLY6NGjG0x7/vnn0zLLLNOaxQAAAMyY0HLIIYekkSNH5uZhL774YrryyivT+eefnwYOHNiaxQAAAMyY0LLBBhuk66+/Pl111VVp9dVXT8cff3w644wzUv/+/VuzGAAAgBnTET9897vfzQ8AAIDialoAAABmNqEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAwOwTWo499tjUqVOnBo9VVlllxq0dAADQ4XVp7RZYbbXV0l133VX7vUuXVi8CAACgxVqdOCKkLL744q19GQAAwMzp0/LCCy+kXr16peWWWy71798/vfbaa1Odf+LEiWn8+PENHgAAADMktGy00Ubp0ksvTbfffnsaNmxYGjNmTNp8883ThAkTmn3NkCFDUvfu3WuP3r17t+YtAQCADq5TpVKpTO+LP/roo7TMMsuk0047Le23337N1rTEoypqWiK4jBs3Li2wwAKpvfU58tb2XoUivTK0X3uvAgAAs7nx48fnio1pZYOv1Yt+wQUXTCuttFJ68cUXm52nW7du+QEAADDT79Py8ccfp5deeiktscQSX2cxAAAAbRNafvOb36QRI0akV155Jf373/9Ou+yyS+rcuXPaY489WrMYAACAFmtV87DXX389B5T3338/LbroommzzTZLI0eOzP8HAABo99AyfPjwGbISAAAAzXE7e5pkVLXmGVkNAGAW6ogPAAAwowktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAAMy+oWXo0KGpU6dO6eCDD267NQIAAGiL0PLII4+k8847L6255prTuwgAAIAZE1o+/vjj1L9//3TBBRekHj16TM8iAAAAZlxoGThwYOrXr1/aZpttpjnvxIkT0/jx4xs8AAAAWqpLaqXhw4enxx57LDcPa4khQ4ak4447rrVvAwAA0PqalrFjx6ZBgwalK664Is0111wtes3gwYPTuHHjao9YBgAAwAypaXn00UfTO++8k9Zdd93atEmTJqX7778/nX322bkpWOfOnRu8plu3bvkBAAAww0PL1ltvnZ588skG0/bZZ5+0yiqrpCOOOGKKwAIAADBTQ8v888+fVl999QbT5p133rTwwgtPMR0AAKDdby4JAABQ3Ohhjd13331tsyYAAABNUNMCAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAmH1Cy7Bhw9Kaa66ZFlhggfzYeOON02233Tbj1g4AAOjwWhVallpqqTR06ND06KOPplGjRqVvfetbaaeddkpPP/10h9+QAADAjNGlNTPvuOOODX4/4YQTcu3LyJEj02qrrdbkayZOnJgfVePHj5/edQUAADqg6e7TMmnSpDR8+PD0ySef5GZizRkyZEjq3r177dG7d+/pfUsAAKADanVoefLJJ9N8882XunXrln7xi1+k66+/PvXt27fZ+QcPHpzGjRtXe4wdO/brrjMAANCBtKp5WFh55ZXT448/ngPI3/72tzRgwIA0YsSIZoNLhJt4AAAAzJTQ0rVr17TCCivk/6+33nrpkUceSX/605/SeeedN10rAAAAMEPv0zJ58uQGHe0BAADaraYl+qfssMMOaemll04TJkxIV155ZbrvvvvSHXfc0aYrBQAAMF2h5Z133kl77bVXevPNN/NIYHGjyQgs2267bWsWAwAAMGNCy0UXXdSa2QEAANq/TwsAAMCMJLQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKJ1ae8VgFlNnyNvbe9VKNIrQ/u19yoAALMpNS0AAEDRhBYAAKBoQgsAADD7hJYhQ4akDTbYIM0///ypZ8+eaeedd06jR4+ecWsHAAB0eK0KLSNGjEgDBw5MI0eOTHfeeWf68ssv03bbbZc++eSTDr8hAQCAAkYPu/322xv8fumll+Yal0cffTR985vfbOt1AwAA+HpDHo8bNy7/XGihhZqdZ+LEiflRNX78eJsdAACY8R3xJ0+enA4++OC06aabptVXX32q/WC6d+9ee/Tu3Xt63xIAAOiApju0RN+Wp556Kg0fPnyq8w0ePDjXyFQfY8eOnd63BAAAOqDpah524IEHpltuuSXdf//9aamllprqvN26dcsPAACAGR5aKpVK+tWvfpWuv/76dN9996Vll112ut4UAABghoSWaBJ25ZVXphtvvDHfq+Wtt97K06Ovytxzz92aRQEAALR9n5Zhw4blfilbbrllWmKJJWqPq6++ujWLAQAAmHHNwwAAAGaJ0cMAAABmBqEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAwOwVWu6///604447pl69eqVOnTqlG264YcasGQAAwPSElk8++SSttdZa6ZxzzrEBAQCAGa5La1+www475AcAAECRoaW1Jk6cmB9V48ePn9FvCQAAzEZmeGgZMmRIOu6442b02wDtrM+Rt7b3KhTrlaH92nsVAGCWNsNHDxs8eHAaN25c7TF27NgZ/ZYAAMBsZIbXtHTr1i0/AAAApof7tAAAALNXTcvHH3+cXnzxxdrvY8aMSY8//nhaaKGF0tJLL93W6wcAAHRwrQ4to0aNSltttVXt90MPPTT/HDBgQLr00kvbdu0AAIAOr9WhZcstt0yVSqXDbzgAAGDm0KcFAAAomtACAAAUTWgBAACKJrQAAABFE1oAAICiCS0AAEDRhBYAAKBoQgsAAFA0oQUAACia0AIAABRNaAEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAitalvVcAYHbX58hb23sVivTK0H7tvQoAzCLUtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAAKJrQAgAAFE1oAQAAiia0AAAARRNaAACAogktAABA0bq09woA0DH1OfLW9l6FYr0ytF97rwJAUdS0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomiGPAaAwhoNumqGgoeNS0wIAAMx+oeWcc85Jffr0SXPNNVfaaKON0sMPP9z2awYAADA9zcOuvvrqdOihh6Zzzz03B5Yzzjgjbb/99mn06NGpZ8+eNioAMENoNtc0zeboCFpd03Laaaeln/3sZ2mfffZJffv2zeFlnnnmSRdffPGMWUMAAKBDa1VNyxdffJEeffTRNHjw4Nq0OeaYI22zzTbpwQcfbPI1EydOzI+qcePG5Z/jx49PJZg88dP2XgUAgOm29CHX2nq0ylPHbZ9KUc0ElUql7ULLe++9lyZNmpQWW2yxBtPj9+eee67J1wwZMiQdd9xxU0zv3bt3a94aAABoA93PSMWZMGFC6t69e/sNeRy1MtEHpmry5Mnpgw8+SAsvvHDq1KlTau9kF+Fp7NixaYEFFmjXdWHW4/jBsYNzD7Maf7so7fiJGpYILL169ZrqfK0KLYssskjq3LlzevvttxtMj98XX3zxJl/TrVu3/Ki34IILppLERhdacPzg3MOsxN8uHD/MLuefqdWwTFdH/K5du6b11lsv3X333Q1qTuL3jTfeePrWEgAAYCpa3TwsmnoNGDAgrb/++mnDDTfMQx5/8skneTQxAACAdg8tP/rRj9K7776bfve736W33norrb322un222+fonP+rCCarR1zzDFTNF8Dxw/OPZTK3y4cP3TE80+nyrTGFwMAAJiVbi4JAAAwMwktAABA0YQWAACgaEILAABQtA4bWs4555zUp0+fNNdcc6WNNtooPfzww+29ShRoyJAhaYMNNkjzzz9/6tmzZ9p5553T6NGjG8zz+eefp4EDB6aFF144zTfffOn73//+FDdghaFDh6ZOnTqlgw8+2LFDi7zxxhtpzz33zOeWueeeO62xxhpp1KhRtedjHJ0YyXOJJZbIz2+zzTbphRdesHVJkyZNSkcffXRadtll87Gx/PLLp+OPPz4fM44fGrv//vvTjjvumO9IH3+nbrjhhgbPt+Rc88EHH6T+/fvnG07GTeT322+/9PHHH6e21CFDy9VXX53vNxNDtj322GNprbXWSttvv31655132nvVKMyIESNyIBk5cmS6884705dffpm22267fG+iqkMOOSTdfPPN6dprr83z/+9//0u77rpru643ZXnkkUfSeeedl9Zcc80G0x07NOfDDz9Mm266aZpzzjnTbbfdlp555pl06qmnph49etTmOfnkk9OZZ56Zzj333PTQQw+leeedN/8tiwspdGwnnXRSGjZsWDr77LPTs88+m3+P4+Wss86qzeP4oSrKNFEWjgv6TWnJsRKB5emnn85lpVtuuSUHof333z+1qUoHtOGGG1YGDhxY+33SpEmVXr16VYYMGdKu60X53nnnnbhMVRkxYkT+/aOPPqrMOeeclWuvvbY2z7PPPpvnefDBB9txTSnFhAkTKiuuuGLlzjvvrGyxxRaVQYMG5emOHabmiCOOqGy22WbNPj958uTK4osvXjnllFNq0+KY6tatW+Wqq66ycTu4fv36Vfbdd98G03bddddK//798/8dPzQnyi/XX3997feWHCvPPPNMft0jjzxSm+e2226rdOrUqfLGG29U2kqHq2n54osv0qOPPpqrtqrmmGOO/PuDDz7YrutG+caNG5d/LrTQQvlnHEtR+1J/PK2yyipp6aWXdjyRRU1dv379Ghwjjh2m5aabbkrrr79+2m233XLT1HXWWSddcMEFtefHjBmTb/Bcf1x17949N3f2t4xNNtkk3X333en555/PG+OJJ55IDzzwQNphhx0cP7RKS8418TOahMU5qyrmj/J11My0lS6pg3nvvfdyW8/FFluswfT4/bnnnmu39aJ8kydPzv0RosnG6quvnqfFF7lr1675y9r4eIrn6NiGDx+em6BG87DGHDtMzcsvv5yb90RT5t/+9rf5GDrooIPy+WbAgAG180tTf8ucezjyyCPT+PHj80W0zp0753LPCSeckJvwVM8/jh9aoiXHSvyMiyv1unTpki/wtuX5qMOFFvg6V8yfeuqpfLUKpmXs2LFp0KBBuX1vDPgBrb1IElctTzzxxPx71LTE+SfalEdogam55ppr0hVXXJGuvPLKtNpqq6XHH388X3SLjtaOH2ZVHa552CKLLJKvOjQe3Sl+X3zxxdttvSjbgQcemDuW3XvvvWmppZaqTY9jJpocfvTRRw3mdzwRTQdjcI911103X3GKRwzUEJ0Z4/9xlcqxQ3NilJ6+ffs2mLbqqqum1157rXbuqZ5rnHto7LDDDsu1Lbvvvnsede4nP/lJHvgjRsR0/NAaLTnXxM/Gg1l99dVXeUSxtixbd7jQElXr6623Xm7rWX9FK37feOON23XdKE/0SYvAcv3116d77rknDx9ZL46lGN2n/niKIZGjYOF46ti23nrr9OSTT+YrnNVHXDmP5hnV/zt2aE40Q208vHr0T1hmmWXy/+NcFIWB+nNPNAeK9uPOPXz66ae5P0G9uGAb5R3HD63RknNN/IyLt3GxrirKTHG8Rd+XNlPpgIYPH55HPbj00kvziAf7779/ZcEFF6y89dZb7b1qFOaAAw6odO/evXLfffdV3nzzzdrj008/rc3zi1/8orL00ktX7rnnnsqoUaMqG2+8cX5AY/Wjhzl2mJqHH3640qVLl8oJJ5xQeeGFFypXXHFFZZ555qlcfvnltXmGDh2a/3bdeOONlf/+97+VnXbaqbLssstWPvvsMxu3gxswYEBlySWXrNxyyy2VMWPGVK677rrKIossUjn88MNr8zh+qB/l8j//+U9+RDQ47bTT8v9fffXVFh8r3/72tyvrrLNO5aGHHqo88MADedTMPfbYo9KWOmRoCWeddVYuaHbt2jUPgTxy5Mj2XiUKFF/eph6XXHJJbZ740v7yl7+s9OjRIxcqdtlllxxsYFqhxbHD1Nx8882V1VdfPV9kW2WVVSrnn39+g+djKNKjjz66sthii+V5tt5668ro0aNtVCrjx4/P55oo58w111yV5ZZbrnLUUUdVJk6c6PhhCvfee2+TZZ0Ivy0917z//vs5pMw333yVBRZYoLLPPvvkMNSWOsU/bVdvAwAA0LY6XJ8WAABg1iK0AAAARRNaAACAogktAABA0YQWAACgaEILAABQNKEFAAAomtACAAAUTWgBKNSll16aFlxwwa+9nC233DIdfPDBaVbWp0+fdMYZZzT7/N577506deqUHzfccEMq3X333Vdb35133rm9VwegeEILQKF+9KMfpeeff769V2OW8e1vfzu9+eabaYcddmjvVUkHHXRQWm+99VK3bt3S2muvPcXzm2yySV7XH/7wh+2yfgCzGqEFoFBzzz136tmzZ3uvxiwjAsLiiy+ef5Zg3333zcGzKV27ds3rGvsYgGkTWgBmkltuuSU395o0aVL+/fHHH8/Ng4488sjaPD/96U/Tnnvu2WTzsGOPPTZftf/rX/+am0t179497b777mnChAm1eT755JO01157pfnmmy8tscQS6dRTT23VOv75z39OK664YpprrrnSYostln7wgx80aGZ24IEH5ke89yKLLJKOPvroVKlUavNMnDgx/eY3v0lLLrlkmnfeedNGG22Um0LVe+CBB9Lmm2+eC+y9e/fOtRKx3lXvvPNO2nHHHfPzyy67bLriiivS9HjllVfy9r3mmmtq77fBBhvk2qtHHnkkrb/++nk7Rc3Mu+++2+xyPvzww9S/f/+06KKL5mXE9rnkkkum+t5nnnlmGjhwYFpuueWma90BaEhoAZhJouAcAeM///lP/n3EiBG54F9fqI9pEQ6a89JLL+U+GxGA4hHzDx06tPb8YYcdlqfdeOON6Z///Gde9mOPPdai9Rs1alQOEL///e/T6NGj0+23356++c1vNpjnsssuS126dEkPP/xw+tOf/pROO+20dOGFF9aej0Dz4IMPpuHDh6f//ve/abfddsvNtl544YXa+sfv3//+9/PzV199dQ4x8br6/iljx45N9957b/rb3/6Wg1QEmel1zDHHpP/7v//L2yHW/cc//nE6/PDD8/r/61//Si+++GL63e9+1+zrI5g988wz6bbbbkvPPvtsGjZsWN5vAMxEFQBmmnXXXbdyyimn5P/vvPPOlRNOOKHStWvXyoQJEyqvv/56VFlUnn/++fz8JZdcUunevXvttcccc0xlnnnmqYwfP7427bDDDqtstNFG+f+xjFjWNddcU3v+/fffr8w999yVQYMGTXPd/v73v1cWWGCBBsuvt8UWW1RWXXXVyuTJk2vTjjjiiDwtvPrqq5XOnTtX3njjjQav23rrrSuDBw/O/99vv/0q+++/f4Pn//Wvf1XmmGOOymeffVYZPXp03gYPP/xw7flnn302Tzv99NObXfcBAwZUdtpppwbTxowZk1934YUX1qZdddVVedrdd99dmzZkyJDKyiuv3Oyyd9xxx8o+++xTmR6xz9Zaa61WrTcAU1LTAjATbbHFFrn2I5pUxVX+XXfdNa266qq5tiFqSHr16pWbHzUnmoXNP//8td+jCVi1FiJqMb744ovcJKtqoYUWSiuvvHKL1m3bbbdNyyyzTG7S9JOf/CQ3y/r0008bzPONb3wjN7mq2njjjXMtSjR5e/LJJ/PPlVZaKTe7qj7ic8W6hSeeeCI3e6t/fvvtt0+TJ09OY8aMyTUZURsSndirVlllla81itqaa65Z+380eQtrrLFGg2lTq8k54IADcs1RNM2LGpp///vfteeiaVn1c6y22mrTvY4ATF2XaTwPQBuKpl8XX3xxLrzPOeecuUAe0yLIRN+JCDVTE6+pFwEiCvxtIcJQNKGKdYmmZdFkKvrRRP+PloSGjz/+OHXu3Dk9+uij+We9KNRX5/n5z3+em6E1tvTSS8+Q0dLqt1k1cDWeNrVtGMHk1VdfTf/4xz/SnXfembbeeuvcX+WPf/xjbhr32WefTbFMANqWmhaAdujXcvrpp9cCSjW0xGNq/VmmZfnll88F54ceeqg2LYJQa4JA1HJss8026eSTT859TqIz+z333FN7vn7ZYeTIkblmKELKOuusk2taotZihRVWaPCIkbLCuuuum/uHNH4+HjGiVoS4r776Kgefquhf89FHH6X2FJ3wBwwYkC6//PJ8v5jzzz8/T48BB6rrH7VUAMwYaloAZqIePXrk5krR9Orss8/O06Kze9yv48svv5xmTcvURG3GfvvtlzvjL7zwwnm45KOOOirNMUfLrk9Fx/6XX345r0+sZ9QsRA1EffOy1157LR166KG5tiRqZc4666zaCGXRLCxG2YrRy2JahJgYlevuu+/On7lfv37piCOOyE3MouN9jJQWI4xFiIkajNge8V7RUT+WHx3eI0TFjTHbc2jgqHGK5mrR/CtGR4vtFE36piY690et0ltvvZVrYmKkuNC3b98czgBoHaEFYCaLYBKF2GqtSvQ7icLs22+/3eL+J8055ZRTcmE5hgyO5l6//vWv07hx41r02mgCdt111+UmYZ9//nmuQbnqqqsa9NWIQBKF8A033DDXrgwaNCjtv//+tedjKOA//OEP+X3feOONPMpWhJTvfve7+fkIL9HHJcJU1DpF356oIaq/n0ksIwJNbKfobxLLixG82kuEjMGDB+dapwhPsd7Rx2VqYv3jc1ZFgAvRbyf6JQHQOp2iN34rXwNABxQhKzqjR/Oo0sQwydGELIaDnpXMqusNMLPp0wLAbCGabUUTufhZuhg5LtZ1em+cCdDRqGkB6CCioBwjYTUnmpXNqjUt0fl//PjxtWGgo69MyaKJXTSfCxFeqgMVANA0oQWgg6gvKDclRsACgBIJLQAAQNH0aQEAAIomtAAAAEUTWgAAgKIJLQAAQNGEFgAAoGhCCwAAUDShBQAASCX7/wBD/y436HTvogAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import fsspec\n", "import xarray as xr\n", @@ -110,13 +145,13 @@ "\n", "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", "plt.figure(figsize=(10, 5))\n", - "example_netcdf[\"cloud_volume_fraction_in_atmosphere_layer\"].plot()" + "example_netcdf[\"wind_speed\"].plot()" ] } ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -130,7 +165,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb index 812ea10..5ffd63a 100644 --- a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb +++ b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -42,25 +42,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "2132d393", "metadata": {}, "outputs": [], "source": [ "collections = [\"met-office-global-deterministic-whole-atmosphere\"]\n", "asset_id = \"CAPE_most_unstable_below_500hPa\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T12:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2025-12-12T12:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0081H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0054H00M\"]},\n", + " ],\n", "}" ] }, @@ -74,15 +74,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "edb71afa", "metadata": {}, "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -99,10 +97,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "fbc72d2a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_61335/1359586566.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", + "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", + "To opt-in to future behavior, set `decode_timedelta=False`.\n", + " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAAHWCAYAAAAcgJqiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfQecJFW5/VfVaXry5rxLlIwkQQTRp5hFMKKi+AyoqH8FA8p7RkRQBFR4CsIz4UOMiBgxoYgkAVEUJEgOyy4bZndSp6r/73z33upbt6u6q3t6Zrpn7uHXzHZ3deW69577ne98ju/7PllYWFhYWFhYWFhYWFjMGtzZ27SFhYWFhYWFhYWFhYUFYImZhYWFhYWFhYWFhYXFLMMSMwsLCwsLCwsLCwsLi1mGJWYWFhYWFhYWFhYWFhazDEvMLCwsLCwsLCwsLCwsZhmWmFlYWFhYWFhYWFhYWMwyLDGzsLCwsLCwsLCwsLCYZVhiZmFhYWFhYWFhYWFhMcuwxMzCwsLCwsLCwsLCwmKWYYmZRdfiL3/5Cz3jGc+gvr4+chyHbrvtttneJQsieuCBB/h6fPOb32zb+fjkJz/J65wLePazn80vi/mB0dFRetvb3kbLly/ne/ikk06a7V2a8/j2t79Nu+++O2UyGRoeHp7t3bGwsLBIDEvMLLoSpVKJXv3qV9PmzZvpC1/4AnfE69ato7mM73znO/TFL35xtndj3uB3v/sdveUtb6GnPOUp1NvbSzvttBMPsB9//HGay/ja175Ge+yxB/X09NCuu+5K559/fuyy3/ve9+jQQw/lyREMgDFR8vvf/z7RdgqFAn34wx+mlStXUj6fp0MOOYR+85vfRC573XXX0eGHH87XAQTnve99LxOepHj00UfpNa95De/j4OAgHX300XTfffdN+fiT4IwzzuBJihNPPJHbqTe+8Y00l3HHHXfwRAomaGYD//rXv+g///M/aeedd6aLL76YLrroolnZDwsLC4uW4FtYdCHuvPNOH7fvxRdf7M8XvOQlL/HXrVvndzo8z/MnJib8crnctnV+4hOf4Os9kzjwwAP9HXfc0T/llFP4Pjv11FP9gYEBf9myZf7jjz/e8nqf9axn8asTceGFF/J5fuUrX+lfdNFF/hvf+EZ+/9nPfjbymjiO47/61a/m351//vn+O97xDv+SSy5JtK3Xvva1fjqd9j/4wQ/6X/3qV/1DDz2U3//pT38KLffXv/7V7+np8ffff3//ggsu8P/7v//bz+Vy/gtf+MJE29m+fbu/6667+kuXLvU/97nP+eeee66/Zs0af/Xq1f6TTz7Z8vEnxSGHHOIfdthh/nzBD37wAz5nV1999axsH/cItn/PPffMyvYtLCwspgJLzCy6En/84x+588UgoF0YHR31OxmdTsxKpZJfKBSmZd2zQcxwj1UqlZrPsB8gB3ONmI2Pj/uLFi3i+0zHcccd5/f19fmbN28OPrv++uuZlIHktIIbb7yRz+PnP//54DOQ+Z133pkJmo4XvehF/ooVK/yRkZHgMxBl/P6qq65quC2QMSx70003hSZ2UqkUk+1Wjr8ZgNyb6+zU56wTiVmz7fKnPvUp3v7GjRvbsn0LCwuLmYQlZhZdhze96U3c8eovfaD7u9/9zj/88MP93t5ef2hoyH/Zy17m33HHHZED/X/+85/+6173On94eNjfb7/9gu+//e1v+wcccADP1C9YsMA/9thj/YceeqhmX2644QYeOOL32N4+++zjf/GLXwy+/9vf/sb7i8EZZvkRbXnzm99cM1O/bds2/33vex8Tr2w26y9ZssQ/8sgj/VtuuYW/x/GZx9wMScOyGBxiIPvUpz6V92WPPfbwf/SjH9Usu2XLFt4XRBSwLxgsI2Kgk5T7778/GFh/4Qtf8HfaaSffdV2ObqjvvvGNb4TWm+S6AIiYHHTQQbyPWC+iGLNBzOKwcOFC/xWveEWiZREJwjHgPnra057mX3PNNTXEDIPsj33sY3y/DQ4O8vnBefr9738fikLiGuKcmQChwe/e/va3B5+dd955/p577unn83m+NxH9u/TSS+vu689//nM+x/ir47rrruPP8Uwo4HkAWcI9gX1DVCoODz74IBMhHR/60IeYGOlkCzjjjDN4W+pZw/eIomF5HThn/f39/lvf+tbQ59gOtqcD5x0vE89//vP53m7l+JMAxMR8ZvHC8wE88cQT/lve8haO5OFe33ffff1vfvOboXXUe87U8SK6hzYK68B1/slPfhL5TJ900klB+7Jq1SqOBirykuQeVLjssst4OZx/RJD33nvvoM3DMx91zElJ2lTbZRyfuW2s08LCwqJbkG5NAGlhMXt4xzveQatWreLcDeSaPO1pT6Nly5bxd7/97W/pRS96EecDIc9hYmKCc0QOO+wwuvXWW2mHHXYIrQt5asgjwbowUQF85jOfoY997GOck4Kcoo0bN/I6jjjiCPrrX/8aJJMjH+alL30prVixgt73vvdx7sudd95JP/vZz/i9Wga5LG9+85v5+3/+85+c84C/N9xwQ2Bo8c53vpN++MMf0nve8x7ac889adOmTXTttdfy+g444AD67//+bxoZGaFHHnmEc+qA/v7+ps7bPffcQ8ceeyxv601vehN94xvf4OP/1a9+Rc973vN4mfHxcXrWs57FOTk4z2vXruX8nlNPPZVzq8wcN6xjcnKS3v72t1Mul6OFCxeS53k12056XW6//XZ6/vOfT0uWLOHlyuUyfeITnwiubyNg//FqhFQqRQsWLKBmgbwmvBYvXtxwWeQq4Rwi7wqGD7gPXvayl/E5WrNmTbDctm3b6H//93/pda97HZ1wwgm0fft2/u0LXvACuummm2i//fbj++QNb3gDnXXWWZxXiXUo/PSnP+V14HsAeTV4Ll71qlfxfYjr8/e//51uvPFGev3rXx+7v7i3gYMOOij0+YEHHkiu6/L3ahvIv8NxnXfeeXT66afz/Yr7G/cp7mEdxx9/PP3xj38Mni+1LeTuId9Lx8EHH8x/YeSDc4T7AfeAuU/ZbJbPi9pnBeSG4f79wx/+wO9xL+LYkStoAtv69a9/zed7YGCgqeNPAuwLcspOPvlkWr16NX3gAx/gz3Fv4/6HAcy9997L52vHHXekH/zgB5wbtXXr1qD9qPecoQ3B84O28CMf+Qjn+X3/+9+nY445hn70ox/Ry1/+cv4t7tdnPvOZ3JbgPKA9efLJJ+nKK6/k9gT3cpJ7ULVnWOa5z30ufe5zn+PPsN4///nPvM9oI3Hv4b74r//6Lz4H6lw0g1bbZbRPl1xyCf34xz+mCy64gNvIfffdt6ltW1hYWMwqZpsZWli0AjUbbUoZMbuKGehNmzaFolaYZT7++ONrZmYxK6vjgQce4Jn8z3zmM6HPb7/9dp65V58jfwpRMMzQYjZaByIIujwqasYZ20b0RAERpHe/+93TJmVUM8l6hAzRCEQ9kLuj8OlPf5plW3fffXfo9x/5yEf4vKjZaTWTj9n1DRs2hJaNipglvS7HHHMMz4brUQ9E1bDtJM2Vuq6NXq2eR5wf/B7Rv3ooFot8vDhuXXaGvCUzwot7yZSm4Z5CdBURFYW77rqLf4scGh2Iou2www7BfXf00Uf7e+21V9PHhvsP5zkKiOAiJwyApA/7AdkfoiaI5nzve9/jnC98jginDhXt1YH9e85znlOzHURK9HUoWZz+rCggt2358uWhz8xzi4gQPjvttNNqfv/lL3+Zv/vXv/7V1PE3CxWt1oEIE7b9f//3f6F7BjJOnFNE0Bs9Z8997nM5Qj85ORl8hnvgGc94BufUKXz84x/ndVx++eU1+6bumaT3ICLp2Jd6+aNTkTJOtV3W12GljBYWFt0I68poMWeAiA5m2jHrrEcUMGOKiNAvfvGLmt8geqTj8ssv51l2zMpiVlm9EA3ADO7VV1/Ny2GG9v777+dIiGnHrNu6w21OATPeWNfTn/50fo9IkQLWgYjGY489RtMFuN+pWXQA0QpEM3As69ev588wa4/ZdUST9OM/8sgjqVKp0DXXXBNa5ytf+UqOALTjumD9V111Fc/4I1KngNl2zNwnAY4Hs/qNXpdeeik1Cxz7pz71Kb43nvOc59Rd9uabb6YNGzbw/YXojgLOwdDQUE30Ti2Dew8RMRUl0u8RRJjgXKjvO5b95S9/Sccdd1xw3+FeQiQE5SSaAaI4+r7qgEMhvgeUGyKiZIiyfPCDH+Rz8vOf/5yjvYig6UD0So+WqW0h8hO1HfW9/jduWfW9ArajomVJfm9uK8nxtwO459GmIPqkAGt35TaJCGO95wzXHe6XOO+IbqnnFNcEzwqi44h6A4iePfWpTw09+wrqnkl6D+LeGhsbi3XPbBdabZctLCwsuh1WymgxZ/Dggw/y3912263mOwzuMejHoAKSHwVIiHRgQIPBHTr7KGDwBPz73//mv3vvvXfdfcIAB4P57373uzxQ1wFpogIkapAXQr4F6dSLX/xiJhmQ/rULu+yyS00tMAz2AVhbY5CD44f0K45smcdgnr+pXBcMMDH4jTr3+G0UsTaB89XOc6ZbcGNgi+sNMpL0mM1jwf0TtX/f+ta36JxzzuHtoBRE3PnFPQHpG9aP8hAg0lhet2CHBT2ko5Dq4ZpDGgoJI2Rv9YBJhGKxGPkdJhXUJIP6i2OBXFIBcj9IZSE9feihh0LkOmpbsMuP2o6+DfU3bll94iNuO/V+b24ryfG3A7h+uDdwznQoyZ+6f+LuA0gg0U5B2odX3LMKmSPaKhC7RkhyD77rXe9iuSRkyVg37i2QpRe+8IXUTrTaLltYWFh0Oywxs5jXMAdbmJUFeUEUArPIJprN68KgBTlaH/rQhzhPA7/HNjCQ0XOxsBwiVciNQN7L5z//ec7hwEwxBkEzBewTolinnHJK5PeKyCm0c7DaDqgcsEbAtW0U6VN4+OGHeQCKSBfIIfKR2on/+7//40gaIoW4T5YuXcr7d+aZZwYTAAqvfe1rOWcJUTPk8OC3iGropBeD+7vuuotzHZE/iIjJV77yFfr4xz/OkwRxQK4kopYY0GMfFEBWEIlBxBVA1BMRJERPzGdE/W7Lli11iRm2pSI6OlSNOLUtLKd/bi6rlosD9hXRsrjfm9tKcvyd0k4BiFbGRZNBytt9D+JzRL8xmYI2Ei/kv2HCAMSuW9plCwsLi06FJWYWcwaqwDQGpSYwC4wkdz1aFgUUJcXMLGZsTRJiLgf84x//YJlfFDA4hUkCBsMYFOuzv1HAwBAz0nhhcIgkfSS8K2JmRruahZpl19dz9913819lvoHjArGJO6bpvC4Y7GNAFnV+on4bhbPPPrsu+dD3KUkBXAzIQcoQccG1VEQhyfoBHIsue0QkAhJYSMsUYPqCKBpIuH5tEHmKIhoveclLmJhBvgjThaii4zifiF7hBWLxile8gu8lmLgoCZ8JZfAAGSYitgp4j4Gx+h5RHvwbUkmsW5f/KSluI9KL30N+BtMJ3QAEcl59XxChTKfTvA+YvFDAdkEQ9M+igH3dZ599+PcmsC2cd0W0kx5/O4D7A5FprFePmuF5UN/Xg4q6IlLU6FnFM412qh6auQdxvY866ih+Yf/RXn31q1/lyF1UVL4dSNouW1hYWHQ7bI6ZxZwBBs0YPGHmFs5mChiUIAqlD7bigAEsZmQxuDfzYvAeA3UApAmDBAyK9W2p5QA1s2uuxxxIY5ZelzWqmWnM0OsSLAy2zeWaAQbNiMgpYFAMBzOcM8gYAQx0r7/+ep4RN4HjRN7JdF0XnC/M/l9xxRUshVOA61vU/kx3jhnkldg3RHYQKYuTUUUBUSyQkwsvvDAkj/vmN79Zc79E3ScgDbgOUYBs8Y477uDIBn6LKJoOdY/qA2nkfmH9ukTNBAgkiB/c7HTgfW9vLxNCBRA+3Ld6lARyP5xXbEuPLuFaKsKhAAkkfg+HUgXc64i+II9OuVYiSgnigYgOpK4KcDvEBALc+3RgO/q9o7YFEqmTMxB95Gjpv2/m+KcK3FfI6/ze974XfIZnCy6DiP7AWbIe0D7A1RGEKCoaCMdCBcgY//a3v4We/SRtVdQ9aN5bIJXK9VC1VWryy7zPp4Kk7XIcEPUzo884b6ZsE+0rPptKO2thYWExJcy2+4iFRTtdGX/zm9+wS9fuu+/ObnFwY4OjGmre3HfffYmcu84880z+Du5mZ511FrvgnXLKKex0phfE/dWvfuVnMhl2XfvkJz/JNatOPvlkro+kcMQRR3BNIBQk/spXvsKug6gjptfXgfsZnBBR7wwFe+Hc95rXvIaXOeecc4J1YV/wGbbxne98x7/yyisTny/s41Oe8hSuCwSHRdREgqMbXBFxHApjY2NcJwjn8G1vexsf+9lnn837hn1U50uvr2QiypUx6XWBUyNcGdeuXcu1004//XR2hkONp5luruBuiG3ClQ71k/TXj3/844a/x/2A3x922GFcVwzXDecftah058Cvf/3rvBzcFfEbXB8sB+fCKPdIuOfBERG/QQ09E7h+L37xi9mp7n//93/9D3zgA1zj6qijjmq4z8qp8FWvehUXcYZjJt6bbnhwG8X+4f7/4Ac/yMeHWmFwzvvFL37R0JVRuSqqGmU4bjxveI8i3jpQyw/7D/dQ3I94lnCP6M9ZnCsjAIdD1CuDSyaeIdz7a9as8VeuXFnjdJj0+FX7k6RGVpQrI84f6giiphiuz/nnnx+cJ70OYr3nDA6WeH5wL+CeQbsB11BcezwvCqgxh5p2uDYnnHACO16iXtzTn/50/7bbbmvqHkT7hTYN7R3uLdQ+U7XGVJ3Dxx9/nLeF9aMuG1xoUbMtCdrRLketA8dgPkuqHqaqK6fXYTNrMFpYWFjMFCwxs5hTxAz47W9/y4NhFNeFtTMGpHEFpuMslWErjwKrICN4gVDAThuW5TquvfZa/3nPex4XWsVyGBBhkKXwyCOP+C9/+ct58AJLfAxGH3vssdCgDgNtDE5B2NR68G8QOR2jo6P+61//el7XVApMYx8x0MUxRZ0/DOROPfVUf5ddduGB4+LFi3kwBIIGS+9WiFnS6wJgYI5Cudj2bBaYjipW26zdPq6hKi6OotlRBaZhWY6BMtapCMjPfvYzHjjGbedd73oX7wcIugkMrDF4xoAd6wMpwf1lFnOOAwb4u+22W1BcHERGLwGhgME29hEFt7GdQw45JETyGxEzFMYGqYPlPX4PYhf1e1V0HPcgCBkIPZ5FZSnfiJgBDz/8MJMt3Hewo3/pS1/q33PPPS0f/09/+tPI0gBJiZk6fyg2j+cL28JEifnM1HvOgH//+99MHnEOQZJROBrH9sMf/jC0HMpUvOc97+HvsS0Uj8e1U4Xuk96DWC8IMUgu1oMJlHe84x1MxnSA1OLZVWUumi0wPZV22RIzCwuLboaD/00t5mZhYdHpQA4Z8nVgCGHR/YABCAoAQw4HmZ3FzALmOJdddhnnbUZZ8VtYWFhYWLQCm2NmYWFh0UVALhdyrpA7ZEnZ7ADGJTC7sKTMwsLCwqKdsK6MFhZdDCT5w0QhDjB+0Is6W3Qv4NSJ+mRw0IPZwfve977Z3qV5i2aLd893JCljAbOcKCt8CwsLi/kES8wsLLoYT3va02qK0eqAu9sf/vCHGd0ni+kBnBhhkQ9HvvPOO6+t9u0WFtOJJGUsUEZCle2wsLCwmK+wOWYWFl0M1LGamJiI/X7BggV04IEHzug+WVhYWOi47777+FUPhx9+eGyNPQsLC4v5AkvMLCwsLCwsLCwsLCwsZhnW/MPCwsLCwsLCwsLCwmKWYXPMDHieR4899hgNDAyQ4zizc1UsLCwsLCwsLCxigWpP27dvp5UrV5Lruh3nnlssFtu2Phh5Wanv/IAlZgZAytasWTM7V8PCwsLCwsLCwiIxHn74YVq9enVHkbId1/XT+g3xjsnNYvny5WyQY8nZ3IclZgYQKQMOpxdTmjKzcU0sLCwsLCwsLCzqoEwlupZ+EYzbOgWIlIGU3X/LOhocmHokb9t2j3Y88EFeryVmcx+WmBlQ8kWQsrRjiZmFhYWFhYWFRcfBF386Ne0EpKwdxMxifsESMwsLCwsLCwsLC4s2ouJ7VPHbsx6L+QNLzCwsLCwsLCwsLCzaCI98frVjPRbzBzbGamFhYWFhYWFhYWFhMcuwETMLCwsLCwsLCwuLNsLj/9qzHov5A0vMLCwsLCwsLCwsLNqIiu/zqx3rsZg/sFJGCwsLCwsLCwsLCwuLWYaNmFlYWFhYWFhYWFi0Edb8w6IVWGJmYWFhYWFhYWFh0WZiVrGujBZNwkoZLSwsLCwsLCwsLCwsZhk2YmZhYWFhYWFhYWHRRlgpo0UrsMTMwsLCwsLCwsLCoo2wrowWrcBKGS0sLCwsLCwsLCwsLGYZNmJmYWFhYTE/4LhEvi3WamFhMf1AS9OeAtMW8wmWmFlYWFhYzH1YUmZhYTGDqLTJlbEd67DoHnSNlLFSqdDHPvYx2nHHHSmfz9POO+9Mn/70p8nXKqLj3x//+MdpxYoVvMyRRx5J99xzz6zut4XFnB/sWlh0A2ykzMLCwsKiw9E1o6rPfe5zdMEFF9D//M//0J133snvzzrrLDr//PODZfD+vPPOowsvvJBuvPFG6uvroxe84AU0OTk5q/tuYTFnCZgd7FpM1/2mvywsLCy6DBW/fS+L+YOukTJed911dPTRR9NLXvISfr/DDjvQZZddRjfddFMQLfviF79IH/3oR3k54JJLLqFly5bRFVdcQa997Wtndf8tLLpS8qX+bQmYRafckxYWFhZdAJtjZtEKumYq8hnPeAb97ne/o7vvvpvf/+1vf6Nrr72WXvSiF/H7+++/n9avX8/yRYWhoSE65JBD6Prrr49db6FQoG3btoVeFhbzGvoA2A6GLWbrHjQnBKKiZ+2KptnInIWFhYVFB6BrImYf+chHmDTtvvvulEqlOOfsM5/5DB133HH8PUgZgAiZDrxX30XhzDPPpE996lPTvPcWFhYWXYROiVA12g+TuJnfJT2OTjhWCwuLOQWPHKqQ05b1WMwfdE3E7Pvf/z5deuml9J3vfIduvfVW+ta3vkVnn302/50KTj31VBoZGQleDz/8cNv22cLCwqKroEeO9L/TmecVl0/W7Db1KJsiWq0SLpvXZmFhMUV4fvteFvMHXRMx+9CHPsRRM5Urts8++9CDDz7IEa83velNtHz5cv78iSeeYFdGBbzfb7/9Yteby+X4ZWFhYTGvEUVGZoKgmPmM5uezARtBs7CwsLCYBXRNxGx8fJxcN7y7kDR6nui8YaMPcoY8NAVIH+HOeOihh874/lpYWFh0PJpxPpxul0QlPZyNaFUnRsjMSGIn7qOFhUUsIGNs18ti/qBrImZHHXUU55StXbuW9tprL/rrX/9K5557Lr3lLW/h7x3HoZNOOolOP/102nXXXZmooe7ZypUr6Zhjjpnt3bewmH2ogZ2NBliYZCh0mzjkN9LOTFcOWlz0bLox3dtq9njss2ph0fVoF6myxGx+oWuIGeqVgWi9613vog0bNjDhesc73sEFpRVOOeUUGhsbo7e//e20detWOvzww+lXv/oV9fT0zOq+W1h0BCwhs0hwj/iV+AhSiLQ1QzaaJRoRhDH0WTPGHq2inetvtJ5WjsuSNwsLC4s5B8dHATCLkPwRNvvPpqMp7WTsmbGwsJi/SCCfC5G1KELhuLVRuGYJnfpN1LqaWV8nIYp4TmU93XgOLCymgLJfoj/QT9i4bXBwsOPGkdf+YyX1D0xdgjy63aPD936s447TYp5HzCwsLCwsZhAqctOAnIVIUsyyahmQKoEU+RWE5hrAJBuI6HmCnIW2bUackqwz6XKNyGKrmKlonIWFxazAShktWoElZhYWFhYWAkkKOCchP82SuITkwkml+MXr8T2N6CmI72o/17afdN+TGqJUV55svRYWFhYWFjGwxMzCwiIarQy+7eC0uxEjRaz7vtX1NkJc9E2PtMUQo4bmJRYWFhbTjAq5/Jr6eizmEywxs7CwSOaQF2VKEDdotwRt7kC/lvo9kFDq2DTk+oKoV717KuJ+dFJK8jh1cqby2WbVqdLCwqIr4fsOeb7TlvVYzB9YYmZhYVEfarDZrN23HaTOPbRSALpJo4+QDFEnf0lIv0YaHTd+uUYkS89hS0TKGu1XM7DPjoWFhcW8hSVmFhbTMZiygysbPZsvSGKmEfF86NGohuuW/xb5ZW7ybUatxyR/kZutErHEpGwq+WaN5KJ2kmNuwyoN5iSs+YdFK7DEzMKiHYhwj5uzaLd0zWJuIE7WqD4zvlOEpyE509YT6cIYJbedosQ2cZTMXH8T26j5ncX8xVzuL+YxKr7Lr6mvpy27Y9ElsMTMwsJiSmg4iLXRw9nDVAb+rQwWG+Ugxv6sev9EkjQzQqaTryhS1Ibct6j90EnklGqpabLNRATQPkMWFhYW8wKWmFlYWDSHGBmZOZC1znizgCjiEkMYlPW8WCSKHKSqxEGZaTRL1kx5b6KfmDXPItYXUXi6xpgkivhMkeDo+xRZSy3ButU5j11PFGxExcKi6+CRQ14bXBk9siGz+QRLzCwsLFqDHCxyzk8j2Bn/6UW9HKUIQsRkQEoD8W/1niLIkJMWn/H/fZ+oUqmStSRFopux4g8tHh6MhIhaXMRMvVf3JnYvgrA1jTr3bzNRr7r11SwsLOYUbI6ZRSuwxMyic2AH710NM1eo6Twdi6mc/KZIh7hWEYYVisgA6lqCjDkgb+JzH/+WP3HwnecLgtYsUVPb5BU13veaXLS4vM56RhytRp4a/S5JpCyJ2UnjlTS1TYsOhe3rLCwsYmCJmUXnwEzkV7COVZ0NbSBsydksX4emI1IgVAZRcKSUUH3O6wD58ngbXrHIH6f6+8X3iKhV8Mz65EhiBoLWNElLgEhiY0oZ49oPtWwcNKfImmUbrCMkCY3ZBp8P4zlpOHExn0yF5hPsdZwXaJ/5h53gnE+wxMyis6DJkyLzQxRsx9YZSBDpCK6jnSWeeQQW8wbZ0OV+NVJUSagCYqYZXlQqVRJSKnNUzUmnyclkyC+VwsSkmQmVuGUi7plAnqjLG+tFxZKWseA8unDdtJo2KK7QerB67I883zEFsdX5tjllFhbzIcds6sWh27EOi+6BJWYWHYuGTn/VBWdkfyxaj2qEyJlYyJ7OGYIeqQlIRQJ5nyJATqp6TXWSx+ste0zQ3J6ckDxqcsZqFGkK17wOiQqtWydpDchXsDyORT831RU1lz9Zh6DVbt4geWp7tSuo2V8LCwsLi7kPS8wsojEd0Y2IdTrpDP/1yyW5SHVmflr3xWLqiDOViECkPExfj72+rV+DKIv6RhI4J4bQqMW154+fTSZoWREhU3yDc8vEPyujo+TmekLbnw4pYw2046pG0ipVMxMz2qY5PoaiuPXIkb6tuOUa3L+JomOWjFlYzCnAkbFiXRktmoQlZhbRaHWgnHC2OvhIErLgfdRgzg7aux515Yz2+k715Nb/LEZSp+c7iZ940bW65HLILeOoGSZT5PccFUu55GQzROVya5b67YTuxiglmXH29KHcNBMxdvuh9ik4hy0Q0LhrYmFhMWdgc8wsWsHUsxItLDpocMGDxikWlrVo8dw3cJuLisxYTBFKltjA1CKWgIRWpbkr4t8RUR58BoIG+aKTSQtCxpswcr46CGxEIo8n0jik3m8V0dTruOnn25SEJn1ZWHQTbJvdVXj00UfpDW94Ay1atIjy+Tzts88+dPPNNwff+75PH//4x2nFihX8/ZFHHkn33HNPaB2bN2+m4447jgYHB2l4eJje+ta30ujoaGiZv//97/TMZz6Tenp6aM2aNXTWWWfN2DHOZdgRksWcAkfg7MBnhk52gwFmXJ2puM8spn49GhEAnaDFLZ/k2jBRwW9AdlAPrflC0jMKnVzV20+1HMhcuRSQOrG4lEeaL/U7C4u5Cnt/tyxlbNcrKbZs2UKHHXYYZTIZ+uUvf0l33HEHnXPOObRgwYJgGRCo8847jy688EK68cYbqa+vj17wghfQ5ORksAxI2T//+U/6zW9+Qz/72c/ommuuobe//e3B99u2baPnP//5tG7dOrrlllvo85//PH3yk5+kiy66qLWTZRHAShkt5hTcbLY6mLKdyYyhJhJRj5RZzBymarhhuh/qkWlfRtgcR/y7Xh5hp4BJl3pTkccRkYdmRMR0J0j9cwsLC4s4VHyHX1NFM+v43Oc+x9Grb3zjG8FnO+64Yyha9sUvfpE++tGP0tFHH82fXXLJJbRs2TK64oor6LWvfS3deeed9Ktf/Yr+8pe/0EEHHcTLnH/++fTiF7+Yzj77bFq5ciVdeumlVCwW6etf/zpls1naa6+96LbbbqNzzz03ROAsmocdNVnMKbDMSsqxLGYpEpH0dxadCWUVn0oFrxDRdlwx+QG7fHZmLIt/x+WIdjCCHNckpMtKES0sLGYRiFLpr0KhULPMlVdeyWTq1a9+NS1dupT2339/uvjii4Pv77//flq/fj3LFxWGhobokEMOoeuvv57f4y/ki4qUAVjedV2OsKlljjjiCCZlCoi63XXXXRy1s2gdlphZWFi0BZFW4A0iL12PKFlbN8I4hpr6YPpf+VLSPlVM2jTy6RYoMhmXV2dhYWHRCuDI2K4XgEgYSJR6nXnmmTXbvO++++iCCy6gXXfdla666io68cQT6b3vfS9961vf4u9BygBEyHTgvfoOf0HqdKTTaVq4cGFomah16NuwaA1WymjR+ZBOfpAdYTCIqJhFZyLSYEFBd2Tsdov8uSZrMwono36XSc500qKiaEGErNvPgTXlsLCwaDM83+XX1Ncj2t6HH36YzTgUcrlc7bKex5GuM844g98jYvaPf/yD88ne9KY3TXlfLKYfXTzFazHnoMunZH0z/rc2M8+W3fJ7tcy8RruiNFNdj15PKi7XSJc8dttAvl5krJsjZToM+3gVQdIjSarIdFCcuQvliyb0Y7GwsLDoVICU6a8oYganxT333DP02R577EEPPfQQ/3v58uX894knnggtg/fqO/zdsGFD6PtyucxOjfoyUevQt2HRGubIiMJiTkC5oWmyKNMVDWQsGBB2qXSqbVCyM6NOU0uIkh4mleg1IePja6jc7ToVcc573R5pSXJccfbvmiuhHhHtCkITddxyEqhrjsHCwoLmu5QxCeDIiDwvHXfffTe7JyojEBCn3/3ud8H3yFdD7tihhx7K7/F369at7Lao8Pvf/56jcchFU8vAqbFUqo7D4OC42267hRwgLZpHB4+OLCxqDSYCwjbfSZkpH2wHOQuvNDQgb2n9ShoXR1w6iZw1myc2W4Ss1XPWiISZy9WLdiJ6La3ku4KUGvsYFM+2hMzCwmIa4WnOjFN5NdPKnnzyyXTDDTewlPHee++l73znO2xh/+53v5u/dxyHTjrpJDr99NPZKOT222+n448/np0WjznmmCDC9sIXvpBOOOEEuummm+jPf/4zvec972HHRiwHvP71r2fjD9Q3g63+9773PfrSl75E73//+6flXM4n2Bwzi+5BNwwCZxJavhYPmlvJ22r0G2kvHsjXoqSISgIXrNJpSCSwzIwbLZjH2gzJ6YR7L27/GxWXTnq+650PbVtesUsIWczkQI31vYWFhcUcwdOe9jT68Y9/TKeeeiqddtppHCGDPT7qkimccsopNDY2xrb2iIwdfvjhbI+PQtEKsMMHGXvuc5/LboyvfOUrufaZAsxHfv3rXzPhO/DAA2nx4sVctNpa5U8djo+iBhahkC5uuGfT0ZR2bA6TRZcgbpDeTpMNU8amk7Q418UIkwxlEDJr+WbmoDwucmQalUy3YUkM8QpyoCK27eZER8oRLLN2n7xesYQsoqC0LjMNtmmLKFtYWHQgyn6J/kA/oZGRkZApRqeMIy+49WmU7596/GNitEwnHvCXjjtOi+mBjZhZWMwlREVI2jWwZjlblZxFDfoDV8aIiIQiGPrv+N8zleLTzHkwI4Lqb1Jy1gqJM0mZIrJlKSmVpjdKRqjnSIlCz64wxcnIZh3SX5br1TnBGnnTc8g8WZes690zdcylY7GwsOh4VHyXX+1Yj8X8gSVmFhbdjBgzBl2uFRChNg1MQ2YsvO5knUbIbl3uUzv3S4eeExdEkiIiRNpCte6giqDohCzpfhryzrjthNYddx4cl1yQLc0tMdXfz//2JgsBKROLOkzIgm2pemPmuQjtkh7BhPHOHCUvlpRZWFhYWHQ4LDGzsOhGaIN+vXZYEEUxIlnVwXkTTnRRREEjHGq7kXXL4ohJxD61m5ypqFIsGm0HkcGyRziDonZeWpIf6QjaDDlL8r35NwIoE+FmswFJ8yYmqiUlOOoorqcqJxGce3le65Uw4D/WmNDCwsKirfAIxh1OW9ZjMX9giZmFRScgLroSJb/Tc4f0gXUUuVHGIPo6k9ZvMsmVKekzC0pH5W7F1fzS96PdEb0WHTvdfB6WVXIl4pz5xaIwu2BUAnKktmPKCTnShmVkmQedNMVFrBpByT1DhdVxXQuTsW6ZSjIasbL6bowG0bOwsLCwaA1WymjRCiwxs7CYbUTlY+kSQUlwIo03Gg2465CARK6IuvwvJgIWImdR+9TIbIOPTRmDzFAekDyfIDZKrogoVBCR0kmQBvU5R6sk6RXkqFps2cd6JPgMY50ga9ieVpdPLFDNH+P1q9wubT+xPP9e237wc0Wg9Jy0gFRpLppJIV04m4bN37KwsLCwsJgyuiqj8NFHH6U3vOENtGjRIsrn87TPPvvQzTffHHwPg0nYdaLyOb4/8sgj6Z577pnVfbawiEUE2dHlfWYkKmqQrWRrLdUaq5dzZdb1SpJfFbWMIpRmtC0uktYOJFmXLGbORMcw+mA5oJQJxv4cBhzy5RUmwwTJKGLMkUksWyqHJIU4L25vb0C+TFKm8tzUNY6LfEYdv34vBOc/7ho2mz8XeUI6MC+tmbp0FhYWjZ8n/a9FRxaYtuh+dE3EbMuWLVzR/D/+4z/ol7/8JS1ZsoRJl15h/KyzzuI6C9/61re4dsPHPvYxesELXkB33HFHqD6DhUWnRsmiFw1Hyszl4n6XGFEW+/XeG46MjbYfyBTVunRypgiBIjIcOZORnqSDfTNa00IttxrJYZQcUrOvh/MhSxYhfVSGG5A/ejgeX5AwZWFPlUh5oF8pEpXK5PbkyEmLPDa/UAiOvSpPFQTQ3I+kx9xQltiJpKodSJDnaGFh0YbC9BaR8FAc2m9Djlkb1mHRPegaYva5z32O1qxZQ9/4xjeCz0C+9GgZiuh99KMfpaOPPpo/u+SSS2jZsmV0xRVXcMXyeYNGsiIrO5pdJDTFqPmNctiTBEa5GurLN8wba3LfovYlcFOM29d6kTjzc/1eDNVDa0JSl6DAct1lGsj3kHvm5HJE5TK7IPJPEGnDOUjJ/QW5SonmNMg186RZiFqPC/IZcT6x3vHx4HdKthgQuyYHRxwtS2AoMi8w34/fwqJVGLUpm5ZFW1hYtISumU688sor6aCDDqJXv/rVtHTpUtp///3p4osvDr6///77af369SxfVECBv0MOOYSuv/762PUWCgUuBqi/uhkN5Wx2BrlrECJdMdERs5bYlDvPCCv14CVJRqwTY3Wn4u+zOJdHk0jImlxTlqM1kug1WDcKOHM0a2JSWNPD8AMSRJA1WNj7uEYuR778YkmrNyYiakzY8FcnZXhG8V6SMhA8HKvYlpBQVqNtajed1soEWFhYWDSBkDzekrIpwWuTjBHrsZg/6Jqrfd9999EFF1xAu+66K1111VV04okn0nvf+16WLQIgZQAiZDrwXn0XhTPPPJMJnHohKte1aBQdMCMVlqTNPOqccz0SVe+z0PdmdGy6IgTKWKIZsqDnNWkEKWQ5r0sczXw2RAhljlbL92tcPpu2rYDMGPlhPDjpyQl5oSzqzDlhvD8OUTpN7kB/lWg5DksYOZKGc4OBDQgavge5KwvyBpLHkkfIIXMgbhnxAtHT8gpjB0ZJ7P5bcH+cNejXw7ZJFhbT+6w1+D6qDwr93j6jieH5btteFvMHXXO1Pc+jAw44gM444wyOlr397W+nE044gS688MIprffUU0+lkZGR4PXwww/TnIuWNdOYRgxO5xxm85gSmCxESgVlhxnpxpiAwDW9j3HvpWmG2lZktC6qmLN2Lyk5Zs36Y1wllQFGiKAlvYZGDlvN5ERMDlbwLHkeuQMDwWccFcPyrjTYqGDdyDHzxOfIL8NfliA61Rw0/B4SRUgf8UI+Gn6rto33jiBy+J5z2FBDDZE0/FsagYTOqbnPKtrWTaRMoV6BbQsLi3hEGA7pBkCq7Qy94syNlEvsVPOWLSws5n6OGZwW99xzz9Bne+yxB/3oRz/ify9fvpz/PvHEE7ysAt7vt99+sevN5XL8mhPQC8kCmsV67KBdGyzXLDNXB0lddlx8bWD+UMedUX4xcwNlvtca56PVrK+OdT4TH51UGMercrCq0bvGBipRhbZrZoANkwjlYijOe1mafEiHxZ6cIFsgYIWCyD0DqZLSRCZVIFf4TL6YzElTEJY04nsFJXFUpA7L1Zy6qGLh4XMVyi3spvvbvMemm5xZ8mcxlxCTExz81Sdr9bYuogRL6NmIek4aPZf22apBhRx+TRXtWIdF96BrwiFwZLzrrrtCn9199920bt26wAgE5Ox3v/td8D3yxW688UY69NBDqSORZNY/icRH5uMEEjE1iNQiE0oWFeXoVzNYnap1tkVjRMn8Il5BJMwkDlHrazeS2OObeWhR5D5Cohi1rhrLeeN75WyoRxPNV3XxcMQxboIijkwG9cmwvXKZ3P4+se1SiU1AGFKeWF2ZQ47ab9eVy2vfY33ZTKiANaMOKTOjiXHGMMGz323PbSOjmOnAXFQBWMw/RNzHse2w+LJ+W6JP7EZI1xui29qeGYCVMlrM6YjZySefTM94xjNYyvia17yGbrrpJrrooov4BTiOQyeddBKdfvrpnIem7PJXrlxJxxxzDHWFnXOcvXOjgQQa1LJmmqBLxSIay2AWzYywJUUSpzuLtqJeNCooRj0b1yOBJTlHutQ9GVdHS62r3vq0QtSNzFLM7enfRckv9e/UsqgrBodEFIx2Fy+iVCZdjX4hn4xroPkioobPQMZAICsycsZRrFJVvohtKVt9GXVj4HcgfJA21on4tT1S2kkz3DNF0DrleC0spoIoKbiuOjDNo2Kedb39U8ubecRTcvm1sLCYu8TsaU97Gv34xz/mnLDTTjuNiRfs8Y877rhgmVNOOYXGxsY4/2zr1q10+OGH069+9avOrmHWQDIWNJT1CsNGfW7+24xcNGsoYO6zxcxAXrd6g/LEtvLThRgyZZIhJlUx9vih5yBqkB5nsa9HEjHfECHFqVv3jZerlfEGgxREvUAsx8bJyVVzxHzY5kuCxf+WlvlwZ6T+PhFpK5aC+mRipWbemax/xsQVpE5+D4KmGXiEZrEj5EgtPY+dRMp0dOI+WVh0Csw2Un0mEdVPqFqK9RCVMxyZ3mDRFHDW2yNltJhPcHweDVjo8ke4Mz6bjqa0k2nTWa4zCEoyQ2z+tk59kRoDEG3wq89+6QNPiw5HRB5URw5mDbllrGww6jgaTTyYUVojTyKWvMStW65DRcaivxamI5Agct4YXBMRURsfr+62lFZykWgsNzggyFWxKAhdIDP0w8WogxUIYqbWJSJqVVln5HFFnZ9uJ2QWFhZTe3ZbiDbXJV8z0U5McYKp7JfoD/QTNm4bHBykThtHfvSG51NP/9THkZOjJTr96b/uuOO0mOcRs65HVMOTQKJYd1m5Tl2aWLMKNkwImwPUSBYaEcekDaYd9E0LxLWrlXt1HLHWyFBkZx8n2zUiuJG126LWEeWqGJWTGbGdGolPVA6fjFQ6ji9yyWB1L23zdUKYAhnzPBExk46NXJtMN+RQNcxAAo3Jk1BumYqQmZFF/Vi0z2sMUxrBkjILi+5EOyZ3G0yezSimGvW3sJijsMRsOlBPYtgolyLmd5HRMZlbFDSw0vQjaqCqBpNcIBdGIcrlr1GjaBvM2UfMPVMzgO8ERESs1P0Z5JqZy2oISR+VA2MdJ0f5o0h5ZL2Bhy7v0fMy9FwL3pfANl/sP38Hq2klk1Tfq9pmIFmex7lmVJL1zBAVkzlmLG/s0Y5Hj6YZropRDpXmsVupkYXFPEJU1LwezLZSex/lajsjqCdRBzqpP5siKr7Lr3asx2L+wBKz6YbZcDawII/8TUI5mG58EMzqa/WPAnI2jbbaNcTQYsqIHKCLLzrz7BokKRShilvWyP1SlvWRUbYE0WedlOnPg56LpshiaF+VJT+eHVjhQ75Y8WROmYhQpRYMBXJE/j2iaUysUsL8A9tRRaZBxHK5YDsoJM0ETEXQFKS7Y2SdOjNyZh5/p94HFhYWrSFO7h31rDd6/g1lTdCfNDJimg7Uk7HPwXbMJ4e8NuSYYT0W8weWhk8H9AGkRJQ1bfBXd6MzaotEWdzX3TSkVpq9ujIvUAPORkVqpwozWhdb9DoJrK21PKldPAiX97Zu4Rwrc1QmJ+o5MO6dyHsphqjWLXytmYJEPQ+B1LdQEJJEre4Y7u/yk5vFv0GmcL9nRakKb2IiWCYAJiqUpT6eQS4ynaqVMWrPvlkeoS4Ra2b23MLCojugt1VxJEotl2RdwT+lGkBOPtW8kq6zDQjaX9tuWViEYCNmMyTpqltXpB6Bi4JZGFL9jmf502JAqQ3manLKfE/YgEvC1mhbZkMdm9cS8Z5zo1qV23UbCZkp1IscdSrUvagCVPK+MPPJamqRRUlv9GdLf4aaNEeJNCdxhMwXhiD8fnycfEnMBDEUcsbK1q3kDgyICQ9ZOBr2+f6EtM8HsFnknslnjaNvAGSNgHJjVM8gtleJyB005aHdcs3nMux16GzY61NzLgLFjCHbri42sznLofZ3jl4vK2W0aAWWmE034gaLMQ1RXdOEqJkvM2cH9cy0dSsCpkfl3GyqOvBM0iCa5glmDlsjp7gpDij1HCA9t2deSybnQiemW/2HJiciyJYueVTXPia3TF9/6DeGJFRtJ1z3R0xaoHg0SxgRgZaujWaxauXYGBSHlgWpA8kiooQqsoa6ZkpKyYMjJV3Unx29tEBE0fdGbclcuCcsLKYKG4GpPRcJJn9DZmDig/bei6bxiCYvr1lujrRlnu/wqx3rsZg/sMRsOqEPpsyZ/ZiGx8yNMb4MLRdsJq6BU7PzgTOcmjmrrg8D0bp1sAzSVVsDyvi9coqLMCAJNO5NEqqqs1313M1rUjaXEGP+EXfvxZpdRBnr6PJE9YxEGajUvBe29W5fL9EEZJjh/C+VZwbCxtGwcrkqs3QcchAZgzMjQmZFESljOaSqTIL14BlBgWod5XJY7mmQsboz2nNoMNMVsOe6M2GfgzDi1C6zLJevkWvH7YuFxTyEJWbThXqzTnUanhAp0zqZGolX1AyXSezgHodBo3Rv1H/vZtKNHd10l0e1H4gmaNErkDLOXTMiEoHzo7ZfgZtdUNvJazpalliCOVOwA4GpoVEkKLRo1UQkuC/0e19Pbje3of/V1q8XpQ7WL9fpjY5W3SGxOAhWLieIFwhYELlTBaPDeXAsc+yRxh8gZWyjLx0bOdqNyBlcHDUS5pfCeWYxeXPB+bGRMgsLizgYEuhEE1uzNHE9F1UwFXL51Y71WERj69at9LWvfY3uvPNOfr/XXnvRW97yFq4j162wV3umpRRJyIgZlYr5Ps4YxEyodfJ58Ve5zclBrf43dncVgZINNwwOPMz0oyHFIDWbFYQL6+XIQEa8FBFTzpD4N6J3+DeWU8nHDaBMS0Ak8Rfb7qjG287uTc85jIikNSqGGtjZ14k0hxLdDVKju5ea91iwTvUdZI5yMCHu73TVjREoS3dH9R5/FQlTLxA6yCDlfvO9juck7rw0em9hMd9hn4laaAqCZozEpgV1zEwCR9w5JEdVUsZ2vCxqcfPNN9POO+9MX/jCF2jz5s38Ovfcc/mzW2+9lboVNmI2nYiyt9ZnsDSYETHdLrxRYxoMWHlGzA1Hs/DdxER11l+LxAUW3ohuRcghq451arAYjgZ4o2NcXDckyQp+k2aDV9fNcVQA0YFQvSfHIX+8GlGrc3DBsXRU3a5O2Y+5As0kJ7j363TQptxX3fcNBx76sxchMxaOZfJjVXcN36ey1UEDSJQr7acluVIEK3BexO8U2Qqiztq+BQSvatdfN4Idd7/Z+9DCwqJRe1dPmTBTqNdfRknRLSwa4OSTT6aXvexldPHFF1NamnSVy2V629veRieddBJdc801XXkOLTGbKZiz9gZCMi1jcBmKAkQNxDhaJQrU6lEDV8moFIK6TdI6X4tCsSkIlofRgRwkBlEt9V4ndTwQrlBl23b+Xf1DR4RC7j+iBnjPRXUbkxuWLmqSyI4hQ52yH3MFDTpj0/4+VIi6jpOj+VuxqehcNL7fJaES7+UPAomkJGP8DIFsoUh7mGzxvY3IMIhaKG/Dh0VXdTlF6KR8sVpbqDrJYhxE3Impe94sLCzmKZISnNlsQwxjsGAiq1GaRZfAI5df7ViPRXTETCdlAP59yimn0EEHHUTdCkvMpgtRiftxSbdGVCy2IK/Z0OrERot+kSQyKpIVcnnTtgUSBtLj9vYGtt3iOxAyWXfKF99zAVzNhIMHtxhEqoYUhE4OSKu7F9GYSJLG0i+3KAhenY5BySY7FklcKS2SnT+jtEQoclZDyGR0yygDgfvfg+GGWj3X7otyXwyvW4+GMdRzwF+KfLCATEknxoCUqRwy3NM5aZUv3Rcpo9zHxMSJXsNM5Zbp5jaRpEx3orT3mYWFRYs57rGuz7Pdhxnlfabq5NwpqPgOv9qxnrmCbdu2JV52cHCw4fcPPfQQ7b777qHPH374YRoYGKB24rLLLuPoXF9fH003LDGbDkTIBuom3RrSrNiit2pMpzdYcga/uv7wjFNAyqRUUc8/8ytFGQGALXg5NGjUB7zexKSw/449NqUbFxJF8aGMzqlBrUbYMOj1C2W5nqquPG5QOi1oV6Nv837ady30SQNZkNosth5Et/TPmSjhWoq/es6kMr6pTjpEbFezymfo5EmPiOlkTLe5l5+zKYh8z06NyuQmIHvyOcDsnrTQhwFkTb6bcW9GJsUnlQXNJczV47KwaDdUP530mdH79NkwAan33mJOYXh4mBy9X42Aj9qgjkOVBn4Cxx57LL31rW+ls88+m57xjGfwZ3/+85/pQx/6EL3uda9r636/4x3voEMOOYR22mknmm5YYtZh2u7QYNT8rblO/K3UEqmQWyPLpIQBBwPSxckCSwRhqMHLq2ibWllgWqDVitKsvPlzPScGxA777cB5Tg5mtQdP1Wpigqb+DYmirKWG7bv5PLn5HvJHx7jGWuiYpwO28e8MGDbNuntoCDEOpfo6zMKpQdF1Gd0NTUwEvwlPfjA8rcafmnhWUS+sX00yqHtcmn+I31YjYIEbo/xcWOhreZhM4EoNXRYTyXrmQ16GfWYtLGJRU6sx+CI84dU1z1jUeKfLYOuY1eLqq69u2/k9++yzmcAdf/zxnFsGZDIZOvHEE+mzn/0stRMgizMFS8ymE0kakgjJY6LlYyRe+nZ9WWw6ZOFdLIpcsmIxsK+vDkIdIUmUkbRQ1EwVpNa2qUvQzP0OrMD5e0UYpQmIHOS6/X1M+NjpcWKCXEQd4PKo5xNhjNuFDbLF1BEiWMZzUmv+Ua0xFoomAyBfjuE+KiPNZnQ6MrLG3zu1+ZLSkTEgWojyYdv6/QspLiYehgbJnywIcsYTGWHZTmxeRSsDEvu8WFjMO9S0JVqbmWhypxMJUCfuUxPwfZc8323LeuYKnvWsZ7VtXdlslr70pS/RmWeeSf/+97/5Mzgy9iL9pothidlMoF7UrBEpMxrXOOLGESgM/OTyuvEHkzDdhhbr0eqRBTJJLWwcKuoc4RoZNSvHA1Q5aA1+r3cIrhF5wP9ghZ/Pi3y3YkkMbBWZrFdQ12JuImYwoUsNmaxHLBNyMlX3syRqek5ZYEsfEdEOkUEFrxoJDqK/2v3pwAgkyPXUczXERANvU0WBg3wzyIcNV9JWBx/1aiZaWFjMD+g5ukbeblPr6DR04j5ZtA1btmwJ1SHbc8896c1vfjMtXLgw8TpAxPbZZ585c1UsMZtlRA4EG8HIReF1SKMPRcAQgapxO0I0CqYe+DekXSxZlHJHxX90R0ZDVhU161ZTA00P95rL8wBXI3g8qJUD2J4cObDgnywIZ8lyKRz9sJg/MGyTayS6prOiabWvr0MvsaAmGdLae0gQdTJl1DPj50T8KHxvs8sibPTlOlU+mTL5ACAVVk6MWCeUjYg8KwlxsL/R0bJE7mSWlFnY+8LCbDuj2oZm66t2caSqU4ARjhzlTHk9cxGwsz/qqKO4GLRyUTzvvPPotNNOo5/+9Kd0xBFH1P395OQknX/++SyP3LBhA3l67jdR19Yys8RspqDPXMXMYsUStAYNa5R9uJIphnJ2zIiYMgQxzAVUdMGUi4X2xSRmLOFKoAfHMq7xW5V7Iw0UeH9UNMEOPOcv6sz2RjkrBt+ZckSO5ArDDY4sc+MtJIUhUsZW+ZoRCUpQaHmUioSJ7XsigRlRNJBELKe5MzKCXE+HCNFgjuDFRMgjnqvEZjh28GRh74n5i7j+NspUo5Fyx1zGkrMpAU14O4pDz5HqATV497vfzQYeF1xwAaXkeLBSqdC73vUu/u7222+v+3sYf/z617+mV73qVXTwwQc3NBXpFlhi1mkDzTq1yvTldJfGumRO/VySHRA2RBsCOZgs3myuW61XueMlcoELyFy8/JD3WUVAHJlzpueieX7VIn8+GBpEwXaG0YjLM5P5kHGExy/5lEKOV7Eo3BIhLwxkjhp5kvmPutyWSBVu90W9PnWvqskEnuBQ0TEuolKtZ4Z1KDMQEDvsvypKrV1nU66rk7K6BG2+3Sfz7XgtLNr9TET1q/pnUe6MUZE3+xxatAH33nsv/fCHPwxIGZBKpej9738/XXLJJQ1//7Of/Yx+8Ytf0GGHHTbt12PdunVsLDITmKcj3xlGVP2x0FvNIj/u9ybR0nNmNGtxNZALfabl3oCcKev8IAdNka8IZzv5YXzxZ1m0Wr0C+WPUS60L+5OCU5Rq8DHwxD6IqAQPgGfTvnc2oKyNozrI+Yyo+0f/mwBcRH18vGp3r16qpAOgTxDInE2W1+IFx1Auvi6fHZYxyogzm+zAMEcrnA7geSgU+KWicvw8ptNiecNJMm7muqlCq/r9MxcxnydrLCyi0ErfaLap5mdx3zWZM992dOGzD+OPdr3mIg444IAgt0zHnXfeSU996lMb/n7VqlVTrlf28Y9/nKWQkEXWwz/+8Q9as2YNzQRsxGwmkETjbdrCRhTeFYvV2t6GrPLVQDNqYBcaDMa4zwWLNo6SKafGRoPHmu1IM4XApVFKw4KBs157bS4iasYy0oTCzkxGwhwYaFFfMy8ruPcwgeBI6aK6r5TNvSJapK2Do7aakyOWhWwxMMWRxh+ulAKXRE6k+ownKvB8aDOBTO5koXae0DDNP9R1lxMnofdJMB8mMDr1GK3k2qIb0WoULG7ZqRgYNfptFzo0euTwqx3rmSv4+9//Hvz7ve99L73vfe/jyNnTn/50/uyGG26gL3/5y4ns7s855xz68Ic/TBdeeCFHtFrB9ddfT+eeey7b7T/taU9j18hnP/vZHIXL5/M0G7DEbJah58qEBpV1Gp9IqaFJphpY6jckVAkbSX0QWZeQmcto5Mw0VQiienMVCTq1ENGYy+eiVWidtO7SGNTeCxaTkxCykDovD3IkTTpC5jXZjDjfXFA9K/7ta2QOOZBK/ihJm5IpIrLGETcZhQvKUXDemjC94XtdRZcbmH0krjtkMbswypE4blrUYWxy8MjrUHL1CMJubrObBqcWXUD+65Ge6b7fmnWNtPd/V2O//fYTk5zauO+UU06pWe71r38955/VAwxDEOlC0Wc4M5pSw82bNzfcn9/85jdMym688UY2I/njH//IBiSFQoGJ2rXXXkszDUvMZhJG5MskS5GyJqNBjJQa6j+RgwT+LhSB0WRacpvK9TAqqpb4eMzfxDWyIec8LeKhcm+047ODUe20WVKWGEE9vjr3X8j+XskQpayRJj1UpwxImx/kPXoid0xF1vTImSRlyhU1iIbhPudtpquCcVmIPa7chJ5Xpp6Fus+jHZwH5242zkWNI618Xt1MWuTJJl0PCLz6fSNSlnillrzNKcyEIUeEEqHuNvXPprJP9Zwk6+1nF7R/Fd/hVzvWM1dw//33t21dr3vd6+jRRx+lM844g5YtW9ay+Uc6neYI2ZIlS9imH/LIK664gv71r3+1bV+b2p9Z2ep8RYRxQc13CRqbgFhFzKrHkpqo9TdLyszGMGoQrDfUETXQQtBrpUkTBEvK6lyvetdiviGiBln46wYNtFG6IRhkqwgu3ivSpueOaaSMJYuKrNXIJ2UERE086EYfEcY8Kv8zMSmzCE88zWBkOYqQ6deqWVIWmpxL8qME7bSQwCbeDYtOhdHOJ0kdmBLqkaRG5Kyd+5BkPMTbpo5Gu/LD5lKOWauSwyhcd911LEVMko8Wh4suuoj+8Ic/cKQMUbJnPvOZLGX86Ec/Svvuuy/NBiwxm0XU2GXryfsJpIx1G+sEs1A1pCxpIys7/tD61aBTfdeIlIVke2KwGsgi5/uANBhYGSMrczZzvp8rdZ4iykzULfWgzh2W0U1o+DthQqPq6wURM90oRH4XlUcWfK1qlanC0qSZ40SAIyV6Tuh8vq5JoLVpgQzQmX4yW4+UNUsMTVKmDJWaIXaR4PsbUTjLzLoexuRT0D402/YnJjp1pIxxfY5uWJUk+tXo80bSRpvPOedwxx130EMPPURFo+172cteVvd3u+++O02gZu8U8M53vpMjZR/4wAfYpr+/v59mG5aYzSQauRk1io7UsdpvOLhXhaPNKFsjKYLRCAYDE21QHETeNFKmtg0DC325GtMGcz/m+4C0TqcUlr0mqBk302hhX5qq16UjMLIxJgnkOTEnK2pq/aFGGUsWMSEg5Ygw8MhkmJTpZjQcGcN7/C6bIb+I5VJcDL1ai0/ug5bvxqQsYtCuR3eS5pVaxN1Amjw66QCw3e66QbumE/fWBs7tkjJaCfQcQTudCJPkjTf6XB8vRC2XxE1Zn4ROuu4o8HKdHTVj84921DGbQ+YfOu677z56+ctfzvXK9LwzR0oSUdOsHmAQAkL1mc98hvbZZ5+aHLPBwcGG+3D55Zdzbtl3v/td+sQnPkH7778/R8zwOvzwwzl3baZhiVkjtGvgm8SRsd53SRqrmohYuPGLjF4lGLyIOlHpcGSsZjV6gWtR2DokyzL20Q5G61xDrZRB+CvNJdCXA7hm780kHed0uE7GLMP3VorqGyaYch7tvoqLyOqGOMG9qUd0OVoGmaL8riTPJ+qOKdt8Xa8Os4+MtLpPuUzKgq/UteJ14mB8UTMtxl1Ur7/GLo5Mzozn3JK01iIJUcu1CzyRVL1vA0gZ6pRXr0qOzENbcYsI1Lj0tpYLbjrVNo2kYxBzoqKVsZORgx9a70zJOdsIv02ujFjPXAQcGXfccUf63e9+x39vuukm2rRpE5Ots88+u+HvX/jCF/Lf5z73uaHPQfBA7hoRO+CYY47hFzAyMkJ/+tOf6Ac/+AG99KUvJdd1G9roTwcsMYtDqw1LHCJC/LojY822zd/UQSDnkknkwSAh4veRDVrMwFnJatjmWw1Wy9XIVlQOQyiqoz0UkRE6i+YgzznMBWK7pTrJ26YVe2j5qd7n+rMSE7WKGzDgL9fEi3Pj1NZX85VOtvTltf0yO/ggwqI2FfqtX1PCgbeBwuelArn5Ho6YhQYq+jEarouxA229jqC5jCVlzQ9a4+6bdsOMUquBZDoTJmcJt40JCTzPLMnEcUx1/yyx7360sW9siZRFbb+ZCeKoyHK9STdTkWPmvhvoFlJm0RjID/v9739PixcvZhKE1+GHH05nnnkmW+n/9a9/rft71B9rB0AGkWOGXDO8/vnPf9KCBQs432w2YInZTHZ0SRtcI9+MG1fV6cfItIIBppqBj5ilj4wuxJAyXtZ1KNXfR5RJkwP5Vr6HvJFt4W3GReLMyJi5raSN/HxDo3MS12lpeQBurkeSHON3lZh8xnbc5+bEg0ncIwazQX5QsH8ROXWKlGnLiT/Rs6l190tfXt8fREEQPVNkLFhUSBjxl0kZuy9WC7SHJlVU8fYEs9o1s8GN5MTTiSTRzW6IJNTLfUkYiW0JU2jHVJs+5Zwyc38s5gzMEjdxaoo4hCXcdWqlig1EbrtlI6IG6Qk10vxgkkX/zpC6R+1jB6dSQsbYFinjHHJl1IGIlioQDXL22GOP0W677cYGIXfddVfD36PmWBIgd+y0007jbZiABBIFrUHEjjjiCDrhhBN4vbNl/AHYkXEzSd6xC7cwixRHaEzophjajL/6LrQezao7anvNzDRxYno6TU5/H+fdwC6cc2b0SKI2SI57BfsZ1TjbQUT0uW9wX0TKprRziYFew2utron5agdiBsjKpAHHJySMqbCEK4YkRJ2PKLMP85hD9f0i9jH4jVqXVlclyCuTETNRRFoYeUSWuDCPuQ4ZiMy3nC1Mx/WfThjnLNbdVnxZJf9xOTGtIOZ3iPp2xDVV+2LRfYi6v3XJbh0DoUYTeUG7FZebXJMKoT1bst9PNGYxftMsTJmw6i9q0CCy1kmujO14JcUnP/lJlvHpL5hkKECa9+53v5sWLVrERhevfOUr6YknngitA0YcL3nJSzi/aunSpfShD32Ia33pQGTpgAMOoFwuR7vssgt985vfbPr87L333vS3v/2N/33IIYfQWWedRX/+85+ZRKE2Wbvwf//3f7RtmwgqRJl/3HbbbbRx40b60Y9+RP/v//2/WSVlgI2YxYGlJdE1wdT3NRGHhDK92FyvuJmlOCtoUxLJjZhsrLR1NZN/EQyeUTCXP5DW/JDPyYFpjXtiXA5RKwOfTjKz6FRoOnzVYSWadY+JWk0rDJdOF6YbgKoLxvecmlQIN/ziu3CHHHmvG9/X5jxWI1Sqnl8wewwoSaG2bk5C1kiXuZ5g/yBDM3ODGsl2tPOS6HcWYUSR2jptUTXXr30nMsr1E581W8NsutAJ+2Ax9Xs7uL9UHmOjsUXUWIEnJ7JSNq5JpxP2tXq71xYiVOcYeBIMKRnKYVU7H046HOkTbXgHh8tmEXvttRf99re/DdXpUjj55JPp5z//OedRDQ0N0Xve8x56xStewYRIRbFAypYvX8529I8//jgdf/zxbKyBemGqFhmWAam59NJLOUfsbW97G61YsYJe8IIXJN5PWNKPjY3xv0HGkNf1zGc+k0nj9773vbadD72YtQmQVHO5VuuhtQuWmDWCHABGziBFLFt/VU1cbK1BqtZNinBUNGfYYowGmgZmWjAohikC1pHLigGsmRMX17C3YmTQIbPNs4qY3L0oWZ+INNUOwEIykLiB/0yQALN0QjYjoq8w2MDsG/ZNI2g8y+971UFllOxQzxGrg4a1/fT1hXIhhbue42skTJ73UFSPP8uESFkjyY+eP9FxCexxJRo6DRFtnjiXDVxlp2t3+J7QCL0ibBhcxhglWcxjJJHXRn7ssLFQjZtrHSmimcsYqBRUWwbCpu7TqNI5zapstNIl9cZKep+gqyKUgsGJmuA2xxNqXNbhj9dsSRlBxECsTMDc4mtf+xp95zvfoec85zn82Te+8Q3aY4896IYbbqCnP/3p9Otf/5rt60HsULR5v/32o09/+tP04Q9/mKNx2WyWLrzwQjbrOOecc3gd+P21115LX/jCF5oiZvqyiLqhoPPmzZtZVjiT5OiSSy6hz3/+83TPPffw+6c85SkcJXzjG99Is4GuHQnDJhMX7qSTTmoqRNss9MFYU8Qqphh0zEI1f9Xgu6bWTUS0xMy/iZN2hQ8s3DG4vb2U6u8nF6/BfnJAxIYHiXrzRGlZbBfra2Wg0czgyEYNas+deX+gI9VyDs3la6SkzV6DejD3RftcyF+rL0QP+N/ZDOdn8X0KIqPuJUhl9RpiKhKmSR7V8Yo/1YFIzUAigRQv0jwk5hzVROKUoYeUxqm8T/V5XYmROqakcscZAl+jbFZco2ak27MN7byFSnGIDyKjaYHqoV3PQdQkhy6dnO1cQYvOQ71rlOTe1HPO9Zxxs32JeQb0UjbB+CEgObV1SZu9h8089mA7Srpu5stpxxRZykfud01enPq8xTHZjNvlt+kFQI6nv1AQOQogGCtXrmQ54HHHHcfSROCWW26hUqlERx55ZLAsZI5r165lIw4Af5F3BVKmEyhsD6YYahl9HWoZtY6pYOHChTNKys4991w68cQT6cUvfjF9//vf5xfcHhENBNGcDXRlxOwvf/kLffWrX63RgTYK0bYKDq9HFLJtNJtUl5TFuNapRle32haNmhyQmrKrVqJkqlGT20ovXhg4z7E0C4NlrV4Zv1f64mkkWe2WG3UtkkhMYqSzNfdnOwZsCfIRxHut85XkxcnBMKPIZEzcb6IeGKNcJh/PAe45GTnzUYhZM8YI6uGZ0Sq+7yP2s+lDCw8QQscWSGZqc8KSziQH+U1ydpoJdVxUdLohzycmX7hoNogzIpjIp9s+ylLlulG/DpQZ11ybuPt0OvY7JKvyow0aZuqcddh1sYiAfp9GtTdR0ImLNhlkkrQgkoZJFhmpNdsYdliG+23N+KKqDIo0JUoSFYtYrmY9TCBjUihMN2ddwqhUOtq5C8ZBdSRqcxFr1qwJvUfdLUSxdCBXC/leMNGADPFTn/oUywP/8Y9/0Pr16zniNTw8HPoNSBi+A/BXJ2Xqe/VdvWVA3lDwOZ/Pxx4DxuRJcfnll9N04/zzz6cLLriA5Zp6YWvIQXFuwStmGl1HzEZHR3kG4OKLL6bTTz+9qRBtW5LMZaOgZoIil2li3UFY34gK6LNianvid5rsyjRMaNQ5mx2D41J6p9VEKJSLuky5FBEGapAvgoyh0ePfxFiRJ0XCfex62U+7BmHmbLwxW1hzn4UipWL2NFLCqK+nyQRyMz/KlNCw5TeIGAiWGvBDsoi8RNxLuIfM+ygtl9PlgFJyE1tqIS63KO77Zo8xFJGrFmdXf51sPigcHWv8YZpBSNkjSzTbPYBu4loiaukO9BNhvxARxzXDsRSK7LjqF7fVX1c7c0lbQRx5jns/E3mUNcRPc9C1sEgCbZI2JPMLLVKtuVi938JyRm5vGrgUOiBmExOhaFkgDY/KUdciajqhU/vU0J056jggAed/GxJKbfvBJFawfxo5MyLmnSxnbLeU8eGHHw4VTYbxhokXvehFwb8RvABRg8shIkH1CNNMAUGTTsLjjz9Oz3jGM2o+x2f4bjbQdcQMUkUkHSKMqhOzRiHaOGKGULAeDtadW4S8R5vBrxM9SypXNGecauqYRc3MB4VNDblUxEClrtGHPnNfqVBq53VEBczgozCuW8336eutKa4b+tvKwF79zoz0zJWZ3umUEpmDv5jcKz06U7N81G/1ZXQY38F+X70P7kfMCci6eUEEFrI4HvBniPI9TPiZdE0WtWfH5VpNKFiO6FlQ2Bn3lpwp1Z8Lr2REcFq4X+o9l6FIRwOXLy5DoBwv68kWlUxIPU+e2xopS/J8mN/H/AYyZWfpYvL7eshHEj0WrSCfwycqOUzW3IEBcgoFqoyNJ9/XmX5+E+bU1Cw7Q5juvMEgR6hcis4zsuhaJHGf1aFPzHIbjfsgSsauAc+2qk8aN+kmyFGDycC4fTIixzELhaNhimBqx8xmYyoPTpdZaxLGjsrRnSFiBlKmE7MkQHQMOVP33nsvPe95z6NisUhbt24NRc2Q8qNy0vAXhZ51qJQgfRkzTQjvsW+NyB8CJjONN7zhDbHnDbltIK3/9V//Ffoc5iO77rorzQa6iph997vfpVtvvZWljCaShGijgEJ2CPXGJcwCUXXDIiVQMYiSP0a6HOkNYVTRWT0HrZlEfYOUsZxpt12IxgrV6Bhm20DO0AhiQA1ihvc4ByryoeXZtESqzE5grg0oWj0vzSAiWhVsV+9Ek5CZep/LvAXOQxoaEAQjkyFv6wj5hUIw4wqpIhw8+T1v1xey123biSpioICoGAgNr1pKZjnPTN2TmMWFjC7ONr9ZRETO4jpxfSa43vlRM7ix97/2PkzK/NYjKK3cRxG/cfN5chYtYFJWGeghp1ght1gmp1gmrzdLLq4Trldfnpx0ilJ49n2fvImJzopiN5LTxn02V6BPbOllFyy6GjUkRotSaQuFJ0vlZ6Id1lQ1+jrU78y+QI944fGWE78qaqYkh1Fya1PhoyPSll/tg7ZMSAWk8oyDfkH8xsMYRCmHZDpH5ERkhJOvRa3K7N///jcbWRx44IHsrggXRXgwAKgXhhy0Qw89lN/j72c+8xnasGEDW+UDv/nNb5jY7LnnnsEyv/jFL0LbwTJqHTOFv//975GfI0etp6eHAzOIKkKqGAeM/4899li65ppr6LDDDuPPkP6EcwTCNhvoGmKGEO773vc+vvg44e3CqaeeSu9///tDETOl4w3ZbBsJ3fqsflT0TK4gkBwkIWzBDKj8bY2eWxsQciRBW09NrpqZFK9MC+CMt8s6opJyWEQekiOkTUDFI398gpejUjhaJuo6adKGpGM2LYog9tOQ+8yVyFmj4zATmBVaiT4a73XHv8jtxu1P1DohTZQOiTCC4QhYfy9HWtyBPqKJSfJHxwQRQ57YxKQg9NxRitpfahChjD7MvAHxZUnkoElC1tBJUe1zs3K7OjOsjQgZ52Todvhx0Ut5bCkZbcZxB5LHWSQ3glyneeLFy2fISzt8PSt9GfLTDrmFCjmTZVEeY2yCvPFxvl6YUQ8NwmZCFtju9mC22pVp2m4QOVCS9rnQZs6HXGDAWC4yOqaRkJpcL/59hBuplPsJUqUpGOpNHDEZ0tx8I3KUo8w4aghXI5gmIqbRB39fHV8hvzgkY9dcTpXcMnRujH3vRMyGK+MHP/hBOuqoo1i+iILNyENLpVL0ute9jmWEb33rW3nMC5MNkC3U7QKhUqqy5z//+UzAQORQVwyBDdjaQ62mpJMwxvif//kfOuWUU+gtb3kL/f73v2cSA4+HRkDtM5AeOC/uv//+dY0+br311rrrgmNkvd+DhIJ0wZMijjeAoN54441s9HHFFVfwZ0iBQtQQ+zcb6BpiBqkiGDwuqgLqLYDl4ga56qqrGoZoo4AbLUqny4Mxze47CLmr2RslbNbs9IPfBg2HGpAZA7MgYTxmVt+YEdUJUNQgL5aU1WzPJ2fXHVhK5irCpSJmGLylXPLzOXK8fvEdBuAyasgDbrku1KJqtU5OEOmba5GzKMKlIyrp2/zOXF+z2w91rFGW4vVJiEJqSIT8HZAMLAJylpI5Yh6uncOdu18oBmUVQNqxZSbvIPcROW5i8qH6GT9HIDD6sknOYRI0I8OJOAdBfThJruruj4xEu5Bv6lHBmSRkEYNE5bbIbRb2K+WSl01Rpcclt+hRarJCbskjP5smx+vhfXZxnyDPL9h341mdqbytdpCb6W5XIqIc07ot/bzMRHTeIvo6RF2XOGhqhhoyZv425Vat4rXPSEaRoFTQf1fTj2L9Ef1+sB9qlwoFjqIjIq5PAMfJGaPImnovFtfrRBpRu7jJyGBbsl9xXdl/YFJP5PeafZlQNpQ5n7kbZIyzRcweeeQRJmGbNm2iJUuW0OGHH84+C/g3AALiui4TEqTxwE3xK1/5SvB7kLif/exn7FQIwtbX10dvetObuM6YAqzyQcJgjPGlL32JVq9eTf/7v/+byCr/6KOPDsbcxxxzDE0FP/7xj9nGH9b2Bx98MH8GQgUbfxBSFMX+yEc+wsTy7LPPjl0PIokoQt0pcPwEtjY6GUq0UsehK6+8klatWkXtwvbt2+nBBx8MffbmN7+Z88hwYRDlwo132WWXhUK0+L5ejpkJRMwwq/Bs5+WUdqRVvUbQApdEFBJFEq2WZ2PKEs3GKkmibLPOjyZCjawhZ0gh6XLNctEIjstGHhImNIyIiqioGVAqkb9tVDT2PDj1xYANjWKx2HjAajTKNTpxrZbKnEBcB93CYC3u+sdd25bvl5j9BTFj6VsPoipi7sZB5EvdNyDzkwURKcN9oRt1SEli7HHVyTGsu+/TcZ9EkQx9oBJD2EyHSJSaED91q8RUlz22c38j9pWfLZb6SJJcqZA3Mcn/Tq1cRpXlC6jSk6bicIZSBZ8qOYdSkx6lCh6ltxfIKVXImSjyRAw/9+MTLCUK6uWpYzExk5LdTkS9Z7vN+66XRgmiCCq6opfO6PRzNk+jZjUuhRF5v+xOC2htvJPPCxk4ovCFQq3bp5arhXaIl5HqmyCvNaKdS69cQZUnNgTLQiHjF8V9ZLZ/URO/6vM4tU7cOQpJEoMIsBOYQAWT4mYtS23MoI8lyn6Jri7/kM3fms29mk6oceTzfvEOyvRp46oWURor0m9e/NWOO87ZxsEHH8w11kxCiEDNxz72MSZpiIJ94AMfYDlnlJdEI8zG+U4UMbvtttv4wFAbrBHA81BjLK6+QqsYGBigvffeO/QZmDxqlqnPG4VomwE3VrJ2RDW6VQkaT5AyHpBhMAZDgGKFZVkcAdDkj3G5YHEkrdWk1sApCURRH0hpycEeEn+VyQIG15w35pHPM/5p8iFzVJGxdIocfC8lWTzg5H1LIM0KkTGjpk8g/Wy+TkrHodFsYDuTv4MOWHWW1c4+VkorvqwvZTSuAdcbQ6TM98kpe+SUi0Rleb8gFwnAPTE+ESSTR9afidkHPRdCL5xek2up7+N0IYaQRd3fQY6ZGgwrcsZ2/2JyxgdZ1Z+9Vu7vOgQ/kA9rdYv4eXcdbo/SSxZTeeOTgVmL299H/kAvFYdzVBpIs9mHlyVKT+C6+hwtC6Cee6wXdecwECyWQoO7eoR1PiKYuW9gGlODFgiUut9UxFmRMTbhUfejvS4zj1YilxH9BreJuIe4kLSU+DlpNkfi/jcqT1U30ABpQSRsaFAsL4mNssfHMixPZhKWJR9jAUX6uL5kNZ8r0jLfaAOUK3UrTtQB5PGKXDE8Q4jOybZN5h2HgEkwTIhL595uAM6OqkE21fVY1OL2229nyaYJfIbvlNzRdFeEqq5RrTRwGSwDZV7HShkRKlSJgI2gqoHPNBqFaFuCPtsDUiYbLjFQ0wwxlF5a6v+DmU00hHKmx81qHahqVM3cIE06EJoh0mbXahJ9tX2NlYWp9WJ/MDvOn/nVhhk5RFllWOCJZSBxVC+1Xo141gXLbWS0UVnf6l93kqlAq2iUT9YEklgNR20j0iRG374hVdGLkesdMA8ycY8uXMCdNkfIEEEFGdNkr9xxIxdJk7I2vB8iJIVmNDnUycdIcKYF2oxsvZxJ3L/KzUwNktNrV5G/dZsYSBVlfSEV1Wi3Zbqy6kdSvL7vPChz2HWxsnmLmIApTAoZY38fje00TG7Rp/SkMGJBpMwtCQmjO1Ei54lN5G3ZSs6CYfK2j5K7cjkRappJ98mQQYA6P+2IzLSYK9hJUM+AMFQyIr/1jq9Vwq7WbU50zYGmtGsRFQEzEZhraJbvGqkKpzCIPhgTLXim0TdzJKve+tVEDdaPyWHZDmGSTeW5Iied24ZikVL9feTJHGGeiCoVgnInNdbzKp+xQRtu/jtK0hjKUQvOm+h32ABE5rEzeeR90czGQrsUUai6QzEbUsZuAkgPxu3IT4MBCdKRdGzevJnqAYo4BIIuuugiNv8D4M6Oz/Ad8Oijj9bUXLv66qupk5GImN1///2BPjUJ7rjjDq46Pt34wx/+EHqP5L4vf/nL/JoqHOi9KSVmZ9TDr8/wRwy8gvC7nuOjGQc4mVyQrMv5KEz0IH1CToocAGszVqIhN7bF+mv5T9yIuutbVMOtdQQq14S3JbfLDnswYJAW2lVLfK3ulPqrRxMSkJJqQV0jstMFg66mMMWoWaLOJeKcmQQ9MuqkJVDHbJw7apBvtzdPPqStXFAcEwiIAJXFxEKhEDhlTVXf30rOV9vRQo4jBjXpdWvI78+TUyiT/6ToNEBUQwnrrZIyM5dLs4rGOcP5x2CLv873CLfL8QmqbN/Og7jU8mVEmBWvwIVxIRXWDlNuY4G8rEuVnhQ50j8AuWY4ZO+Oe4N99Z7YwNv07r1vZkhTjJw19FmUdNOIDqnSH7PZpqg2fbr3QTd7iPhy7rWr3YAYg40kv9MnyQLjDl6PmNBsVLaCyZSqBYnfQMK8eYtcpzRgMnLY0iuXizZeM2QK5IWqFJAul4xR8cSpNGocqw2peoicyUidUuKwpBF9D++rMpMKR814HZggU7XY5iZfmTeAIyJy06DIQx7Yf//3f9MDDzzA8sOPf/zjDX+PsT6KQSPHDTXbAETKQPiQJwfcd9999K53vSv0u2c961nU9cQsKlTYTHXyrgQatnRK+CCpyISZdKs02EbOCcOR8oGSdFuUumklPeLfYCZMNlAsg9QNOaTVtpsXswCB3bhO2uR26zWGweHU2OmCBIpBtrt0MXk92SDJmCrGwJllCy6HdoPE4Dqz59xhyHNhyiPmRKSs2YFmw59GJE7XW17T2dd0kFEmEBG5aWES5wtXPlwbZciBzzHZiiiZNOhI0mHHodGycXmRs0HIoupDpZctJRocYPmvs3WUCZCadGnVCMfcr+AcaaRMTW6wSyYmi9gtExILV0S2s1lK7bO7mFhhqWKaKr1pKg+IgV5qrEypQoUyf7+fyRwP1kolnjH34qKtSc77dBKBuMEu/xWz6aiDpybNIiNGM01UpmtbmtmHkrHO6PYt2iZpr7bz1WWVLI/bXyknZmdU8YPY7SkyFVjNq75VTQIrKaD+HIAEYULH88jbuEksh/GI1ifUlAFKeF9FRsr09ZjnAe2b9h2igiLqF3Zq5O80SSNvR77n9XS2KaONmDXApZdeShdffDHXJv7kJz/JpiU777wzkywYlrz3ve+t+3sUgUbgCOu5++67+bNXv/rV9PrXv57TnwC4SzbCn/70J3ZuBIn7wQ9+wP4Y3/72t9nkBOYpXeHKCOdDJNXBJdFTuQkSxx9/PM0FoMH0ynKGWk845eiTMcCMI0MGGREEzudIHKuGWV8tE0OVO51pIBJR0Fa8lxIwtM9K6qibbbCrkpJWilldB8nBmJVSK0q5lFq7iiqLB4QBgGoQ8VezyeeBagoNqdDBi7wGg7Dqg2/kq8mGNlSbai4PHiKiHZHf1UEUcQnlb4Vy9yK+F/8wVxoMZkP5A9IMBsTLAeHA9YYcD5MHkMAgOqZkq4bssd7+xhGroGCpcU5q1jGVnLJ6Biwm6YjYDudcKFMbLVk9tcNaQWiKWr6drNkGk422yPqCf4pnCESMJ2s417WHSRVHt2HGgtyxfJb8XIbzAEHGvJ4Uk7NyX5p8NFGIiKGc2qZRsWJp7AOZKg8AdZlivXMXh3Y8y3FlN+pFhIJ7UeTvKhkuzhNHdNU5VAPUCBl1RyIuhy9OBWHRdVGzGgmeVpYE7S2nSqDvTDJ5Kdt1jjRpEbKgJqQaN2jLM/mDXHBikhU73HYpQpbScumd+m7R0bsTQcrq9IF6CofjO0J2KaNmDG1cqaThNeWEmJx29kSvlTLWB6z499lnH/43PCxgbgK89KUvZfOOJAABg31/q/jRj37E5O24445je37lj4F9OeOMM2rqtXUkMfvpT3/KB4CidTDY0BPo8O+5QsxcWcdLhcyDpOsYJ6IaGHlkgQZcSghEsi+iXREFEtXgo1EDL4lRNX8opmOQ75E/RIWSKAAMDPRTZUE/1zESy/lcdDYAcmdUodxAjpkOjiOodRRsxuc6TtXOQjMKmYuDiXqzim00rdDzw4RlcITbZ9zgICKfAYMBd+GwSBbvGyKC7X06VZWHYGa1XA4KrJvHxANhyN60SFHV0CPY6UYH1fgcNUMWzHU1ylMzo7yao5nat/SSRcKtVJJUns2V5JWfu3YYHGmOr8FzmkkHkTFslyNdaDNgNoR2CT9DdBuTJY9uoBQmWECugdXIKfNockmO88nK91SdqFTivyCVtaYv6rhmBHHEXHwYWkb/G773U5FlGEJEr1vaHS7W3ivuL6VciCGmFh0Es91JeH24HS8LYhSgkKzdUxMRbNil57WiTVJttjY5WyUzDtHoWKC+0WXBHorOyzzjUC0xfcI1grDF2edHnht9slozEOH3KtddufzKcSUfI9pALbKn9n1acnktZhSQIMKYA4WgESn79a9/zS7wf/nLXyLLWEXhnnvu4ZyxqEBREjnk6aefThdeeCFzl+9+97vB5yg2je9mA00TM2hBUVAOTLJX2kTPRbh9feSOVe1pQ/bwyiK/Ub6MqSM3aksF60MDoxpUY8Aa596oLyukhWhg46VwkGJ5S4bIHS2IBhCEC7N0lbyQA7DVNy8pJFIYnLO5gMoXgwNZSc7gY9NSRmQQVVGE2g8a+3YSlI7FNB5jzf1l5o7VyyvU3itb5PSaZURuikhGX7wnN5G7eBH520cDd0GerdRIp+5CWE0Sr4RImh4RTjzLXy+3KO439dAo0mBuS5u5Vq5kGODzBMPaVUJqjGMCMUL0EMQNtf0aEZikhDKqthE+BkmE3b2UBPNgCcUx+/IiYgdHzDJcFj2OhPmTk0TrN3BOSmbzEEuEeq7fIgZa5iAL+aTaTLnaj2rOxgxFtutELkPLxM3QywEkJgcw+88k2cxL0/MrOzFib+4T7kG0pVHLRuXcWcw+Ek4wmWSlLqGo0y4G7a8sYq+cDaMcDPmPTtwgkZQpDDy5qi2n1xdt1RW6Xl+lLxfx46o7oyJkkqTxZDHaX44ClsjJSPdKOUnh5nNE26ljYSNm9fHyl7+ci00fcsgh7KL+hje8gb72ta+xEQhqpDUCZJCot7Z48WKuV2wGipIQM5TVOuKII2o+R7kDqAO7gpjB4QS6z7lMygLpT6ESFNvFYAaDl9Bg2JQMxuR2YbDK8j9tZlyf1XV0q25lJR8xKI+WujWOTKRQcDuXFdEwzk1DYbhRogVD5GeqtUSY2KH9VzJGRMxcWV8ERG58ghtJbzR+YBqKOsjtdxRmwlFumhCatdQHBA2kk+q+SS1dLAb20LmBaEDSAh02ImbBPYCOPjy4RZQlKDiMZHN8D4kfZrTwby6lgGiSzIOULn4tHGD4bxzMc9AokmCSMC1/gf+NGj48yBHfpRb0iwgZBvsw2Ng6IqzwjYjaVO8BvT1QEaAghwyRMVhHox3Cs4cBGa4d/vbmOcLJAxRcG3WMo6NU2TIS7B9HNLV7hAdnIOQgMvhOnwzSBnHTBjOSmyQCFDXwlZIrnhxS9b1yOdFuSTOkGvlVp7VDgLZPquAvS9uovvKhI9Gp53g2oLc3wRhAltSIsb1XEaCgPIVqo4LzKqPDysBLkpmAYOnQcsZCEzLFErlLFpH/6OOyNlpt1NrNRJf3MYlXpMTe2JeQ9FBN8BnPpd4OB5EyrquaFhNIjkMufof18UIYS4noGks2oQDqYPgwb2uDo2I71tGJgHuiwrHHHst+Ftdddx3tuuuudNRRRzX8PSJan/nMZ7iWcasAobv33ntphx12CH1+7bXX0k477URdQcxgQX/zzTfP2g7PGFCwEdbRGOgMyaR/RMpk6F/JZ+rmyBgDTVULrbqonCUyQvSBBLDOTFyI5On7YHSQKQy8MWDpzZMzKWtReRWi3l6qDOXJR72yckXknsH0A5v0HDHwkwMd5RLFBaYH0iz7gnmAIJuqLlmVWHY02jF4SDJLOp0w8gkbIQ1CptyucE1h6AF5nqxZ5W0dqRICJR3J5cjlGl2IlEJmJWUFWI8sZKys2lUEjQmO6tRlDhYTGiXdVYMJzd2zJSlKXGTMOCc8yA1mqmXxZZbFpMlZtZz8DU9yVKyy106UGp2sSgTxjGBQgP2EdbwuWYzKVUtKNrRlg0GX/Fy4jWXEAIrPpTD74Gidqh+HZ3KySH6fzD0bmyR/IE8OZoxB2DZtCtavZtb5mUUeqzILkvcAoqMu5KqtGJc0KzGdyvOS5HflMtdvUsYBsP3HbKmvZIGdShi088iOm9LOvDpY1erlRd1vnYRO3KeZQFTulPGdA2Oe0GSuJv9T4wn80QuFG9uIrNul6p7piJmsUpNpPCGrClDrjtOhfZZtcwQRqyFf3O9HR/7NcUkoH73GYEkeHybElIIBky3Yz22j5EAtEPQzWRExxMQS2kiLrsXk5CS7qSug5vDTm6g7vGXLFjb7mApOOOEEet/73kdf//rXud947LHH6Prrr6cPfvCDifPcZoWYXXnllcG/4Z6CmmawxEfSXkbJnyRgXTknMFEgKoxw8WX/kcfIXTBMzmA/0dgElaUlbcimWcvlaUZnDnIXKpioiFYUwVMI5QyFyZ5ar/471Cji2XEeRMMKvUyUFbIBLw0Slia3jCRcrUZJCgNohxxI07jxK5O7fImYtU+5XLy2MrItlP8UNOiz4bzYymCx3m+nYQDUKDexYaFmc98aDHrZuAIDVpUnqBl88MAenSMkc/ge10zmLzGJUeUclFsW8p6wHdwL6l7F8vgslyEf0R3UP0P0DYMAGeEJEs5xzyk3LURtVEeu3MX0gQfs3JV5DJK+VUJ7HRInXAtFFAlk0kFUSXMi84f7qTycFx06bvnRIruRYh/T67cSTUxUnUpxTnGeEAmUBiimI2VsJKbRfaNHsHQnMy6hka86boKE4dzh2qR88ntzbNDDzowbNleT5LdsFQ6LimAFEXnh0BZElFQ+Co4Fx2pIHJsCJESyXlqSZUN/9XPQKnSpNx8j5JwyEjg+Qe5AP082dDxZUO2zzJ9RExj8HsC11slznFlKhyFUgL3Tr8FUECHR42vIde3CuVf6s4brp2oi6lDFoNX69LZBTWhVF66WsKmBvJfUuni9IPwwDYIMGusuVl2aQ6kIRm6ZfgzxpyGmjlkdSWYo18wknVgHpNWQdKO25mA/eehbVBsv+xCMQbySdLDsUKC4dDsKTLdjHZ0I1EaGnBESxuc+97lch7gZgJQhL20q5h8f+chHODcN2x8fH2dZI/LbQMwgr+xYYnbMMcfUfHbaaafVfDZbVbKnBSzjc8kfnSB30UIRWVg4QG7F47pPldExOXBMIL+KGIioRi+YtYqSrQSza1q4X8uZaBRVw+CJB6gseXBFdAyEsy9P5UX9Yn0Z+Xtl+uFpNVCw2ZLcLzwwLLOBM12ZSZk++x9ynpwNNDMASCoRihtYJBlYRhCmJNHEpiOOMSSNa5PJ6+LARZDdRbVrqQYSiAZBLtIHY4msqIOV75OW7A6KA1aXB0mQv/dBfjyPo64oVAxi5vcMBuYxHJ3FsYCQybzEIIIj5Vo8WMC/sY+IzClpHRe1FvIdNTvK0STZKesDGj3HjY9jqF9ESpYvJqcg9mtyzSBlR4qU3jJOzlhBRIwRyRsX9cewH0yKVH6knMkNzE9iJkYiLl7tdTG+D4yA9ELxLBfNCEKo5EksX8yQn0POp5SZ4rxgv3F8ICI4J2iL5EQRR7LHx4PZaFXzLIAkrjxQLGnkuAUkImXN3rtRqDfxAFVDPm+U/6jWZWLJk7mtDkRQDgFIZYOoNY6tghwHbTKg00kZUGP4NN3nvoOubVUBUzWmabi8TvB0ibX6pyJl+vmMcEqM63vRtiIii5xUbjskadNJVGTxZwlTEWO2G/oxmus1FqzZ5wD6ecK/VY5ZyiVvZJtQbOD40N5j3WgfoX7IJjOImC3YHLP6+Na3vkXf+c536Oijj+acLsgZ3/CGN9BBBx2U6PzusssuHNWCtX5UoKiR3T6AcQ7qpyHgBEkjjA333HNPdomcLSQiZqbTyXwA129CZAgdP0wAMOjbsJULOHL0DJGGKFcgU3YS+qq2wQoXmdTyTfSCk3FmIuZ2dakUBi0YnEtnNx7cSoliaekApcZLVO7PkpdyyC3J2SscY1CYUv4Fgk5A/nVdjsTwoEHuS8dLGHVERZqayWuqhykMEBKdQ32/YyR9qmC0yidiORxIRqHIg38VPeGBq7RY5hpdfJ/kRH4liFI2zUQLNuwwkQARUzmJkPz5lKJKT5q8XJrciTKVh+D4R5QeL3FeAMtngnxF0dEqySQMK9hERpOm8GSIdABV9f6C2mp4buAcCHt/+QwwmcT+wwCjAEIJg4xe8od6yd24lUlMebfV1LN+jJyRUZYnct4Cto8InCzlwDPKytFMz89o5lrWIxnmTDFKZqgyF3xupMkOSCvIFEccM+T3ZMQ1QCkLXAcQMB5cVQkHBi3Bv2X9I8j6/NGxQOrEZBD3BGSZuOZS5iSi7bOIejmFRltmPhvBABhRW7TPgJJfS1kt5zwmzVucbUhyzuBoc5mfw9TiReShILCql9eu6P5Mkpnp3s5sXdsogqHlbSkVCffnEWUbAjKu/S5YZ8ykiW5tbyJkxqUC/DxJ43HUKXhOjBy0SBJlrDdyP2LkjTWf1cmBjpyUVsC4U/YP3PZLeTlD1m/zKxGu1hZdA0TL8Nq+fTv98Ic/pMsuu4yljEiVAkFrZN5x0UUXMYH64x//yC+TcCUhZgrZbJat9/GaTVLWUo7ZJZdcwqzWtLIsFotsNTlX7PKF3MslH7PSGFBJCYByDuJOVEUgEszw1mvE+POgTppGyKLyx9Q24vZbSQpyOR6oucNDYjA3mCWnUObBi+86VFzQw3JFWGs7PFhEY6dWImVvsm5Z8B7Hyy8xoK0OXmPI4kyimYFGTHSyZoZXl6ea24maxY+aIW5HPloTET52qJOFy7lDg0kP3kOSJ/OrgkKkrqyjs3BYDGLR+WVQsw5SOmHqUV7ST26hzAQsNVnmyQrcN46UvuLeKfemqbIwy/dSJeeSl4XUNUNuEdrxQUHIKr6Qx4L8F8rkjhcF4eDZUeWKiKiuJGcgE0js3jISuAjycwfJZE+OHDhJDgoDIiZ3xYqICPNEhEflVYs4QuZe93dyhoeDSYSw9FZE3EKSoqlEXqPImWG+ET2gEnl7TEDxbxDNASG75HM0USSCbFhFyypVa+ugGK2UxCl5qjhOkM4eUacOUVOtKHnTxzpbkuO4r+TMOYOJuyRxuP9BaqQzbDeB22tIjyHj5cmUEk8WuIMDPPGAnE/0QVyvLWZSJjFm+9zE3AdN1Z2b7UiZLqnV5XtK6aJNpHIutva7kEwxap1R+WPchtRuO5w/KvPVVDuHSDxkfwP9Yvuy6HRgWhYF45zG2eI3InSh9TXoA0NW+7ppipzMY6UFng0828iJZyMmj/xyCzmyMwhr/pEMIENvfvOb+XXHHXdwSa5PfepTDYkZiktPFeVymbd13nnncbQMADGDjPETn/hETRSuI4kZTtwLX/hC1obqAOPFd3OFmPFgSZEyNAJo0KQtbWqIRI7VZikziRvoGwg1ZHFyAUPjXdMgRm1LtzSXg04k9yO6wPKxob4gIlFYNchRMgyeUwVJyrCatCvst3kFQvrIkQVpDsK5ZXLAwwOfKcigOgaNpDb1vo+KiprLJcgDa7hvSSGtlIU00WUZmwPChZwvdGAy6ivcB1EDKyVyJiF19X0mMhgMuKUKE6hKPlMlWcUUuRWfPD9NhQUZShUEIQMRK+dTlN1WovHlGapkU+QhJaqIe4uob32RUmNlKg1mKD0hpa64x1MuVfp7qpG3jLj3IInkZbBvIP4giauXSkOOSmDMAXkfn9JRkSvl9ef4346X5iiTu/5Jlm8i9wrgnFB9wKRmteHe19xZjr425oRJ1IBTK1DP/5ZJ6yopnz9DpFKZfkCSh+MFOS0URAK8rCEI+TTLLI0clWBQo+RJMidDRM8wiJFF7GeLkDW1uF6Co7Z2JE86YJJBRdVkPh63VZA/saNb50jcGkHJ0tV19kcmAvMDsYAwh2FS3pNjB8euRsx1acoMqBOvrR4xM6NGzcDsX5XJhT4ZrI5fFYU2ImH81cQk12PksYBUCdSbNIySItYjX43IWZVwRUfMImufBRNHMlVDuTViogLPtXomWPLe2UodK2VMbgICLwvIGn/1q1/RsmXLWFo4EwABu/zyy+mss86iQw89lD+D+ccnP/lJ2rRpE11wwQXU8cTMV7knBh555BHWiM4ZZCQpU40dGgcMIlXezOAAObDRjpJ1J5Aw1gziIuqHhAYkBonT1xv6DIYPq5aTt3GTkDL298qcICHzKfWn2fwApKzqQSvNPjBwx2BYzdTjWqtoGbYvzRAYhq48OO7ZlpW0Q9Jjrisud8jsbPWOTnfGMmUqSY6lhX1WJjL8QqRU2g3zpIKUp7IUEPc2EqoXD5HXk+GIV2Z7kQoLcoKApUGeVEcpiHqpzyXqT1Op16FUoULFgRQTsIlFKSosSFGpz6FSL+4rIi/jUGZMkDYQMfjHjK3MUd+jk5SaKJNTQLSOmIh5+YyoF9ibFQYiiOpxdFbdeyXykU+QFSYYkPQ5W7aTPzbOkS7hOpgSOW+ILDzyuDDskVHdmlPLn1VmRv4a/FSTLtcMuFKCVGBWjiOWIF8kHFLHhCEJ58KVSyKvKyZqjkgDouNMRvnayQEiomdyMGYWjp1RRD0bdRc3J6HCkm+YAXBRbDlocyBrxeBVynAh20T0WI8odjKCwr4wu1HW6ShngWPcuk1EiWVpBM7v7XAoI4t5VwC4ThuhooEhswtzebN9CPrZ2hphepROPS8h63vcL7IWIpsZaY7S+npqzDdkRC2peVU9ctZ0Hqs5WY1hi3JflKQMzzomm9gQpC9TLcxt0XW46qqrmIxdccUVlE6n6VWvehWbeUTVFVN4//vfT5/+9Kepr6+P/10P5557bsN9wPah9nvRi14UfLbvvvvSmjVr6HWve11nE7P999+fCRlecC/BSVSA4QdCioikzRUEjZWaoVJOZwA6fxgGwO0QeRtsy1yKbWxN8sTrj0uMNQaAeoNruiiZ9cIUKfM3bxX7j4FqSpAt94ktNHLoWh5oq5wyXhcPxOW2MHjHv9WgGLPsuOaYhYatuCJ7vk8V5D0kldjNFFrdvjnoVoSq0TbMTjWKdDX6Pmq9SfY1BhwpGx4SxURxf0jJopCleiIvK5OhytIFlLr/MXKWL6LSwBCVBrLk5VyqYBdFGhRHxECymJThtt9SpomFWarkHBpfmiIXisk0UanfoQrSxNDvQ41Xkv/GZuU9n99QIhdGMqx8lZMAkNJunxSGI9vH+C/LLWVOGdfeQ5QHRjvSrakiawnqphn4DtJj74kN9XPDWiXtzZCyOBmjPiMcPMeuSGIHKYN8MacV78Yzh1luHBtmik1DBQPI+eQ8O1cWi0aOHgbHMrKiu7QlOubpRJL1m3Iqg1Aq0xY1e+5tgXrBCVw0gUiL8Q5EauECYXDA97ITEHBBzsS1dGU9O2VY0+ngaC2e53bdT8Z6QnW/Og0xuWecV1qn7lgQ/UoilQ99XEvKAiWNVESoCbrYNiDiOsVJGBu5C9fudnU94t/JJiiVgoh/C/UAJi5wvfkZl5HyBUMdXWDaShnrA/llL33pSzlF6sUvfnEi2eBf//pXKqFvlP+OQ1QAKQpIyzJrmAE77rgj553NBhITM+XMeNttt3EtMz05DjuPA3vlK19JcwY8IKoWPFQW9tzZq5wX5Oj09ZJX3iY6oCZQI2vUERFhibRSNyI5bFSCxheFJAf7hXkASNnIOG195lr5GzFYBjlzEQFkaRkMQIQjHLfhmK2XEgEmZXCxw+FC+lbxyJM63Mj9mG1oHUzI0rueXDHu2iUZVJiETv1O/xv3u2ZQb13yvkSEgDtiyBllLqCqi8XXE7On0nwjtXWMoyvuBofSC3qpuCBLxQFIEH2qZB3q2VSmSt6l8SWQFRLlRjwaW5mlSo9D21enycsQpSd9qsBkpkiUGfXJxa0CZ/0xn/IbCgEpw/MDsxlnXAyiYCJCo+NB3lOQQyb30/OQQ+OTLyMDylWMZ5vTGUqhjhdkXYgOwU5cRcfaTSrMKE+96xGRWxY5CFOkTJYgYMMKDLhxPIgKcpCSp4nFBBAXUS3Uv88D85ISR1mCAas5aG2BELUV7Vq3/pxxLo44nxW0S1p72Q0OhgzllGdE99Q9zd+BdKO8yfaICbEOhLoWNTmcLUJdT1VKgAmszJfq+PMh9xH7Gxh+1NvnBPnLpprGHBfwWEDVklRlSnRCHzOpGiJDjSaTG8B0fAyNeWImr+vWQ4McX6aT4G965XIqK1fpDiZmkDO2Yz1zEU888QTnlzWDq6++OvLfreI973kPR+C+8Y1vBN4ZhUKBC1fju44mZkiCQ2QMBOz5z38+rVixguY0MHh05cy9MglQ9cYwy43k7LHxauHeOoi1j603uDe+C7Th9QxAMCDbslXIFyBX27yNJWsjBywT9cqwyKQYQAvyJXJ+lIkD7yv2UyXdwvIcwCBf1qHifLtOnrHVzkvI0rudnXe9nLM6+xP8nAcXspB4vZlH36PU0FBAhEOSUbVuDH6kZIVJGRKjMRDiAsPSkh2fD/SJ71APa/2TVHngSWFgk++h7etgNCFWObbcpdQkUWEow9EwRLhy23yaXOBSZsKnwhBReoKod4NHuW3Ig5L5ZiWPI2yAi/sG9w8X98XA2SVnvMDPCyIDPvLEZOcfNpExzpO0fVfyHy6WjvwbELJSudbOfqYiPY0io/WgZvH0doNdGVW+HVuuic89GbU2nzczegBiBvKmIvN6odpmIrEKnT7QlcCAn6V+iJbWRBRnIFqWwIwpCdTsf2i9xqQb13VCBBkTLU3IM1k+N4N5hao+FxMDEMk2SUnVcQSSz9l2AW5mIlZrp+MmAk3zkOB3xjK6DDvuHKBsBhddh6IH4xVNxliz77oRSc0hxkfGTOIWtY5G76PUCPUIWrAeaXyE2pS0eVPschadD52UIc8MJoI6BgcHaTrwile8IvT+t7/9La1evZqe+tSn8vu//e1vvC9QB84GmsoxS6VS9I53vIPuvPNOmvPgnBwxi8/uZ6UypSE5gTQIpAyz/JjphrSqAVFJ5F5Ur+NsNCBUFvsqvC+L6/qLh6m0MM/SM0y4oIg0XgoYTHM+EaKDCAxigD1RErWoJoVkgDFZEB2ssmzuBiQdlEYZdkT9u57sNG57RvSEa0uhUwlmOzWXLbm83jGl1qwjH0Rbl+xEbIclUHCskvlT7OjGEjkZIfM88vp7yN20XQz8ZYTKXbyQ/KF+EfnKOTQ57FC5h6gwLKSMQHqUaHS1uH8yDwpShu+QQ5Yar3DU1Snh30XhooiXMhhREhrOkSqLWXT9cM1LobkGBq6JWZEXxc+YImVq9ne6BptR0tbQ1w2kPKZ0UR0TyDOeNZwbXWYho9O+JjkN3E8x+ZNE5uf54h5Jcv9GwZCJdfTkiwKiEDEmGC3nEjZJaFWdySmdL8PdNxTtk/viDgzwM8SmJk1AmMD0iN/NADnDPQgSpTtHYkIFdT+nsn1d3hma0OrgSYTIfj/C9Cvih6Hfx+anR/UFOD9of1WqCUqkQJmg+vIE0nvl2KiiXVG572LR6O/rnQ/1u5pjMdrboJSHdqyitIkwjXLXrSZCTcrO9v7g3WuHP0mHH2bLGBsbow9/+MP0/e9/n402TFQatKsgc+effz5HzjZs2FBT2uvWW2+N/J3ph2Gq/ZBfNpto2vxj7733pvvuu4/1l3MZwnJZDG7R2KVRgHbVUpF7tWV71aLZqA3SaCatph6Pcokz8siilg1tx5yN6+0VdaswW4ZGGbJD36fta0Ro1oFEGykZBY8d8txJ6eCIETeiHRzxKAtShk5cuTCWKyyfCaIT3YKkHbY8f0EH02BQ3pTsRPueo2SyJpebF2RJzWQGna+sewNUDtuXUo+NCFMDGcnkSIh2n6WQBA33PhBxRL/KjrjuFY8qw32BcQuMXAqLeijn++Ru2saNF886bhul0QNXcTRsdI3ICQPxKvcRZaEixKbAFUpEaZg7Qnk3KXIU0+OecFIsVig1MkEE8oVcMEgBiqWqE2ICcL4I8miGBsSkh+rJVKQWAFlAXqN8LpSskZ+bqQyKm416NDNTbi4LoiUJWVBcWzpkAi5cJkGmMSkCwgFZp0Y84ghTWxz6YlzdugrNytq0577ZvJlIaWuLeaJR+XMceVJ19TAoZdLdfAmAoD7fTBNuLRpSgfyyWVdCE/qgfbYnDRodS6TTYW3/Xl08QupnoG7UnP9dNRXh+6e/TxAyzjOW56xOW1dr969N1MQUlzZljnWjXTGGIsZO1H0fuJIuXKDVVO1siZ9HDv/XjvXMRZxyyilMqmCw8cY3vpG+/OUv06OPPkpf/epX6bOf/WzD37/1rW9lsxCYhhx88MGJ88ogW2wWf/7zn7nwtVkqrCOI2emnn04f/OAHWZN54IEHsjPKTIQeZxqY5XcGFogHf8GAqLM0NslSMB5gcx2zClXgDGTOAMVIFSK3I+UJkTlkCYFOHDOSKCzM8jTXpcpgDxWHcyLygbJQBZ/SkyBgviBl2i5DguYWSuRMCiLGtU5kDR2QsmnJ3+kWxB13VI5RHSgJDhNoDC7gjsjJ/iicOSEssCcLlFq+jCUa7ibI9WBxXOL6VdzxyXWpQRsG5KlFC8lfsoC8XhhleLIYtKgHNrJTD5XzDueHIcLFpBskfu0qJt+FnZZyDtnWPWHyAsLlUKUH94pD6XExS4dcMrdM1LPF5/WUezCRgEhaiYk86pFx4eYtI0FhXHYGbHA+mIjBjRDnYMkirWRDNb9R3IsijwjyLZ6F16R6bXF8MydUZNJ88G98rpF104AnOJ5GA3vOMfHZK1ENuKFAYCkx8sK2FpiU+pu2BJHG4NlTq5iOAak+KWF83m3Pu3A1TL7PwbUMTEJq5V5BCZOIeyD0GQI5SbdtljdRBYhDtagqPPGi+hdVv65ZhO8fmhHwc1lPidDyikWNro6HRkoR+eHzIXPjwovVmoLFRaf096qGoZrMMyepYI/Pk1opWX9VX0+SicZICWWjQ24gQayz3UhCGqFSQLvIfRfaTzjWajXPLLoTP/3pT9n449nPfjaX23rmM59Ju+yyC61bt44uvfRSrmdWDz/72c/oF7/4BR122GHTvq9wbYTHBopfdxwxg3MK8LKXvSzETpWNfqPQY7eAZ2XcLBEiFpjV5oKmmMH3iOBMCIkRCoE20zDUMZpo2PiZg0QFWEfLXAvONUG0a9kirkMF63MApCwz4VFqskIpRMuKZZa0edkUy9BUpMxB9A+DX3kNQwPDLhukNYOokgQRC8VLSBrkHAk5UUY4WrK5g0vOADpSnwfjzvIlTG5SKkqJnCxMAmzdJvLL5GCQid3AgPiLFcE4YsEQFZf0B0XCvQzqjuFeIcpvrtDoyrSwE8etO5xnMgDzjeKqpbR59xxHyryMT9TjEW1Jk5f1qWcjzD+EvBFui7kRn3q2VsgteJTdKmrfgchz3TEQsnKF7bx5sADZawK5K0fJViwjbzBPHpdpkLXMMDkAgMhicFEqsxsoL2/U+WtrNEx/vvT32rriJk/MekWRUh31Vtt/nkyBq5g092CZJpL1cQ71/MjphD7YVfd1lz7rGKAit4kjiI3cS5EDJSOXNTmKxjUMcpp0WaohVdUnThLtqxbB4ME2IhyoV6dHP6WhDxsumTLVTke797Wbjt1oP5Rhifi41l255ncm9PvOyK/jCT+NlCEnmVUHkpAJc6WJZJOHyjGxZvPRk05xMsdmTUKS1EFz+/PkoP/cNioUBrJeY6fDujLWx+bNmwOig6AO3gOHH344nXjiidQIq1atato8pFWA48wUmiZm7XBB6Qog8pTNiwYO7mgYPMFQQ0aT8EI9mciZ5ji0KueoQ+g4/yDXw6QMeWDuqhVUyYniwEB6QhgzCAKGIr7VQbMiZagjxYQMN56sDRXUP5oHCMk8tJy9aqK5jCrgdJgufeZA1iBkHKHq6yVnoF90JpkMFdYupNRkmVKjBWGwws5yKaIe1LByWXrIn6VgB5+VdVyEEQ3XJ/MqnBs2uXKAyr0upYo+uyGClHH5g+E0/922FoWhiWuPuSWXJhfmafiOChWHe2lsRYa27YxlMROPkggijyy3yaX8Rp+y2z3yJh2Rl1iCHNLjfDK3AIJWEvuIZ0MWLuY8tvHxhgQX96q7fAl5iwapwsWVkeMIZ8eKqJ0HkxA23nGFq6Au99Qt302iHHtx6+QA1vut8XmjiHZw3HVIujno4XsLM7+IHPIHjihDMd2ImWRQeY9dORCW4CjywIC4F2OaLx7ISmv9emQ1GFBHmMvw9ylj0JzQaAOkEIRQtTtsYKLaW20SBgPqrsnpnS+IaS8a2uBrv42dhI1rn8w0Bz0fVNUxAymTA1S/Ny8mWTlXtbU+vF47FyrXU7O71dQMff/rjV8aRelYCYQ2Uk2QYwITucwgoKiJ2cGAIyOni7RhPXMRIGUotbV27VrafffdOdfs4IMP5kja8PBww9+fc845nKN24YUXcpRtrqBpYvasZz2L5gWQp4WBJ6ISXHUekYxqbbPKlpHqwF01fnojZA7WG0VY6iHOhEDWcgEQWUmtW8MRiEp/hgfTpcG05rZIlBorslzR68uJgTWkY2jgYF0ui0fjuELJ1d2OhFGTwIxDH5wqN0zlXKUkTxg8ZdLkLltK/tYRcoYGqPLoek3WlBKkiv+myFm2WOxCJkWVgR4usqwkGChpwGQkhxwx5KC5gfEKRz9lVJqjbSBlUqZYWtjLhZ4nF6WpMCjywyA1ROkD5IKVBlOUGSMaW4X6Y8JYIv9khSaX55m0FRY4REsniEq4v4myG9NUzvvU+wRRz1aPbfEdOW4N6t7hHKAWGiJlqDs2WaDK1q2UGh4WA80G90x6xXLuWLmwNWp2SckeR4nSrpggGJ8g78lN7ChW2bQleLZ4gGo6B9aJYtW9/vrzWG/Q0CpiIm2QMgrzgmpeqleskCuftxkrxqtL6erkOnUzFKmqmSiQzycfPy+XrsoEI3K/hGwsehui/a+ut+EkQLBv6SAyhkGncroNDBdku6GkuxYdgqm2E0nGBhG/CWSCskB17SIymov7GuoL9CPIO0beLybOGqlBzHXF7W8dYhnKPdMluhHR6NhcMmOSiJ9TWd6Fy0WAiGHbaiILgNvw+kSHZtGBgHwRDojgFR/5yEfoqKOOov/5n//hOmVJikMj5wsGICB4vb29NXXQVARuzhMzYOvWrfS1r30tcGfca6+96C1veUuN00k3wwchQ70kLm5Y4UEyNz1SahZqePTBXSMzCPN9XK5Sgxwm7ryl9IpJwqIF5OezPMBF41VciFlhadQwVuEIjQPHRUhO4a6YywgJ49ZRjv4hL8jBTa2Sq9s9WJ0txElAzcWMY47rzFh2lBVknUkZOkIlaU1ledAFh0R/qI/8XIa27zzAuX09T0wwIUqhoDJ+i5pV0lIe142LemfkvZbPkVNwRPFhRNBwrYeHqLhikMlYaTBL48syvL4yUh5zmJWDe2KKyVQRjyFWlRf5Yer9xJIU5TdWaHJBmiq41JtwfxNlt7uU2ww1o8PfF/tdYQQCTf8k7hf58uVzAUIF4ohZ2kULRUepS14jzjXP5uZ7yFvQL+5REJUc9he19FxRRw+zvIhGOy6Vn9jQsBNvSjLTaHIkoXmPSQSDGWLDAdCcOdbzQdR21D1WQzpnALFmAl2YW2YCRMcdGhR1+pQhAnIyIQ/FsaloeCYjcj25HY+WlTXKzVGTc+Goo183YqzaGhQF5/4F62BzAzXxUyeaN9eQ5H7rhHsy4vlsdK2T5E4lkRcG2zKeWV2Cz7nL61byfYO6kzxGQT+jzMmamRw2cwNNiXNMDr0p0Wx4/HVUD0G0Wk2GcnsqJvFoRKRYsOkV+qMOhvTfast65iJOPvnk4N9HHnkk/etf/6JbbrmF88z23Xffhr9/3etex2YhZ5xxBi1btiyx+cecI2Y333wzF5jO5/MccgTAbFGMDe4oBxxwAM0F8MAZE5aIJgEwNRjZxnbXbFigIisRMpeahitpJC3qtxHfhxpAHmAIW/TKQJ6JV2FRVgykESUreDyYd1HgFxJFdgQUNZNg3OBtfFLMtGGGVtmZT3dHGBH5mNbtJYmK6BLEwJK59nq5PWlBvmTNsNLiPqr0pCkHDfzGLSgjT/5Anu+fsbV9Qb04nG9EJ30mW5CRVrjzFOSkzMtz9BL5YJjBz2eFfGNwgD8rLxngZXk3yiBkDrtswtwDhAk292WUr+lFjTqQNZAoH3yPt1/qJ0qPOzSxWBSM9lNE/Q+6vBzeI7qW2+pRcRBySDh4ivsHRaezUGBuL4t7piANYuAYuH07R8tY4pvN8Oy/boudQp4mjzNdzoXzBnqYlFXyyNf0hUMhImXIfYSJCCzfZVHp2IGEltNTvbyt9VqhgVUTxKje9mLtsesMyIK8qNmMICeZ2W5mM7Noua+cCHliA666uRxHer0nhOU6voO8mF3rKvXJV5IoZuREVsT5Yxkv8iofe5wjcUzI8n3CWAoRcVnzL4gUzzYZmQkkzf/sQFKWtLByIyRqv4z7SY94g8Q4O68Vqhc0NT1QX3g8SEWOYlOlCvS+Mmps0+RxxOacxbQvQQ4djkt3v1MlJfCMDA/yRIY31EtecYZycVuEzTFrDpAjrouQJO6zzz5s8mHa2F933XV0/fXXB/XHphMzSfrSrTBcGH9cfPHFlJa1MsrlMr3tbW+jk046ia655hqaC3C3jRFV0Hj45G8f5YETF/dE46fc4fSiz40IliFvil2uXkNo/g5EIZ8hZ+liqizq59yf7TsPUrqA1lm4LabHMIPmkbtVWvwDkDCigWOpJmQ1k+Gk4unuCJucNZyWbUZ9r6QaEQPKQGKkamrhM5z3fJqliYVlfZTNpGhyaZ62r84wsUGeFtwQM9tUDTJRzNtLwZDDIxfRs3SK/J40RzAxeHQQMUPHKguZQ5oKIH+s0uNSOe9SesJj2WJhGJEmsepKvyBlpQHkDTpUGQA7Q24ZcrhQ9Nnh6g98mAgawHkfEsYRWOBjX32qZAXZg+EHDDnwNyWXEwVZSLgwYkCbyVBq2dKgcDXee5s2hwf2snYXyKWfS1OlLyscI5FXBvdIqG8KkDGK2l1csw3PGM/6QtoVn8/RLBnTJar1ciTifhv7ecRzHpULwm9jiMqMkbKYmfeOHAxPlZihdAgGdoiUrVlB7mMbWEpb2bBRTLrA6RQyRb2+kyre18qxx0UTzImE7aPVvFFM8oE4Ip8ZfSmUC9uk4VIXn/+5jnqOrFHW940cCxvJsXUbewVVvgZ9UmqXHYjGC6KvQJ1KDCBdlETBhFmW3GwpuXlM3LgloaIgClH12PQyMWK1at9kekbKpcpeO1FqdJKczdvIn5wUOWWIkGGyPJ0i98kRcj0r950PeOCBB1jeaAJ5aRMz1H92tPkHImY6KeOVpNNcjwB6zzkDuC7ClRGz+CiuLCUyovaQX63rVWdmOSRnkvlKVWtmim+Mo6Jmmq21qHMjnIlgNe4N97Gb3fi6ATZr4IF3AXWmfGEwwQWjCyL6ompbIU8IETTpCNfs7Fi3I25GP66mkTkrDst6nFOYYWzbKc+kZWJJhop9wjADpAzkLD1eZlKV3iLrEFVQbwZEhMjrzXHeGQgZyAmiZkriCFTWLQuiZDDIqGQcJmYoCg75YnFA1B0rLBTkqbiiRP13ZGhimU9+yqfUeIq8PJwO5eAQaYW4rUsgRELm2LuhzEQJ64VJCO4dLytIGPafYCySdoSxiOdTpb+HUrhvhnJBjhi7J4Jgmm6FCxFNE8dUHuohD4MGrFoSVJejckImiUEqO+QpMocoB58vQYT1SYNqLmDzDWXcIKre8ub9EbpXcEi6nFnbP2NFwlK9Xj2iGUAsKTOj2NO1nRkC14lDWws3VESqly8mZ/tEkKcDWWMq0x8URK6JarZ6XaKiAGinpTEI9yEwA8IEH9pjTI5hwCnl8nph5vmErihqHsiSa+uURf1bf28Stqi/ybdfJTjIK+e84v5+drYVCxC5aDuRryxf4vw2dlmU/wiXieB11pLKKPIZv+t+3d8EOdwyNQOOvc4/7xP5l/y5Q/5j66vPNiZdMKmCdJMOho2YTS8++9nP0gc+8AFW7CGqZuaYtbN813bUY+xUYoYDfeihh5ip6nj44YdnzLZyJlDB7L1TW3tEzEbJWlJoICJm4oPkct0URJPIJZXahQsPV8kBk4J0mtw1KzmPCZhcDikMBurCfRED3vS2SXJQtBZSBqXPhsQR7neFYoiU6YYX82FggByUCoogx3S8VVKtOhFt5hslChBB9T1KjxQovzFNY8vTVBxwKLfNp8yoOP+Z0TK7DXKUCQMwXDfktJSkMQHssDFodF2OuqGDxbVB9AxErTSQIS/jUGrSo0o+RSWZ+1VKuVTsF5EwTPKnx0S0DO6KiHg5nkPuREqQszHY5wvHxR6oVouIpIqaZPgt1l1YmOboGOSNSgrJy2HuAfcNeCSiWsrpICWfc5bLwjQGJjPSyVLKP1O77yLkjjgWuE1CVlP2qJwXnSzkmJUsHCURJRQ1zFzUZNs6IqLSuFdlUrvvlauDCbPuVoKZXF36q/+tZ+1sSiWjBjOmTX6VlGnkLNiv2kFnUER4NhEnbezydoDbSkSicH5Hx4UsWJpsKJJUkdLtKLJcI1WfCpSJkIoUYFITTr8AyrGMbCNv22jnE5NWUEeyxudF1STs9GNvQnHRiLCZ9cvqRsoi1heQssWLyO/rEW1sNkXl3rRIW4C5FOcxZ0Tuohys+hP6eMSMWFVNZ3jyWU0iqwLlKcgjyyKyG+Q/Vg1zkhI0/dj0ZVnaq8ZJK5ZR5b4HovO8laoFKh/XqaZfdCisK+P04oUvfCH/fe5znxv6vJnyXZs2baKPf/zj7Di/YcMG8jD+mGUDkaaJ2bHHHsvVts8++2x6xjOeEVTE/tCHPsSJeHMJkbNKUuusol9i8KXPfmnfm+F7Y9YoaX5L0Hgqww/kOK1bzdEWRB8gn+NBfQV5OxiY+5TeXiB3myBlSABmRyN1DGOT/LlZE0VujKYFMz3QQ3K9kfOkI8hlivypuDYclYQpgLrWXMtO2thL+/ryUI7JDQgUSBkIDrpBfIbv4TTI+WQgOIjCom4Z8rQ46R+syuXrCNt4kJHyIPKwHCr1oaPFOUMeGXLBIC0UBAsRLRh7oPhzqVfOkCI9rQjyIwgVty2euO8qPT4N3OdQZtznPDIQMrbA9xFtS3O+GqJlWC87MXJvLpweffUXxAxW/FkhRUS+GZLPUuOQNaaIiuFBBKJdWA6TGMjBwz3pSdMPlgcrp0LIamVhbJiI8CBAGtDwNejJcacdSHf0+lKak2YzOQ/6esxnMWpdDWe0I8w/xD0XUW9Hfw5wD3WCHXrcZFG3A/cMIrbjokgz6k+6cKozz7mZR8pOcPgM0doWtmvkq+oudZh84KLxaH8H+snD5JAa6EblInY5RLuZ47+KCKvPuf4mzrWSn3YaOYtzdK23bNs2HUPK5JgDE4uIuEIN4w/0ULkvXQ1qQSqOOSy0v+hv0Peoe1BO8qq/Lgyn+DdVQsYTZwP9whUYn6udQO0/nvDIBhHpwBFS7GSNIqje/awmrpgUQiGB5+HJTVS+9/7432rqIf28WMxPXN2G8l1vfOMb6d5772Ve0ykGIk0TMxAy7Pjxxx/PuWUAwocoBoew4lyBaHAiPi+XqoTMnPVSNtSG5Sw6d3MA2GiWTHc10hs7d3iI/EULxGDY96m0pFdIGlFvil8epcZKgpShNk4BSUOoiwWi4In6JrjxmFioel3VfW0bgdINT2YBKuk5dHzavrEcFPWEIMvTE/yVNT5m42REVMlXq4Mn4Xbl9meZAEOqV8nmmBAh2qRKFIjrgoiSnFnEDD6eGX7wXXLII99Jibwz16XSYI4JGKJTIGNMiEBsciI6Bht8RLRAyCBFRIQL0kN8V+5D5MylicUqJ8yh/HqHJlaABAk5IohZquSzJBKkrNSLyJvLxiGcf4afYeLSl7lfqr+V+4F1IBpHKZ9cOREA23vIZtAmwKGxjBwe/AayTAwQIM3kiJuQQiLHDKQVExwYTPBn6jwhqrZkkci12QqjHYelXSqR3swLqxfxqhcZM4lWyPksKh8iRn4U/MYYUIa2xzXqMDDSP0/NeG5ZDeaK62od4PnnAs04XMz0w2QDph8R51212ynIC3lGPuG1icrB0f6tJujEIj5V1m8Q+4T8MkgXJyarEw9zjJQxVJ9oRIZV+8v/hhlLby9VZlAqNBVZqviqHVZ79V0Oo7aNc+kODfAYoDKUp/TWcW5H0TazJB3tcMphQyUGomUgMuUKuVKJAFLFLo5cf1JKHtGG4xmBqRXGBiBlIMvI91WTC0rJgH1BLrBU3OhqhlryJH8bMa7gcY0sVwEHVcL1rzf+0PI1g3FUSzMnMwfryji9eFYbynf96U9/omuvvTaxgUizBocYG1155ZVcDHvaiFk2m6UvfelLdOaZZ9K///1v/mznnXfmGgLzBUoOoxoQfdCoy67MNiMpGePP0ADne4TdrXQoQs4OF49E4+p5VFgxQF5KRl4QnChWhJQB9aBAylATanSUG2EGN8JYXpA0JmZmUdRmyFmcy2S90gEzhCAvELK8gYHITp8HBP19olRANiN+o+SMME3EzCDODV7otHgaUphasOU2Oq3JMrkj41TO91MW/irgeOgcJyuCdICQsLTEJR/OjYiW4frB4ANyEwf5WymWLZb6XI68oYN1YYXPOWWClIFswUHRZamiIGeImuEzdn3ELhWwLhHtQuSrsAh29w4NPORQsZ+oMOBSKS8I2kS/y9JLRNoqIGYI7hRVbplwe8T7SlbkkVU87BsibZDKElVkPkPax4ArwzO3zoSU/vI5wn2QIi8LSaU4TkTPsH4RSYOJCe47sU7IOVVtN+6sy6WGhCoJOVO/U8vWg5nQH/Xv0DrquK+K5TAgQWSySt5EfqiQIiOSMyOIe57nIhEwwGoBDCwhJWZnGzQIhtRck9J5Y+Oi3TXNYeq5WertXZSzo54fWfaoMho293BAUIojNBeBY8fkiprQDOT4vb3CBAXPAyTMuoJD9auG3HFOoQUzDT5nC4aYPJWW9nMJnOKyASZlxSFRKiXtoC1NUbZQEZNikJsjQowcYGmIw+MBVfIHkwSKlOWywmSDuzB1T2ttqzI/cPT8s5hIZ4SrsXl9eTIiakKigZlaTTtd6XRiNvUIzFy1y58qrmlgNnjEEUc0XEezBiK33XYb57X19/c3XBaSSgSsCiptaDrrmAEgYki2m6sQTkjxOV9B5ExGQRI7nUU0OjqBY+tbNZDExUQnBtnCQL8YUGBQD/e/lTLPB4P4gicHzJ7IH9u8lSMO7MQEoBFmK2ZJyuBuAykJ8ujQ2CsZSchkpEHB1CRuklHWuzMFfZ/NVi0gX+LEu4P97LDojo5T+ZFHg9+j41BSm8Cul38go5jooHqzVFw+IKSE7HYIUwuPCUlmO1gUvOYFCXOKFfIhh5QoD+b4usHZETlkICyQK8IlkaWFbPIho2OYzNworPddGZVjx8eREpUGM/Tk3mkq90u3Rbbnd8jLSbniAmH6kS7AEZKo1AeyJ+6x4qAgeSBb6i9vEyWfOLDjkJcCkQRZFIWqA4JWAYFLUYYjYRjsyrp6suaMl89onTmRh/OG50dKGUHWYI7CRLQo7munLy9ma3k9Xn0CVi8iG2NmYeaZqXXr3zcicLFEzUBAzlgPWt2HYEAy26Ssy/PIGkJGt0WEW9SKYyIAyazKs9HUCCAKwjFRFpzWz03UeYpy1427H+usqzIyMveMMhQ4/ygtovFyMB88P2gPenpFFHEwepDDzyN1CHSJaquRM/Xc1bHgj1onZPkgZf5gH3l9OVbFoN+uDENlAXWFwxEx3O5oNmHW5GIsCIk4+p90mlL4nicaUUfH5UlJuJNC7gtARujCJ0DJr1FDE2MHKeUPcn/RfivJed3j1+/RGFlwKzb+oY875u6wmCJQKLqnp5pyo+OrX/0qywxNPPvZz675TJciJskx+8pXvsLFrZFntvfeeycyEEHq1tKlSykJzjnnHGoWTROzsbExZoC/+93vIhPl7rvvPppTUsbQAMacaZXRFDO8Xs92Po6scI0smWMjZ3T57+KFouGcLBJlXR7sFhf1cmQF8kWWMBYrPABnp7ttE+RtNxLJFTngRhakDA4SZXIXDIsCq7JhxmyukmnC5yEgdnL/amb5GjWq7Rz44fxA8pM0J0duN9XfH8pt0IH1gVj7yxZx1MpJu5T2RZHO8oYna/Xycr1OKsudFGbWy70Zzrvq2yBcBjliJa8FvsuOFTg6xoW8i0XyVy8Vdcn6MoKU5VJ8LVXeFaSGkCxylAzcD5J+GIqMeVTpcWhyWEgP85uIckWfiguyTLYW3Vmh7JYiPfLcPKUmYJsvjxEmHgVBtsaXCtdFkC7c26htxgYisq4ZAgp8qnGL+nqumFi+gqgaCChyGSEz5EGAzBdDFAyd/9AgF92GNJNPFwYAbPDhUaU3zRFeQcpg0y/qoYntw7s/LfLxIClDKQIUma7X+ca5IMbcn/WMPuLyP+s6pymZlikFrrllZiiPM0l+jEkQ5jg50x09lezUhxmOjMLoxkqQlnJQN4m1eJRUe4bOo3k/pZcuCSTEnQSWyxUKoTYbbSYrE5D7x3XcerjN4H9jEoyXFZEV0QdredizfJ+2lH9a+4Poj4PambXtj9vfL+pm9ubJ68mySgNmSxNrB6mUl+2sSHXntpvfZ1zysmlKSYk4S+ilfT47NA8NCFMwrqfnkU8eT9KKjQp1A6JoqpyEbsik1AxtQdS4IglmMU2iGVhXxvoAf4Cj4oUXXkhPPPEE3X333bTTTjvRxz72Mdphhx047wt4/etfH/n7LVvCBm6w1P/rX//Kv8d6k2B4eJi2bdtGz3nOcxIZiNx///20ZMkSSoo77riDVq5cSdNKzFCv7I9//CMnzK1YsaIjEuWmBdxYhGUqurlHsFiSmcso+3s9QqZyj2Q+govoGIgUpAUY1CPSMpCnwrJ+HswjkpIdKbELU2Z7iQe1qW0FckHeRrZV3Rb1zgQuYCBksEDHjJm8bjywRDSHB8uykUyJKBHnAKhoGktKEjaGZqM5xU4VhVlb+b2ZcG4CAwZ/02ZyIXdasZRnIv21S4huuD00264stYX5B+4DUSPGW7GII0YTi4Uj44J7ilQYRnQMBaQ9Kg9kqDyc52vG0tRCiSV/sJxn+V7a5fwAJeFDtC2QMnJ/CPdEnwbuH6etT+mjiSVC1ji+3wRNPNpDG4Ydyj+UosW3S2MMn2j11ZP0wItzlJ5wqIxdwaWQtyiibkCpj1PcOBIHy/0Ul1eQ0bIeQdwgi2FSBlkm9gukDOtBf4x+u4zPRFSZSRpyzXAfr14mZrhT6phkbTZ2nqyQ35vmY4CMERMKIG5skc9kryoTxQ5i9rYysk0M5iDNDdk3x888t3LfxQ26ov7qqJG8dQrJSeqy2Cn7O53Q5Mk17rY4NX158reNinIGaBOasC6fjfNn5s16Ix2WmxUoP9DIVHOueb+ltDSQ00N1oIgb+iEprRfOpn5r57lNJC4kvYuR0tXfjWSkTahzNPmm5nLI8kU4dw72c06ZMFISsnpMypbgzsvtcdWoib8ryXueTZUyYpwmDau4PANPPsh9k21w9QBl+RI1iSuafPHcGG1g08RUR702PCpNwvy+CyDLf7ZlPXMRp59+On3rW9+is846i0444YTg87333pu++MUvBsQsDkNDQzWfPe95z+OUq/e///10yy23NNyH4447jqNk3/nOdxKZf0QVwK4Hsyj2tBCzX/7yl/Tzn/+cDjvsMJpJIKft8ssvp3/961+Uz+fZEfJzn/sc7bbbbqFQKLSf3/3ud1nT+YIXvIDDlFEh0ERoMPuduEGKSHoNojGa/axyJoI7HTeMiOgUK1RZ2Efu6CT1PLyVJtcMi9pYaZeyWyap3JelzMgkOVjH1m3c8emOkdywsxWtko/I7XLtqTRr+92+3pBLIevNpYSBGxZE1xDVUbPLemfVSOKjjr/FzlLP5WtKvqNZVNeD6mxg6c4mHIiawUp/61axgLpW2Ad13JzwVSHngceIFu9MfeuLlB1FtEfUjoNxh1tOUXYzpKjC2MJHZAydJHeoMnqUTbFdPMhdqT9F5RyxjT0IWnFAuB8i2vTY4f2UHSXKjArilL0rzw6K2SfSNLGyQo8uSlFus0ML7xTujbt8bzvnvT324uVUGJYzqRiLFqWtPvph+JmkRR00zjOTdvnCbESdQ5mDlsVf7b7nmmqizplYt7w+iDpKu38ecKXxOzngAKlHGlkZddiE9IahpI2wy5+QAwHcf5jVdR1KL1wgZDd9vVTZMhJZUy5prlmj+yVK8tj4BqqTYxm1TCehA6IQMw7VLkCqXCyKCG9/H6XgCLfhSWlS0cEywU4fkDpu8Myy2QpcAZEnLWV0iJZxmy7fO6rfgWwO/R2uC5tAZJKT5Hbcx0bkxozAR+W6NpI0xxl46N+pfjqY/JSTsyyrhfvy0sVsiV/pzQY1LWGHX1jcQ5OLxPANbTDabkzqQa6OPqXSk+J8c7EA+rcMOZCn51PkbB/n9jXoH4PJMKhmyrL/l+MAmVfN83HSPh85kcq4aEqRs0b3cqff6xZTxiWXXEIXXXQR292/853vDD5/6lOfymP9VoEx/1133ZVo2X/84x8cZdO5xFQBZSFIYZIctyg0fecvWLCAFi5cSDMNROne/e530w033EC/+c1vOGT5/Oc/n0+Awsknn0w//elP6Qc/+AEv/9hjj9ErXvGK1jfaSmNfZ2YHM7Q8k4iOSc0UydogSIB2kEsGyYKSFqL+k5yxYqKWy1AGkbFr/krp8RI5hQqTMh7sQzIHN7sx0fEFDaYiZWhg4Q7I60pVC0/K6BxkjehQed+kDE03IWFSpkwNksxiqlk/dZwtdpyq00JeTjPErKlBuiQWbD0Mef1ua4PrpjognSAyYcVsb7FE+Qe3MnlCBBPnObe1xNGk4mCaCotyVFiYFW6LvRkqLkDNmTR5Pcgnc6XcMUXjS1JUGBRFo7evTYki0oicoWj0oEu5EWL54uRiKT+U0ymQTeY2pig96vDnTxzsUG5zmbeBa7vysrsptxWSQREF4+LSCKayS6I8TzIFis1D4HECjwQZcGXHR8WfYJcvtwnyxtEzWZqByRkIGJMxJa1xgogY9gfSGtyvIGhcUFq/ViBt8jP83kfh7YWD5GCAh5wzRI+zWUqtXEaphcP8HLEMNcJSOrDdnsoMu7pn9Vcz6wrvFM06jH0Kym7MN2jqB9w76SWLyBkeEvUF0TbvvLZ7crcMCSUk28rlcLaANhJyfBhNoE+bPGBH8pcu5H5JOQoH5APLoe/r0QrVY6IQBhW4Him9bEGSjbfwrOpQESs9xztBCQ3dPdn8PirirtwLA2dnWRpE7QO3a9KgA6TMG8xTaUGeKrDDTzs0sSRLEyvzPJHHk2lBlEyTMcrcXQByRvEPj2udsfkU+jvIGvHSzxeOA9cA5wJjABAzfkHmL8cRMrdanfM4k6S2gydEG+R8drCUsR2vuYhHH32Udtlll0iJY0m2G/Xw97//PfT629/+Rr/61a+Y5O23336J9uGggw7iOsztBOz3/+M//qPl3zcdMfv0pz/NSXIIP86kEyNOto5vfvObnHynWOnIyAh97Wtf43Ck0op+4xvfoD322IPJ3NOf/vTI9SKypjumQGvaEA0ISdh4QjgfKgSRMnwPQtbXT4Qq9qrgKNyTOCcsxREE5JRh4Iq/PJhHbaf99yTnXw+Ss2gBeQv6hTU+ZhcDe3hp0awaXRWBkB0eA3/RMeY0C3dXziKDzMkcN95VFFPWiYmOGNLFHQ8IoszXaDlhXRYY5mK8hclEyzfbaAspqUfloR7O2er5yY1VEqrZ57PNuSK8MHzBdw8/Rs7CXaWZgKjZBTA5G0ABZUFqQLSUVBGdqJd1aHxJmm3uESlLF4jlgnB2hPnH+DLhsNj7hOh0s9tFLlcRYxuoTSeIPBXZYnt70SFvPCBDxYEMrf11irKuSyuveIhobIIe/s/dmODlN/lULIGZSYIma5exFAYNIsZJKaIMyr8x8RKSxkBLIUm+kM+Iz0G03IkCR3c5oR9RMxejBjcgkUy4cE9PQtYozEFYQivlkqrumYMyAiDIyEXLYQYdO4mSA3JAgWdmaIDzKMW1qN5TuhV9Eqc8c8Z7KgOLkKRntvIf9Iid6YamFbu3CfNCIlbZcQVNLu2hnicmKPXkdpFEGeUq28GDQCXzVpLt9LKlbBTlb94iIswzuO9srNLfJyYRJycp99g2Ki3qo1T/LjS+rIf6r79PkMjh4SCXmk1w8PxLeSNyqeCgyeQMz3whQZteL48yDnHmG1qeV83yETmrZl65WWIjIGVSeeGo9bMKIywD5OXzeUFahwepMtxLk0t6hIETXBcrPmVHPRpfnJJSd3X8oi1Hu13ugemHR84kUhYQPRNuUDz5BbDxl1udrMV3+DyFVAVcE5ccTjD3BGnG9ZEEDXltnCahfAUM849pbVeMMVXobyfDahnrYs8992S7elMe+MMf/pD233//hqcX5AtjBOSD6cB4/+tf/3qiS/T//t//o/e9731s6AFDQ9P8Y99996WZRtPEDA4jsMlHqBDJeeZB3HrrrTQTABEDVPQOBA0M+8gjjwzZYK5du5auv/76WGIGieSnPvWp6I20mthtJLNWi00Lpzm2R0YDCGKLG0rORrFjHxfzTXO+mBrMQvKG6AOvC50YEhJx/CMjlNrrKYJ0oYGFxAAdNPInoEvHNmS0gYEGWUXDsF12a9KkjZhpW7pYvJdSExSZ1ImlOq5AfmEOBOVsIK9CEakWB4NqxjSFY2FJoHRLS3DulS256gRjSZ20v/d6s2zIgfMyefQh1HPlX6qLaHV4lExU/BSEwSPnL3dQduEwjR+4g5QmihpeiIDBAZGLOWOSEoaYfSnKjFX4s4FHSjS+NE05GHH0OpQbQwQNhM1looXON7+pQmPL0jSx0KHSoCBKfY+IyJlX1mSIeJK5ZALR4ANE23bIkrfLYr6fSnnxu4klRAMPEY2uJtr5h9uoPJClJ/fpYdIHe3wsg8icyklThjIsg9Rqm6koGRvQVHx2lHQnxD0sol+QfULaKEmcNADha4o8yBRIJ0ibQy5b5otBBFzG1ADCmVT19iCJkmUKVGKNinCqhHklA9IHOan4QVWkiYc+kRF1TzVoC2bF4KN2J2q2XZ2Zr5LWrokKtRu662ylQqkH1lMutZIj2iBmzjbRdkZZe3cSuD1mV+BsYMTAbd2+u5F3+z3kP7lJLMfuwTO3//w84l5j6SIajBRbukMtkJ4QkyqqL+ECxVBiqOgZJidBGsoVUSMLE3rZTLVkCaSNSWzz465XwomSKKOfqNxy9Xnc70Nun7KAMn9fxiRjStRnZLIml5GToaxgyWWZlI2t7qX0WIXKfSlKj8MGn1hdoWpXsoRRmTfJkioAomlol1NUJt9PkYO8crSligxjvz1RSJrbUpn7J8Yicqelk6Mo0g4VjYiW8X5OFshFn7p9e6wp0pQnphI77s7TtmyOAEGeN73pTRw5Q5QM6Up33XUXSxx/9rOfNfw9jDh0uK7Lxhxx7o5ROPbYY/nvW97yluAzRfaizD+ARqrBJG6QbSVmxxxzDM02cAFPOukkznNDkiCwfv16TviDw4oOEEh8F4dTTz2VkwT1iBkn60VJEnXCFRMlAkIFaNl+WQzqWRIIqQKImRp0Yl09WeFKp4w4MJjNZThKVhrIsnwxkIDJQWz1ZAjbYQJxU3bliACpRhf9oIqSKYmkzHVibxOZgB0UP5a5ZTygHpuQZE7IHHgAoNahF43UEpfV7HwwgwhpCEffXNH46wPDRoMe1YlwcVhp2dvEDc8yEwxc4jp0xxUFZfM9VBrMsokHd37LHFqz41qqPPSouI7YrrTbZqmOHLAp0ofOtbJ5K/X8/naaeN6+THJAYiBJRDQK60xJAoVoGCJNkDDieqJzRb5Wz1ZcX6LJRU6Q5zX4oM8dcXrCpxykVwiMDhFNLpSRtTER8eJDkfb2ua0iijW6WhItmVM2dK/PUToQwJ2/u5X8f9xFk8c8jRbdUeB9GV2R5n2D3BFGJlwkWxmi6ZUCZJ02WOiDOHo5l9zxClX6shwNA7kSC7rVCK8sdqqIF14oSu1jUkCRMuX+haiZrPXGgPwWRdKl5FdEduFU1hfknAWD6Wbs9BvfPNHrMj6PjJKZJG4mIy8RkyRB5FeLms3Y/nQKNEIGQuOuWMaudMWhDGW3Fqm4ZiFlbr+fbcmRBzUrpCzBRGBgFCFle35FFgtGbjFqC0opL7dLcD6cyRpgaBNBOBD1WbaYqFim1OgEub05NjyCWRJyylA3Eu2oKjnCQD8EAoAJQZTLyIp+w1m6hLxNm4P2dzquiVm8Pq6eYdzvapbV7zXIrqWyCBJBXgIDPlU2Bf09jlumFaDWZWUIkbIct52FBSI6hr5hYlGK61vqZh/skiu6cqHGkJ9VelM88ZUec7itFe63sr4kxhpcXFqQsiBiqXLMEPVkO3yfaKAvlD/s94n6c6iN5iBfMJ+nyjbDfKadaoF6BiDdgHbJEOeolPHoo4/m9KPTTjuN+vr6mKgdcMAB/BlMPBohyohj69atTREzk9wlAVR2J554YmzJsAcffDA+4DMdxOwTn/hEouUuu+wyetnLXsYnu91ArhkS9lCte6rI5XL8ioRJxHQionUSavATkkCgcUbHWCrzXxcEAANLDOzRKKPhYxc6aL9hBCETbmEMkc1wbSo0wukxETmAY51blI0pLtySxUSLFoiBq3JYBHFAoypnJDnnQEXjVEFjFTHjmTZRBJvlYhgXg0Ru3iIaZuwzZsW2jlRLAkh5Y0BSUDwYHb8WJeOZaEhVlOsTCB8GDbCXV+UAgnPbmGiBZLK8ZfuokLdEFaTUr5F6K2vN6dfHbOTTO63jfYQcFKSsZ2uFNu+WZtLz7zevJKeyknb69uO0+enLaXwJ6osRLfnfv9TkDuhRtPzDo1TYG05BIDk+W9wDkCk68JeHMTFcNOFQyGQL+yXyybbt4FJmvFpIGnlnHMGSu4zPezYJJ0WQJiR6p7f4tHkPGWEriRpl+IvlgN4nYGgiLOph57/kmvU0sctiyk/uSIN/XU80sp28A3dkAtezWVjjs9xxAAWgRYQMJh+cx8AHLe8buVOck4eOPpOS28CNJQxB2BQEfb8nXBn5dxkhk4Fk0XcFKYMxCsslcR45Oibr6PDNKXIhMWPOgwh5/3AupXSni5IdBXLeCHKWSLIY5woWYRKiiE/dCNZMDSqiJozwDMISW49wzzfI9ibIr5N5UPmHRmhi7RBHstNw/kQu60ySMlOilYB88ASZbEtZLl4QRg7OTf+QLrsiepwaHgpyZGcCPGBXCpqCnITLixwyONJOLuuj/H1SoihNpTjHjw1/UuSv38gOhP7INpHrhDpz+C2iSFLSXN74ZPMELU62qL6rs64aWWNNW1KVPgYlbuR4gj9T7Rc+V5F9dvmV6QJYTuaV+wO9VF7QS8XhDLfZaP8zEz6lCh4rK9AOB9uVlQSQ68uKCcyfolvWiCKXJsELba6c6GIlAsYMuvRLTnaxAQscmZGDnoWUPCscdSEph4GVzFfz3bQYH6xbQzQ+Qel0OjDLqnGoNV10pyjL7jZITtyW9cxVPPOZz2TfiFbwuc99jpV7Kur1mte8hmWQcIz/xS9+wSYijdCsy6KSUCKAg2hfFJDrNhViNm099Dve8Q6uS9BuvOc97+EQ59VXX02rV68OPl++fDkVi0VmyzqwD/iuJejJxGYDoZE21ZHXDNhBjvp6yYU8cMEQUb+Q5LHUA0VMezLkDfVyoeHyUJYqXKMsT8VFmC0jSiGBl40VKrK+k1bgcelC8e8xhDi0WVEMFDGTlcmIJF4MQLBNScp4ACytzBXh4pw2nkmTZiDoKNC59OZFB6kSltXxKTmKjIzB2QwFQvGCOYPqiALCiGRmrBcDRGwDZEvJK43zrXLTUtIGlWUuWHbdSqrsvTOlVy5PJnFQ61MRO+3aIS8jvdvObDJRWTxAzmSR+h+eZO0+nA/RyfVDLjjo07/fvIIWXPkPWv3tu1g+OHLsQbTxTQfxupUhCQ98paTO3bCZI2YgNiBlIGdMjEB4NkIuIsmNR5TbPMnSR+SScS4XLgEk/Hgv88rgwoiOF6QM0TfsA/K/0EmXUddsgUvD/0YEThh3cJQMVQ56BFFTuW3ITehbX6bKon4qDKeosHqIj720xxrK3/skb3d8mUtjK+Ca6PCywz/+Gy343i2UHalQbmuF+h6dlFFbeXo5Tw1W+aiZg5EBBgFu9XvMsCozkLSowYfOne9lHlxgZEHkjherpEwVQsc9pAZ5uI8wkJHyKC6Kqj2fehK+MgDR78/YKJeSGutRrzgTEPWdIYlsKNGdiiHBFBDUI5TPWVBLyohyz/Z+ziRU28L3FqIyiCJMlnhSBs9c5aDdxWTObAwEk5gkafmumOjSTW7YWArXGs+J7IMqG+XszAxARb+4LVy8gHyUHsnnxDOONgJ9XdahyUN25Yk/Z3BASBlByHpzIr8MNSXRn6nJP7SvXP6lSN6WrVTZvKX1/ZP5XoEjskYY4spdBDliaqJH9iWhfl71WTj//X3kwlBmsJ8ckBpcC/SHbLAliRiMNNCvDvQzCQUx9YcGqLJkmIpL+pmUTQ4LYw9WU2Qd2r4a0vhqH8G7KaWLUDdAMg8SJiSOIocZvxOqB5GbzEoFkDL085AxYvzBdcxEWR7uY9HXqolj6cwIUsbqHVxP5KDnRBvOE3EwmcKYpi9PqUULw+fZlIbXm7gyP4trn5L83qKrgPJbf/jDH1r+/YUXXhjY0YPc4QU/ihe96EWcM5YUSM9CrhlSofB673vfy5/F4SUveUkN1zCljscffzzNWMQsKcxkvHasDyfuxz/+MV/IHXfcMfT9gQceyPluKHz9yle+kj+DVvWhhx6iQw89tIUNohWsk1hszpwpcwwlq1JRMljRD/SyVMuBHTg6UzR6iAIhfwyzUbJgb6Ufs53VdcIeNzWK3/jkjsLXHHk5cpZNWow7eI+BqopYQToygOJUWt0VKRkLDBYQeZM1ZpxCSeSybd4q5Scl0Uiz3jxFzqrl5D6+gSMUvF0nPPBlqDw1kEFJCtExcYMPGRr+Slt0QoQZkRQ4LWqRhpC0Rckp8X0mQ5VlQ5TaPEYu9IDYJ5Wvp6SNWhRTRcdUHoZw6dOuH8s1QIzL5ODlupygXsmn2aoeAKlCQWffSdGWg4t0zyf2pp6NDkehQNKKBz8ldJ9A+iQGRkIO2rsReWHIrxC5W1wbrAgZYpoKgy71bCHqGS8xISnn+liWgs/zT/osZRQzn8gJcziCxo6Kkz5NLHKEmUiGaBLrzctZUt+h5TeUWJI1ukOeyjmHFt28iR5/7mJB7MsOFYYdmljskrs2w5GzHO6d2++l9e/an7Lbeim/0WOSyHlk6NuRP7bzWu6Isd7JpTmW1wCoa8YDA3mLiYgZomRIHJczzPgSRihSmsvJ6SRmbx0s78kJh2JZ5JUF5EiSM9w3SuqL+wW3GM84y1wH3MscZTPMLbQBU1C3ypj1Dv4d5BzFyBYbIK6umbYAzQb0wSdHgFTEW4/umWqAeTDIEZFtInfVKvJRQH7RAhrbY4mwGneQw5mhHCJQMyn/A8wBbNy1kPcl38/lMqXWriLvkcfCUfuKcPbDpFFUXtS07L6s8cjRMtmv+bgHQR6l4yrnSDsOjS9LUX5wUOSTqX7G88h7bL24b0FkUJetXObahdwvICKjTyw0s2+alFcpWBh1TD50u3rVF1VGhSSeJ9/gmCjHNy474KaYjPmDfSIvBQQItRdRDBp9LSK1IDvcXnmiDI78PXKbkYNX6scrxUQLbX2xH6VPxIQcuj1cSRAwZcgEYAKO5eTgUZhnwKFohaahuGFjJuwPAMkh1DCImOH4ILHk9IVU9Vqovpf7X5AwMXbAOKUymKP09qIYt8B2H2Qa7TfadBQKx7plaYTKhicDY6bYWmdR17LRZ6ZkvMNzzGyB6frYuHEjvfCFL+S8sNe+9rVcU2y/hG6KANKUFDFDwAYRM7i1I4p2yCGHJFrHVVddxeo+bFeVAfvzn/9Me+21V6yk8r/+67/qrhP7BPPBjiNm0yFfhOPiT37yExoYGAjyxlBgDnXN8BfF6JAvBrY6ODjIRA6kLM74oyHiJHN6VEw17pqs0R0eJIKMsAe1RzLkjk2KGVp0RkOD5OezHCVDjSc2nEAjK3OOeB1l0aByI4iBLRp3kB9sC7JAEADO2ZGyL5mDBXBkSskb1ewpBrEYFGNAzLOXWdExoNNEREMd5rZRrmfmwBULVr0PPRrkUwWNqzpO16EUqplrCcSc3J0dknlh0pJfRcbGJ4RFL58zOEOl2NSDizWjk1CJ44hCcOPrkLtwmLzFQ6JjGEDoyCd/ZLscdAo5D5KoWc4miSnngOEYIUsKdbxisMqkFfuGDgjnpSfNOV+ljMOmHOgcQcoQaep/vELerVnO4yosJCoNEBXftg/LR5b/qWoY4aSrgyXkPfXdu4UKQ4tEbgCfMzGrCWMPyAMrPS7XLnMW9AonLXS4uIQYEICjSCOP7AhxpAu/xbo4mqdSE2RRaCyHKNroqgyVdsswcQO52nTQIiZ6kFDy8pPITRP5a+zyNZyi4kueSn3rfZZwwpxDSB4xAIDMkGhspyE+N6IcQJknD0qDaaoEuQxKTyN/14OcOknCYOyBOmcejlfkS7iFinRyFJJOnH/kU7hjRZY6qXIOapDG+42BGoAOP3A09cWMul4PMOKZNV3TIuVLcTlgJjlLmJdVt+DqNMtygogQIHNHxGCw2l7V7N88IGSwkmfXQselyec8lfKPbidauYwljMgDxTMDyfD2VWkqv+wA6v/l37ldmZFzEzPRV+9eETLdNHmPrg+iwmxwJA0lUutWk//gI0EkZzrljEEUCW34ogUc/UL/4uXTlEJuNPiIjJJnRstC6gwyABIHoiQVHcj5qzz4CLmQrONzEBxMVuK6ScfJ0PmK2hdTsq4ZAvGkmYrs8bMt+iLu2/QmBMZb6Lvl8iyffGKD3LQkeKpPky6KiBqVUWsU5BNt2gDqTMoJx3JWGibJemGyxAgMvYByb5rbTag1lEy8MCxUB1xrUmZZYOkyVimbzqDkicw343X1ODxppia3KhmXMsjXlcfhL1nANczgmKnqxblrVslzhXQGEUnzntwscjDd6thBHBuuZSo4nkouRS7alVxGmETxBJvIIU4N9osxz2SBKjCjMdpTsyRBIkSZMHV6+8WznDbHLA4Yz2/ZsoVLXGF8f+6557JpHwja61//eiZYjcp3weoeRAiRMhSs5tOO+z+hH8FHPvIRLrX12c9+tubzD3/4w4ly3dqNriFmF1xwAf999rOfHfocrPQ///M/+d9f+MIX2JUFETO9wHRLiJD26I1JzSw8OieWaIB4QQ4AK+AKuVu2kb9tVEgWMKuGQpGoJ8J5OsLVjgkTJ+f6PNhFI4jBMEsMFbBNJjtiFo/raHHHiALVsCmXib34i0KUqgYMd0TSMAR9jZIyysK/YrBbIVq1lImai5lKJGjf/1Awc8iDFOM8uEuXSIkkyJe01sf5wIwgXAnRGSuHvfGCkEhIyaWQ/qFBRh0VRFvkezWQRMeR7+EZSET03HGftfdAGjOPOM+YEcYxTkwEhiQ8OJD6fiQ8Y7+DGmwyiomZTJyb8qJ+JgPuWIEqg3nKPVkIJKQs4Ug5VBiCpM9jCU5+o8jfGl2L73y67xMHUWY70YobJilzyz0BEeT7476HqWfHYRpbnqbiINHQfRXq/+0/afzZewqXLdSg6YHjZoYy44IQDdw9yTVqEK0bXy6jbJNEzoggWiCK2TGfJocFeVNySNFBVt3sIZ0UMkiPUnBCgwOirEEm3Bdl4Wr0175PuW2eqEHGv61QaQC2yKLQdhnVFQogjsi/EetITQp3MHb9mqxwIVOQWc7ZG6sEpAwkDpE9lSEHkgYzEJBuL53iSQnOucB93QOyl6LUhi18L6OmHqRLPIiS+RDIMeR7XkqeAmMYSeZNS3hzRlyXHUZGyNTv9PdxnxvubXXJ2AyC732OLsooo5pY5nMTIduaJ6ioaH8mTb13b2RCUFwxSOVekDKf0pPinkQx9snFKRq8YZi8x9svw0+c/6QIRhTkPYiIGOeZybyl1M7rxMTaps08sRFESVX5iOnafdnuO4sXClKWy7AsHxNPoC+iviFReUEPFYbTlN8o3BbVxBjacT+TE3JG3J8YzHObLUq3NANTohyKhqnngp2K8ZzIyUu0LSxTFHlTHPVjJ+OMIBaeR+lFi6i8STpd4liRF8eRJofzwrz+HioNICc8zf02yJaSkFew/ozLk1loVwNFgiyhgnZyfKkwiUK7XYLxUplodAef61Mqp11Ex0RpEmHypBp8lWOGthYlVNA2o7/C55gILCzOczvtlqCUgEFYihwcF44FES6V6sC2+FDflEX6AKc34EarkJ/PMAkT6RCyPZX5a2wuhYk69B+jFSakOM709hK5KPVTzItI2ugYVTZtqWmD9PJBppFKzTMQOXnR1C1i0YEAuXr729/Or0ceeYT9KWB1DyOQssxHjQPqFIPA7brrrrRp0yaWMAIoGB1VHy0Kd955J33/+9+v+RwujV/84hcTHweCQbfddhvttNNONG+IWRJpJJxYvvzlL/OrHYgqYBv6nF36REFI1ssP9rMWm/Xc28ZFowZStnyJ0GZjAJpTg1IM+CH38Kk0AGmWaGwxiGYjhwnkoKWZnHkDcp3I2YG+mzs0IQHhxhRSQZAeJUHgop3Cnlg1vPw7EDoVgQPQuLLsQeag4W7AergBrCYqq2NmO36YLrBeHoWA80Kugqgb1s1FsFMiURjyhnKxShZZ2y6dtwA1a6oklyBibLdeIVo4SIUl/ZQqoECxIK/8OcblO62k1BMjRHBOK5ZE/tqC4aq7l5TGOClX2OyzvEeeExA5yGYGIbdxqZKGkB/FmdOUQUdSAOlwBaFhB0Kftfqc99ULWSHIsyBNlPapPODTw8/poYUr9qKB794UymWDCUipf5AW/3WUJpf3krfnjtT7p7s4vyCXzVBhp6XsnIWIFjra8eU5ymwXg4X0A6hj5nKnt20dcsjEeYB7I3fAuCRIhZGdNX6PawciB0KmOnzYLONeU5nDIEdpwjEKsobZVUS42FkROWv9aZkPJwYRkHdxrgJ38ikewMJhEaQSFvncCXOtHBBHMSCADT5fLyZ3jiBykqgh8sf3UjCAcig1XqRKP3JRMLkgJwlgdKOuKe4/LI+BkpwgAAkW0inkP0qXMRkZ4ltAmynT6wnVqzkk3teRkEUktjPZ0W36o2Z0Wy250QJ4QK+3k5yTB0lnOTBKmZdQ1w/30sQklZctExFrqBLGPSoOiueQJyvGibYduo4Grtoe1AabbjQdPZD3lIqQ8W/Xb+R6ky7cZP/9IE9WhWTc7d/pqkphwTDnq6I/K/WlmfDiWXdAVNC+ZF2uw9X7RJEyT44GpKyyoJ9SW0bpgZcvoHVXbKXUwgXC1VF3EG1ml/RcYjPiKPsZRMNEvS5JSGAuggkNXANVWga/k5OII8/ehYZufYIIxEwayPCy+R4qL8Exu+zsiXuplJNkU9rZo/1jpUReGDJhAi0zVq1lCYdcmHuIXGDhsIyalkUEqwqyP2ayJmtKSnt8RdZ4Uk5ui6WMmMfi/lJsW7TDKe7rQBjdEsrueOSsWyEVCqKfRv/tjmFDwvkWahkmXsgv74ExGVIuUjS5UBiQYAJO9S+QXuKYeD/7XJa157aBoOUoNZ6mNNQQ7DyZppSanIU0dPPWQFqsT6KFnJ+9ck1+uI6qLJs6Ftb8IzlQ7urmm2+mG2+8kR544AF2VG8EBGMQVUPU7KyzzqL+/n7+/PHHH6d3vetdibYLGSUIFcidDnyGWsmzkb41t7O9p4Co/BGOFKHRYPfDfkotGOJOCXIrf9EQyxmQR+Zs3iZqyWCWHqYV/T2sz+Z6ZGWRG1Yczgld+SAs2sXAleVf0vEORglc6ykDY4UU69ChR2cSpOzylXudGriqqBMGuDyTKXOqeKAta26p4pCBTTGR9y8U/sR+pcnfQUgbONK0+06BNp+BelQwM0H0rx+12Bxp65+jSl+O95lXmcOMoSBqolB1lXwFycbKpRIdYb5HnKPhPHd2xWX9ImK1MMt5Hyj6XFzQQ8VFPZwLVlq9gLw1y8jfeTU5O64mf7hfrBsvTkbuZdkGJ12DnA0PkrdwgDzMymLAgoH/hChsigEaCFhpKCs60gyImnAY5BpdqEXWCyIjpCK5zZAYQtohO9dhj0nUprc/vdqB4Hr86z7qfaxAzniR8g9s5fNcOHhXTrjecOQamlycERLGlEOjqxzKbcHMMYiQGCAWVWdckTldmHVWtcZkEWhFykRHLHIRMCjiThkdXMkT1547dIeJk8pPYMkLSD/PcIrfYX+wjUCWKCNzbIwAMzVE+VIO55z1PrCd8o+NMfEKIr0gevLe5POH7TJJFGQM7mLc4qiC1ZgMQPRusiQMQVDsHJ23KoCqCp/jJypqi/XifsSzpSyd1fOpJ/UbCJWw0Aq/Rr1viLgctKgZ3RkCDG14wKmkxdhHo4B218h/pgNKATE0wJEDlixvr/AgWUUY8Bxx3mbJY/kf3GWnfZ8kzOhu3TxHTU4eRMZgPLHTOvJQ8B7PunKXnK5dl3b8kO1XVi6mwoIcE5TJxWkqDEniCNIyiBqMKMfh0JN752j77gupuHKIxnddzJG1x1+wglZeU+D6ht7KpdxnwU4f9y4iVc1Ad+ENfa7Kmqh6XNIMi9sS9JtK2t6bJ29hP5VXLiR/4SBVVi2hgZ/cSuX7HgytDyS0uGqIJ/SgMIABU6lfHPPkgpQw48B9haiZrDXJbaGc6FK5uXDVxWRbCWlfOaKRXTFJK5UQsm3HJGBpAJNnavILk4Xi31gPJu8gd2TVhFD4cxuOPgv9VXHQpRLa9t4U93WYGIbMlAlZr5Bkuo9vItq6jQiqhMFenlyGigRRTpTrgZJj+2qMRxzOfWODJ/DY0QoNPFyk/BMFkddWUaZUoi+BJB41ArlUAsYHwwM8eY10jtTqlVwzFYZhOsnn+0aZamkpIsG1lOUgaibJO73AdDteLQISPSiTUGJKYXJyktODFi1axGQGKjPTrA/+DDC56O3tZYICMw0zggW/B9jbw9kcEapvfvObTe8fjPxOOOEEJmJQvw0ODnK+GKJnjQBfiQ9+8IP0pS99KVSQGtJEGIskAbaNaB0cHlHsGi+cMxgY4rvZwLRFzGBBaRaf7ipoLlmq0wQZY1MLmeTMUoasGOgjVyv9+FaisTFRlHn5UnZc5EgH3Ojwe2lyUOmFXIyo3OcGEYl0QQxwMePk9aXJzYnBK7TbkJUFBXohR+CcJpljxqRH5piBiGwf5WgSD3AZMmKG3zBJQgKxJGrcOfnk7rEz0aNPkL/rGpGovduOwmL39rvJ2X1ncTo2buHjwqwzkzesDy/pAsU5a7KYsLBKF1sX9dnQEWZE1AsuXJA5jhfIH8gLQpeFg6Gc+UUeE6RxnNwsBvcVGSXCvzOjIhcMM3ggOylI4EYnqby4nz/D9lJj5UDjz2egIAsXc/5UD1V60pTeXqD0SJnKvf1Bq4cZQHR26NQwUPMycMeSkhOluADXhPsh8qdH4HJJtG1njzLbXXLefAgN3ztJlaxL2a0FJtQbD1tMS69+nKi/h3K3/Jto7Qpa9LftVFiW52gVZhkX316m9GiJSujA0g71bC7TgrtEsjfMQGAMgn1SpErVtUH+hsgKl7Vs0kTFflFDLVWAVbOQuhQGU+IzOTPL+WmYOZUy2oCEqVwIdO6YRC6L84/JBL6evs8GJkxYcQ8j/wwGHpj9zkpnRidsr4/IbkpzclTAJASifojeYkKAP0OUlSV48tnDgAk5legMOBKq9DvS3hlgOaOcaPBFZ478Gz3XxCRlwT7UkSGa+WiRph6d4GLIZSugOYVpgTD7CAYzWr3ATi2WPJPAwL38r3sovXIFlfYZoNxWee8jItwjZv5RMgKTFBj8KQvwackTNEhZve/jEIoAp1yq3PuAkDeqOlrq/m53bqMsywKzqMpQnttTnEeVo8qRnKwgBnCmFQN2UTJkdIVL5Z4eGrp3jB56fj+3Zdzurhmm7DV/pwokmnLihZBfLCWENbugnIHrGbUEkkaP5XlMYuFMjL5bm/ThCcKMcEjGBCD3w9kUZddvIx/939/vDFaZWrGcCgPZIGKEY8SkWSnvkDfksFxcKBbE8vgeYBMPpC0iACS7bO7fKkRjq3zKbHf4hfZZRde8tCBk6TFX1I/E3OajYt2QyHMOGtrzcniSjhUVnKuM6BXGD0Q9T5a5rYbkMr2xSOWBHKUmSuTlcpTeLCZyy6sXcx+KdhzlI3AckO/j+HAdhfOvyFvGQB/jGTUu6XtEyoUxwYbxRaHE5A7kFesr94vrlSrkhMpiFPmHwsQphXEL2i056Ec0zVQpmGVJVFTN05QSFrX4y1/+Ql/96ldp3333DX0O4vLzn/+cc7vgzwC3c8gCYXrB16BSYVIGR/PrrruOI1BwGcSY/owzzgjqf2GZd77znXTppZey8R7IEKzqkUaUBKtWraLNmzezAchFF11ERx11VHz5qgh861vfosWLF/N+AKeccgqvZ88992RJZBIr/I997GPsW3HOOedwXWNg5cqV9MlPfpLdGZPiDW94A5PKdsDxm4y/IWSIh1JZ1d90002ctIcTAdbZ7UCBadyo/5F6BaWdDJtF8Aw9Bj+5LEeKUHMMxKbcn+VBf2rTKEuu4GzIEaJ1K3kZJMqiYQrckYoeN4wqIoGGkx2VJoT0S4FNEzDeRKPHxZ0F8RGDaeFyhe0z2VA243CyQnQIJhuAkgPAJQuRNhAyHvBKfbiMaIAQpcdQCLQgDElkkWB21UIji5/AeWnLdvLHJwQx23NnOWvmUGrbhCBxHH0RblO8bkQ0JAF0J+UsC9aL5OpCiaN/2B4P6NlsQkSoIHlhc4pBmaOEfg0EDGXRoJiUnVBKRWhwivBXOlFxZGYC7oJCboFOwZNRHgD7w5Ib2VFwrpciJLwABg+pqn19EbOaonPFzKYqKqZMNNRyk4uICusK5G7J0tK/EPU9VuDZYtSfQX7A1qeWaPH1GVr87ZuFXKQnR8X9d2JyM7kow7On2U0FSj/yJEf+JnZayAR12xqXN4nOVxWpVuei2B/ONeN7B8uhLri8h5SLl4gIiHOGc6fyzrjThexInkdED1RyOb5j8xHM/MrBqyCFPuU2F4VMKVOdHee/iPoiKqykN0wOZQVUKWPkSQoQOuxPoRx05kpmy5MGsg4SWzsXimyZjXpN4jPfMLeQ9c5kvhkfl2YlbqKVSEKkaUYrxKyNA2REyXjfpGwtgDofMtcsyNWZz8TMyBMsP+8gfr7gnqqizaot7n+0TJmr/jK9+1HP/COJBNaoD5VetYLKjz7OJF3d+yzbQz8BZ9uRkfYdAsqZ7LyO8/TQv3F/4qioe9WQgpUfaUThRWQHn6OuYnEQ5UTEuhCh7HkSjrVEO5x7O1VU8elcjicCvcJk7D5EPuPKvl7WseRIDPoc5DlxXqonSteMjst8a1fI6LNpqgz0CJUGJkyl7HrhT+7gc6fy/lJ77kKTqwa5/8PxTSxOyQgVsdkS3G+Vcy7aYfSfuK/wvZI4BrlhsgZu/gmRQ1buq0a+Kj2ipmRqUsggYfSkyqmwi++wipaJSTNI7CFvRMmUoFxJhaSrr8+/wb3N8nU2qhKTZelJYerBhk+YpMuJY2cJJhNr5fwr+ofciFA+sEySZew4KFG3EpPGPDGr9f1MEHtSnHen8tOyI0UxjsE+YtIU9yj6AJAzuPHCyl/a+UcV8FZ55EhlKJUn6eryD2lkZKRtg+J2jiPXXvRxcnuTFzuOgzc+SQ+9/TQef+vHWa8O7+joKEez4LMAUwy4DiJnCucK8j2M21/1qlfxsv/6179ojz32oOuvv57N8n75y1/SS1/6UnrssccCSSGs6WGGASfFbDbL/wa5Q01hBTgrwkYeRhxJcPHFF9OrX/1qGm5RnbDbbrux/8RznvMc3ndY3UPeiIgb6utdfvnldX+PCCDOA4gkjnP7dlEsHURtNtF0xAyJdiBgb3zjG9kZEY4lsJUEY8Z7JOzNBaCOVirfL2bvYX2LmlcDcFlMcXFgd7RM2Ue2iBl9FGFGQ7RsCXnDfaJmU1ZIBwCOeJHHkjzMNqHxUzNc4ntpxsANthgcoxEUBEoG7+Rg2vUdwQ08FY1Cqy8aN87BgcEI9mXbqLCvV6QMydQYRGOAKfO2uPYJBteY6RwSjQfb46KRH0MPgIGdMAjxFwyQv2Ur0VO0MgVogJG7hoE3Im8TJT5HPMgGkUR+k9pPJR9BZzwISaJIKGaHQjngr/SiQxARq9Kg7NgkMVORHrinYRCFdXr9klwgfQ4mfUV0GrDqhFU99PDIt0KCv8eSSNGJYJsyp0+ee84BYJKBejBiO9XBmkp2lruCvl3OavJ+yVQFSBwLa3C9fOp7tMjXGNsuDBEVFxAN/jNDmw6qUP/6/ajn97eT09ND2Y3jLHvN3uNV7aMRJdq2nbJbeslP56lvg8OzsbgvMHvJhiDgObh3XNlhSwLE+8gETrh/8T2GgQGOCzlfyLvDOUKkijvnqsujInjoxPFvzq0DEcw4TBpxrbMyrwHr4456rEjp0Qk2Sqgc8BSRH8elH8QqMZOegpxSzq4GNXWUFJcJLg5COFrymWapI3QycsdwnlVNINy7XBpCyycE8J36t0bO2oma6FqdorWNjBvaRcp4wgjPmiJlZlRMGaVwsfd5TMoAo/h8z13rqXDwavEsw3JctsUodZEZKYooJCJDyxZT+aHGkpqGqEfim5XAauYWKBsCgJQBIOGcX+aJqB/noakJjTaAXR93XEuTa4aZiLEcHFEjtDNSSoc2g6V2anJGPsogEiM7gbXBaEi05Wi/MKm181cfpAqUJuhruHB2Op6UaYYRZqmMIPdTRdVY+iyVO5i4xLOAvlHV6+I+L80ThZBigpRBiol+aOUvHidaskjYzMsoTWlxP/cjZdehyaVpEVGC19YoZIwOIU1VRLuEHB39EjsrggRNyP4DnlULPcpudvk88D6AP47JPDFlCJmFwRIiVT6lPdH2s7QRXW6PjI5NiO8dt5r/HJA/PPYgd5zvJ8yroJwQjrqinyg4mJioqjGYRPaL6welipL4psZBwqiaO4xJNaWEYDMTl3OSeR1MzOHmiLYdvy3xS9SyU2MfQeC4LUfXgPItGI6i/yuIiUs2J5G12JhQ88plzjSIHaS0FZcovpxUZ6CN3ZGyhlf4xCc+wZGdKECqiEgSyIpyKwRuueUWzufC5wpwQly7dm1AzPB3n332CeV5gbyceOKJ9M9//pNlg4oI6cAyumSyEaYqFXz44YcDk48rrriCJZngJ7C9N40CowDyhogfDEBaIWTnnXde5OcIXsHzAvt2xBFHUMp0j260X00tTcTs+OCDD+Z/w8lk77335vDnr3/9az7AuULMCHroXB9LNUqDWXY2QuOS3jTOlvU8s4OBGByOcNJXLqPykJA3MuHICZkbD2I5EiQSodGZCTMFGaWATIwbKjSa0h0PLmFMZmQeDruCYNZLNoSyroiQDIqwjbd8cbDrGOSi40EBa+Rk6dExJVsLoikcfRNJy2x/Dm4w6pEzUSSvP08uJIewyMXgV5EyNTBW+9cDCaFLDtwkkZ/B+WXSCMIVrlS8r2zw4FJ5IMvRJAAugZhl7dkqkvDRGQSW8FK3zrbAcnsqYpYd9Wk7EyH5VQ5yUDETyx0I6nzlXE6KhiQPic/KjljMPIqOReVUib+iQ1KDipI2k86zmFklA6y6Y2HGVxHI/H04Ll9YymddGl3l0vhKeX1dOC+maMuuRMu27EalfIpy/36SqFBgssGGFogkLVlM/sJhSj25nfKQWy7rp0179VB2k9xXjMUxg4rIFc4Fk/aqjCXolEF0OQ9BzGaLZG6iMvLoMHuK8yJzv5iEwcBD5jiqSKQwXRH3HUtVedAh7uvCggzx5Hi5TO6aleRx7iSiq5ATyugcjEL6MpQqlGWeI/ZMkDNB1JFLmaYUr9vVClL71dlsdNQg+Ci1gPuazWmqbmqChGk9H0t7NfIUIYlpWH8sJhoWSbiCWmgz58wYFEmWpIyLyReLbECE/JwgN0PLM7XQLlmlwmQrv8MSSpWynC/5yPOHeRA6ujJN2a3CVAgR2ookPFO7YPI+TFq3KSFChETbBnJ0mKBImZ8ib1MG3B8XL6LKgl4p71akTA7kkT+FW05KptlJkPs4Ig9qAzmIx2dMWkpEk8sqlNuUosqqRUTrN2jkKkKfpqJhMoeOP0KE0CwHwOVdhDmQWEYyHahJQM6y0hQH9bikWRf6eLRtSnrIE3zStCq9bo0gdMhh5pxbqfKQ+bcoY4IIFo4HqgoQL5BO3pUMJvx8yoy4NLGyQn7OI3cMkm2oOYTZDP7yOZK5vMoKn9ttl1jiqEgZPlelU7A8SqX4aR4hiN+VxCSn6gd4H+SEnZMVkkSReoBjFIqdYCISwaq82I4gbuI8YLJOlWFRahXlKo0RZEghIyfIWLIJ0xEoV+REdWqiTC4m/qRsHWCVDUhZQbjv8jUO8mRlzryZFy/LqjhehZxSFxCzNiIqYhaF7373u3TrrbeylNEEAiiIeJlRKpAwVYYKf03zDfW+0TKIFk5MTHAZqyhAMolcNBwH/l0PlzeIeCE/Dm6MIJXgICiXBYAUYR+SAHwGLo5JZI8mEJ1DBHF8fJzdJQHY/yMvD/u2YcMGdmlEHp1JqttKzMC01c3w29/+lguzKcYNHepcQWVBH3mDAzy4zD45zsWAWV6FgTQG0WikEbpHZ7h2BTvLoQGCKxVblMvIixj0C2kcF4gEcYPxk9RtsyxNhW/Ypx2RMuEYxh5QJY8JFU8UZSDTE+6EKgLFJTJkIydmlsQMoN+TFaSMc8scns0SOUCiMVaSM5IOUdywpoQ0gSNriweklFEW9IWT4xMbydtpNf/bw/FKy1xEEVkaoWbDEGXinCUMwsXAnh0bER2ThTRhGgFShvMEZyrUceGOTunmJSHiTj4tZyGRpz2JjopEsWVZVJNnCUE6uLEWnQLWmy5IuR+pXCnRGeHcogNme+K+qqRP6f/VTC/PfqLTlIqZ7HaxHxhwVJ23iHy4Do+Jzm/ZTaI4KIo5jzylQunFk5T5Rx/XQVMDlnuP7aHsVvf/s/cf4JbdZ3U4/O5y+jm31+kz0kiyJEu25F4wDjZ2zPfHYD5wHEx1nnwkwRBsSEILAWII4BASHEpoCS0Uh+I/4Bhjinu3JRdJM5peby+nn7PL96z1vr99zr26U1U8kvWz9czMvafss/c+e7/rXetdSw6d9NXEBE6Q9bYIpLAoso+fFm+0xoKiOwZ0pTMM7v103ku7tE4iE9hsGG6kkKzQjINzHrrtHEi3/UlAiX9bDh5nEnQ3qTOoNRMIjCmpjXmThc0/pYlk3XT2EZk94fkVCV23FHEQAPF2Mw03O+yU4nvEZU6k+mCA44TnqQ8TEOcY6qyt+QJGSaLrjy4qvh9oitB5E9szcJ0cnkHLbMJ9m1cZmkXZMVj2eotlF1p+OVD2GLFVWU6ZzZM5yy/IfrgvMFs6ZHbA5+RzGjh8jdbjT/UVPPM2dQPHtSrwZN8fn5P6s+fYEIO8lnONQ/vyelwCHxMA5gDd9ow995rbox22/929/VUGZ1/ps8JUCYYOMJPgtdfMLOg0aKw7ro+4TmqOo8oUee11bL+BtqiqLE9USWX9loqMxbeJfOaL9rkG80TD2+YMT4bZQqhbHiHVpPRQZZwEWOxCaZGPHFBlyezaCiv/UVxY9Z6MbR85FUt335jkz9dVjYLr0WZd4vwk54d9sDpxToJ+IO0pvYc6OSL3Rwn3UeeG69MkivunrQ1C3Gt5H4nNar41CIjm6IIdwv445sLQWMS9Fvd/nwIV1gItfV+wamoOkkoQ6fHQYzKQ//Ny58ZPsSsiMHx2L4EwBg1ZzE6bbT+3Cfc0A9bZMaDyAvdG1xTVhjJn4dGARXPXVEJ8LGbBDSXCwIzjF+5SaZlumrkKhQnianB8htQQmQTeZuK5U0whFIOq9L6sAqYBZq4k2QR4+97v/V5573vfS4Byoy1IPAm+7fO4v1/PeuUrX8m5NjB4R44ckde85jX8OVi9K2WguQX3xre+9a00G7n33nulUkEXabC2z+cNL8zbYabt13/91+Wmm9SP4eGHH6ZxiGPuIO/ETN873/nOxw+YQbYIrSkoUhz4n/zJn+TPoUWFw8tTZaFYziEgs9sXDyGNkFCBHcPAKoaHsZDxtW9OXY4wDFxWpkyf715Hu4i4cdFQwRig7Oesn4zVAO0Pa3aIAOx6BebFyQ15keTgsGaT0ZaeBhxqUc73QzcPDBZe35gr/U+LEF60TSKZ8Mqo7IZ73ODzQ58XSOgukJBMwmYXZg25gMVLVMnTHp/sHrfDPdm58A1m59y2AIyJBRyDAYIFPW7uYJ74OBegiW7Qug05o+GJfQOmygajh8EErYJdl9FuSgTE/KyDizsHzUu4CernZEfXjlUMZ33E1pgs0tkPZ3Nuol1RN8TNm6vNpqnGXyQEgAtFmnO+tGdEKrsb0lysSN4GsvH60sZ2+NKdiuXCq+f5mnvfW5d0aYUZeINCSzuQmGFoz4rUTtq22P5llxWRQJuD/YAudHkp0bk4FExuX3LfmU2zA19Uwallvrt504jGZKO5hrJlahCiIeS5TTPhMLYL28fzbWpUARUc1Qo6c0JnUBS1SSJBs6czlwD8drMmg0oQrec3MvrwmTw3Z+bOO9c5hbQMck8wZ5QhqX2+h1kEFNF4HG7qZnOdFbSOKUMzKZtH2yr5u5T5x6XA1jWxYzsV1texIK1jmC1eEvvBzctweyzXEIAYERL5XBb4y2vWjWBScoMtb2FFwnBaqnWVbCcLi1L7eF9az9ojwZklScE+bmxaeHJO87Wu5xheji3bvnbKzbua510p/NzkfVcDMHfMjrLXDacmJEJmlzNnKjsHV5XK8WclvadpUL1dl/FVncFMtLI5ABKcf9r0+F93CtefhM2p2NhnrMU3v0Dmf/cBSSA9HP5s5hSMawXnTnf6LuJz4vuAaxdumlWMGKjZBOT9UG04wyLIF5EfCbbLqTSYyQiQOVmW3LGLEl1cFP9Zt0nYiiTYaEv94JQU1mOqEijJxH2pBAdF3JPdPTMVr+tLUoJEBmMDniRFzM+q6sCpP7DPnAMjr83YbzikKALwo1IsCV63DwbKmow9/ZPXazr0KnADOIMokNdWKMLbg8Ymw76H5qkxf4YFfAsQRmWKPwBorA1QZ6QihQ0YaNmYhc0vq1pHaxs2XkM17mJzw2SOnK+3JiazLF3Tk/E/yE3V+48rzgHseP/AqY/GMBUUuDfl+HjOo/E81WDr5GlFwCMWpIpgajBfNvg6xPL+979f3vGOd8h73vMe6fV6nAUbZs3gygizDyz8Cf+I4eVcG4cfs93JEf8G2LoUW+ayh926HhfH4YVorB/5kR8hGP0//+f/ZBgE++ANb3iDXM0CcMIaNvrgtQXnPpxUL3PNxHvjfR0ow4J88e1vfztllcePH6eNP/5+LeuagRksJb/+679efu7nfk6+7du+Te6++27+/F3velcmcXwqLDj9+dD1wfAC9r2uuIM8wjTrcHEiCIKko4KQ3IG0bhjkcI6JBgsmEXNDwCZh5AngjNTAouFewzBHG9TlhdhJBNQNBBdOuAZm0gG7gDHEl6YX6jCoEjbNrcIFk1ITPNdYM15gjVzQbpkFEJtBCJZKKFGkw34dcwF9gsIcJCCYTcON2DOmgtI3nS3LpINgRQp5M9rQbeFwtd2/WtO6HW5GQZ+nshB0EjN2amiuyjGSALoEgjJ0U7POo5OFZHNq+SFppGPIhsI62eU1XT4Akw48m54f8sGeMXroLsLR2b2mgR88pjPmS2cKgaqRROeqUlxSwIEZNCwyWLinLAfS2KdvfPof12TXBw+xOwu2jLMhmw2Jb9urssIItseaYwaAx/BpbCelgwOjjuKaDozT8r+ss2Gcx8O+LCnDCIDGDqo5LWazdSbX5L4x1szlmXE4HKAtHTIQAbPKcwvnWYEBpnTdtIW/qxQykQR5fAiVhjy2kNNz2m7qvCkb8iV4B6OGbMBoEO/AG3T2xbRcOiw4pDIjR+eoCMpcuPJwYZs5LA6c6njSwoQFBYXl/w3bMD8moEyf8OhAGeRjiJawRcmiy11iDpALTwfN7Ilfq0q8f5YFS7i4oZ/rKpiSL6vl+RKvrCqniogQSNww07S8Kvm1GVqlJw8eU1BWKGQy46vOBBsGY9v/dOsy4eWX/d3w2sn44lLbyffHfesKH2L7aw5vy0hNYtzncO12pqjmKsyoAdi24zQ0dXHW2MLs3jlkH+rPcf0qr2gjCQ0xXGOR11haGpPi8pra5eNaiWu5A8T4bGB/qxU594bDMv8rn1aHYfvebt8P/APNCToRQ4ofMCgZzaSokqOKBU1C2NzDaArXUoKHLgxKEgIwzIQXHlqTZH5SQsySn7og3m37pX1gnPee9rTmPtL8aRoMYCJpLRJp2Xeyi1xP3CTg3gy5oV7L3WIT0PaRe38FOnZtzA0en/b0NeNaIuEm7tEpCSM0GZFDCndCyCWz1zBpoms+4t4F+SMbma2hRh2WYzeHLms0HIlSNk5hAJXb7EtvDLJ0F7uhgIqxNmOqaqDKx2ogjA/o+zpjLvc8HFiwhYEEbB4PzMIAvDj2YADMyR1xnP1WP/s3JZSQoSIb1mWy3qjrUVrdb3mdq1xf9VVfJZ/73Oe2/Ow7vuM7qGqDYQckdXBXhIuiAwwPPfQQ7fFf+MIX8t/4821vexsBnsvyAhED0AWjP/eYv/qrv9ryPniMe42rWTDtgFxxu6xyc3NTvu7rvk7+9m//9rLPx/MANrevH//xH7/qbYC75PUuqAR3CsHGz5zkEw6PzlTkcQNmGKhbXl7mjnOaSizQdtBVPlWWB9cmiSStN9QiH903ZG4YCIJkCwYWavWuzn8aqjlgWJSBGIAuLA7/4kKD7KyKm7uxAtj04zTDQNGMOpPzTHrBU423s6RXNyW+JopZY8yy+a6CsRN508IDmFG2OJirct0rXNj5HszVcpI7fc1Itho40Cq9kuMsGZwcqRuHzAKMGRiYdsSiOq7m6CJJPT5uhGZFj8+OUEp87lwnlW7NN7ZGP4sDB2HfwMZ6kjF9uIFmxbzJ7FQyaTdVy7DOMieH5IlO4sgfY9cZYOPvjERRGeZgxsyBaDdPxu3LOn4moTR5ITGjAV44asFAJb+GQE+Eig4kIQBP/Q1POhP6fDw2bHqyemtBxj1PckdjzZDbNy8BGNu0mG2Tc+VyQMzNbJCdtBspAS1MUWwIH51OdoaNtaX9v9206bhoRZYb7CZYsyw9TTlUIK2vbW5eBnR9Ng30nITbaA7WzJa9p/sbTJeGk/KcqOTVEAZMrxnQ8N+MfTCHRe5z+xmPI4LM1SGUX6t4yEgG/2F+BBdGMmoWSMpQUmX21LnNhsWHDDp4kkQRTVF4XIeKu51MPDibFgTZbMsTsei6iO86GBtk+3Q1UDgLfXeBrQCYc9M01QGLzcYIFvYLCpxHK8N7qi0DKQBnfrksCcLqAXLDnIRHz2qIPeaKoJLAzxnZcPXgOgNH22WGwyDHgbXLgfahxz8i42zb+2VPudSxvsrQ5kuxanBKRCOShla8bqpcP7+pzDcaQUHP5nUBtvA1wThoLNKZUsligHkqG4lpzosUV4QSb1wn8n1cLzsiU+MiLGICqVxMxd+3m9/rBPNncBitN2T+f3xGm4CXYktsRo2W6gyNhgZelSVQt8AICiwZ7oO4F2F7yRBhNmUtlVw70fsCxggmq9LcU5ZgV0UqHz+hOWDMJ9MGVb8c8DNEezqSwHBqwwxFTK7o9QA0cH/UUQGuPJAcrpO4Pzu5IZqpuP6pbDEasw3Ca+B5xp5JpPdR3nNxCcTDbB7N3adcvaGujtZEdA1M3OucggQNNkrfB/c1SiPRBAaAa6v7LhQPcFCG2zFl7jajDmDbq+n2oGZxuW1uOUdjNgNte3mO4XGQwuMeYKCMqhs0QnBf4b3AwK0BNkFzD+c5ekwAfwCCVo/c2Mt1hh+L17m6BQMLeD8ML8jzwCa5n7/pTW/iPNbExATB1pvf/GYCKhh/YH31V381ARhM/sD4AGSAHYKhiBtlgqcEQBEs6r/zO7+TIAq+E3BqvNqFHDSwd9tXp9NhntjVLsx4AVhuf61LyRDBJgKYAsPAch9ZaNeDX17+8pdTtggpo8tRw7waTFIAOrEAkg8eHDLNe7xyzMDwgCo8duwYXRpxImCY8KkEzDhPhosGMjZQKMLtEKGMkGR5nvRHC8r8GChT9sX+NPMDXlsw08WL5eACovM5JlvEQC5dm9QW16Etx6g5xzBn1sFOuTFtlBYA+EBa6AE8WbcMYMwfWJi7OQAFYwNww8fY6zlpoA5wW9EcmRlGpFLJBHKMJJUQc242uIsiHKYoKLb1w3kswClj68USwYHRRQNQ9jEo9Dlv5+yVAcRwNsKYAttCK1/o4H0pribcLmSyIKeLgZ0OLOHjoH6yG76zlM9yXVxtM1xr2PxYtp+tQzjMGKnTlKpkKIFvQ6YysKN3joxxCZbvalUMNozMU5hKWA80jLquQ9OuQ4ntwQ1v9GQq7brPG1dUBXiDXX5L/P17aNoSjZcJdrqjCvbx+UrLQzJEk7FoILUnYTuRsJNKe1Ltv13Hk+wnbY010BTMGRoCU7/7GfGnJuTodx+Qw29/SDb+kabec5/SHCSR8ol1aR4eV0mqM6kJB2YiiCTgOQPglaSaVWNOkJ7NGxJ4OaYXeWeYOTDzDufwmM0JMBIiVjcv7CtmpKkMS8PKMcvgUCk6yhrPQCAGZ1QZDOxnoAwsr3XVUVxmuX6Q/A2FVW9hwlyHPtha+F4VKLsaq/NrCPBltx+fgyALgNls0O3fbBjNz8jasyay5g0kVpQxoSh1UsYvd1dGrG37gVllxs6ENx3UWIb1DWVrcU6hEdfpSbqydk0s6RVzya7lWGzLJNvOiG0PU77Usc4aC1eYNbyU6QaYqn45x/BgpzrQuVVPCnV9Pxffgeu2k8hlMvSO0GnXgQP8DNdTXEu7U5gxjji7Vji/rCDZ86U570n7NTNSWUiluDLN+0jxXZ9Qx0xcdzqtS35efg58N+yxZFdCn86LYHjw/YC1PeWLnMvWbQHAhAFMVAqlsIF/52X/Oy8SlHbu3s97Ks28pnS/Q1lRPS2SPrMlaws1SWqxBKshZ8zCBooBc6rk/cTMu3qQ/eG6lUqE62gLzJ0qGbCiSiJ+rS8JWDI8rBBLEnuSQpsPpqyc8F4MsAPGEtfs4rLdJxIzpEKjDf0qZ4yBS2rTDJ4wf0y1hEWkmAGIgja94RXW+xJu9LjPEAukzsoDR96oEBDUuma0axxy3xtr52Jm8G+McvKeZHEtvIyjJmCTVWuZ4dxWnnY2YkGVIxrDuJegNunHHKnwOn1JO9fGRDy9BqYVvu+TMet2u3RThK2+W3ARhOU8AAYAG4AdFHI/8RM/kT0GYAMgDPNTCHhGhBYAytVkmN1///3Z37/4xS9m7BJWHMe020fG2ZUWjDcQSn0pe/5LyRDhwthsNgnMwK4BZF4PfvmN3/gNglfMprncZrBlYC3xOyyYgCAj7XEFZqdOnWIYHNApDiiG7wDMIHHEvzF/9pRYRcik8ppxAi0zbOEZxouLNuRp6vrnZGBY2smy4t7muLCH1S3PgTct1DNQYoW2AyaxudcFjmlz9/jM3t3lbg3NdGFZ9zA2xyjHMlGG6JotjhEaclVkp8zJKqybxuFeMCWmEdQQaQVllL4VEKCMwta2CQ6RgTklGduCi2h/vECmjICMxicqfXEhlQAdqdO/R1vDkxHU6QI4ac9rHTb8XGV1GizpgGYm2xjqCmJfQ77h7IvdjQ8/g0wGBQRuzCgYhnPA3I0FbwHA5YBsfkPBF0Cay5uB1ASv4wA2hr8xoF1aVKYMC8yU7hM3PKcyUZp09BSwdsc9ae2tSmE1L809Ramc60pnIqTsZPLzXanvh2uYAYT8kGMXhsaRw1z1WRjRuQvnGbaji/2mjGmuCRMZT6bfe1qSpRVJ7r1N1m4qyfR9iXSefVCqf/opMnX1V95uN19fWgfGslmFFDdZgDNzaMzy6ui2acfCzGCYv2fgFvk1ZNpEQRn3s5tzg4TG2Fi+Jmf0dDZND1TwCDaN8Qw45iZvpIQX35mxUZHF5QFDxNm0QTC0CyR1Lo6cUbGiVg1EULja92Q4yJozXdHVs06Pcp7LMThkOCBbLJc1IgD7GTbo2BYLx8W/+7fukf5onpIjNC3QyMD1pXp0jaAMAPRp8w9bVsAT2CLI2PY1DVVMEu6NjpAdS0t58Zr4Yqvzj5O/XvY8MJCQPXYY6O/wuCu9ztYfeY+URjoAss0VdCfWyz1OXnC3yEfvk2teMCVCkV7WRh6aQFDpwfiiCdt8MiQDFYGbMWPWVi6VuGQzRCjqi9r0g1oA4II/bwZS3x9K7sPr3M61b3q2tOcwewqXW19G/VBqp9ROP3NttH2B4+iPjTLSJf7CkcE+tHsijiUNuYoBmTJawlcgDx/cE1S9oGDR3TsQdTKHucNbp3gdgnQRCoR8PZKgF0p9D2SR+tjO0XHx8mAPVZ4HhhCjCJin64/aedf3CKq8HOw/kefpMiCtGZuiqanOjdnCOAO6iBE2yBfBjFqE66jWE9jHyIHDvQkOjbx/Ngbg2AVe43jhfgOjMd5z4cTbxb3U4mzQDoOiY6UvueUG3Srd7LyOH2i+GesWzpJZ+LQ1mN3xdtd9Nk9d7ijIU8yT80MOFC8wAAMow78RaI0GIoUSuF8APHKf6RwaFUL4d7uv38s6PmR44zecvgRSxksxU8MLpiCYz8J/l1pwKdwuVdxJQQeG6FoXMtU4T+55GbM0vEqlkvziL/7iFV8H1vzIZfvYxz7GbfnTP/1TzrkhHuByYAjvD3nnS17yEhJNmAkDgNppXc5pHnN2kG9CCor/XLYa/htm1a51XTMwg9vLc57zHLnvvvu2mH1g7uzRZhLcSCutYVi4mM3HkPGx3C1KwygvG2aizDYWzBJ05yY/xOJ91GEhu1Dh93RiQiEbbXXbY2cqY+GMYTP7Wa+XsMB3JiPOCcsxZFsMgFxdMCRT4L/dU50MEP/ABdjNq1kdrNpvdY1kKLABTAA0yEG8fqDdtzTW2SBuh9mrx+q6SOcuSOjMhhif3xlT4OINgOScoDSLTG8mCia0s+cs3cPW0FySWfzS3t3JP431ctbDk1+IGSDrJB90dbRhaEo7UN/TXMQ+H9gwA4ZuMNsxbdrtEynVh/LnLOyZMkHc0O25VNhtDObXkIszcrwj/dEcjytAEgoEsEC4saMzC1YwbGF+oCvd0bJ04XbYTWXy8w1Zv7XCm2rlQiSb+3PZrJkWGBpsqvNeWgg198NtBBPbidTXcsy6QVzA2NFUor1T4q+sSnjsvER33Czjf/QZyuX80RHObOHGDLt/uj5u9nkudyfzUlzqsikBQ5zuRJEK0hAADBdXgCvKa22+cHhWoafOnnTscgwa5LQAbGDZEHCOUHNjXDWbz9kiJ5JCmofOKIrNis1UAhSWzOGLcpaYM2Yw5cE8KOfG8HwaHrjvQpIFU2dyR1vITKJMEDd6brRvYMhmzq5GbpZ90a/TIMKxGrlcxghgRobzdPzMGP7HCWpf3iiS+Ja9ZFU39odadFnzBw2NeLQswblFs9VXm/ErfpYvk5W02xJgpoEA12SCxrQmYMxGqnqemZOfCzPm8Qlzl8zX4rqUJf52JvVqwNkQIOP7u5EbBCRjbtfytbbPPTJr7MA+uggmTXPq7HbJGPeLgeR375Lo3Pmr21lum8OA31U2xZCpWFbpGl1hbRa3j6ZVS8GNM5wAsKKTIJswes2F5BHZWzS+qJkkP/GYIedPjkuyti4rd4sU9tel181JfzoVOVaS419XlFsv7JXk9Fn9vMMSz4mR7BrCzz8xruc+Zq7ZWA2yiBYACmSnDRQHA8VFCLWAWdiXliAz78vabeVMweKlgZTPNCQJimp3D8xaF2neFFG2iHtlblNVC3RKtFksvV/pzJjfMGWBuTbiT79tLFoulbASSdSCjXwqYTGSqJPTuTUDbHiN3Iber8KGSPVCIt0xvZHDDAr3O94vFsEs4V6jckMqBcw6H6c2nYmpgEklvxHxs+L625+u0uZemWM7/wi8NE7ABU+710JDkHJIU5wMN99wrwpNlYOXg4wRvwRQTAGqzdjMPR7/hssjRiL0w1rdQIYsEg/zoPhuQu4PeW2uLHKVp/KXMzC70RbmulBvwkoeJiMIvHYrn89zru1qsr8gn/zzP/9zYhIwgACTIIsgz/zpn/5pmhTutGA6ggw4sIIAhwjURqbZ9oXfXQ6YIT4M8tDtYMzlqmFO7nrWNQMz6D4//OEPc+cNL1hTnjt3Tp4qC3K8tFwazGhhlqwAULbVwc6BImeMgD/RvWaOiWO5QPO7Qt9uYu5ijQFeN9PkLnQOfDi5Iy6uzlFU58eseHVsQA9OUKbhtnmy7GYANsEAhrPpzwKJbb6KJhIuGJgdq0FnS+e0jKkB72FgpE9A6eaEfNOrowjX+bR4NEcA6wBZpoHHvdLYL5pYYF8kcGDUGzUu2Oj840/t0Gn3DzcPLFy06QBl0grX3XQmFu54jJ6MCYic5A8AqHYKeXLKcGFbmruMEYOMlFb6dqN2UkkD3WDY3FwZjyXnsIZkkGD16E6m+616Rh9H4AYXRrxuSbPN9Bjq58EsVXFN5TMKMBNZu2uMRcLEAz1aOPdG83zsyIPr0t5dk9qZvpQX1UkMN1UwZfp8lVfWzqTSnbBzFuDdS6W04Mn836/L5m1qs+vvnmcWzOwHltQyHHI3MDLdroT1CbqLIlOu+O7PSX52RsLGBG/SrfmiFI9clPKZSNKpMQWWo0DWxmC6nCI7T52jF5oJLn/P5dzhOLpMNDJtVnWq2Yg+D8UUHw9GFj9nswMHW899vj5u2G2kbPtZbhddCwlstKDm332E7iaZIQBjLnjhtaIXuVVgquh2qBlpmTU3bboH7NuW9Whliy6bCWGpCFQ1S2/mM9l7Z2wH3yNlbhPCV4PzqyITu/hd4dyozYdSotSBpjcWL1/UwxLmNP8JgPPLGJwB9FLaatECWd4bCr5SUUHxRl2SOT3nvXaHQEyPA5inS0sByUyC0RyKY8hA0zAQu0YAn7FfaaKAEkUpGPdKWdJmS5JGY4vckeZBFxbYoOD5joaFPY4vs+GsXC+zhraR+4T3QmX3oabI2LCCBSObXJFByS27jtKgyOSCQxJGzYHU1/JiFOdqeJVfaUva6cjG1z+Lc7f9IyOSlHUbLn5FLOF6IA/9q1kpLs3Jnp/5mLSInpQAAQAASURBVG5mPi/NVz1Tap+5iEETCRAQi2sRnJPRcCnl9X5hjVMHwgpren+F4qA1owASkvTsM3DuypP2bJHbz/ugsYLd6bLK0Y+LLD0L9zBPgnooCRgz2P9XE/E7voQNZcsoG+y4WWprLjKPEvfygboAbBlYt6jpQFlf+o28sm8AbbEn4SpUFJ7OjUUi1Ys6g43XKK67e6T+2S/50p3TEg+fGdcJzgNWBkZQxdVYwlbMa3FvApluUHHgmjsw2kCjjo1pNv48i6Cx+xgUozb3zNrFZubY88V91BRBmXun4S28Xq41ZIFvr+cAIMzC2EyOU8k1tDHnhYmko1UdocjrdTqJLtMkeXrdsMtlhiUuo+46V7PZzMxJIEuEtPGWW25hODZy3C61AKKQ9YYFQId5M/c617Ig2/zgBz/4iBkyODV+67d+K7fvCQFm2JE76TaRAXCtqdk38uqN5CUHpsxYMVoEOwtvY5twYdMukTFA7LaZsQEGXFNjcyD/4JOGLz6DXCncqFzHzhVXYEuc7bBj4CiF81PmmuGCxewx3IjNcTFj2pyNuzEEVIE5BybrTLnLIYvb/gCQue1zjocOdDqgiJ+BAUuQwWJzcc51yYs1RNuBQRSLWO5Pdksxr5QO7OnZscOF3eSU7j0yBouW+848Y6CND1qxdMb15gEmjTc6dkAHc354rer5iHMRAGmQX/C1zdjCSTDc8SRjN3Sdzxw2cYzdfnFsGuWW+h6QxDgnSWr6wcTZ7IJAIlNQxipjWD1PygsR5SgAawDymA1DlhvOg6n7O7K5vyDVc30Fu7BsrRWluNCk3JEmHgWdv+M5Z8AVmv9WBRbUWjTlmp50pjGnJVK/ZYQ35tauklR7sdQPVrk/Js9dFC/qZ8Vfev8RBkcXcd7gmKysiQfZyME9kqvHkiwsi3don/Qny5zXKC50aHPdPjBG5y4nfXFAjX+PEnZgXSA5wFYcIPw71sw8Ni8UnEIyw0aDA3icd9SbNc5ldnIBIlE0wx0U5hfmUJisrimoQyEJsIjirNMh+OIxHs4uA1iE7NGMQgB2UFTT8xQmIgyxvUyG1WMMbpCLuPyawzJyCiclzqVEchc3RTY2xUcBDrYMQAvgDZ95ekJ6czXKq1Bo4TyAoQy+j+NH++IvrLEjCdmjC9p9PLb7SbUAwnHNJPDubWHQmKlXrUhsFvnJ+QsS7prn+Z/lZF1Opmqv7ZixHd09r8SmDYWVuwWZHkxeomWzda0o4KA7sBnABM4cBqwxqBCYXeAcHh+V1ECmj2bOcw9L4WKd55p3xyFJPzaY83jEco0Lm8NMYHQF1pvZZIMmWM6ugWBq0IhCQLEzrQI4C8z4yOVBUvJsuwFNq9DuIeNHYmnPFSXZcyvBDsAd5OBg4lUOp++db6SydG8iR3/+uVI95cvMJ9tSOV6XeGZEgosx5wS98THun7SArDK4AYcS1eDEqFJfytUh/x4bzFbn170tChI0VjE/1plCE9Bmnlt6L1u5My+7/mFTWnsqUj4fENh5c22RFWR7GkMGCWYppSwxWA8kRq4Z7rFdXLtV4ghGjY6KmCHD/QMqhxj7GzvMJ1PmdWhba9I/n4AVjcLiSsrrOVkpqx0I0AwQsQlrdQelgbDAdwptYy6V1dTIAI48sJ4wh+GeqhpU2aGzZHw8pY82H2//VoMyZRsJMJ2kH/d1A+TuPXGfxnkA2SVAsbPL1/EOq3Xc7LGFWXeKBbPfN4tJaz5zPq51gxsbDc1EP+rXeQousFoIpYZ5yPD6zd/8TYIsuEhebgFgQUIIYggO8b/6q7/Kv2Okan5+/qq24WrBIdg3zNANvy4y1F7xilfIhz70oSxG4A//8A/5eR5NFMA1AzO4tfzCL/wCQ9Uc1ddoNEgLunC3p8Lq1wJq0jmbY0wH/j5sjJHNjdmMk8qIUHAq+OBclbGxDmjpTJoW6G4uisYMlqEFsOdszDl7g2s0B67VgjCztB0y+WCIoUkMuYwRY6ELbb1dsB2tzvkgMl5DRiND1w+dMbM1bKJB4Gegj/b2AKQO5VmH2AIzs6cPAR8AELwe9iMKcHxm2sFbALL7Oz6/OjnpflRrXjMMIQDWx22ZBzP2jI6CDDkFi4cbYSJJLZDCRkImrriWSHMukMKmMjbOUh9FgntNN2fnun08fgSRjvmz+b+2pxLGeOjm5Fg3Y0jdjb87ojd4/BwzZyioS8sRAVR93pfKRWyfL1Of60hjT0EBfSXgfyu3B7Lvl4/S5AGSwubukuQ31dCjM6bnEj4b3hdzbbxpbrhZNAxpo9DwpbyYysR9G9I8UJPGbp+S0faLb5PC33zWHOKcuQBAFLKwjD2C5OvoSSmdLUryzMPirzUkf2JJvH1TbApEExUCZTdjpjJeZfQ4A8gTwRwYMxdR7crquTnI3XFgTs8ZPd5xGbMOVmAwr0xljswXhLPi4nLGhHmwljcbfYIzbDsMfMzkgecSgA1DYw2UbTNEGGYfdpr1yRiQq8mfuoJcjYYkzzgk3ckS53UQPYDrBzrZ0U2Tkl/TsMv2XElyzZiRCs3DYzR76UyGmTlMa05ZAJxH/WooBYROz81IurwqXgU2eegGYbal8eVpBuKCwCML40627gOwYs4YwwHx6PwF/aWTLl4ukw5SU2eAtEP+2BbnxO3nTwbGgi3zYsHEGF0IYRaB5WMGAnK0ciGzDvcizfPCee51uhIDSIJRw2dcXRdvZkq8Zlc6z0AGZSLx5x+i0UlnusgGzBV3G5jW0RGJqgVeX3DtQrGOaweYej4mp2oBsEz4brpZI6deILOCr58mvUhqkSb8ukP2vQnrfF864x7PX4AWqg/WB7NLeH7tbCznX+pL6aJPZcDEp1ckKeYZ3yLrJuucmtCZMjgwFkM6J0dVfE8Cbi8jWLqD+wUkjU4pQet+3IubCJhOZOkezJCbzbypLhCWze2dKEpzJpDycioLN6VS+UyZM3HJGDSdviQWB1K4GEq/5vK+BrJGGnyghgBwK0d0dORG2bHWDzPIQ/NbgeTXMJes9xncS6kqwaxYT6S8GGltASli1WoMMH94jOVXuhnn4RrDNVVxn6ShUzsiGMaogjM3YwQCg8JVuqrbNhgb4EhC2e6fxtg7M0JKG82kyzWvIXnln5z309EHEII6D6/bj/fU97Gms5mm6Xtow5vb51+Xf90Ttkx5/5i8zlNxAUj9/u///o55yf/kn/yTKwIzjFbBsh4LGAT+F7/3e79HRd+jzUjbvpAD10YTb2jBOGR1dZXgDL+HCQnA2u/8zu9cc3bZ8LrmsxoDdaDvYKUJS0u4Mh49elSmpqbkf//v/y1PlQV2wE8SFrT8N8BETjXWarpgWUyh6aVtHkuHm4dYK3Z6tHiCgQKL5xbyQaz4hzwBr+WyzZxNOy6+YA7MWj8q4yaBjhl0c2CIlG1hnpQxZtoJHAxZk53AQK3TaWfZYsaUOUbMHA7dNkNe6ECYu6AGGRgbDqrW7ScYcs517maAGwYupAAt2H7muFnwc8mT0oqyIo6RwzyZk1LSrte6ZVhuJi1zc4S7HwaaaWs8YCtxkdcZMu3u5VBEVNUxEMcBYZtgztCdY1cXshUDyI5CJFvJeR17PzsmDgxqoeHJyOkewd8mZHYZ+2c5ZdZhxQ0fXV6Ccpr/mcslzEzQkSzptuDGT8OGRiTNXXkyX+VFnS3C8Zz+TF8Wv/F2mfxcU1bvqEhlISKIw82LTpU1PR6FDTjyJdKZ0JkCyENpST2u7FdrxpOpVo9D17Mf68jG4TLPq7yT+2G7Yb1uxSnkf042iIX5LbBj0ewoc8rCL5xkKDa61d2JshrCuCyaxJhddmFVskighCIAc2fcP7FEZXTiB0WryoH1c8MyBP/G48i64Xlu3mBxVQFYoSDeob3itXtZ0aquLRrfkMxg9gSOjDnxltcVZGJtmzHD5w4shNqFnWZMGUJs+UC1rse/L8uEXAsow3d0eUMu/uNR7ciXMX+jcxxgB+JimUxq9WIk7emcNOcmee40Z0N+z3Det+ZFxo6k0pmARMmO1dwUDVJgow/TBm+tLtGFi5qLBqCGwh0s4RVc+p5sC7I7f3xMooXFR4AoAjLMLbrjuv04XQ1YvUZAm5l2OMt5yFBd9hyYLsx+wYxk23EIEA5eyFN1gRXOTDEkORmraEZlMNSMGy1KUO+JX0c2lM85OX8CZhR5SQt5SWoqUcsfOS+ye5fU75qR0p9+7Go2nowcc93gRshG1cBpD9cbnKfZPQtfrcIgfsSF1dPox5pGLPLR/IIhFJwIezanFnsydhxRK5il9WX8wa7U9+Wz3MXmnC/LdwXafLig9xUYVABExNUiLdY18iVHdo/3RwAzzoTr/QAMWHdSJF3XazOu2QCA7ZlUcnUzy+qhuZFKfZ8eM4A0xxINx6ss3pPn75p7PCmselI7mxIsXnylkOUKm9oYxHN532Uj1xp6YMV4P7NYEhxiyPRgrU9tOW64qsbJnGFdfTDUuMSxgHsumoY4H7L7silCqEyxcQDOdpt5FO9naCS7cQdIywtolKJZiSgcfW0CJ/vcyNEEqMVx5DyhKUL6loG2xfzD7qM0Uom2maJRauma2K4m8aRdxozdUM7osCFZPFDaKEOodRT3yQ1OmD29Lr/gxrgTszU9PZ0BrsutN77xjdnf4YwIc8IHH3xQ9u3bR0zyRCyYlHzzN38zowYwzgUc9NrXvvZRveY1AzNYYsL4A/pMWF6CLUMmAjbscmnfT7YFEEXZm9m6O2kcLgjsuOFCZN0qmmGU9TFuRklleJrx4mziUXDCKQ8FI5gmZ+AAAIIgxkzqZuAKFyDn4IilkiVlz+iOB7tdOkO6C5/lTZHBU3CUBTm7a7LdNF1ZCRCmGTT6Q26rWdvTtakAswrr9DkXRJNHQJbimCFmtjiglwzeX0EbwGjCz+tYL860WYgxu6ieXnjd7BE/Bx5r0gZkZhGcuQF4WO7aMXHB1pCF8NhhTnot3sIWQmLa9wMJPL3RU2ffTyW3MgCbLhCbHbyOsY0WmEpzEctbQ5GMgWoHMPN1uEUm0jYpIhnQFgoXzcPJWsMpwjp1P7l5ROwjsHgoIEqLbfF7CGCGTDLmzwLo8JFNcqYvi8+pSO1cLLmNPgsJPUcCCdtBdqOGvFPt+e24dlEwJNKe9LPc5fx6j2wwAMDY739SpX/Zia/2895Q2igdDAFaRmuUBvndSLpTJSlhwL7Xk2C5LuEIKjKdLySA8jwJG5HOPloBib+rlAnAUe32leU1dguOdsakgV3TcHJrOVJfhNkNfGlSSSfGmE2ExdBqzB0wSBY3eBw3pX2DtgZdw82RYdW1KrMJt8yXDX1+zJ5R+mjySHVD1PBmFNH4b6eVzRSZyUY2F7ZTIW9zZQRllbI0nrVLRo/DLEevDfwuMnjdCjUcs5WuRAU4xAqPJeSzXc+T7rjadaPLjAwmfF/LCz3KPKXZ1hw0nkAVCWdnaGpCIEpTEE98z7+8mcWTaGWmLiM18dc3M9C55Zjs+MSrANLXunAe8Rj7ZL644kT8fE5/ju3B9qGxUC7p96uQ13MT3SAcIwS2Q46Lx0NOWCmQqaGCwtQOvPZxDjOQHJpzOKZgzCB17HR53iPaJWxGEl1clPDgPmnNBJJ/+b0S/N2nLr8/8drlksRlzGnpfQTXzcyEiaoCNbFycn3K12zOyMns3Gyubu9gplqdfgemEf2yz2ZbaRlscE46kwPTKLoPLqkxFN0AIRev5Q2c4HuSqHQ3H2oINtyJCciQVebTGp+OtcVE8puwzbeZ4KFtyq8NPntzt+ZLYvu604k6JfZ8Kaz6snFLIrUTvtRvRjZjLKOfz0muEbPRVjyRl85sLP3RWMJNM8QyoEJGC66KuE/h9XDPpHQa16qUgdT8gbPVR3ZZF58NDRcz9qmqxNPlpuI+RPBq91u3n7OmKqYeDMQAGNdO9zlD7OoVKDkIvCDzj/S+6wytnOW9C7+m4Qecdo3xctcmXItchAvZMwCuoa8atskpU7JRCgOaaCo6VYm6Nw+MyvAaYCk1GFtjhxxQc43b4dy0G3I9bf5x2YWwa8gAt89ofehDH2Iw87UuWN4jo2z7ghnIZz/7WZqNPNr1rne96xE/e93rXkf/jTe84Q1s7LrHfO3Xfu11vcd18cBwLxlGqk/FRV21ARs350Tb2e7AJZA3FIAiOC2hW4cOv4EiB4QcGwBg4gaPnflDZvqgXgV8H7I9AuYHbI8WT/h2u5krlY+4rqUWca6bxNku6v/VHSpzFTQGxxlY8OlDs2MOpXEWzCQFsPZlJpgxQO5iTRmEOSK6uS9eSHFBxk10yDTE/Y7PAVCFiYllayloUyDmmBRY5HI/4IKLn9O+PhGfYaYwHnEmF/rZHCjEm7g5PD7f5BtgqjRDxnQzxiQ6KarL0tKBbwOfBIfWpYa8o2+sDW+MFqCZpAROcF7sjitzgccAnMFh0YFBziDiRgbbfxRizJ4TBphmn6HvSWG5K70xBQeQG5UvQOIIO+WBUyG2c/xIj8e8sbdoTB+AXsKiIFfvS3eywPOrejGmUx8AX2vWOr+dlDdmhqwWAulM5GTq1z+mVuEGQijfC3AXxYFVowgWeZi5AYXfaolfr7DAzd/XAMYS//BBWbt3UgHgkU2JRwoDh1K8HhsFA2kjM2o4KA4LbbicKtKmlAbbEfiU0zAbj+DddLUWPM1B/mqerBl+B2MQdovBnrEg8fi6AGRBJ9aCohSSUUinJmgUApZPCjaH4/LALGeNbBkKdczrALBB8ohCGUU0GjSu2N/mhOdAWGYkgqw/N6cDOVg+l9nguzwqOXxA5MKSVD+/KO2bp6Q1m6PslEWPsciuMD3zqopUz6TsXEPGimKNstiNQZGEAHYc49ZsXhp7pmXiIxcp61q9Z4LnSmlhRAr3n6SbmfusHuRyM6PXZ6F+gy0eD8xa5QPpv+QOKZzblOTU2Yylyo6Xkws6pph2+ZqXl63HQO6J9wvnJrN5MBrW4E9nXhPC0MBppWGpl+dcGBe+g4iOAGMFFqiIYOQCA31xb3DZkDRdEp/ysCQoSTBSoLOr3+pJMlGT3mRZwcvpJem/+C464xVXEimcWhHZNT+Qa25fBJTjxpapsy2bjWBpOWes5yjYGscoMYMKwNCAGN1jYaIBQroxYELc/UeNrZSh0vlij+AGOXxUiIQiIycSWb9ZB7+ghlBGWY0uMG7AAh9ydTRm8PxKjvuGTTxkRMKh1AALg687vrRnzbnQxgcKyACz/lBxVWThq9DUCEWali2K914LaUvfnk0lvw7peSpzH+3I+ZeUZfdfXJDugQleh8oLIp1DsUhbtw3yRdjhU+JvBh4AeTSy6Pv8k00f/L2UqPuiNcX4HFjuNwMaSNGxGLN8ZsKBeztAKmoCgFnUGJhVdmYrnP+y5zGeZgw/yw0Ys0CZLzVpMalh35rNzjAMM9ImVdV6R48VH08DExEfChAEVUNGb8ZZBL2msqH80uoCNrbNvXgYvOM99BwyVb2TQBood5JS1BRQhbjmde/GVjI+PWN2hQUnd1je9/v9zDb/fe97H0Or3/rWtz52h+Ex1IJezmkRs3H4Dwv310vlqF1pXddpDf0ktKHHjx+Xj3zkI3RYQWAd0OijpfBulEU2ZDWSqBqQlUKnmlI1CvP14uVs7rHYWbLcDjzX0ftqbe8JYr6ciQUKeFqGF4PscQ4McI7NQAYeB8kaLmQovnmxpV7cUfkqJQELgxuahlrb7BjlJWqFC/aAjFHVp6QQwAc3K7wXFrfZgiI1lHgAwFAE4j0C0QsyXRNrPotGZ+qhQG4Qauyyz/KbFkRtbBSKb+7DvM/fQWaooFJBkdrsm9MkJEf2GViwYy7J5s24cDMbAmOs3W3GyS1c7J3MUm/4EWe29DU16DKTR5oMlFI7SjB1X7oCH8U9M9hayqg5gwp8DkpIEO6LG6AxjbyJ4b+8smmUoGLzzSiGbCpNLNSgBaHdfgf7JCc+Xbg8CWG2gcFsyFVp7qJAvrTUN9dCODL62q0th9xWdI+xPZWLWtyguwn5DzqTKPpXb5+SQz/+SamY41/GDLFYHZZ0BSqfAuABw7W4pL9CFz6OlQUYqUl65rwU94/y83Rny2oAYjOZPFYe9r3GKqBT61hQHjPsA/s3u8mQ5iLbBlbgcEV1Vti48bc1JDotowpMJcHMSxnVnBVgsIS2804ltjq0nmtGyijg9UYK4veKA5t9sGiWh8YgahTClA1ZUWxB2ARnYNtyOQmKRbWqx/yOOTUSvOL5fE1j35yjXUHb8pSsgfGyGScP6gK6x+n8V+n0hrSnp6R6IaaEyH1f29NqsIDmAYAXi8kAAbBWSNmcKsFaqvMZYAfw7417ZqW00JXxz23IxZeOSX13QfY+qOwfGDQwMkmtSGOE4CXPknCjI/HnHpQn7bI5yXikRHAa58akeOosZ6rSxWUeg+1zZDwWYLGKBZpGRMdODF7r0SzPl3BuRh0ULcQc5xfPLex/ML/VsgIwvB0k0bjmoRHBXEC9LsYjaML40pss0GUP1x5cy5z1eb/gS7AMvbTmVwKUYMYw6A7UK2Q2qmU2PJr7KlI93aRrIwCrOye3RCk4BnGkRut0fH/JzFlDy80cOaaLDUHco1poEqrszTEFzpRpoBwYGEHwc/swrVEAhOsTJIF4H1qyw0Si6EntdEo5NhQIsIXHue/mT6ncwP26ZuGuJXUCdkAS9znNUts686YNNlPB1FLKEbuTKaWODIAuJNKb1ntn6YLP0GYYVsDavnpE7xOnXlOWPe/rSjxVs3lra1au5djog7kH1SCcLRu41npOtpgz9iz1JF/rSYzMySbUBIPGLsAZGPHOtLFuxhqhDsA9GXXA3Ifq0pkvsVZwzWLOGneUzSJTaG7CGUuIt7ZZP+TJEYjRZdlk+QbMOKeM8YPyoCEL1s+3WTjksgkNSiy3tW4ACsypATE+zoCaRgTpx3ajHzxVbHYd50s24G6MH05NdVLWOgP3ZSff9zYe3df06fWlXT/wAz8gKysr8i//5b+Unl2bi8UiZ8t+8Ad/8IY8PI/WSfJxAWa//Mu/TF9/oFyEuDlECKtKmII8VYCZMhP5LOSZbBbusSzMtejUQt1c+ACMLIDZDcHi96rH9phBBQvywhqGaw2ooMA3YOZClLFQnDoZHgp/50iHCxsZI4IkfQ21XdftIyPlDCoohZDs9QCm3E2Jkkjq3z0pL6u7oYfZFLtxKgOkr0Hpis1I8YZgOvVhdozMXT8hw9QdCcjioFjM8kmMPcKCzA0nnbPNxyIjBWBi8hwU5pR7whzCXPu0y+fMI1SuRpDKO50BQgPUBJwWVMlslw0DRRxChxOgJ4V2pIUMuqmUbeiNFUyYM7AQyCUDFP2hgjUXrcLsFcyHObStLmyBdbIzRqiIIG7YEYPdgX1yX/X8yGgxR0BICnHzx2fSHaVMDIAa9gNdL6NEQrOZdwHPvbGChPW+BC2NcXAS0NFjXWnsLWTgMtfSQl1nQkRGTpsVfBCIPzUpaautbm437ZP02GnOpvDcXlunxbbMToq3Xhd/7y6Jj50iiGOYa7cn8bGTfJ3y/WcZ7tqbqYnfjyVo9aQ/XtJiCTOOmPMwGYxYY4HB0mR27RyC9IizkigsC1l8g2M4sb89ZJ8ZMMe/nZGOG3THv3Hs0cXlOYX3APMNsBvp/uN3j+5oMU0DskIYxxU5OVY4p3B1s1B5f7NNyVkGYn2Vp3FejTb++jPOnzm7/iwfy1VYfgbK3KxaevYiX7d7cDf3UXFVTzBsM76v7vvYnRApX9T9BOns0rN8yroCK2axj9qUHGNeRiVZ2BeYKSwtIbQ2L5ULCbOK+jfPcx+s31RkwYqfY36nej6QaH9JCgeeJ+WTmzc8QNvCgNlCI6F7515+R0qLfZ5j0fOfIeHHH5Tei26X/Ac+T7v5eH196IUQ5N0XHxJXHL/HagHkAJThOOM8spt5GtrfayXxWl1JK5qVqbNDsSRFzbgiKGOGpqoFIDnTe4/O6/KewXsETBmURWMD0ZpqlBRTIq/XJAAsXkeasXifP6bfYwQzw+UT19s0kWRjMwOszEpD87AEybZJanm/UfMPzYTU5hy2laoRXqvMecqKag2ZH0jc4FqLewvYJzePywYaZns7er9pT+Rl5sPL0pqZMlt1sCSYEU7IFDkwGFpWKHMX7drPzEyAsZIBM2N8VNKn7r3YKMy3OZCY31D7eDgzYsUEvgPvDcjp+Gc5lcISpIx6X4CbojYQbZbb7o2U9QN54DYEe3xeb2BGkkhhWfdnPIMbsC/5ka6MVdqyeHJCpIjGk87feh0MayMTTQ2qCquDrDDKQ60xjAxLgLLOmGanYZ9m9vTmjuiYKrxGb1yZrd44FCp6zaic9zin2hvDPQch2LrtGLuISwouE1j5A4y5sQjPgCdm58JUojzufwCsCu5YE5kxVqaiMcko1TpUHg3GPvCSLs7HGaa5OUU3qxdN63mF7fIcyBuaT74RFz/DY0DWPBavcSMusEo/8zM/Iz/6oz8qDzzwAMehDh8+LAXcb7+MV3g9g26/9mu/RjrvP/2n/5T9HAFv3//93y9PlYXOc4VMlMs+0YuBsiHGzLjhWmecYTNDauueiqCbXdYbCwtFmyPDUmmXvpeTwrEYRZGZmXRokDQBH2QL5SHrXssuwsAugRUGccFIuJBGZpaYbLCgkg7XkXJgE++B52qoo91A0JUyCZ4yX3DQs+22ayDYMrXaVaYDN2YUDnhdsDlgRnDTRj6KSsss+BrFN21/FfwIgoXNDMLvAKGaUYQL1ZWSsivoMOPXzObSQhqFuYZqa7eWxweuiJhl6wwAKopzMCa8QMIV0Fz+2L2r9yXO5dWkBIU7JS+wI44yts4BNsrYfGe24ksOw/atnvihz8KXx6oYKhiy5+fXEvHbqDgw7xCQnQlbPS3I4Ja3f5easFi0AcAZZkE4ZwR3rJxvNvM6yB60+xLDLAPvv9FTsLfaFh/yQQAIcy2snu3SGCa/2pXxD6zK+ov3yuJzPBYgzGwbHeEcFU0Cds+L1+vRvSyAi18pL95GU3x0+yHh20D7M5DebE2Ch03uhW2eHJcAuv9GU5L5SfGbXWnN5yVfDSjNpFEOC0gt4mifzWM0AFbuBu6cPylH5dwJmiBmGGISX51hdC6iFg1hTBsWjVA2cNz1XCYQA8B24aaQNxqwJ1gDA1oIJLDzzusiJB0VTZpZg2PxOzlZlWBDg01hpkCLftf0t5k8snno+MEdz5k74M/tIdXOHRD293iv+cmM+c3yAlH0WqOkdlrZThYtvsjKnXbeo+iqancbQbgoaNHdBmBDZx+gDQUNYhfAqDNUdwIvogUyClYUzDg+mKfZPOwx7674Gc2GC3fvonwzWlp+xLUxnJ9TI5Ev1cpm9FLpvPrZUvncBZFcTuLJKuWL3d0jGr/Aa4Ynza9+JkEpnzo2KmE+JxEYYBejgAYJZrvWryLfa2gxUyyOJa6rI+DwAuihBLiCEFwwxckgHB3SVhT0o+Usow9zUV6sTRplGrQZh6YR5IvuHMd13MWzYHGGqqrXd8cE4Xs2MJTyCM66OPbGUsNshMHLUcQGC50MEUh+JpDo5t0iH7lP4rUNCXM5Xsvd98YpEtQISw1qNB/TJJU9BYfOvMoZgvRGVbUAGVxUUdkgzlVXXLtMLTYB25B6pwSS4w9HvM7hce0ZNTDB58b9FO8Jhsg137B6AIwo4Ev6n7tXOtYnBUDzU4lq+nmCJppknvRGTGnSF0aN4Lxo7Y6ZMUaWyCnSRiJpo8kVe3LLzefl2Plp3lM2byrL2mubEtyHhpLJ4gFU+nZ+GXgB0AIo6uyOxPcxb5hKvx3K4uYYf+91wd7q7BlljxZHwFl3nAcjxioR4KMZrKMMuIcDkGLelPEpkHwCkJYM/DLkG2AU5wbuUxZhUFZ1DmoUHAMYlgB8pmEiufVA+iOawUZb/55P5hBADz9XoIVrn74mMubczDcAGWWXG5YdDkklxljJztkxMSksrms0xDKmT+evB3UKmmzqLiyDa2NrYMWPc/+GXk/PmF21CQjcDb/iK76CoCwdMuG6UdYP/dAPycTExI0JzJDY/exnP/sRP8fOvN4wtRtxcZgW7j/M03AzXBqSqKBF/3R2+Wp4YS6MMHIbVbkfwcpiX7twqYEegBkANd68dJ4sKzg5t4XOIF5YBr+jJl5vfPiTErweZk4CSuWoyden8DF+cTDEC+CFbYEWHRKnTOrIfBEUsoOQS2ZFQepFqQqK+UjldFaQ6w1Wix5lB61Ytg4jXRDZIVS2gmDBDCzwutnQOq7prYhmDl4D+iwzWsBMBeygweh0+5J4OfExT8SiQKU8Kv0EkFKWBfsAi6CoCZmFFkGZzLENOVss/tIaJWrBWM06njkpLXYtOyUVb9Pm8myWyW0opHl4TYAkgLr8WkdDtCtqeEEGCE6B/USCNh6r808s2jFThc+NG/96U5JzF/k5mDd04qx4B/eQ2PThMIk5CYIO5HWBDsEN3Sfo8Yt5jU9A1xv5X0V1ZgvA3LX6/F00mpd+LSf5tZ50x3KycVNNZt/f1dmH89pAmPx8S9KDu0WOnCKIABBLRsv6eVGkNVs01khLOfHPLoqMjqhpybl1SW+5SbyNOkNgPTy2WuH8n3dxVVp37eb5FecCacxXpLykgJLHP9UiTm+8A2aYBQEKMmt+uAFy13F3jQt2xyFlwbkH7GSyIR5zs3vGzAnYAPc7AndTVIH1UgYzILNNVtRMatiBbfQHDZnxks7HgUXAcQpd4CoqAv0OCwptSB0h88S/2x0WXwCpzHyCRMyCjLPriUkWma0GxqSQl86tc+qmisYHWGA2e5wsGKyzz1gHXAsqC4nU96IhIFJd13mR0prJjcyoCI0g7Meem33tqyMnjRlStQZHYYgZm/4k5us86cGxE8VgETlwBSkutqU/U5McjCeQNbd/L7dp5WV7ZfR3PqLH7UsJymy+z5+GS6F6d6cjFX5PulNF6dxc4Xk4/lCb8l4cX1yLyxf64o/W6KjJ4xRq+DgBHubLeiqVveptABjv9TSc/ZEbKP6uOcpECbRwPmKW0r6/aLKAWdbHeqpmg9y6rIwdmWBrDACUs5A1xz1VTAysyF1RW9i0WSKQvDZbq6oEnEdGQaSplE5taM4ZGiYrq+LddatEkPkGvuTmpiRcbcrmN7xAKn/2CUl2Tw+YOUjnTIrumAyAf0j7+R0HiNjoi4zC1U/nnpwBBM4zMC8o4PE71+ADa4YZp5GTMSWKMK+BXLe0mrChMPmpVbqJ4jzMl2Ylv9CQ3sh4pnKAU7DbNzpLpq8H23s1q9D3U/bIchVhuoH5YnMV7k7a/TWfyp6/SaQxj++vSH41kN6UyvYwF0awZEzR6Bdycrw6LZVPluT8S0XmP9qW9oerlB2DEQwbAT9ba5flkhGIoEnnE7TkF3ISH0AQud1z0XQCyMEXl39PJDUAg+++m4fjsSBTafNjZixGkDpqUkXsA+Rqsoms+9kxX9pYRgMH872JlM+hWSjS2ptIcdmX8kWohJz6wEkXUz6uO5FKZ1a7nQB53Ke4V4FJa8N0Sd8L+xznNIAYJI24B/drTjmks4bOTAS/B1AD+wc3z8jJGe3Wy/uFmY65c94ZcDEKAI6ZN/qM2dPrsgsyxm/6pm+Sv/u7vyMQg8P7oUOHaCgIFR5c4B+LtR3k7WTgcanlDDyeSGnlNZ/WcE+Bu4lL7nYL/v3PeMYz5Kmy2I03DbtzNqTjXlcZMQA0l7vlGCw3W0XXKUgGy6qLh5TE5YQ4lzq8Lpgdl+2kjEsgfiuRGF1KA2ROwscbdw65arHK+Ew2gW2A7IlGGs5xOYdunf61tBqrtTqGbjsWSpnZkuPiqBbFaouvNyyCQxQO6PTZbBNkfS4EGNuQyRgBDoaYCGfC4S6wlN6JMhic7UEhwvmpLm3COWNhmVLJ0rL4e3bxZuxVy2Qu/A5aZublbjdTzGLB3g+D5ZqJZQYktsCCOMMMv90T//TC4JeQUMCZbnyU0jW8Zgjr9TDkoDulRnj1MbgjKpNGh0Anm8J9nW5gAGBx5h7oABSZN9g1owgzYMhB94025zooZ0sBqgIrClMCNhZKiCkCQMJ+AqPUg8bD3P7w93woQdPMJzDzZMUdQAOAHICu1/elP4p2tMjEAx0GP6O4I4uCAO2Pf1EZHOdgB0t1HMPTF/VYjNY4x4VjEx+cl6iak8LRBYnnJ1j49moTMvbBMxLvnuT+Q6QEJI/lBxalvnc350tQJJA1bYrk2ZxwJjA6kwfAwRkSmOuA8cS5n3ctUaB614UfzBg6sxMWn3DwtMPJ75JJFwm2HbMLGapJaWn9jDByOxxtsI/dlNuSnfPGajpDGH4X8Zo4eyFnHS0MZhxReGBIn+e05keBsQkwk4cF0OajcsBjFOBAJgfg3ZktS28klNqxTZWv0hDFpF9mHAR3Svfd5qzrMmSqaJKofLozrm/j8vJc3p66jWrwORkDA7coYnH823vATCtLEG7ge6MhtzAeQPZS52BPzr90RKbv60rz9mmpfGFRGnciPdeTNmRE3/pCGf1tBWfh9BTnDeXAbkYVRA8flydkwZQC7pJjmulVPrXJpkJ/rGSMq0hjv0h5OS/lcy0FHI1I/EZHunfsk8KxBc4KQr7ocuqcYYvgGh0PWEE6cILN2iZ95B8w6shhHjTJXC1p8oLXxLWkXKAsUedPLYeS3ztVGGC72PBC2HoBbq56ng2u6wMnWDYuXHaiRYU4BUcOLq8wDKyBbdJzSRuCzsXWTBJqvtROtsUDK5jPSX/vpISbdemPFCkFhDyx2k/kwgvLzPAKDh+SziT2Kc4hJ9Ez118aJmnDwJksoUnIfWByezYsg62mEZJLpD9uza/Ik/pISmkfDCucFJ0NRChBMKs2WxVvoiy5z5+UsI6ugzbmmAlJsxCRwCoYsmQY2eNc2rDZhMvqsjkmzHYBmBEso2uK7qTIxD/k2NjxY2ReatOosBhIdwoyjFT8JoyGEsldyLOxMfHXRdk8oGYh9f1FgktISvF5AcogP4arY28i1nksRKXgclBLJKz7kq4UxJ/S84viEGzXSF9ypYgsmp+PJdnM8/0LS5Cl6ve6uctm9PB5AECppjBQVtDvOa9fNZWXAvx0p0yOCOYLM1pg44JUWntiyhkRet2a1zk7zCNjX5aW9RwDm65gHwoXvQ7DgAQmKIWVQPpoSHGWGvdJHB8FZdqktTidvjMWseNiIwHO/j/LSc1kknY9c6HUDrAZQGUTD5esmt7Pb+j1dMD0Zdf3fd/3SS6Xk9OnT2/BD69//evlLW95y2MGzLabf1zOwGN4PRoDjycUmGFn/at/9a+YYYYP+/GPf5y+/UjwRir2U2mpBHDgaIhFVZLLCjPspNb4ql/nDdXYNNeR18HnQfium//BTZnAjEwaLuCYf/LFqw+CpCl5MZkFmSxKYVBc6bA3HQI3tFh0N2MWqMidoY0/Lpau4Bswb8qUmaTQ7MhpSAeg4WzqWXgqMMScVYj5HZMRKuhQy/NsRoeFjtn5YzvtMwMoAUzxufmAs1b+hRXKgNC9zgw9nEMZsndggW5AjjlMfD2h45gcP8NCKtk/x/cHY+SfWdAid/8cmZ7opl0SHjmrEsTtIcHY5ItL4oHxwGwJut547wtdLfjnpyVc72TgiGySWbOHxk6FPaSS6ufE5/AAILGNkAJGiAZoi2e5W1jRwyfUjc/NxiR6d/LREbbP7pHqcE4mPoGX1+xoYCoAA/6N7QETBYkk5HAhwDxkjYEEOKfA5JVCKZ9vS2u+JKWFjnTvDFlszP3qp8UDc9PuECDSdQ2AstUb2MGPzkpUzYufnyAoLpzYlO7hWSmcXhcPc22tRKK92lmPHnpY/MlJskRpqSDTn9qUc185QkCG2SXsTMzYgSGmlf+YDzWrzoBABmUdXzDHrkuKoo7zi65jGg8FoVug+XDWDQpEF0YO0OLYbMxJaHGmg+JZtpJ9B3RWA48HU1XQ85gnBwodnQNh8wRzg5DP8nfOxjkVKcGsAcA9EN8ki5R+OsMQA8xJCUVvSHMSSHsRLI7tbe2raZFdDpiZyIKWszpwd1XDE7wWGGA0VtT4A4ZAaoww3EVG19jtD2cfjWPA+RL7rCjOAMaYrUcJmbKPcBvl4/AajUCaBxIZOxFK+XRdzn7dLimsaZMHsygo/DMJH2zekbW1vC7d23aL7L9Xgvdd3n79sutqXBBhqDGlUhJ+tygtDaW7q0bWnLKuMU/GHlKAQgdPXCs3tWGSX25KsrCsslPMWFkMBM9fmNoMzaxdkhV0Nvj4a7ut5i8wfHHbD7asVJLeGKgANb7h8Wjh/NAGn2sisNlWRDGvzL/KuiHp86Vf0kYart/c5+aip5EqympA0qfHXE03KAWExB2AzmZ7oGDA6xc2Ypq7UFpbG5Xc8QVJDu/j9kEqCTCzenuZ+ZrNXb6MPBTQJVQLalN1OJYa30fekxIprdp5x7wxi2hhhqVmXPHxzByz2Sk0C8+GMnosYegzQAUKbIAY6aXaAOD+EqmcTSR3nwJ+RHKokZBGDzAD1BNpj1rTlJK9QXQLGDL8ycxugI+e3bPBYGUxdp4kmInyUxl/sGX3zwLZ6M4MGm6I/FDpMGR/tc/l+Tvcixt7zJykJNLYhWZUoCBoIpXeBGTs9jk2A5p/CBwX4bwIIJPX/LZ0sUA5JebNvEIiYSGWwE9gcCxhLpZeKRJ/Ja9xLfDqsewwZ4nPcwBW8jg3jE0qLRmL1lNQD2kmowEwK4bcNMcYYj8wW00kGo9o1d9BE2PTYyA2rgswWSkuWVOPTVAL5Z5SaSTYsaSUMLdNz0ns98E+JjCjMgbnqmich7lZu2wy/B2zsM4ZEh/eGZTg8zJv1PJAzaB6YOUPtlaTT27c9bSU8bLrr//6r+U973kPY7iG1+HDh5lJdqUFpu3lL3/5FR/37ne/W3bv3v2EGng8ocAMqdYY0PuRH/kRabVaDJhG3sB//a//lUndT5WV5X+Y9S87UrggsoDSiwrZJ6fMy9ypMFtlJhDWfadpRlHDoZlBQwZB71LqCqivQXZm+3ZQJoc7m9370TXEsDrsvSELMAMFB+RYiFmHlvMAloeFCyMWh7/ZfR0E/fLxAIhgH7rGNplCB9bTznQCLJoDSbSxbwGQqGwPP+fzjT2jHbS5i+nrxzTzCBpdDQNOEgVlzhmtVuXME6++ABv1ls7zYB/i4ZiBqvclPXpqYMLwwHEtkg7sVnkSuthHT9O4IXjglHZJsJ/ABHHWR4sqFmz9vpo02DZkIcLYnnOL+r4oAuGkhm1iKKaXMTUsDFttmmSwQOQPPZ3NAuBcWtEGIN7LOcHhxp/YDBKKOADJFatsUNyAcTFGRp3Z1B3Q66JtrsCPDAxMOQAkaS4BV4+8eP2QRgLuHGjuLknldIvzeu25VKqnrDApl7J9Fe+fV+ZtZYOv13vurZwTQ8casrc97/isRHcf1qDmWpGvWzqPbCyPM2f5+NAAjK5uSnfPbpn5dFeW7ypIY95ncbZxyJeJL4LdTKQEtzUrNIvrCYs9nLf1XSH/jR3WmtFg1qyhYey1NjlSQea1fpABM0sQFVoOoN30Xc4gwATz5AywQY7lDGu0gaHfnebugs5lDjl/Ys6H7C6iLsxEgQ6RkBIjEy9RaSv+05gKlZey2WIMtH7fUeB0pTeeZ+i5c0PFa/l1VCgDmYVGXljmLIxqnKtnO5WlZwVSOafB4cwgGtVrB6RNNFmwzjlnR6d0PoWFUipSXHQ5fQMmzcmwcw0XTBtIVEtl9RZfLrxgTGd7pj2JRmKZ+qRPYH3+V58nz/gPp/V71elJ79ZdUnjoPM9PFymEvLR4eWXrbB2PmS/B6MhWBupKoMyCuBHd4AARF74DsP0PAslt9iTJF6hKGDmTSmMuZOEcdgrSnAkl3yhI9XSb8tRg7y5+h+Kz58WfnNDvT78vSXfTLPQvsRk2R8i/E8zlJGm2mEOXNBriMQbCp1ySEkAwYiZZ53FFRwL7PTBDDmPJ3Jwk2TJjwhx76uJICHboMDtwN3TgQu9T2oRwoIxSRvs9vm88xhsIf8ccZJ9NJJj1wGK+M4XGwQBkILwZq37LWMbI8jObiQ9NnJyUGN/B/qDJh0aOH8FN1UkMB/Oj+iLKWMV3N2T1LpH9r/88jzuAbe9ld0l3VKWncGnkId5dkJHufvEfPCVptSReo03Wb+22Es95PI7mHjgN7H7Vr0Kmh8BozENB7g6ToURyGznpj7pQMdvHkOv1fKk+GEi4ui7tA+NSWYjEjwKJKr50dkV0HExqQBmQzNsMFy6/kDtCPtpVibAzucACKMuiV3irw3kQSFR1plbWQM2nUjmN/ZKT/kQkfcmJV0nJmkWYN2OhoYoBvCfff4h9YpZbZTBLh21xM1wAOgBGAFFcAKnlSG35C4kUql3prBcp1ebexjRBDvtOrweNg7GkpzFnNsg+dfuYsUEtgNdUAstqg7wIIM0ZfMDhEs2f3PrAgAXnAyJc3Hw6WEmaF1GhoK/NP4cMQJyJCW91zIKzzw4FBZi5Gz3H7Ol12YXxJ2SPbV+rq6tXZQDy6le/mqDuO77jO+Tbvu3bmIu203rJS15yVUcChBNcIa+0Njc3rypWbKfP9pgDsyiK5Pd///flVa96FQOlAcwQMD0zMyNPtcVuslHqLGCgxGgNhlMzSaBR8ABmWX6ZdbpdcDH+RBHaGw35enAJpCucOe05SSBZkGjgzkdgZ9I2x0B5PlgulfUpaAHqU/kXFiyZKfUy+1oakTTMaQvSPbItNgiPrgE+GGx6WegaAMSvjeVDN04gnSyqzTzYKRgl8LlnIH+LdZ5mZpJzSboRKgF0UjyycpgZW23qa9YbkrhBexR4eAqG7w2QJCdODyybIQFzZiBm7+7mO2CggP+8I2pxTWkV5oIcuMHP4DjoiiqAM/c7gJ4hQwZ2zcFAsROud6D0rGb8+LvnNHSZmXC+SL0pyeqagkMDXE7ClFxc5OxW9pqYQ8E2DuVeZbMskbr3cROQc3VhYWuRakHH/JzuOS4by7n7YX+USuKN1lTaCDYPFv9waazkpD9SkupJzZnheQ3DD1iDT02KrMLbWC8B/UOz0tiTl+Yu7XZCipM+82bmAqHrnl/VIi9XDCS3UJd0uib1O6elsN6X/MkVSafGaFiyekeZN21aSyNHdQ3Fgy9rhwMpL6Uycf+mrN8+Is1ZX0ZP6nekUFewhPctL6lsLwunRce0ZwWnBak6ljfLyzPJnxYPA6tp50BasLlK/J3dXMx1oqlASZUeE4SEY3sxSO/AHea7OLe42aOk05nz0CXVXScMVDEuYDyU4upgXg3bWTqzKXGtKO25Ipsk+A4iEgFOnf0R+Fobi4LvqZ0falTjmBCw1VqljB1VUyGAV7ix+asDk57h8HfsN+x3sgpgy81m2812qAWaWlq77juNMoD1Ox7ZNTqu2TwJ5GZgCjbv6FPSdeHrD8n8ey6wqUHwuXdaNg5XxItvlrH3PCT1Fx6U+h6cOyL7fv0hkYkxiY4e47kbb2wq83XLITP1iS8rgwSrxTw9sFv5vIKhWpXSUYIqsNWmFKC08cSGRIVxKWIObySg7Kw97UvlHEB4TgLISzFnirgHPB/nEeSouIZZA2XH7SiXJW40uR3OPCPAd3ZjUyMScB2cmWbDKa5qQeHYWZeRNZCu+hkoI2vrnDvNvZYGHzR7UOCNY8hGAq6NON+cyQeYKXwfVClnEnllnJ281YX5knWOYr0mLa2IBwfL6YJKE+GoCFGAmVfxfkYZmjPxMAUFwBnNnuzyRNmxBsOjoeccJV0epzvXaNwDuWwhlnC2LXE/kHg1Lw//9rNk/INFmf6fn5biAxfk/D/bz3McGWHNOd03YP2rXwTbhMZentL0JCyrSx+kfMYWR1PIvtT9iBBoN68K11o3b8bv+TrccXUOrQ9XxA1Pxo+C1QebjKYlmpiI7dAQ6Bj7uhGQ4dIZcnW35fcGjFQT5huqaOEIQ86pV5S1dtmlMD2hEZJlmnGuEyHyc8pOYfzA2wwlLkQSb+bFr/SlOtKRJvbdWokgpBCphDBXx2yoSGFFWSzmhAHcAEhDAoooPJpc4X6txyFsBRJ1fYmrEbPSALLL423ptnMacF3FPSqVyFPbRMgv0dCrnPGkuS+VPBp76MVM6Xvh+tKd8KS4rICVTB6Mmwyg4udg88jI4VymMYnOCrsREMfyaf0z3OAeMoViXTUAaPisWYaq9pVv7PU0Y3bZ9dKXvlR++7d/W37yJ3+S/0bdmiSJ/OzP/uxVMWHnzp1jfNf/+l//S378x3+cWWiYT4NUMe+ia66wIFX8qZ/6KfmVX/kVWVhYkCNHjnDODU6RBw4c4OttX2NjY1dlTlKtVuUVr3gFiavtrOBjBsyAAL/ru76LtpZYQIPXiwhv9MUBU0u4l6FuEXX9bR3QdzdemBlAN+0c4pwtPRY7nnCwwhAvu0kDGaRjopwDIx0JAWZw83UmGbTc1RBdMgRw6wugLxwUh2SACsoEqSzRZJJ4GAAgwNvQ3BIZK8y9ZBI9cwzLmBrtinIVcpxdolEHnntuMQNTBE24aAIkHT8t/vTkwB6c3XL9j0YJYHgAWJptSep1BTNW5FBCZ8CDwMaF9aIgABAEEwZwBeBkQIX7EPlDNqcFNozdYNMTI7iVrmN4rHPG4/VeZUxOUkhAZQCO1tmuKz5kc45twmdLyyWaXyQra5QC8nnudUHlGNjT101YUDrp0yOMBfg47MdYQRv2gdseF4C7PV9o+Ol8PcxIgR1tSABZJuSQtNIfkepnz0s8Ny75hbosPGda9r0bTovTZPI82HiDIYQRBQxW5ifZnQY7go45io3xI4l0Zoo8TytnmrSML58PaYHvj5dZZBbW+pJbaQ4CqiGFQSgyg03dPEIq9f0qm0MBc+ZVozL1+UiCri/NuZByLAbmYoAd+UduToXzZdoAcc6nnE+kw6PJtSz8VfMCrYHimhywCrcZNQVuymCkmIdhVo9Ky8CKAVCVlvtsPrjZUEoGMevCosc63DgmLprBh8shzGN60h3PcX8gTw5MyLBMmXMyMeY3NCqBr0GGZPDdH1jqG8OC90Jha7I3zAeBMUMMBWSNxVULQG+BpTPzDzrBDopzPBcNd3edQpFIsEwzIC1yWOAbC8PCUlyArSfBqgOczvRIpHAhJ729PVm/I5DR41MSF2ekORcw3gDPI/Pytbdx7okGBKnIytfcImO//0kJRkcl3qwr+3X3LXL+ORUZPRVJYakrYWteYuSM2XdqywKI27tLUpjO9Ps01cD1J5qoqBHPQkOlxe1EivefFhkflerJpiw+r0aJXHsukVt+Y1P6UyXub7qLQlqN6xuuZQAWM1OSnjp7SfOPoFrltQQW8pQC43hBDmzyRw/M5/wswWKETCsYuThzKBxzd0w516QMqsY8mOzc7sLOaIP3DZq6WIOQjISZcKD4Hpq95DWTUuHBnJGgtua1XB9XWonFx2wqfoZA8VpJehMaVs1mm8mAda7N7muQ/zHvEv9Gs0uNP7D0u6fXKucQCQCkkvxEgn5AOZ6Tm/F5kM+VUum3cpLi7/lUwrNFaaGni+/hxUWZ+cweqe8BCBqwT62ZQKq4L7a7kkzWeP/CuY5rlc6wwekR9zpsk8pyCcLQVGjpvi6YEQedi0fVVZcyvEIiM3+v322oBur3TEh9n4KL3hhk4bGk9ZCgDOwPjD0cW8N9XdLZPseMAchANtmvKPMOcOL2Adhrmu1M4jubSor5tsSjjDHZCPUSn08kqkMK70nSzEk9CqQ21pLGRIEMYG9M5/04W2Vuk7g+gXXC9w/XBUSjAJC5/QeWDs+pPaTHCgYz2EfJWkVaM32ZnN+UTi+UdhOhZtCZYmbSJ/sFmSU+E2IEuF+tUUanzRGhiyu2hZ+HM4Vw002lfMYCybFPXJh3SxlZ3AMA2GhYVgiUbXSzZTyXBw03grxk2/eBOaE2Wwsi88rkxpd2PQ3MLrsAwL7qq75KPvnJTzLHDMHSX/jCF8iYfehDH7ri7p2amuKcGv779Kc/Lb/1W7/FTDT8BzUfQNXdd9992dd429veRmCHbUHgtVt33nknI8B2AmaQUF5pAWAC6P33//7f5Z//838uf/VXfyWPm5Txec97nnzmM595hPnHU25xEH8wdOpuhs55kXJEkzU66QYZMw52D4akedF3gbr2s0x2iKKAuMgZcsR0uyMTAyADQGOSQLr82bwVjSMM9LCYI+sVi+epmyCcuNzrkQEDu8VQXVFQZvlL3pAcLhkpKWjD4wAw4JwHtgkAZ3GZNtMoRrjdcOSDs5cBORT67DhDFojCE4BkmJHCtlQrOhcGUObc0PDRYTVtRhgKuAyIZIHHZjluYMQL0CkfAL8sS8rei49B9CZAmYEt93M+xgAZJYUmXYKvCH9OC3N7HYImPB37Q1SaCJt027btFugZUHJzKplt4ADsbTm9DKw5dzi3OLNCAwtYguPfV9Zq4DkMPAYbNjcj5bNNScZqsnlTRcJWSSrn4TzYkfjcRRbGPG4V2HnDGivkTJqbH0JhgkKkcmFwDtfvHZHamRId+5Igz9cd/eKmROPIYMpLANkp2MKcBSOXArJUDI+d9GTqcxHlZZArgilbuS1kl7p6tq8SwIKvBjYGxlAAOLMaFIEOOKAYpG00gArmayjlUTt+Z4LgYiycrFGz7tTxEDJCFKCcI5sucNYybEQEZf2KzpWBJQvRwbb5ODBU7bmSlC606F6HIrU7HmjIM41MBsYFLkYjNMMYgkQLrUZjBgCwsKHSMidxZE2CuTJsFwpk/NwCzPGcPOcVzYQIAdzGkDhLac4h0UnVguJNzjhsiOKaRK6gyfZn5CzY9fco7tzcSmZEAn+E5UhWb4V1ukj+bJ7FXn69J2deVZHOdCyjR9RYBYwolAKNXQFniBafi8LNk80ffK50DvVk11+G0hn3pXamT0C++OxQKudDqY7vkfz6jISLm8oaI8D7ebfT6MZfXNdr1eS4xDOjDPGGyQ4syic+ukBH0e5UgREN/Vt28znB4ppUL5Sl4QUydwuC0QsmuYOxUqixFr2Q7Bdz5y4saq7f3beLd/zMFvt7yDIJCAtVfmfwfnh/XOvgIBsgZH2kSodWgDC8trO6d2wZzm8NTba4E2fK4TL8yHiZaQ3Bmb05r912vOgyKxJsDpz4MsmugR8cH91oA+A8V5S9wbUd13jIbVu7ivzeZE1DzlqK4FLH88MaHO4eyPlNF+lgYIznE+93eH9feqOIHdHrIVxPIUvMXFXRuC7j2p1KkINMLxTZxPxlIrkFX9b+v8+i42f1E6clvzEvy88s8lzirClY7OcfZnA9908hlPIivnchi3pKkWFik1eTCtyQg45FcVAlorNKxRW9ruF1m7PKYJUvBLJ+k8iu/32EM5O8ZENOvT+ScKwrcqGsn7+LWTP7HMYu03DDoidccwgsd1zBNcUYN2zuuoJExyrlNhQURmiMgqLs+OLPdCSp59W0a133G2bu+qOp1Fs1kWIi9TsjyV2EeyZMi9RgCexYB/Fnq3Bf1XOC2wXnS95kFCjhf2t3K3DCnCkAI86ZyomcrHbHJD/blvHxpmw2ijSghF7cw74675EhQ5xA7QQCuAfAn+e1KYqcsyRZQEgaVcyhs2nW0HZAitcdk0aSwcd/2TyxbTaOJxhEc+d1rP6w/JpNObzt01LGJ/UC+AFD9Y53vENqtRoVeK973evoYzE/P39Nr3XPPffI3NycTE5OMsrrN3/zN+WXfumX5IUvfCHZsDvuuGPH54Gx+x//438QIIJ4cguA7sEHd87zfNnLXnbV23XXXXfJC17wgmv6LNcMzIBE3/rWt8rZs2fl3nvvlUql8oiNeCosDpuaWYCzKB52/nPGHjQAGPq9XqAhD7HBbCdfM825djZVgojCkDNbMB4AIwYpGop/zhN1dIYC7m6QWEC644Aa20c6+E6TDBT4MAlBZ9GGJAjewL45YNZAywraC7ScfIkvXJBg7x4tTAqh+PWOxMc1MJiSQceeAfgBRECCxBdOlQmCKtF1bDHv4fYLWDAYavT6krYQOGLACnlXm4NJXXaaPQs7xmtA7odCCSAlk/BpV9Y9RiWM5qaGx2AfODnhENPFXeCUf2Cd9BeDxzlGyh0bgDTHonFGR3+PbSJwQ3EjwwDKQN7QyoCak2A61m8YlA09xwE/sgTuOUPgkiBv2zZteX33Wtlz9D8fwc+lUHIPnJHxtU1Jxkdk48CYeAsrDJMFiIZs1EPnHOcOZswYCgvmSovyjZtT5vj1phOpPRRI9UIi3TFkfhUk1+hLfrPPcyu30pKknJd4ekzjCHoomBQ4w/EQpymKBhhJxPlRgq3Saiq9iieN3YGUF3XmS51FMWyuw+MwuuB3CcYxNiDucpr4nXLyKt/MMRCebvJD1zBR11TuGZXyII5geDbHGAzNxFMDDoBKuto1UmlPAazGEjZ6GvJazml8xHpXvDhv3WdfQhZRsZp7tGM6LuaW29LeW9XrBWfPzAjAnFZRMDP8Gt8tK9JdPAfd7Yxpwb4BYHQFsbPSd7bpbEG0E7racfbCih/mJVrBBLaErnd9MG5a7DoWEv+pzHMw11TYMAZhyIp742CORTu6/nR8LPpy+h9XVJa9CsZMmdHV2z2Z/YRe4yC3xDUUcqvJByNZ38jLxkGRXR9qSXNXUU0ATMK0cntOKhdD8feXJL8xJYv35GT/u1alP1mW3t49UjlZlxhOod2+RCNFXjNHHm5xtrG9qyy5Ta3OAMro0Lh/WspnWtKaqUnt35flxDfWZO97OwQPlLSOgikqUIKdLK/yOwjmnq/vZk7xenfeKrKwIrJnjtcQSBQxp8ZmFOYQRqr8DqFBATCWWX0bKOPcmMWVZK6j2fyYnhcuLDkzdHCXjyGTGo48Wk4jM/pMmsrzHGwp8zJt/gaXfCte+XoMHfalt6tGhhffIzY7+H2x67dJw1xWnnsdSPcpx6/od0mlk8Za4D0tAoagEHJbc+2jSzEaJ4kaQmiGiyce2JRSTxqRL0FdZX2daZzLnlz4/hfJnl//ooQf/rzsOj4jvUMzsvisotTOJvxOlU6tS2ffmOTWumTRsIorjnE0cyx8NxhXooCAERtkJxVAcZZ0VoFq9Ywy4gROaDq22jLx2Q3p1cYkLoQSwdCC84BqnqWSaXsda65y5tzAtbL8YFJVV8pt6OH6hy8lmgE2D2dsHr83yAMbiZQly+vwZzrdlaQdSjSeSvFcTrpTIn4LjpAeIy4gB+12C/xeOSdmgD4yUmDC2Kyx40i2CY7Qej1VK3tkwpnDp4GgfieU1VZO/DCRQqkvnXIowUYgjf1JJgut35yoLJQSyUTCFszH9L0oKYWM0Zi23kQqYd3OGWsaoATBNuq/YQSlknE0ktgw4gy3MWTDM/MA2lBf0CF7AMjc9c1O4Rt3Pe3KeMU1OjoqP/zDP3zdu7jf78uf//mfE4i9973vZaYygN4b3vAGWVpaoh/GN37jN8oXv/jFS8ohb7755h0ZL7z2TvNlIyOQhFzdwtwbGLnHFZg5g4/v+Z7vyX7GeSYLhPtSWEs+HosBrS6vBYVUV4sZDXDWxzh3RSxn2c6wUEgUMx2+XdStuwm5E10JO9AA4mqJDlkiXgvDNApIAJbipRXxR6oszBH2yeweBADj7+OjImCpOn01zgDgAijjzJhlXyEfDKYRNAlxzh8aoAvmhAvP62MY3JMYLmQMDVHAowN2AD6RpGJgyEDDYFbKZp2GAAdAGwf1Dfj4Q88ZuBIqi+QAVsYcmUSRJScu9AaO+F5gjhwI4Y7dCq62MFkOlQ2v4bmtTEY4/GswiL54eWXO3PYpu5Zm8ydb3tO93vb32Ykl22aCsOXfO4E8B0QZcn0JULZtG7Btvdv2aJdx36zIFx6WxnP3yPw7PsGuvlcpMxIgPjjHWY1MPptoKHdhHUW+L9WzntQPqiwHhTsKQgAgmic07XnlPGMDeqM5FsY0hOnEOge2kcrGwVBGTsWcQfO6fc50FZcwg1bKiih8fzoTyrZQllJWqRa7pyj24LRmdva0BB+FnbPaaVPCid3UHcyS4TVZjBm7gOVmzlg4JehUm8ujZRMCxLrvMM0NYA4CtozZgIEk+aKGfNtys2ZxVV0AkRnXG8lxG1BA8jPtqmRslasbALhCzHa6gtlJhU3G4wpMMhwmYWRZBQDmhvsJuAayRay+hQ+7cFeXEafg1WREbQ23R2ENGbYDsE5Ol4E9FpvKwCszp8CRMRw2foUIhrMvL6pbK94fhgriS3MeIFFk9RkqY+J7HGzK9HPWZDndQykZZh1h3ADgjaKOoH0Bs7Y+Zaxg7FbuyDGYduElEzL5+TY/x+qzxmTsQQSd+7LwnCIlZPv/VIOvcV7R0bbbl/ZuBcPF89oAmvhimyzn6FGzj895kl9oSm+kJrnTyzTN8Q/uFVla1e83r8n2PXv+M0WaXQYu49j0xvI6u9lKJZqsijdaohy1P5I3gKX5fA6Q6fFQEEB2i3Na5lCI+TJnJ8/fWfPPjDKyjD187c2RkcfUpK88zpy13DpbyKIZ/Tsrcl3mJthWMFgM43VAwlmWD80dZjNpOE1pqmONEc+BNoB5PW/ym4gF0ZlNPEmDgs1BsqNOnpjFwjb0xyG5hrV9Ir6fkjmD/FDZkFRac2CYRE6++XY58N++QLCcG6mIlxalNaszYoV1BWW4txEggi2y2IjyAuYItaZnjlgbDYkkA6C0vl+3z2rnJq9rqcjEZ9clvbhIUyQA7LkPrMvKPaOcS1TGW0FDedFJoHVfkz3uwoBHXw/nMk0vANzMFZWsfyuWeB7XGKesgdQw4bQA3SKXIIPGfRYHCtyWL361L8laXjq7IBXPSVTFBjs3RZxzak1P51WYddSNReoNN1S0yeZvmnKAbol2MbJzDwwiz8+OIvmkE0innmOmYTyJGBewvzobFjQ86czFUj4bSDfn0bUSz8d/MBaisyacXvP4LiPEG0oIBVo4HgBlnCcG82hNCOyowqrNM4PNa9v5CUAMMOkyGk1J4UxNtjhi3+DlpmvuPxav81RcAERvfOMb6VkBJ8ZrXW9+85vpCg/88S3f8i2UI4KFcwvE0dvf/nYaFF5q3X777fKBD3zgESrAd77znTtmNiNf7cKFC1ftrQE3SESMPe4B018OCxeDXHcwjI+FTjNuWgBX/DlZEgNe3VgSzHmZ8xuLSQTHMu9qyB4fM19tdcjia8B2HV1aZ8RhA/FYGCzXB/lb5q/S5dWBQxkG1+HmByaEVRSc3tBGgyQyUcA19BrDhX0GxoZ+7xgczBRkbBQB2iPBzXYAQpCIcEwDM9zmbfJAygazzXCMmEkQh4HY8PtdYm0BSO5z7fA5d3zM8OyX27/II9oO+LY9dzuge8R7Dv08A1Y7bcOVFvf/zj+/1M/82pgEJxaledcu8aK85KanZOQDxySBcYLNgmJeEXNQjb0jUjnfHRjBQFUzAWCiN23OFZSMpcny2DwO+OO8b+4pE8ShAGrszUv1XE86s0WyQriZjp5EwZxIvxZK6mEaHUV8jsX25oEii6bV28DCqYTKyfPYjUenVWfQ2WVmB99uyCiyODMGO3yT5ekchxW/OL/MMIRZaJD3WUYUJFaOtaIcC/MwCB9nNzkwiRYklcp4swkDg548tjOSsIfuPQopzJzEEpcC6Uwpe6aSMZMqY385W3QU7F3Iq9Tsh/sa2VdwOzWHU8jLXBC8Kzh4rJh5NdQA8gfFPz4THx8PBcjD3CSTXuv24zPTZtzMU1wDSRk4fR/N6BuSW7vmkxX13H8AFQwBh4xUjxU66rDfLi74Mv7QYN+C8QKz1loryLkje8QbAdsUy8Ydnsx+yOc7scvuiWzuR25UKhNfaMv5l5Y0RwljXA2RxXtLMnVfV5Zf6UvlfIGsDGbXcG1uHRyTytFVWb+pIOMPYqfnyeBw/0OODcw+nmPDQR0/FWhu3DYio0ca6vLXjSSuFsW/ENEVNjp1Rnr/+LmalTWGYrrIcGoCHXPQDYwZS/J5iSBRNGbLHS/HPinAMqk3/m3yPyfF0sw1mzF0SgubRwGQ5oya/Sxr/lkDI4XJhIF1BwKdtJWW+rh3OUMIZFvBmdHmm91jGcuA0OgOXFW1IYICGoU+wTqc9ZnHaayaFfeBmWCAtQK4QTOFzK99BpyHESzsnXQWDZi2L/FoJAlABZwg+GEseLoaE6SEbV/au2JGEOjvAf7AXFvOIM5NAGffl8pCUeq7A14nwiX93ABk+AzKSulcHOXZfG1j0nEN8QCyYrL4Cy8al/5YUdLn3SK5jzzAx1582Zj0y/ocyAOd+x+PnY98vJhSXV4n/QFjlT+TSNPmvgGIYHYxeiyVtdtwrbP5LDMPASCDSQhm3Pyus57FDRmOjYnErVCCsR7ljQBtcGXxGgFlkAA8AC7dCZgkqfzbBYsTuOAWhkba5iDXjfsOLGs4sOp3c3lgr6CuATOlGw9aUd0xk8meyGreQKUnY18IZPOmlDJLl1MHa32XGQrGDgsAC8QyTgoAYlw34B6J7cSfDJ4ORfrGeuHfjDqx+Ve/rXN6QTqYIx4AW/u85s6Ygc2n15NyQbIIQ8Gf+ImfoAIPIO31r389JYlXs8CC/eIv/iLlj5dyccQc2uVmwv79v//3dHQEcwaW7E/+5E/koYceosTxL/7iLx7xeIBARIPB2ONq1k6s25WWl25PXnsKLAzb/dzP/ZxcvHiROlEcOMzGXc0CTQlq9Z43vE3CoDjQ0luXBmHKkA+xK++G9yl9HJqnct1yCx5Wl0JzKoR7VwPWST1lsBpNiVfWBsW8M7qAmcWwIQRf+JEAwP3O37ubUsfk5NnstYaZquz5Zk6RPXcIkIG12r6y2ayd3v9qAMZgQ7e8ZyY9HLLAdrLFSxleXO17XPVzt4O4oX8/ApxdivHaCZQNvYY+9To/z9V+1iGgjJyn3u37mP+DOcCLrzsss797v3gj8CX2JN4zJe3ZIu3bGZGA8OQqgnB9Wb85l80o6RC9yPiDKWepNveFMnVfSzYPlmTkZIfZXGAgYCCA87s34svIiZ50JnVGAkVA5WKPwbDISevsqmlsA5wJkZ/ni7TmMfzv82YNFgSFTGtKZV2OlXYFKFYWoG6LjAEz+hSIuFB1fO8o18sP5mGy76kxcc4Ug0ygU4VaM0VdER1q0aw0lZ7prBq3pQv5YpjNA5HJQsHbUydHBgJDwlbAXFiiOX64RljkBR36nGW/XSMgX+RbQuZos3KD4z3Yfu0ia2ENGafKqsz0I3NpVEBQWIsov8RcoM7MarA9ngt5qpqaDIo7BQ4KAJ28jfsxL2RAMWt34SVqrNHZ35M0gvuoDsuVj+aZ44QOOowK+nN9KZzNSWd3X8Zn69KDG9/9owR2dGuriHTn+5JfUJaMMjyAAiu88Pu5j/Vl+c6c7PmbdTny7SOUleL3e/+mKat3VPg6I6f6BGXYZkikAFBnPrxCQ4d0ely8zZbEUyN0KV16VlFmP9Ykw4brcLqyyjlaREi0/9GdPGY4hxFFgMJcMyoHRSCbc+6r70Jx2bm3IHTb/+qIayDMpH9knuCxAIBtctPM1RPHkwWunscK3oZMEGxtcTscamZwLhOvHWqhi2xLbo8zBbEMqkyyCD8mWKTjO2TSQxxnsBeZ+QbZ1oEUsLBpweXG6LkgYZUKp2TkHPvnthkzULBOj0YwrKiMcb7cl+5aUYKmsuVhY+D0+PWv/ZB89g23ysrzJ9X23xQnML2B+U31VJtzfCvPLOhnwjFp6zbgeOF1wMJgAZBjHyAnC9s6cibi6+Dcr57uqHERXh8s3OcelORl9zAuBGz5yjPQwNLP6D4PDIEcCAeQwL4rruvnxrY09ptsuoX5Nc1nw3kN4OaOFfYvwZadJ3rhUZZIj7UnccXdG41Jw/nVxshBIkFdHSK3ZBa2lNXDNXT4NXHechbNwA0Wvp+ZmqCrjSsnYeXTYJlfTjKQqMcX1zLkXfoMoaaJSlXZTjhEYhaOr9cZyohjRNDge+Aaa2DVCSZNFkrwiHsOvvs0jbL7D/qInoFA38xTrHHh2GU2GNbb8pnf+2HZ2Ni4JnnZ471cHbnvZ/6j+DDbepQraXfk9L/9kRvucz5WC3Nmv/d7v0f268SJE3RkBEj71m/91ifk/cGYARzed999nHPDvBoA21d/9Vc/4rFwarwaR8bh9f73v/+SVv6PCTB717vetfMLeR79/0FNHjx4UL5U6w//8A95MDHs9/znP5+uKn/8x39MBHw11KP7Qt37TW+TMFSjBBZm1rnWmRgtROiqiAIoRvcJPxiy6h4CZCgCWJTRQh7t3rbaw9Nwos8sHMgVt68tbJQBhQxk6Q+3/H4LC7UDGHjE87evIcCxRSL4WC7HSLnPdgm26Qld26WFO7Ful5AsPuLvW152sK8fc3C2Q/YT84C+4i4J3/dpqf+T55ElmfzshvhLG5xXbN42xXNYgVQoOcxGmVsoMqoyWZM5fjG0tqwzQuos6pOBQfGLAhWMGTvtTcyjJFK+2GdgcgB5GUwauhGZYczhgCVGFh1YZXavo0S6kwVpzobSmtd5kZHTkawfDFnQOAbASa7c0LhbZJhQlOLGby6O6P47CV+2m8BagykYKoSczAzfWZ1DUalyZnhBNawxhZSiYIe4P10un4aus2tttvYAZVoMIw9QmSpeK5gZGGWyUbCOYC35uB7YM8s25LbukEtopiJksCBhQ9Fe0McxZw1Ai7JE/Uwu0J6fr6lSv/YMrmX2+cCClZRFoYFKyQKJbXYDAIEABP4/NS1AUUSBBassxHLhxTAwSOgs5zkDg3ZAa30Usp2ZWKQSS77ak9wnqiy8ere0xbuASk0knoykcCbH86a5D/Mq+CBqpY3f473w9/ZuuMH6khQT2fU3OkeIcw6mDwf+bFWWnj8hk/fXabACJnPzYE5Gj/UYRZC7uEkb/vDwTSLIqHrOIQmbfWnsLUppKZLCxTqz9wSmRbWStA6MqFQv50l7ymc8AN7PBXIryzQwMHAmHiwULeAZDLOzAue5aaxCxqhlDTIzsrFZQQeYnGQQDB2znsxt0+XuhbShN0t7ky0yu6pgx80YIxTBCAR33xFXdGO5fazfKWSTgf1NKROmPBVjznDao5GGAgvn5omiGsuZYrEpYdcLN8tFGbI1S9xMdXtGJKolkoxBEp8ySLnfxi+A+DypnNFrTxdzVUueTN3f5wwm5JfuPK1c7PO8hHQXwBsLbB3nVldwPVN2xRmSYHvRKEJjqHGwIs15n42FxnwgtXORhI1Y8p88QqaUs9thKMsvnec+JkA11g/nQe20MtK143UyrmTAKKfUObXxoz1ZvCdPK3t8djBGtVMq+XSslZOo6r9TZoVFJRhmwPgHNYLOZLpGVFyLxYOZRh1IG7PoKWfN0mok/kZOchvGjpucVRmxAVtLABQPjH3c8XHxAsh6I7NWVzCl0SEKJilXLTh32IEqCHJKxgYt5/hzNnTakCUPogockCbgxfltDR82ODqOKR2AezcbmQ5Jqt3sqbpK27bhO9XdashGQN5+Gpg91dZHP/pR+Rf/4l/I/ffff8XRqBsdj1zvumYpI/IB3EzZ8BqeM0OY25/92Z9Ri/lEr5//+Z+n5SUC57AA0P7yL/+Sg4H/7t/9u6t+HcoPLQeM3WPYb6NYswBlgLHQOttkwmipPehya3gznhfrfwBmkOnRRTCh1TwMPTDbAFA2DMJcoOqOZhHD4Gr773dyDNyhiN+RCSKwGMrK2mZi8Zit7RK9y81ePZ5riMG7rCTySiBtmwmH+/2Or3utjN7l1rDjJebzIEG98zBBWTgzJfU9KnPxV+sMk4VZB1wVUbCDMeP8SRBId8SX5h6R0qKb8xoMtyMMFJlCtBmfCKS4DhlPyEJu7VZfyhf1BgpmI9+EAyMAhyfVRiStWYT6RtKbLEvhArK8dPgi3FRdECWRYLasEAJr1pwJbN5AC04z5dKiRg2/suU6/Sz+IN/irvUEo4jOuZDzWWa84Qw4hnOdtJOLeSptvOCx2QyXyRgpKeOsmANpGMZHZSE0M4CkEUCNNuEIW8fcUT7HWAF2zxuaXUaTH1wDzFQHP0Pnn+wJZ8/0fTR8WIeL6MYKAxSYBMFIoghAZLMvFtPBwt0kjwBoznCEuVMmq8S2EAywSaRNJLxHZtQwBAS4nAGEMZBkV7paYFfPa+5S0IYpSSDdaQzYJJLECkpLi+oa28mnEke+FPoivXubtP/2Zruyd35VlusVafUrEtUDmficzwDwjUN4rjIs/ZFUesCRORjTBFJYCOXii1KZ/ZgWi6MncNATgjI4JMajZSmsdmRqvZc5I3pTNQnrM/xdsLrOLDp81urZLsFZAUHKmLks5qS9u5aBXMh5cS4qCDY2ERmAzhDFmhcDmaHNXoEFcQ69kJpajpZ+Qa2YNKmoy2xyYNid59oUMDdHgjtzQ6QbsL4+wAAWs/7cjJgBJFfsgjlhzAFnDgdA0mUZqsmCPpYskG8zUaYEIuthzCUlxe6S4w+MJciYGeuRSf1QYGM/glWzYpw1vQUQSzcga4bzAgCNLn6pL63dCID2ydbALbE1G8rUux+WzlfcRPMMnMub+/MyegyVueaB4bpVWtWZWDQPsqIe7NqYyiDxvNaeMhtUxRWdMxw/2pUmWLH1viS3HuD5AjfQ5ZfMcXvBqPF8vMmjHBBr5ERHwnpX/PPLAlF2ZxZujYkUTkM/mcja82ZpK48w6yBRRhf7Kb8ZyeptMP4w4xCwQDyG6oqoBxJNHICbRAS5Y3UEj6fKkIEtG9FsUy/ATJ+IByOQciz91LLV7HhkwdK0mLeGC1wRAV7Crcc0KluUSAxwOABlg3PEzEJKds2L0GxClwbUVSLRdF+kC1MRny6UNANZD+gWiffkNcUMWGinb4YkuE/gZ3BSdI0EAkteexX9OdM1nuV2jpIZNMDprt+4b4ClRTn19HpqrI9//OOUNf7hH/4hCRIYdjwReOQTn/gEJYwgcobXxz72MQmCgGYiT/S6tA7rEguuJ8997nP5J2hV/Ie/40NBjwnKbmVlRb7/+79fnuiFHIRPfepTDHRzy/d9/vsjH/nIjs/pdrs8CYb/w2IIbVuLGM0GMvarryYIW0w/zKnLNwDGvC/8h3/bn5wb40yBAQJjy5gphbXNQEMftDM4uuzcEv4cYr22g7RLMmHuedtf51JM0uOxnkimzD7bFqnmtTx3JxA5tH92PEbuuY/DIji7/wgB4cXX3cxvdmUBrl8VnoPxaIlzTQBllLBBSjjt80aKogw3ZHSHyZSZlTpkhpDKbRzKkUFBYC9DmCe0ICCrYMUQih8Ui8ipgVwMf2/Plwku2ntHJVzalHC1SfYsKeXVTKEZcYakNw7WCK+nxRAzhqyL6pzuHOvAZQyZYyR0B1h3mF1pgBizATdTjawQsmB2x364bixv9u2EzJf+h1w2HWbP5JC2ELqNBTOI/AaqV2W6OIu22SbQgg0/bfBhpoFmis2UKvhSFguP44wb3h/XFV47YKCif5K5atu8qbFrbq4VhQkk1fgZWDEUmrk6GKZYcvW+/q6rkmvMtw0zNwSFzMOyIp8gTOWfYD5LywnnvtiQMkaHzGRPZOnZocSH2pK7c0NGn7dEJzovB/MNX9KxvrTmldGrHg0l7oTq3JhXCVuuGMnp4zMS48Ugk4JZ7D4thnt3N3mcYaKAUFsUn7Dm13lHlUmhCIeLHq7JjVugW0NQb6iSUjjpVXNS3180trbP0HPuu32zLL7Ds8vcz5CvIt4BjTJIbCFLU4nrQEaL2Ri4EtJAwbKbhvPGCISG5Wi2VMJufze5ocsyYjEJV0UXqmvyNjc3yHOw5Rp/uu/zzYTgCTEOzpHRBT/je+rOYfedcBmAAGcMUS6rfA5gE/+xEI9tPqii31d8T5wMki55cBNcMXmrsXE02KlpsY/X6VWVWcPjIdWj7M9lCdJwQ/9zs25OfgfpKwBHitmm2JOwjp1gTA6AWSmVxl4MgpWldnSTIM3FDKDxA4dRSttaMDTRn+PzYlsgZQTTRWme51GSiu8fjje+2zjPYLw18bcnJdzo8LsBEF+/a0Ym7t/Qa9yYyPrNCCQ3l8OcyMozS3L2FWNy5o03y/mXjcrSs3PSms3LyW+alcWXz8vys5y+cZCBtnarJyu36/lPmeUY8sCcWYubJQTrhuuTzn2BPQTQITBBzhmOaxtz0MooQ04oDiBRsQMgi3lbyxGzcGY3y0YwCMlhHtukv+clEDNuTgbeHTQe8HrD0tncui8BXS7x3h4t9PEnQBmAWjLek2QskqDSJ2vWmUZzRgMUsV2UJkOSPAq3XmOEcb6MDmSOjsFj6LbFRaDJQfmwy1jsDs51GrDYd8hJ0W/kxUtE+hj8J0/NBQnjj/3Yj8ktt9wiL37xi5mR/DM/8zPM//qDP/iDJwSPYM7tzJkzj/g5Zs7wuycFY/a93/u99Px/0YtelP0M/v+gDRGihnA4yAe/8zu/U57otby8TOpzdnZ2y8/x70vlEfz0T/80E8O3LxZlCIFFV9/ZXHNGzOzFqTFVSRZvxgBhnGJGGKa2mjVfDBVuW2WLsCm3eYaM3XJmGzZrdUmWRX/5iOJ/yxxT9pQBW7OTc+GOLM+l1pXMNB7t42/UtZM88Ur77io/746B09e7thmZqEumMCgaki04d6KriyyuzQO4C1o3Pa9FlpvRaMK0KHU3zlTyGx5lTMg1GzsKWZHKu0rLKA61gMVzqxcjsmhwaUM2EsEgGCwAELN7J7CBXMiympwEsDtWICgcPeJL/VAquU0FZmMPahG7eptaTCvVYAAC0hYnn7I5BleQkvGzDjC7rI4Z4M18YK7hCiN2bdHNbdksizFULuoCfwYuzDwzWjCwV4AFPdgttcmnyQccK5E7ZmwYc4saEUGbH0O6qLNlZN3dNjCQGpWrAjZKp+HQagCK3e9SqKwamUZY4w+kj5hd021VMII8LUqnUdiD8cujAx8oGIF5C9g4DN+bBI/Bwma7zVkSY4VUqmaZcIEV6IgyuLkjN88tyYW/3CdL+xPOfHkbRelO6nZEU5FUHsrxnCoez8vYsVi8V7Zo+gBb7uJkW7rtnPhrSq/0piNZO9CX8GF1Dli/LZVoLJJwPZT+gQ7NB1C8YsakfiCVwv0i5fNdnkPBwobEMyMqBaVpSSqFjZgze5TPEhBE4iFIGudfLkeDGhToZcji9oyroyJm+1Ckm0FDFjuAGSdIK83dD6SPA1Ps7LNQNMMXgmt3nR2+JtisFpguNyuJ18WsGF0ZwcAOJKZYmKWCTI/zjyahxwotC43zaQYgAa7c8SIgs4IXv+fsEU4hsqUKnvAz9713kjEsgK1h5oRzayaV5Hlnc3JuBoiSU7DrZFaGzBmMcXNmFHBOdC6PAjt5fO7EEz+XqN9FUQt/NazxKGUEiHjozbvk8O/XyV5h1U73CdJwTmJmrHYGQFU/f39K35eNGZPRMYRZ1FynuKYxEWDmG3vLkpvYQxZ641CBvweYK6wUZPU2XyYeUHMP5Hcx148Orcpc4vO7Bo/bN61ZMzGZ7EvleE5lvxVzxTSw68Aq9gcAv54Dg9lAOMwCvNClEaAJx4/XNUP+BGNgG3HxhqNPIglidNhUMsbNDFCcBJzyVmM7eQ0FYOorAKdtfTLIPuS5BSNTmAQZW+zCu5mJhusCrgMEi/rv3Goo/QmbiUOkgAtQd7JGX50y41Ki7r5rekxwjkKyqo6MetwBCBnZQaWRdjT4PTQwhnsVg+/tvNUMRqgVEIZ9g9cYT9vlX3bddtttBFYAQHB83167PxF4BAYimCnbvuDIeCmL/RsOmB07dmzH4UP87Pjx4/w7bC8Bkp4M6wd/8AflLW95S/ZvMGYY0oMsyMcFkE5G0OHjAgOdiAU+o85EvhjoUlhsIwCaf8dVwzmzpSIIjEbYMcKZPY+gjAYXQ7lbCsqCQTjzNa7tYO6SoOxq16OZ+3oyg7Ht61KOi9f7Wo8DSHNxBf7BfRIdOS7xi+/gjX30SEuCDUzuJxJPVqU3ggBlHaJWF0ProPoizSnrupZiKZ/IMRSYboYMZlW3xsgG4d38GTrmEw+BDU6lej6iPX7lvIIySEzQqe9XAzJXxTVljNO8ZoHBMAQ31vLFSNZfUpDuFNgTzGOkvFkjb4tBx02Vtjg2TMPdjefP5ntMKmZALTQmDct1/xl74QbGaZtvBbGTPUIuxvwwZU4Gx0wZcv4VUsJCSPYJjFS/liOQyq1Dc5lyfo7MGXLdMEtn4Mmx5ElJoyrozIrGDYPiAeaU1cJxYu6gsUBs7gAY+Rp9gT8RIh9AylTUy7YP4OauIzCf8DwJFzfYBEIuIYEwwPpETbwEttvo4APsqn139jFttsmBMixnx06GLxHpgiHZ26Xl+dGTcyJ39KQy3hbZK9JYqsj83lW5uDAmQbkvtbMIkoapTCrnvhbmIzUJQ8ivQqmVOhIxx8qTkROYUwSrEUpnJpXuOK6zngT7u5Iu5qTwhaKMH4ll8V6RkePCYNzq2Q6liBOfXJJktEI7/NxGj2CWWXqjRWnuKUptsyv+0pqknY7IOOgCFLQ5KS50pHQBDG0ovfG8qiH62lQAy4vzvLKox41On3A4bOp9wMlmMyCWbt1farJhOUxDj3GgmDUaGRSbHeOppUwz97cxAnTQBCOKmWZzOcU5SskkWD0zaCHza3LDYUMO3psQL4FQYzgMNnVWDN95gCma6NDwY5AzBcAAJgOSMzQqwIq7uSB8BwnCnBzTimXH2tGuHQRkZQBsNT5CXxeAAdcSSt/gRNjISTqODVc5LYr34mYgkfjSmQbQ9aR6xhPvyClJ999un0W/1KVVZAXqnFlrVoEEtg+sO5oEACN0kLS8Mby/SqV9GTnZ06zFCthVnXVt7oLMUVkxsLWUAoLdrasiAJb/eB0ANZdNhkYVFQFzGgEBu/7uas6y3bSBsfev23LuK0vZPBVAFgAn9jm2ae53v8D8z+Cm/XLkTdNSvBDQgh7Nqe6kSgPjqu1wgDEAF0gKXX4qDEIwl9ZS9swddwfEeEw65ho5pvsALFbQ0vOQro1gUO044lrJe4NJT+HK294Tid9E48guEmDNwGwhILsWS35J3Rv7ExFlqDzZcYyrmnmGcy5t+NKdTqS5O2VgNWIzwBTSUKbsrt9eNnfngG+Wy2jfI55bxsg61oyyXucY/PR6Ui54P1yPTf5jiUfg5giG7tChQ1t+Dkv8EMqKL8G65neFpeUP/MAP0EpyenqaP0OI27/5N/+GyBfr6NGj1+RA8lgt2GJCE4qdPLzw70vZb+Kg7GSzya62FSu4OQatSKWKyAeLEkmsM83sG4Cr4eLaHUwUAyjaEMBsXXH9+VZpoYesMfzenF4yc4yd5HJb8rp2mBe7lEnFpYwqLiPH2/H3w4+5FAh7NO6NN+raHhWw/e87PfYSjxkGYpc8zte4XQBlQbUi7Yk8ncKQzxWe2hQpo0LxNLQZBcyYFVrQ+9OwQIss3FTR+XVMGIoSOopB6ojizIwDWHjitM5psaSdej0Hu2OQmmkR66Qm5QU4821KUi2xeUGmCSG/1UDaU6ggRUoXfWnd2pXCqQKdzZDRgxsxh/4XUxk91paLLyjLyMlY6vuCbG7FZTypaYfNb8C0wtmCG4vAw2AadCeXcQyaszTXX+ocKYEaOrFopOSV0aLMrNk3Zi7RoGkYm+T1uw4pXW65LvFULZshw2cFCALTTjt9kz2zsYOf5XLiI+4C8RnMNNQkVq+tUReCwPUAsiEUYObkSkYtJ8lISR+HzL0KPNEhncQBRpvZzYrhg/oSNDoq7fMrkouQz4bwbGPthhwBaW7UU3YBpgso+CnFojMlKj5fKuWWRIW+JJ8ZlRZyqWDlHaTSeN+M+LtSqdzUlIuvDGXqAzmyZ5Cu9eoFkfM5ue2lJ2W5WWEYLQrDlVfYvGE/kDTyxD/UlO7ZmnjdUEp1keZNfSmuwNAjlfp+T2onU8ktNyWYztvMXsT5RYBihD+DGUThXTnbYdMMLBnneBeXmf2YVoqZM2bQ7EpYCcm0wVYfrqIovMt1y4EDLu7CmASyR5WRcl9Z7AGObdDoa65WKSRrx/0EEICi3zkzcg7LXDdddh3PQ2PhnK0+f6gGIszChAzXzEgUEGqDEMcE4IzMiDHJzs2SclMU2XBodK70ZmMOnw11DDRwaeARbBBAtGPLIGEFg8T5sYLOFbr9wbkxEF85BSzI8MJ7Is8Lt6FMZpnqzCo+HxwSnUU6Z98aoc7uLRYknraGgzlQMmLh5r5UHsrTVfLhH36mHPx3H5bW657PxxRXY14zupN4j0ERr5b2Kq8mUwQ5NmaaCiLwsEABn5dEVp+BgHG95jEOpwEpo8oiXQA42DLsg/YkguZFJr/QlcLnz0jYPiQj9y8x8yyNIjn1A8+W6qmB2UbmJAtWbFnk4gtKKsuGpBPSPIRvOwKsncrqa2+X8T/4lMQPn5CR4zNULFRO+5QecnYMLHEz0IaZk/ih8Yu5PMylNYZNwIw9xXMReYZMNTveBNTw4jmvyoj6/oFLI416piw+A9JEhphrHiHZ444v8UikZh/MFlMJI+bMpBdKbwamZmr8k0xA98pJXHV0DFPpzCrAg1Qz7GrWWeWcJ/VDmLv1xTOmTwPB9fNgNo33I1tOMQEzG8dW83x0cuGh79QNuUzG/Ji8zlNwOVCGMaTFxUXOeg2vffv2yeONR+C8CIIGIdUw/sNaX1+XH/qhH5JXvvKV8qQAZr/xG78hr33ta2XPnj3Zh4U+E2gTHwwLdpNI236iVz6f54F63/vex6FALBxo/Pu7v/u7r+m12H2GUxv1zyoL8loIbe6RBSMoQ6HU7WlxjcILgAwMRqMlCfJYzMUNxZFfrejPcHEpFLSIwmPR+cSfJmVEcR1D6niFGaYd17bfP0LCOPSYjE273GteCixcCURciml6MsocLyFpHARuX8Xzr+Y9rmPxvBk6T3De9Ks+C6v8ZiCFKgZLVKviZj5c8YKFjrYCMjibKcjCYzBfwWLDnLI4l2K/Q2HHGyUKLStG3HA9Hg93NBQ5sDDfOJiTfgXMUlVyiw1JC3hRvI6fOaqhe4zZkPBCgcVNfs2TiYe6cvZlkBlhzg1sQlHmPtzUba6V6ZDW3AV54EDC6EAGfga2O3OuM/c0Z8qg+9tyjdgJNvcxC39NzJzDyS7VaVHBGL68CNTGghSKRS5my1CkNyM19AGrBXxVDLYEU+ucjZkA4bpUyqlpEGSHzPqD1Ag6nx6DjwUM+9iosvCbTRFIlzAz2mhwLtXHY3H8Mae6jgZRl9eXTBKNa1IUiQ+2iFJHuCDCkMS+/5BrEoyZhNOkTyh4yXgEmsFIWZRJohA4u+lXxN8IRSYTyZ0q8jmj5/Q8gfw1/ftxCWfM6bLclyTyZdfMuozd1BbfS2Xf6Lok4knt1WuSC2JZqNfkNfu/KA/VZ2WtU5Jo3pf2QkVae3QYpz0L1hZMmjE1xbyM/sMxSeb1JpyC5RopSHsakscEl1plqZYakoyPiH9xWQEuH6yfGceocdOomqBYQQ4TGEq7zFXRsbB0v0SBWwoZ9QCzCLwMJKSQiVLeGg6KbmfWAcnewPHS5ZLpz3A+Eng5Rz1zXsyy5oDJIdNyQdVka80hJDuhBhJLNkpMzujCyB0bDkaEOV5mmY/vPopcd03ANmGWjjNikObNABAQg3N/55b1O45GDZglOqaiSdFBc0U3CPNdPKdxnuB8MeMUnBMdHCb7jjq5I0FkJRZ/BbS1yeXsepS7gNB6sGsqXw2qVamcbUn9UEXivGaTTd2n5kMwicHrYIWrCvi4HYWBIQ6MQZBphoYNDEHw+TSsHqBEgQHmXCG5BavW2KXXr+KqOlbmL9apYhn51AVJR8rSv/ewnHhtgecLGB5cfvG58XoEosjhgzKh4YKTDXQYuw8p9vLLelK9vyCN73+OskpQBzRgKgLnR5VKN/ekUrp7TTqrFZFWKIUlnGvYlZajB4CEcwl28nB1hAx0WegMCZdbMM+8PtHFU6S5W2WPbmaU7otFF1iu5195Sc9jbLcCdTSofJp7MEgchi3MVAv1T/zMw3NTnYUDs4f/eM6mZNv6VczW6WwyQGZvPJX8qt5ruC0GKodNZCifNTbaWeSD0XOOok6NpMY8N3iQ2dPA7LILoAkyww9/+MNbd1uqxh1XcmVEnhhq/UeDRxCt9bKXvYwB0y5QGoHQkFX+zu/8zlUd5larJadPnybAHF533XWXPCHA7NZbb6Xu8q//+q85uOd+BmQJow0sB4q+FAuyRITFwUkF2WXQlzabzcyl8WoXBvDBCqBDiu43GDFYXbPDBxZsYZGZY/pgZbxSwePcDJKBMtxDiwUWbX4eV/A+5YxeCVSFvR6ej2XSp3BuhuHSyK64Yl7WZQKOM6Zsh8J/u/xxux3/Jc0rBk8YvM+VtutyzoZPFoC2E+i9HjbxWt/2MlJHZVuzf/C9kcHTL2EOyZN4okLGRhmcQSfSzT+wWMNpONGXpJXXeQoLanVuWE4eg262mz1g1hnkbbDYRod4I2UBhJkCyIFww1y7JcefA0Qxh2hXjc0N2OnnGgmZAC2aVIaEwXK8/8QXRDb35aV61oKTW8rgBPW29GZqMvV3Z1hwr98yxsLDySt1Z2kRgkIW78uiyDIIHdPnDXdazdWQy2VQuQwzywLL5mYAqPDdbMHtEsHZOenl8mo5zhmnQLrzIxLanFluCTJSC1kvF/TageLc2CywWAg4phSRTq1WbFjjxwPT2WxJsr5B1mfLwuN9u+a027xW4FxAXg6bOm53YKZsfVO8Skm8akWCNU+SWlGCLlhAA15mxe510gEAsFBkB1iddXXlrCetOCf+/pZE3UDiqMDMMhSm3ZfVJfehGo8njt3yPamky0XxJ7pS7xTkxTPH6SR3tjUu906flS+uz0qQJvKy3cfkg4uH5PaxBelhDi/1pDTbpEFI+JkqWYC4oawdwDyZRVjc5wICI7B/OJYATXHJZwg1zFAAQH3kmE2NiXdxRYGt7X8cAcoWy77OBJUVvFMdYXNlcNvUYlqNnihjt3OMstaSzkkiy49unvgTr1kcWOIrqBoEhTvXRheOTsmcOz/BVph0S885LcCd9btj0bJGhDMhGTIgwbnPtzZJIxsrpozHnwVz8KODqZm5kBlxTBcBlz7ezYixYAbo3lT2jKCN5hrGCLIRItId0esG2Y+uyShtBhSATmVoykI19qWSXwylP4Z8PxjcKEDiPJIFdkdVn48998/vkj2/e1SSwzdLvq2OpbjHwhEWwDC/DrZSpDsTSVTzJGz6zL7C+0IWCTt4sE/5zZjbiVlPXLcQVM7rh4VqN2cD2TxkEkAEnx9UiaOTA+P62p2tyMn/j86OFlY8ac3pLG5mnoG5XZsv68Lswoxr8Hr1u3oEnXhNgLLe8xvSWy1KegbOrCKlJVxHPTJnzOyKPOl8ekJG1vS4bNwCkx9fwrrHkGmAIuS/cXW8QdMMjFzT2wKmCZgjfV0wcu15zKbqHBjs7jmXWEoYGF8+r+ddf0RjLKBe0BMopRkIM8s8gC6di+OvYk9ySyGfk45E4uciurDSaZLsOGScep6Xz/p8fxwX3Hucm6ab53Oh6PwO4nvvIlzsOsTP2dFmApvhQ/mxT68n3/r2b/92ygVh1DE/P3/N+WC33Xbbo8YjAHWw5keOGnLMSqUS8cIb3vAGyW2/925bYOfw2He/+907/v5KwPJS67oElPjAr371q+Urv/IrKQO81p35eC6khmNnIRwOAdPPetaz5P/+3/97zUOFYaMnvugMAjugWPiccFeE/AjsmO10WN6jsEp6PRbSBDf4vSvqyriaQISPO1xO/IkxLawsRNpDMY88lcxKPy/+9KT4vb5EFy7qi1yKPbsUYLuUDHLb87OQaRhIDOVu6d+DrWBtW/aYgrltQGTb9mzPTcsef7ntvFHXdhB8pX18qXUNn/myANmiB7CPe1/zPLI751/qy8wnbC4Kw9ylQOr7c2odD4kPQ9KFRVHxos+iRdbzzJkKj5eUTQPjAJmjGYY6t7VBmLJjV7RDm/+8/jyzrMacGUiePhixvnQm88oQoBBtJrJyh84t0HobcyPnYHHuLL4tKBpMHs0zEqmeRrUXSOGh8/q9MUni3AfrZKYuPr+cOXYx76k1cBdzc1LotDuHRPd8dMRRVBCI4Ty3MQm3aMbBB9sMGPYdNq0fCy7XNPWAi6Jl+LDozcMMpK+MF5gw5IlBylwpS3L6nD7Ojp23Z5d+5+1x8cLi4L3ddw2zTpv1LcY9frksXrvD72Pm4IrtabW2nGM8d/A67Y4C/NEqw75Dk24mYyUatOiMh5fJ29T+fWDm4EA9QFJpwZN4syKVVZHNw2qYwVmVE1UJcEmEE5/N5aQ1bF8o9eVR+T/NZ8u+mRWZKLblQntEavmu7C5rduOF5TE5e35CpBGK1NStIljJSX8ukdGHdIYmF1tgMPIhwRLGsfgbXUlCDBkpGwV2a+NgIOMPJuJhnxcL0tk9IkWYf1SLkj58SoJCQXrPvklnhCBXazp3OrXf1i482BJzvuMQFGYfOwRo/RE1jOiNakENcOeaAcoU6D4bNqWB+UbmCupcQI3Zg3QR7wtGB9uEBgLYMgfCnHsjzSe6OvsFwMLZKsWOmWw3s8xnpp9IbOHCnBOzcx7sGZlyJ9ekfbp5OmD00WaV8B1H8cui3gAawYfJydBUYVPEt89msk01jTALdzOaoAufXVdAJFZPaxOnsKKNATyvX1O5n2sKYd4qb2Hi8YE5mfjAGTn3un3KZBU8SqbxfMgawRT19sQ00fBXA2nv7UtQx+wiDqDO83XGAzatYA7TnsKsqG4r9gXmFwE6wXZROmduhWCO5Pwi79ntW2d5fo094MvmzXrejz+gTBQ+H56L8whGI5CG+vj6VwevC3mmm8UDOAruq4o/rddpxD+s3eJRsgvpH0DK1P0qW67vycnMXzws8zMT0pmvUo6ZYA5twgAxjDTYOALA0ky0BOZMYEfLiXQTzN3pXBcAEZsBmzbPu4IQdXMJtfkxhIFDSplf8xkKTnluG4yjJ509fQnXQGPBGEoda8mqgewf0TlhbzUnMRp2YOEYj+JLe39fvI46Sjb36/toqLReNznvBhkmr/v6HwAzZvWcFN0139xcJ0xwIMe+kWrPndb2e8qjeZ2n4gIzBSd1AKxrXf1+nyAKrwE8gv+u5zXw3gCGMAu51vWv//W/puwR1vrAQ3/6p3/K0an/+B//o/zn//yf5XrXNQMzSAPf9ra3MR8MGwCUCtrwR3/0R5mI/aY3vUm+1AuyxWuVLm5fwVpDfC/P2REUYLh5stiCwyKKOHS0YWjQVYE9iqSgUqZMkQyYkyfi76WidmoBUlAomYQRRSZfB1IbzIZAwuSWr4cm3DUv0fkLj9zAS2VqXU6aaL9DEDHdIC/1WkOv42Hy3z3dZFI7GoxchUnGdufIwc9vgJDpy63tc3rDP7/e17uadSk56/DPDJzl/+qTsvQvXyCjR9QimyzVWF6642ovjUKIcxfmpAaGCrKSLCQUswIuEwbshBV+KOQ4eG2FZGbrjQDgaQ0obezV4ohdTCv+KAP2RTYOFJiThrkHzLOs3RJo7hkkPD5ysdTxMUGBDIlRTdkuFKiFTcy7BFI6388aFlLISXtvVWY+G0lwYUUCz5Nd/UlZewZa1SJTH7gg8URN1u6s0imSxe2QHT6dJ8EKIT+sozNmzHuiu55zW7UZUydp5A8QKq2283S2rHfEK+fVyMMx3zD1wcwZ/s3Gjb5GvLj8CFYaf8YG1LaeGsagDDFf251AtwCwq1nYLsygLa+LjNbEb3SZ3wXmIUBulmVDgfmjs591rN3xV2t9PbYoCGunRdbugDutSumQZRY0fYZFpzB36IUycsSX9ecDoILB8iVYLcnJpV2ydmhdmq0CzUAWGjVZPTkmM4dWZfHUhEgulcKJglqAj8YSbgYKMAy0g5kKTlyQ+osOSfWhNUnBBlsOHObL8ht9mXgABgo9SbH/dlel8MEvSoz9tb4uPlQKUDvgdShdVPDDWAA7L+iECIljGcUoWIOY1//eWEHnyCD/xIxkxSeoImBxYIsW5gMjNgI2ABIXuuskhy4E3RWZfF+zAbcga85K2fwZ8zMZvaBhyp0xy8s0Bo5s09C8lXtdzogCnOF7rdifPwerjcfj+8soAmN8dB/bnJJJ7JyLI2V49YHLJP7NHKmyNkLwGVxR7eaaeOoVBvOfWAAq/fFYgobGUOB3ACKcEeuKbNyGHaDXp82bE6meAMNSlsrDZzO3R+wTRGugCaANHE9GPltgBh6dI82wwkeuYV4ll3jfytlAcu1UKhcTjQqpqYSwtGKuszBBgnFF06c7ZAkOiv1IVl53pyz9o54c/pWuFJa6EhcrPDYwq+mNYAZW2U6AIbxWcxfMd8AcpzL1/gsi9Yac+6e3GJtlst96KsERyCgBDNvSr5TZKMI+KK3E0prN8fzCvl947c1UDtROtmXm07HERTDFgSzdrVlmPF+KCqjActGiHlllPbXfLyypAQcdEztgvdScY1gaW1jG8bAMQ5QtAJkLPmfQAPAwE8bjCVYT+Wc47g24XqqrohcqiwhADVAMkxGEiscTfWavKeUN45BYgvVQvyN5lZzimsJoBvtuEJRZUDm/RyazJcts0SFsGFAtcYMjlqeljJddt99++3UbBeZyOc6gXS8r5V6jA4Oo61x/+7d/S8kkFHogrCCHBFsH8xE4vn/N13zNdb3uNVvOAQn+z//5P+Vnf/ZnOdPl1p133km951NlxeNVDuX73Yg22JwRIIhCmK/OhxGUhaF4uVCC6UnxZqaU+RodYQGUjlUlGavRqc0D04biDbJGPLdckLSAwgJtV9AZOs1N5zr8Lh/oY2sVCScnLy9l3P7ncP7YDs+jK6TLONvptVzxP2Q0kj1+OIdtBzlk9nfHHNrjh4Gc+7mbkXKPzf50f3czVNtB0fDPHu9stStkxT1m63JOmJeZzXP7KLzlkEw82GVh1tgzmGfREGUHglI6iFXP6AyCG5qnCcDpQtZdd05tOseijBkLIgsDRTGDmyQKPxakJnkEIHSFanPOk81Dnqx+ZUf6FZ0/a85rRxbGAKUlFEiay1RcQbYUbK0TAj46vTVTqe+BQ2Mi3amSbD5jXFKEVK9vSuXhNSl98CGJF5YkvnBRvM89LOO/83GZ+OP7JDl7XvwHT8jUR5eleqrJohsMhIZFqyRMZ8aMOSPboFbmtD6P4falERic/0T+mDvsYL9gv27B8WCf6KQI0IY/reGSlAqSlkBPQqMD6skYTJNEPcJF1Vxadwx+v1Rsw5XW9jxDMGyM6dCZVzBPmM/gnBs+MwKyOV+l+0CBhs4fsoiyeSgU6p1JkYn71QigOxOLlCOJJyIyGMXzykYQRFS7UjobsiMOWVL5nC8bx8ekV8/Lvok1WT07KrmNQJYfmJLcWiC1h0It9BDW7KdSuqASLc1a0iwvfI76noC5fDw+MDOp5pS9nYa5gzKAXrHI2Tx/18D0CeAU7GNvJGQhThkfIhF6ar3NuSkCLo1JwSIrQEmrAfYoldZUQFmlk3gqw2ugzPKknCHEQDrrsroUaOJ74pwOEd7tXousXEVngVCY45xkCLQBJ4Ypu3gDs9unZBFACc0NnK6WAZg5KRLgGYA00KbmJlqbYz8AAMDox0kc3bZjnwM4OXdBcUAQn6GszBWAD+f/cu4/gCGwjur2igwvZ+EOCSLDkwEC7HbR2KPnWWNvKiNHA86c4dxCw6hxIJH1g4F442My/1v38zO4+VTKM1c9SvBadphxfWHmlwFfbC+kk/g7MvMQ/7F+k5oL4drmpNqTD0aca6PhRSWR3rjI5qFU2i++TcZ/9+MSLOYl+OJJ2ThcpsMgGB5sA5xj8dr1gwpUK//wkEx/FnEZIpsHPDn3/+ySha+/hcAQ+YDcbwWYjHjSnFcXSb/Zk9KSZn3hHCz/v5+UyQ+cp4vknj87LzPvfICAefX2snQnBjXX/r/clAN/2ZLxh3RfcdYNc3e5lLO6mIEDsKVcHTNpBPJ6LgFsgcGD+yUz1HBZwFxgV5tsAEc0SILEPJ9Ib8LmzHJwoNX5WkY5gHGtJJIH+2nNBzKs1USKiz5D4ksXA2V8ahGNQtDQcU0RZq45NizZqrzAPsZ5guuJc991cnrMbqKR1B8ZamY/vZ50C5llMOr4+7//e+aN7ZQpfLn1wz/8wzTpWF1dletdsOrHdkTXkVaOMamZGXVIQoA11HpYz3zmM+XTn/70E8eYwf0EuQHICviu7/qu7Od33333JbPCnpTLjQrAgTEfit/v0eJaRqocvk/OXxQfQAygCmCtBMClhQLnSOCiVcTdQ18HIIxFHmRDoyXNPUsSzp/QSASPoQubdq919swkVOOjPFDRysr1sStDhZwPsHep+aihlQEp5+41BLK2yCB3AGT2Alved8vzh95j8HONC2B3f8i0ZCvLMAQYh7bjqpwSH+26luy3a1wZyL3Gbcfzgvk5Sm3ozudjaFxvbK1pT3qVnFoSW+GIuQkGpxqjBtkMZUOzCSUn6lRomVWWXZXNuMQWtut2g0mWUNygkG7f3Bd/NadzSLPm4IYb7LrmUKGb3NqVSPWkT6MQFJ0YEO9N+SwI8XrjRxOpLEQMsg6iVPa9a1nikSJZ69KJNUnDQOKVNfG7PRbYBO/WHMKflAUXCizA09PnyJCUZJ7zQNg3sMkG4EKx2S8hD0pnWhwLoMArlrDeZQ6Wc1V131U6I+K7DUlyFPM6gCYKbOzpioiX2ehk52UCB7edunlDuXOXlKpeLjPvGs6RLe+PIgj7BjNvAF9oPMHKHaHfUAbg+sY8KMzRoIDTwpHA3KRwKKRQtBKwczbIk8qRgkw82Jf1W0Rmvu60HLtvr5TOeyKfGVGWtiQy94ku92/7bE5Ki6ksHdwvo5C6dbRgRZC5Svksv6kQS2tPyNeBex4YkvJyKrJ/F0E7ADLAJWb9AKTKFzpSPd2S5u6SJNM56T7zoMz88QMSr64N9kXUl+Rl90i+HjM8HRIz5yIKJ8VcI6bzH/7N/DmA105E4Ee2cFQt1umcaLvVzaaxaJVBg8JliWFlzqDOzt5mw1yEgwO+ZB9HfcZF4LxUFgG/TBjUrLJ6s8e376hj13AW9UcHQJDzpMYUu++wyyLDwjYCcJFd533O5sWMjK2e0zwvB2Bh8EFpsbnj0QGSxkADB1SeO1U183Cvw3klgDSwI6FIaw5MtX4OZ9leO2kOi9YIAsNDSaHJK2EA88BbZ+QZP5vIxO98UpIX3CELzyvzuWjyADxQzjiCGSY0c5SJAtikYcXQscDcGRlvzrYBmMAQBHEguC6B4FUzl/5ITPb3/EtzUrzt+RKNRnRSBChM8gk/t5QVBDq56dozoC64naCvdlrPaThX4rqK18b7OICB9y4vJTQxWX7OmFTP9WX+A01JPvV58UdHJTp5SnInT4Ho5LVg8g8+K8ndt0hzT0mWXpBng23l9hFlOW1eGNdhNDM46wdZalsZSmY1NmFSpOwXwCf2MWSYYEyx7xx4B8PaQ0/JnDbxHM8CrZ1aIrcW8jPCuAlArjeOa6ll5zV86e/pStr3pQ1ZcjMkWESUQTyNwbccv/ME8AbOIX12TQ0CNZPuodGAz8LGhQW6ZzmLuORiNvQaxQNP+HqaMbvsesUrXsE/gSeux/zjHe94hzz88MOya9cuslWViuZhunU14OgTn/gEDQIxpwZAtf01/uRP/uSSz8U8Gyz/oRYEBvrVX/1V/h2KQszMPWHADGnYN998844SR+g1n0orBdMFl7V6W1kvFAMEX574k5De4IbtKyjDxaTR0a4+naFwFzSHt2RoPg2W3E0M4RckxQyXGX94GGaHBXQnkrSIAgAAD20jFCmpgrN8TqKLNoeyTc6mL7KzE2IGoEK9O2HGLV5c2sJiZc+31xqeK8t+bwXl4G318VslioMufSaDHNoG97tHLPzewAmep8YWDhWqVHQLONu+D4b3xZNpbs2ty2yvxifs8PMwJ8niEjPM0oVlWfyGXbxpQe9fWIUMRW+0/cm+lE/lpD2LEGJ/S8BpHwWQhY2iKGbX1ty80DVlfg8KsFFlDXCzz0JJmyisUknG+1I4ndcQUQNZWJhfACjrTcRSWA1k4vO+moGwWE3ZHQazhpswikQwIShWsCrnUHHo33Pn1ij3hSNq9LK7pPDZkyrHHZrD4v5w54tZ4OP3/iam+wvS2VXRgGnK0/rijel3lnNnGVOGkFdlXBCNQdbMZncEDRo0YzAXxifa92QVdBAoErih9Hg8Bod0h7D4YfZsWAp8DefDNS3Helv4eLqyJl4MZwZcW2DHqYOEPgxiTKoHCR/2AY6Pk/g58IrCCIUczo9u3pM0l0j1gsYf4DHHP71Xiqs62I+cMiwwUv2qgr3aiRbB1MQDLdm4qaTmLiVPiuvqioeZrR4Yk80c2ZDCppPWwcI8kPxqUdrTyEjLa1B5EaHdOMe04QS5ahL7MvapBYmGQJlbYMCQo4cGxsgxnTPEwuwRJIwOlJFJRAg1gF/ZAApt6tXJEkwWZ6YAzMzF0jkr+ub0yN1vEmBU2Gx6DLFoLgid+xhsB8wsYOFucQ+QtOlrIO7CGbXo+Zg5DBpTRSmiyT5ZwLpmg4EmAjWwTRaTwbmgMhgxZUCLS3qcAJzoKDimMjUAMjyeRTIkciaZpMQVgDDQeTFnkw9DCmcbz/MK/cymMuXOudKBQGwrQd+IMXhtlVdjjpEmE3gZY3oAsI5+12459MNnOVMKCXRnUkPvIXtt5iE/BLuppheOgYSxEHp+SaUvKVxJcwndAmGg4Uc+YxichA/f9bgEtsmX7v6eVB/M83eI7OhOhLL43ETGv+DptXVXJKXTIU2RaEjB/eNxX2J/N3YbI9sTGnrgmgqzkMKazlfhWDUCzGghOF1k/RmQ/41I4WUv4nMmHuxJ8b6Tkk5NSPzAEXV0/uh9Mrpnt7Rm99N5EaCI0tRlkXxTzwfIOelm2cP7meNjXZspkIcWN9Cc0udVzmrTBVJU7AcYdFRPqTwX5ih4fWSPdSbNpAkyRrt/QC3RmdTZNTCNuM9QJl5MJX+mIN1ZDFjq8XMsbbpQlARMXSPgPQpySpyfzogFc3loBkaQUraco+VQHAFe0poMznFX8k+gYuY61tMzZpdff/d3f/eo9u/XPQZGg2NjY/IN3/AN1/VcBFwj7wzrx37sxzjnBhMRqAmhLHzCgBk0oR/4wAeITofXO9/5zsxq8qmwMMQvQ6ny/hquvLGkFehDPElHK9qRxMUVRVq9Sekhh9OTrU5uDKWG1IkvrAHVkEFp2A3uzrhAmWQGQbWUi6CQgbG0ticpeyyNSQg5Zb0haa8v8cbmluLrUo6K+Hc4PakFJAGibksmKbyME+MwEHOPHy4q1Q7BCoht2WrDxiH+6Igkmw17ngGvIeMRbcHaDN7Qdmeg0oKUt27ckAnJNmOSJxM4u1LANIvqMDcERAbFPT57NFGRsNuXuY+1pT1bkPOviWTjNswf6KzEyIkciyfIFzE7guJh6v5IVu4MJcXQfVsH+RkCC2MQzF5YwYHCA11m/LwzG0v1pJ4PvNmPiETTfSmeymfza7iZE+ABHC770t4Vy/j9gZpHUFKjJiDommJWZvSkGh1AmgKCmOYHDc39SqqIlUgknh6RYGlTotlRyS23dWZzY5MSYu4HmO4YUANLlsBSvlDQ78fGpoRTE+LNHmARn9voaxRGC3IjnUVRuRcKpoBncwTznR7kj7HmE6a+pCfO8r3iE6clADjDdQCNFhj/9HoSr65fvaPp9sc83uepa7YA3OL6gVlZyK0xe1VSyR/2n5/N02qocR6mDKlaXWOBzXBAAmvsoVRW71R3TRzzjTsjGf0CZIImZ6K5Siq1Mz3KjiAhjPaUKBX1klBGTnYZKdAfyUlzPkfWICrkyI4FPbXUpsQUOWtgjnDDOrUoxTsOSn8UcQMqPQSoCloIDtZcPADL6OixLbvALxTFP7hXgk88LMkLDtPQgDb2nDW0BkAdFC+kYD5DvBFCDNMIdYO0bTFrew0vNvDOsG/dFheIm0U5uBBqA/jOElwzAbWAdjM0ZMxG1EQERWhzTudDAV7pLmr27zgeNJgAk2nFP63xzQkQRa5GORizMGIGLvh3R/O74ExIaiKBoYtFaQBw9gcOmC4mg8cBjRoLb8efBB0AQTC+WBn8bFja7GSU2G7kVznAhM+EmVOyYxtmkLGi+wpgHFbxNJcwowxIC4OGXneO/NfnyIH/t08wnqsrEMPvkLcFQI9rEgv6roJbSO+Yq9UPJD/Vlv75sh57k8vh+WDdmntVdsmM5KmEjSbss/J6KqWlviR35/h5AOjhAInznGAE+29JGV1cV9HMwjUTgBZ/AvzSlAhmKg2Vv8LoBPu2mCi7pfbwiH1IpLe/L5UvFmTt1rzIrbdwn1UuTFLOWjuyKdH9D8rsb63RHCy5sCDdl9+tDSU2lwoSdNVpFMfcMZyt3ToDCiaawGlDg9Nx7s3+5Uk5/cYDlBpjXhjPxTFxpjD4jHoOo4YB04nZvkS6IQDqQGqM+wFmTOHcyGNbRUB2TCCX7u1IsgRlkMYLdKbs/oXXhDMOvlv2nYks14zfFTtG2XfYMcwmpw0jzZ18ej15F2zqH836sR/7sUe9Db/1W7913c994xvfmP0dUV2nTp2ichCzb8hVfsKAGdwOYUcP5gwsGWg+UHmQOMLZ5KmyGA6bA2OG2YtYPHSsAA5Q7wMkYeFegQ57iLuNObuB8UJGkXXUadvc1yBS5hUVYUuOTrNmOjFsFn/Hn7zoKEDDjSfFRC1DJTXk1jFrHoJSe5GEyDwjgxZIsG+35RpFkpy/oPlFdGwYMhwxUJesrW+ZEdvuvOiYteG1k1zRxxwdQF5mVDAM2Gy2xZizeG1jC4DcAsocmNoywzZUUBrw2iJp1DewP64iH+2JAGqP9j0u9XyA4ahPliihg9+wpDOQ8IiChvw52CmXZPofRmX1Tp0jaM950ro5kvz5PLvZKIYg31m814JeMctR96R5MJbiRQVQ6pKmXXbITPi8mto1szgFSJu0TvECLOMHg9kopFDwlc8g80skvxzwz+o5yJk0M6h2Vu318Rwaf4QmlUJRNOJJsi+QJAyke8CT2mcLMv/hukRzY2RICnVo34qc6YyXVvRcgpwR5y1kjABpMOBB8yMX8ryJllel9Pmc9G6Zl/BjD7CoiXdNUKrGRjm6rpw9UyMMTcs1a3vImM8uihzaS3t7OCvGZ87yO+JPjku8srrVBdExyI+YDbsEQ/ZoGd5riGeIGw1a8CMr0ZsY47wWv6nIu0sSCS+sSzJeISiNajkW6Cql86QvvuSM8SE44zyL2tc3UKwe6LKgRDAwfo5zg1b3JRhbwN1WgRrmkioXUulMhlI51+G+h9EB5iInP1WXpDDK37mmgM5JgWlNdMZsvMZzb+xoJP1amDm0qdmGzzm5oAvXXMwCDxQcdMz1POnffYgADvbk2M6RUzE/L0AZzi9mzyGQfRwgVdkfyBWx3ZzD6Q6kwQg75gwniMeGvlevGqpt/VDUANglMtBD3f/heS+AKJqCWFi6zoZq9pnORCoFhgBgFqf2nk5izNc0N0O6IXL+a8CK87tpgAnP7zlQ5rLX3He+op8RIADfT55WeD3bXieZA2sGAxEcD8xvuigBN4fXmsVx2WqM4rLUyOAjXhFqIbwdzD9AbFrOFdQoAAicSy1abANIr5YapCCf8exXBnLTOzelsBvoQwS4ungul0ncdJ4N99VUgg24pMIgBixNTopNdXxEEwozkZSojisghCkJbN8dK4yflxdxPuNc9chsjR1JpbkZSu1MLKtVDbvGeYLXczO9eBxkhXA/dMY1uI5yHwVCuSFkpwBdkAomRQ1790d6smd6XdI5T84/NMPtwz4HmwXZ+cqdYyKve4FM3Z9I9S8+y+tc6QvnOWeLhtTIpxIpvuh2fn96bZ+MGZ6P6zqAE79PFbg+AuiLjP/9SWnes5cMKRspZZHygoZrA9jhZyPHU9m4Gfserqe4PirzSfdHUxSwoYB9dU4NVWDKAmk8z//RvsTredrxp6OJFE/kdRZub1fSZb0u8D/zTKJxDeSLmDVuD81hmuMnTV0A3GzmMos7uVGXcwJ6LF7nKbrgaoh85AceeID/vuOOO5ht5sKer+b5IIaOHTvGsOmJiQlKGOHEvnv3bnmiFuSXcIm85557HvVreSle7RoXGLOf+ImfoOc/wtuwIQBsSNB+si8MHOKEeMnL/4OU19DGEfE34PmL8NeuSKUiKayXHTjp9AisyI7hMfkcw2MTuJ7ZDctvdrfmGIXQe+eUXTNDAri74XnOCQ5dW3ejc3JHzVMDu6SW3VgOADpnOK9jwdfOUQ7bCUtt/h26gUiS1XUWKij0txSG9ucjJI5uDbFn/FwwOjF3SRTGYA1o512tStJssSgGW4GcpS1zbiP6POS5Dee9bX1xK5DdGip4r8QwXXI93uDs0WaYXe32uXgDM/7A3KBXq0p0YFbCkwuy+lUH6eB14UVladyCOxo65QDmsVSOaMGNm1x7XyTVI6E0DqNhEHPAnUXRqBZItClv6sD+2u06UI65AtpMY3aipSwbCk4WHy0M16s9dHOvfo65W5dk7SOznGWA+5ZziuuNJVI9pewyJVJVlQO5gpVyMRQ5+7XDi8IOIbCFla4E9Z74a5ua4zUxIulDxxW0Y9Zu+HJm7HB2PrugYfz7tkPZPGd3GvovfAZlybByZ1YkntZw5uD0RUknxyU9eSZ7Por+Ld+TofN7+Py8ooT30c5GXuvzhpxZsb/AvDO+A9cu5KDtmpBgoy1JtUjVAKR8KmcE4wUWVl3uwGwCeKFwohNb0yfzgsWizjkTFkVGH1bWpz2hxXporA2Kd8j1wDRNfHpFkkpBVu+oSnk5ll5VXfuKa7Gs3RxSyghzGHTILz4vlD1/32VhCJkh51QaaoM+crxFMxjMGw4fB17roEK4eb+cefU4C9Oxh1WankdAN+W1mCf2KbuEbJJzkOjgmxsgzREgwW2rayhljGCkKgrgIEXkueys8nl8hySMNl/kLOKxOJdDowXN3XMMrs7g6Ps7OaQDYdmMpzkoYp9yJstcIQH03IwW/o75JkZfuDgENE6WUulVdHud/JEgEiOSSHComrwsGjwXxwC/h1FKfiOSzmSOckI8F9I6SiTBnNnnx3UB9vEEr2g2Yu46Jyz83RwrP7uZEzkzDuZbIc5v0izYmaNmDGFocmk4AfZh2z7IXnMGJwAH6jiLvCw4asZSXAg0JqSmUm8ADDJnPQMb6Ll2VTlA8xaeuymlfPg83YmB1TxAKWfzDFQoyMM1zWz/Ie/rA+QoAKVRhoVa4xiqAkHZMzBRYATJGlViKY10pNPMS+U+1Bgi3XuakpwrM2Qd+wefFzN0+P6gbhj5o09kMmWAs7jZEv9Zt0ny2QflwltekMn+amdgtJTKyEMbEpfzElcw+xXK4r2B1E5qYwyfY+KLsVT+/JOy+P97vjKCdg5j4ffYJ1ngNDb5tDbgCNQAropgzQICTuwrqCwqJwNp3hwxBByy08JiINEtbYlX89rsS/Q40hEWM8s5lbYTzOO7YMY5NBoxMyrXJCmca8hH3v3vZWNjg054N1odefA//JT4RcudeRQr6XTkxH/4oRvucz7a9clPflJe9apXEdAgd9jNfLXbbc58XQnkIH8Mc2rY1ydPniRJBJd4BEoj8BmE0dUsALs/+qM/2jEk+kpzagCV/+W//BeGZWMdPnyYNvr/7J/9M7nedV05Zi996Uvlve99rzyVFzrB8UhBgkaXLBMAGYFNCsOO/CB9HmwXFgCTWWvTLAC22SZzkRwCf6HvUqDH5w4101EAEbCxg6kFCcAY59nssTqYHxKY0WEODBxkN+ZMxgBsFJXYRmaoaU5a5gSJZW6S/ty0+FEsCWcwXDjVQALI2bDhbr+5JDrppTc/qyDVFZouew2dd8oRE4bdItSW8zq1mv58uGjN5QjsUgA4VgvutexPPG4H8xK3jY/Kev7xNAi5TKj3VT//Ss8d3ic4Hztd8UN0+yNJZiZk/L416U+UtcjKJRIsgfn1pLR3U9rjY5qn44uUT+jXf+SBUDaflUg0jkIVRjd6rNCxTjA/gKF6FCgFGxC38FgMZaPzi5s/5EeYJQGzhtmN/Lov3T19ufDwlPhjOlvBgg8d1WJKExD8nXM6bZ1xwfxZe8Zj7pNzfoP8BzdgAIDGPGZ9SlLYKEi1gyorYjMjmJyQeN+MpJ96QMGXxVdkjKtFV5BNc06f+H+rRzCQX+8xiNvZ5dPpb35CwvVWJlH2Fle2AKvtfx+Oldh6qC7R5NgewfB4Ry9sezyBpUlhE7B+MFKJIgnOwOUl5PXBM0t9mK5AFgvpINgmdfRLOIcEMIbiCsfSWcHjfOjMR1JYDNmNB6ACE+rkUTjeuLYBgBVWsO+L0rx5XIqLHSlsqIwVJhzIcNrcp06NAIMIlgU7hiK4M44A84jbgfk2WOYXNmFoUJKRc+NkEbYsfD/GxyQq5/n+sJ2HOQMZsTbYsjzDqvFa+DkAY2M+lATyW+aUWTEIYNJJ6RYKmeOwxBDFupMPonh00k/niopzrrCuoM6BMGclzxlPC2x24c7OKc8BXDJCJuVybFzPAo35PYLa3r6jjtUjKz1mrB1lkQM3RwIQSOyatq3mfsc5NKtNAPqwzQDWYC27YwFNQfq3qMxS72cDUEbG3JSbBF+QxBpbA3CGx4GR2zjoS1wdGJKQpVrTbXeGJGwAVBLxLWfPGUTAwAgGHZzDW4bTbCT5lQ7viSvPrNhskrKzmBkDuOvcBKSHxqUv6Uhf0l4gwQrOKZVPg63jdlt+Hw0xfGW2sA/Bujnrf+wTgCtsG0AIFrPaGLANxm9gHgaAAdBDAG2mMHgMAXdoVvQAJ3vbEjVz0t4oSuEMYnp0hqv8yYpKCjHzFeF99TNDiop9Mn5wv8QnTg3GC3B/P7ckG294vuz+5c+y8bL2xuewjtjc50tpqcTGw/JdoUaYrJuk1thVHNuFn3qeHPzzllx8QVla85ovx5w2sp8Ar4H0JsE0e9I4FNNMhNeUQIOvcX2vnPFMihhI886ulI4W+D5etS/RWE9iGIrYdZ4jHGBYbVaSkQI288xQcHyHLJohkwgzVsLmFp9eT9r1fd/3ffK1X/u18mu/9msMmsaKooigBuDm/e9//2Wf/5a3vIUh1XCJr6HOtPWa17xG/uk//adXtQ3/7b/9N7o74nVgfY/AaLBvAIhwbLzcAiH18z//8/LmN79ZXvjCF/JnH/nIR/i5APJAYD1hwOzLYQVtTJxDXoJ2JyqDvqTtNsEG2TEnR8SfGJgHKNpsMosMbm1gyaIxNQJJ/bxKUmjwoY5UAF8aMBqoTbeBOMpxkKFkzl3oVLOzzw40wBidCHQjaVIwAGkYkIYEE1lP/LVZe2eLhacVhIVADUywUJwtmySLjw8yOZd3YO+A7cP7NHAn01k7D1122m/j8RZQ3WyLjFYkxTyZA4Zw01secpQ08BFMjEvqTBQorYRmxV1pXcFq/3bNb9rr268ceNu+Lidn3P73xxqgPR5Sxku8jzME8UJfNl59m4z9w0np3bpLlp9Z5PA4O96reame9OjA1Tw5Ih4GuTyVBUG2snFI92/5IbgnijTvbUu0VuCAO7PQxhPpj3rsflZP22A9s8/00ABQAZQlE31Ju3kNJkWGTt+T4mkYJ6QMYsVQOoFWU2fdnCubMwAg0wCHt0BnImCj7mZRUJQQZOJ0itBx96X10hm1ZF9OpPWcmsz86sc0p4q7JsoAGheaFdGwvC0W//g5SXfNqu09mg0IiM8HErSMysB3HJmFYSDpOoKW8KFxfFIFeMOSRLK5KtHdDsQGLO/QMR7+80rZg4/T0u+OWq056WcKZh3fY7BLo9h/1kRKdB/5eV/CTqLhu6MBJYnMWhrRGRMHshmpsBmyuESBu7nXZ0FZPTuYv+FjO750R4qZLLBXLevsk4hMPBQxUBoFfGt3SnfGzYO+zH2kK6u3F6S+zxfvZCBrtway+++bEi43xIuqUsLsbrc7YO1NzuihOYXA6dkic6wgq0RBH5cgRysyrwyh0WTJciLN2ZAMAdgZgg7LFwNw7FdVpgUGkNdOA1LOcMIxV9zPzj4fBTluJeGg6ZDZhSeDeTMNclcJo5MmOqaL4BD3hKHXxvOxT/kdsuwyZ1uvgef6GDo5BpZJBtAFWZoZXjgmT63P1X3Vvc/YsYjsWGsuT6Ca5SAmA5CCuVLOuGGeyj5DJjuLjE3D52yLFOoxDV7AvKuToM2tocljINi5FnImCrchzCbZrBvmwRh+3dDzCGwlXDlLZxYkbbUlfu4z+dqjJ7oS53xZuzUnnSlPpj4Aiakna7d6zMprHARr5mzZNWwZS2fUVD5KOe3GAMQCnBBIIMlm2ZNeFGjuWcuMPtDTqGMbUwPmHmfwsN2Q+rlj1q8lbFwFkAe2ArXdz0cSryBPIJbuZCzl85pRRpYtseOaV1DKxkA94X6MZkYk2X23hB9/gPJkf22DShTIFDsvvp3NFDC5MJQBo3fuZUVeu3HtxbHBPYBzjM1U1kdhP6+sYHumwHNo5lOpLD9T5wOxDZwtxpQELPZhGgU3xjIOpMt/9Niga+6H0Y8qHforaqKCa3+3pzPpwTJ2qoZMg/103xfeV8ychN+NTKpr75VX4xscd33cjY3Mnjb/uDJjNgzKsMIwpIU+ssGutACe4IS4fUHCePHitubcJdYv/dIv0Wn+DW94Aw078N5g3QC6rmTD/8u//MvcfjzXLQDNu+66i2DtcQVm8Oe/2oT1R5MncCMtunN1LZsIzmWVkjbBwPQ0uxLXSpQfcg4AN9xiXvzxUZslcxWz2m9DlpgF1TKkUZFFlFMXMgzbO3YMHUYsJ2OMYesNEX2I7h9AW8r5D8gkKQ+RgeQRxwg20ny+vZ++rgEuJ+UyVotMmv0cEh9vva6AC0UagFgeNuNmyIYYAADLSbTG1cwEmWsEZ/ZZydSNobXnizeB4Y9I0o06ZXbB7IzEC+ooGUyOS7JZVymjPRegzAOIy4pGzKFhbsfYNHT0WUgOAxe1HN9xbQdew88btvEfzmP7UpuFXOf7o/gc+ZNPS5ykEuyelokHfFm/OS+VhVg2W4FsHlZJUG4DIaqxJM3AAqe1OYAbHm7SKB7SlYIEYMwwiL+sw96QOvYlkJWX9KV8NG9ZU1owtOfMeW8JNuj6GtFYJNWjOizPMNLSIOgW52JlQR/H4jTSIiszKoAhwDLmQcy9McKQuUmzRKS+W4NlcV5iNgUzapiloPkH5u8AnlzsggF3GPS4wGc3j4bF89wYbkRi8BzH9wVgbb1Ol0Xa4hfy7DxzX8Nu/hKSxOHZx0eEpm/LBtzy8y/h4vkPOWO1QsCJmVH85wF8ognVLUpaKUoa+5Lvwjo+LymuZ2Q0dD5w9BiswM02nXliBmYSK3QB8Gf7UvdzLCxR2OmcihZXFeTrLSLCwJPJL3Zk/eairB8qkFEjGFpWl0c9fxKZ+URdWrvKBC9jDyeyentFJh7wJNhsi9fuqVtuPxIfob0bGzqbudmQdG1DqrDsv2lSWtM58eMcrfMh8eqO53jtxX9g+Db3q/mIs30H0wSmpzWtIcUouvEzFt44b8GK4D7AnYqdY0V8MghrBysFlkNz2QaOiSi09WBoiDb/hAMk5shCY2xgAOKMlPA6AF/AV5sDQAZQhQLaATy6DFrTA99xyvQwNtlQpiHf01kj2LhzVs/YTH4XE0g9+7zH1PcXMpmmY+wcyESxzWgNA5xkIC0SgMZBU87F0+NrYC6tdLEjcaFESR6OOUOGRwdSRM672axqWMeMmM2tnh98HhiG0NAEFvwzgVRnJiQ9clLmf+8BSffOi3fqPBuk5aMlqd81I7X7FuTYt+9SJhBM2wU0GZA/lmTsHLdzKqVsEOcbmUUALjgXrqrLIRpRXbrdak4XZigB5HSOzZmueJJrJ/y8OM6w++f8HEBGDp9Dm15qoa+ald6xmvihgZwc2CFz6yyqJBCOiYgiwVq5U59fvgDHx6JUzrUlveuwpI2O9A7PSuH+U5Isr0jhUx058b3PUDZySR/PBkDfMZTu3gggmUrtNLLVlOHEdxuNl/puX0aPpdKaVbkujgvn5VKA0ZT7iQYfAZpxmHHWewq2GccUzRkANWwv4lKCzVBGj+Zk9dmRVI+F0tqt+ZIajj0wh3ENHpe5xwaDfQ8wGwpwppEeNzYwe9ou//ILskwwS7fddtuWn585c2YLA3apVSgUdsw7O3LkiExPT1/VIcL7v+hFL+LfIams19FlFPmWb/kWecELXkBL/kstONHvBCBhBHI9uWjXBMx+4Rd+Ifs7QuAQMg1d6DB19573vEd+9Ed/VJ4qS4eu1Z0r3TctfqdPoIAMMuSO0a3NWCk1BEEWEIBKpAAGkoIunN9UiqMXHHV+QwgqmDF2W1EMxL5aJLNLlIqARYN1s0lUwJplwA1zB+iUQuqITQDbxvkDXwLIL6sKthCKTfYJ4MbsgFUyYBlpkDEZ8+dsyeO5cXWL3GzxpiYEX9j+gcQLmU208mfWGs4gMBuQOcWap4XXol25FsMegBpc4Ch1rNIVLlm3SWjsPzjsoVPPelbB2RYnSLoxwkTEWEQnvcxs/HcAZztJIIeB2g7xAltMRdx6vGfFHsPlQAiiHQDO+3fnNRfqQFvG/6Ekqy/sSRTnmDODmxyKELAYLMjgELai5yicFFU6ZsPVcCY7FZo8Jy/Bq1Zk7fg4u8S9O1tSKPSle3xE4qm+dDp5vnbtwRw7r1Ep5VA9CqnKeVhIa2GI2ZykofIYFG50Y1tT8MZO+KhI6aIn7bva0vAhNdTuAFg/vE4nJzL7iZ60p3MsNG76zfMSO5kimxBo5yvry59FEU1TYAZCh1MAq06X31l1/9CGBsEZQNn55UwKnOK1euY66poQ/Mc1AKztMtrtr/GlaghABov8tSCQpF7fwvbBntuHXBmXjukpkfEaJdwB3CyrOTaLcF3C5QR/b+z3aFdeORpJvh7I4vP0+jV61JeNW2MpXMjxkoAmARoEmEGRhoGQAuSy5s5m10qAmOZsIOWFRNYP+zz/cG419hWltNgnIN/8fxpy8Me6sviiKXb4qzCGwfUMjSa40OLyNFrjsU7qDQnmZqQ/N8JZOc0IU8DQ2QXJpjIc6gKnjJgzpIEcDectbPqVhVJA6RwWca5nGUsuU8oljNgcmQNYbIKYat0ZY/Cvth9w3QcbQIt6zJ3Z+5KhYMPQClYwB3UFwdw3FlPhZs7wnvgu4XvFT2QOdwAjkb0PJJsASgDPuB44aRkeO3ZMZ/hgzOJkmpAuk10zIxO1Rx/I9pzzo2Pp8Lp4f0pf0VAs4nV8CVqhFNZiykZD3rwUTDJY28CkgO03eR0+p8tN5PkJBgkZWgYwcK8+/1UTMnpIh6J4nzx0K39XObEpleN1Zvft/6smmwqL95SktCyycZMCNLrQNvU40jkR2wPGztw0aWRTMaA5Y/ux6WtDCUyOzcPiPBk93pflZ+akNevrLFoFqoNYgg4MbDxp746YE4jfoSHgGrYAbDxOmyGNM6imqSpowXvAXRfqgPa0SnmrFyEP9qU9hciACqW1SVghGJxZnhHZbDDDb+6jfVk/nCMYB0O8cShHcIPzpD2h77N5ULcdxxafMUCjwPUqaaSinxGSVjTaGgcQHp5IYcUZq2iwt2N3IUV00tkYM4oAuZ6b4dOcS78USfOAJx5iDLqBxBHO+YHBDpaTMrrvDpUaYNFarpEB8Hdj2+U/vS6/Xv/618ub3vQmefvb356Bow996EM08RhmoS61wE6BlcJ8mCMnALT+7b/9t1dtgT83N0dCCU7zcFP86Ec/ykyyEydO0NDjcgvgDawZ5IzDCwzcN3/zN8vjCszgwugWPix2xHd/93dnP/ue7/keosq/+Zu/obbyqbA6UwVJY1jmahfdzyEgscyLvg+bbc51wfYe7TSAH1yt0cVRaWFcyVNGwIHyAoAaAJXe2AHKVL4CSZkWOLwQA5zBqjjUG6d2inBT1psXaXsL3QSgw3AzZX00FUE+CV5XH+slsJNOxMMsDvOb4biHXwzm3giyunCM1O3j4xGi6wcijZZ46Dy7hfqRIM2XdGhALgXABNOAeAEL1uYCcwjGEQssBcJ/YYxiBiGZ0Qikj8MGCY4ts/Dg7UP8XM7UJJvtuQQ4G/77TjM9Q8zGjizI9qL5aovoL0GhrblvItGR4xIe2s85BKpALxZ54/XzscTT2F8pM6JQ6eDGj0UmbUyLE9xk67dFUj6Ju6HOM8AxD9143GxXz41Kfr4l0bmyTI02ZfHiqHiwpG4HtHtGUYFCpjuRMFSU7IB1vFEMIdMnuaBmBzR3sGBYZzZAkLiqAbHhiRJtnFGc4WeUY0F28/9n7z/AZMnO8nD8q9C5J98cN6+kVZaQCAJLwjZgkW1yMjnoT87BZBENGBBGMphoYRAm/EiSECggJJRXG7TanG6+k2c6d1fV/3nf7zvV1T3dMz1z7929d7XneeaZmY7VVafP+cIbNhA0BzJ754qK3TgbBzsHTjqf58UR482ImtA2CKYcPSQC4R4kYCikwJgCSdniuiTdrs59m4dJt63qo6PmwqQdr3Fz5yro0iYouGRviozriqQNSdriki4hzYIkJfBrI4lLgCdpAQbryuzHUDxCxyaQmfsb0pyvyOZNMcVbwE9z8DMouwFq1jXVP1TymRxM6WPqRwuEVWEuICGpH/UJgQSEkOsn+IxHcjL3sTqFQho3lGT/+9fk3MtnpXSxKB74v1DGzQUUZkK3tP68I1K54yxVabFGIkmgb11HBSm45kIl1Ex0Od8NlseuE2C26OiYt1+qpIgkDXUwr88NcxLshOcZP4yQRRpEm+Q3TqZxZVxyhuA3X48pLIIHqIeY8ZqQ8CjyK/Ujw0DXiDDFfIabZgqIqI85eCPNqk1kw5lO49xCFr1+UGF4lG1vJZIDNHIjJgwQ3l1IppzJOD8nno+aXyexRLIPO2NSikQGCoXmh4ggHcqN7CLVwTXtWacD79Pj91iPUwuOXNpbIs1jmiyQE2eJEjqVzmBY+XcQ7QBMT5OG+gFQBfoCKEh8Nj91jt2VhfcvSnhqUaLDC3Lkf98p7U98huz7ozvlwje+WBUhLYEKNwKuOa7bh2vVPBRJfg2FVpEEgBAkB6jt7MN7KX8WCRg6au15dF6hZGsecISqoiCrtiCU/cf7AUUwrQkPLAyQsMD3EXeCF8fPkU+k+pBCupGYwIx69gEVKmnsV6sAvhY8BWd0rUWSefYVszJ/5DlSfNtdUvrXeyXo3CJrNxUojsPkbp+vyqFWEEC3lcVbVyQw/qJLNnH+Nk+ocBkSyOJFHGPA4gkKLOy0NvR7RNimdcTxfBQN+l1jtYLg4wBvrEYS5iMJ8pH0Yk96sMiA6BQPwoRnStZdtuSd57Bj0PMckrmrXZWxby9yqa/zVBxIyJBMffVXf3XaYcrlcvKt3/qt8gu/8As7Pv9XfuVX5L/8l/8iBw4coGAI5PcBYUTT6DWvec1Ex/DKV75S/uZv/oZ2X+CXIYeBGAhgll/4hV+44/Mh/gGhEnTXMN73vvcxOcRnAgfOjeHk7bKqMlarVfnIRz6yxWQa7tvPf/7zqdJ4LQ+npvPcr/05yXkFKVjLnItLuQ8zBPxQNzzI6RtPqpdIuNaSpBiqDxr23wIUinzx20jQkJWBB6YVWeUi9CuhNPKFn1NXq4uAuLCTZnh9V9HEoBIVOmMkj2sFjMfZ1eMNm5H4TWyCfVEShSfqcbHDZdVFQi9hqFvOi39hlRL8qC4DFpZMq4CHM9RlEkjemHXxkNwhMTP/NnbX8IMkD0kqFCuRoOH5MCBH9XpdW8VpYMvA2jzd7DeFROxvdCoAs0ofY5AyHk5Gdt9J6qdjWOxjJz7aKFGRa8gPjTYH4O4dOiidGw9KVArlwifkNHgrirRugM69L/kliMho8IJN1LuhLtGZslQf1wDDwQohKY7h1NIAQSNZ/JM3JBdG0mzlxQ9iKea7svngnIkAaLDh4ExO7GP6QU8qFzQ4WXmmRyUwwmJqUF7siwgwkENQA6HAKXj4mPocIFKowlcNHtMQOfqWJfGW1mj/kBoouy5ZaqWQ4XyxoxZpBwjFiHIpnaOE315YZvfWA+zR+GRI/tFNYqIypNbklDFTefxJOmTD91+NY+j4aUmA5BYWHKWSJKUC17jeVEE6swhEffKQlp8NlTWR2YeV33Pxxdolg1IdgkzyaiCBXRmsrCPwU16VdUhqZq1gst0wqsZ6VzvsUdlz7t5EWvPKv+lWE7n+b1uy8sySzDzckcKZDYmnTOwIScJMnupzCNILS1D0bErj+llyyFjAilRIgXA/LIkILBesG2M0PCd6Q16VM1jPyN1nlRLdcI930Dynwkg4ZiYh4ykmNw/CGCoMAlidwh773MrUv8m4YoTFmdQ9oX4mW86E0tWo4r4y48Ax4/mZZVLl4g3ethar8mbF4I3g3FkQzy5eUwuG7JLB3mLGuD5Ww6ONBjo9gPfVApl+2DpcNVUerJ7SNiOsCcANU2Ny8KC0k4/1xylM4riREBZWFWpHz7m2FjsLKx3pzuT7XGiD9mNg7qFAiM+J98AeSxsOdBnXtXCJ+UOIqCW9WGNQhNr3d/fL419/K//GnMTnwdp08g2n5LGvOK7XpCFSvy6S6fsCqR9RVABFKkzSfe3ZPaIMCPeGYMdBTCQUwNQTsDelcMXCecxLS+IAAS+Z0FfezMvrGifg2uB7QASNr+8387AmuzyXALdMGZ/LfbeaIgt3N8V71+0S7t8ntU++kfBcfP7VZyg8HEkvu5PWhcRndh1rivCgYFFRvz/CXc0fLRWFWTU5+yijqGgCQFirq6c1eQdSAuenPZsQWVF+MM+1PT7eFD+MJe75kiSeJGuwXlE+szNLpxAIvj/ONsG6aZqUI2xpy51/cPWpFbo48oYf+zkJLoMqY9RqycM/e/V9zss1Go0GBTcwbrzxRimXTQFowvGv//qvVGh0KvFQapx0wPYLP47n9qd/+qfynve8h+qK3/zN30yz6HHjFa94xUTvgeTzbW9725UT/1hYWKByyfd+7/cO3I7bcN9TZVCW1/Dvinl2XSu9HxvK1GlAFX0qlUEdjF0xdMPMWwMmi1ARQ1DQK6onGQIdVjh7lujZBke5ZdC3AKmzpA1QBXroFPVxDBScTwsCUBhnWgDQw+aEhKwFud6YkEkoOUJiPx2QqEc3rgNZaFTiNCEKN9tMqMi12T8jQRxLdHShnwQFPqGc3OhNYhyQECq2gYcGNSY+FlVt+GP10selSRll9QNNypwUvkvKDCZGA1zr0qWwMfNhS8VB3Edx4g5ZaOLwmABqNjKwzj5nVEJ3lQbVTokwWZiRsN6lbw9FCg7qZo5oLDfXlk4hFm9D8a3Y9HIfqnBOoXMFnpiqIfaDS1bjIZdt+i3x3dNSeCSR1o2e9G5sSvvOKfGqifTme1J4MCetA4nMXNCgBtVfwBI1yIxl+TZNCp2CH4J0dERqJ/pQq41PaUrxoyWtNmMqUd0soQda9SzktxMprvTUfHp5VburKAwgUXLzwrzfeF6YrBm3jF1TjwUHb7MpyeqayInD+sHmQBjyJH70lApi4LvYbFn3TaGzfS89e4/hTut2c27Af+4qHkNJpfoR9iRZWuZ58efnxOsWJEBXqhtK5YEViWaR5OZ5zdsrOu8QmNUPKQwL/klOMIIdmHa/+0ODcePUwDdq+TaY7UZy+MYlafzDQQbRC3d3qdIYlVVwBAIe+U1Pqmd6DCAX7qoTNt4+Oi3Fx1Ylni5J83BZlp4dysLHIr52/VhJiqsKLXdBJDplTiqeCnoQaUBdqaJqdDRaR5JUVEEbng/ja7nuFG+jaIcVz4x/yVNoa7b+Y15g5ieGwcC8pes2oHxIzJzPmYNK0loA4g2AF7f6PCua8NLLqd9NZqfFN3ijJWDOiwzvia5PDgW/gnI/8XwUYNTsWZUXkSRp18T2F2whtgdiP4LwBI4TqpT8vJaQOnl1mgZb54vd0KpP+CSULrGn9KqQ2Qen01EG1Ig8goiWKVjit1NwRFIHiX6YwrPYaMU/JGgUuMIPYPrYizxP8kj0FsoS4jEdRYoA6q+JtF7vmYcjJm14X3QN0cVFcnPqa28lb8oJEVFt1Bd56BuPq+w99ukZkfLjUO9UDizO+YEPNqQzm5ezLwuleE6TMswhqOHiMUi2wMki3yqnUv4oKmCOdWZUnZFomLZK+GPgNsD/IH4DXppyGTWpQuyAAga/CxdgMB1QtRDXkDGE2VV4KCitb0jpTIPQw+XnlFns0kmr3TJ0/uAzyfPeTiRoaEcZezjWWsxN2hfsN7EU8uX0PWhxYgNzDsU2Zw1BLzx8p8/r3gLuXjOXS9Utu61QYohR+YnkS112zWUtZPcN+wIRH1aMQJeWy6eLWE00x8Fonx7X5kCiGUURvcee85znpLevrKwwUZo0CX3Zy17Gn70MH17Dpm+A8aVf+qX8mWS8/e1vlysxdp2Y/dRP/RSlLN/xjnfIS1/60rR19+Y3v5nqJE+ZwWpRRgUrUXiLw8AD6rB5LNQKIoQTpgOVD6/4JJSrwSY2JN2oqMJonTeafIIHEKgXDgnfopslFl9sehjOy4aHY9VZQLVYsbTqp6uUsSKKoBKbJAxXAbNkspiToB1xsVZvNJXnpx0AYIgcBfVIw083kujYPm5w4MLFBRitouqIIN7UGblpY6PQYAuRM0EYxM+YMaqDTLpOGe6jv1osCbD11uEaNoKluAK6GgiwUa2vlAa80rJds1EcnWFZ8lFeU1nY4xbTave6/ReUa2Y4bzN0DvOYm5EUVhAkePSx6aLDMR+wYzb1iPoFFVdQDfUou43KreuOASaF7hjmN0jg4EywoIBuWBMmsh6l0rv1krQOxcpdqwcqi93Tzgbl8BFgFPW79Ph/VHl18k4MCgW1RgQKeC8EII3Ak9wDJQYMhFc2FPKITbpyXqu9Bz4Uy/mX5uX42x/T62piHzwFZjDNRN8EQbJS9t4t10n0sYfEn1H7C+/QfoXywdLCOKJM1sGLxP34OwN/3WIQPW6MgsFeayPZCnFkMWZtXbx9CwzeihfQ1sC6FTMhAFcR13X1FoUsYv1E0Fc7qmsblTyXdW4gcN+8IWZwWn1MO2C1Ix5tGgB/XHnfQalYFwCBPBTk6s/qSJQvsFhFdbaqdiHqR0KZeagtteN5efhL5uWZv1ljAQrvhdGaBR8GHB3w41SIoW18IcLBAOu1olkqcGGdZpcoORl0ds2sQwCBXErJNxJpzfkDRtJp18w6EllYE/aUnFX/MVCES9Xo0CFQVJv6jBmnzRluUzb9gHphhcbJUS5QH/bl3puwOnT/rHPnkkTXBeTnQ4JZt440oIUZmBuP1wSCXCeE0H4kedhjAE+d9VK3FX6GQizhesBEF9/dyvkefeFQoKydLEmn4hPeCFgcFY2RDCA5W9XkwJtRIQgkiXi//FqP+xN53kBoAOHRVr9OKDE6TrI3N0MkCDq6+TseluiWExLN5bgPO1VKzBlACGtHoSqKrpOp/BmPDnBuogsAYxSR/bfHcu5TRfLn0d2zjqf9dPYncsNfNuXii8py9tPKhFgjCWExbL9yqiCpz7lknmnalcWalUg0FalpuHlGqrmydhadTxguQljTPR6v41QZ0TFCt3Lh9nXy2dGNax4smveexhmABc/ddL30HnhI4kpO8nc/JtWFm6hAWjua43nAdxoqkq6Dq0gKFdxC8VUL0tZRVkFbfo6j72zI2ZeVLZnrK5FS9AWoirII69NOwROxURUm1J5sPqMrueVQwrIWjf1HS+Ld0pFCtS0dP5ZaJZDcMjj7KPga3NOsI/ScaOLMhBGxxNU87Bxcltd5Cg4kQJ/zOZ8j3/Zt3zZw+xvf+EbCC//hH/5hx9f453/+Z/5cvHiRna/s+L3f+72JjmN1dXXA5PpZz3oWYY1IGJ+MsetoAVr/IOchk/3Lv/xL/uBvtBJx31NlENPslLMiKArZBl42lTGrpKEijM20M+NJ/aBCJrAJqUGqQhUdHAQBMhbDyDZbVgkh/oFiflHx+m4zdiaXbrhOHeEZDHQ9dvTwWPxNSAnWd0JrUHkF1wddMwQ82JzgpaaGrN2pQOqH8tKeC8kJ6VVDac8XpDdXlN5cWZMxGK1OF/ibFbjAZ0UaHiiAyLnb9bdxBJC8QRjFum8KaTSVyGYzhR9iuM00TZKsw+G8lQhLBJcFamqAMjabGciew3MiisnIkhuHDAE5Ej52UuwnO3gbOozZ5w48YIevheOqPZHB9oTvxURzrSZRJSfheofKatgowRsBH6J0GhVJhSwhIEGQCggLggp49iD4UyUthTghkHABI6XuIR5QVrGA2gk7b/vbZsbq8zkMQpHr1ESmHtJuGTbW6YeQ4Ev6fXHQLJqbwiS3ii6YdtnwGvP3apCC+0srCOATOfmmhhSXO3Ld/35YDZIxTzCv7PwQzuk6qpaQcy64RL/eEv+ZN6qQDQbmK2C9KAbUoOrXNqEZNaeGR5yd2PT8Dp3w7f9/io243dJzAoP6epuFmKha5Pd97sGezH+sIfmNSGYfVMVLJPWsnKNetIruhyUQNCoGX1DtFSCp7gpemCz5FXTJYpk61WXnrbAecR4efhPK5wpxW3qerrEb1+c4l7GOwZAaZuqtw1VpHshxnqO7QD5ZzlNIloOPgzs2Ba4wzNL1tRzPDFwXQusAwyxpN4PcMkCrDOJIc2TnrlDUbgV+2OXZTMh74v8b6ESph5eT3s8xudNukBOHctV/x/Ghsa55mOHcoFCBQQPndh9twWKcTTtXPHFdO8DVENDm2HlSSCB5y9a1oxfYYqIKmN2Ee4oTCnHJG7t6hhiBlQsLJYbqoHqkC77NaB6+XITj2XkhhzoWWb8+x/2OSRmEsPKArFlSgIKeJZMoFhXWkFT3pHyuxaQ/WGuKX2ur6ib2hKVliS4uEWYcra1JtL4hEQzgGw3xUNw7flg6C5rAQxDD7ePcZ2FYvZlI/YhPbhb9zqwDiY4vOlg8977I0vN9WfiImkrDdwxww96UqhFCYh8JGa4VkAY4P04Wn96L1ZiGy0m1J3ElSrurTHSb6PIDcaLdMvxGJ81FZOjOoqBLnpZ1pais2U5k6rGWzP7TA7Lvg2tUhg5WaxJ86D6pPrwhs/dsyPQjbSmsRUxsN5+9T/wXPVvyp1epmFz8/97H4gSKwii+QQjEfR9y6Ey2dSIFrYiFXRQzcI6cUqf7ffoVZVVktIKxgzgiGedrOSsUV9gA7RCCUwsi5UchtuNJ1AqkeEdJZp+3KKVCl3DGQlnJjNirCM+1PYIxUr7//tgvWFCEaNA1IJd/OX4mHRCjgFw74nL8gG/1pje9Kb2/1WrRnwsIN1CToBtx4cKFgdcAR+pVr3oVIYXgb0GMY1hlEM0ZwAahjAhqE6TmdzvQ1BkFB3z5y1/O+yZpFP3H//gfmZgtLS0xwcr+TDLglXb99dfTz8w9D3/jtp181Or1OkUPIVyCcwCZ/ezPXseefMzQKXvDG94gT+WBjRQVPcr24kShMoiqpGH6UfFVk0iRjetQvbXNFEkX8NJWbUw3SoNucVExrhqTMzNSZHCQ8a1Rs0qt0DkZakfmdkRYVpGMg4BuHDYhPt6kpX3ADSDGgQSpoIEH/ndcOWyGCBC6kOHHpoyuHqALjUgNPNEdE30NQDYVAql8OSUwoxsHPISvMBMKnUDKHx/GEw+BG/YhyOJ3uhI5/iGDaDP6HR7O88kZXSPm6Giylio02gLBboaZZkNKH8F3Kq+fvk+mO+aUNMclZAP3WaCfFSYZJxBix73nMSnnaILHUaxhaUXyUxVeP9AaS0vKp4HiGJIlBA0IVpDM4zcCZkDIas/tyMpUjup6tZMJuxgY6AQgeWvs9xgLYoMF1ARePs3nNWXqvSXJf+airMg+whbx2LWbwRUQWX9GJNMPBlqBxnxlJTwhf0hhKpAq96R7pENFMhW30er12g0w+tUAF8Fg+UKbRYbCCjBOqF5kuqFZviKM12G6DWy46yDi2iMYnJ+SYHFNb6eyqPInk0fOUWbdA48qcsIwQ4bS4879uOQsC4W9VPPxq2XYfIeyqt/riV+GIFKxD3sG99QgUWEbXCmVn4ctCLpm5Yu2NkESHX70CJLXfJl6TL3uEHBNPawqnOCtgR+GwlYnCsi9wtxBYQpBGbqvDh6I5K81HzKRO/5PgL3q1taaV+4rBpI0zCUEmiq9rfPYrdGd/ZF46GoASoZp1DV+L/63NZgFikY/oMW66xIZHBcSmGwQ5QQRlK9mynXWDaNBLvyyMl25FAbpljB6PQ3uI4575vYFqvmi07EqUl6MmXy6vUY9wjRRVHEW5Qo5PlToeEaAvFHVUTtKTrwBx1nYVN4Z7Q+mtEPpuD78jNY10YTW5NET4yzZOUB3Q6GsDh6PpFWFr1KTaZtDRKG0UYgBT7ojYRPc5I4Ii3tdQvP4GpnvZ1AtStxsSbSyprq90yXurw6F4jvVzZ7ysqlMaT5s6Xm0vZeJU9Q/3+s3O5SIFUs9dNhEShe0KIt4wMn34zlIoLszseQ2fbgmiD/dlQh+ZcZPA7xRj98TDx2yzZDcXApf0N/PKAv2nigGAHmD7ijmMOxy8vvmJC7lRO55UD//yWMiUJNFclQpS/6MLwkKrCUUVwPpHYcXiogcn5Pp+2tSP1GWXNPn3HNcSvqpmnchCw+1LoXLMC9cJ1mTW9dZ0yLd8bc22DXMKmdGmJMGV3bJFJZVontw3g/ENNLG+b94Zk6OnVySeqPQVzMNFeaJDiRtXEwwBeew1MyIgzztxLtlHDt2jMIZ4EhBQuIP//AP5fM+7/Pk9ttvl9tuu43iFn//938vf/7nf04eHIT8IHKBhguvXRQxKYNaIbhW586do5AFRDl+7ud+jo+BYiEe8y3f8i3MBZAYAUl3+PBhKrZPOtrt9khZ+W63SzGPncbrXvc6JoRQR9zrQJL6xV/8xUxoAyvi4xygi4f77rrrrrHPxWd+5zvfyffHZ5/UVuyyiH+AyLgbwiF8ACbxILgahyNtPucbIP5R5MLFABIkdvOsceIISMZwP71caJBr3DGIFpzRqhwqkMBXO5NQJlK2CbjX4oJpWP4UAuMWQCdsWFOlOgzKERuh3GHxyVvgRt+HP1LZkfLJfRgRAw6rxjrTTtyHzZcQDUIGgG0H1MRXgrlVSCm/XkBwn6SLON+nA8hJLOGmYg28diR+vaUGvfBFQlKGzdSC05FwsOFg1R7Xv7v/+DRJywS8NJB1MEcE2viyGzE8DcxHjO2Ss20fP0rcwd3+JAff6BAF4EsVCtJ65mHd1CqBtGZ92bhepbjn7oc4CzbXiPLh5JwAgvYckzPHvPQS8oOwASOIRhB75N0dOfPv8uzCMQG7RX184qMt8c4WZeZBrcQSQpaIrH5iWyofLSiXDcpqEHYoINnzpHEMwaIFajlVIHMFD6j1ge8z9Zh2GtBZoJ8fOwa+hPVIio8sS+9hhTNmu6IpfJXJlwnL3HwdA5mABunw4UNmgKwgL/EZI13Y89K5ku2SjZifI2/LPG/gccN8xWs9OUtiCcEpxvcOlheFUJrHZ5iooBOP7sviCwLOE4pSQG58vS9aAXEXpzboFA4xLwB/RMekPQsopIqAoJBFY3Go9t8fy+otgIubaiKPB0a5ERX/gmZP2vsLklvvyuILS3yvuQeQ4AHFoEkiuVyQ6K+K1E/GqSm6SuBbIG8FMQyntkhYnZnsopDlEg10H1xAj//x2QldT9d5DXSBonCcHaf2C14NksesgbQze3bvz04VYfL9op3rrilPy7oqjoccK7TSJUSlC23x6x2p3zAl9UNBKiSF43SJJOHzqa2Lcp1xrPjMSMrweTGwlyDB4d5lHUZ0wVwXAx1EqiSiGw+BBlACYCi9bl3HHDqLEbnXKoeugieE+PN4Yl5D2DIQfYEi3/qmJmNme7HdvhDMzooU8hId3y/1Y2VecyfHz72RSYZ28bmvs3tvapuYa6X+Xo3CEh6DYlaNaxX2fD1P7Owtm4cb10pNOjauR2FT90tyc4EImMWEQoLWkdxDJeWegZtG7y9dXx1U0O3BzgrAFYKZWFtSD9jlkTddkPaxWSnc+Sj3Vn+6qkgS+jXi/fx+8coPJJkqsWgK8a9eOeR31JmZu8+L64IRNCLSH4iCyQeyeTxHFU92SA0xlIrKdM1Dr6THyCJbxb4/dplYhIElgRW3wRNeuU2/a+wIQ4XySItCUrAOiru++Gs5WhnwdddE6icgJtP33XSFB2+9JR993dUniuHiyBt/5PKJfzz0cz9Cf6/s50S3Cj87DUDyfvmXf5kKhvD3+pM/+RP+jXHvvffKM5/5TNpeQVkQ3bXP/uzPlrNnz8rBgwfTBAgS9IuLixTDwN9I7u6+++4BWOLa2hppTZMOdMue/exny2/+5m8O3P7qV7+aYh7vete7tn0+un7vf//7KRiy1wHvMgga3nrrrQO333fffRQ03C5BnJ2d5Xn4lE/5FLmcw5/UYBr4zUkHXLcffvhhudZH2r7HWodNx7xVSFwPFYdOsrVtZtxMTTELFS50GAh9NB8OVG7Zlqecr4mJWIJE3LQpHBEGYSa6GM5zhxhva+2zSG0+ZxyZCicX9KJuokoo78MJmPDZ9xiPAUyMmPo5n5VSdNPAlwN3AxsuAgfAP1DxZqW7l+E9MBjRIIOCJ1RvtOMJUerDLhhnjKT7yRY4ZOSRuYH7DH6YFR3o392HHjopb6jkuaAZanqU1sdvBN24PXAncCuccbuRvu9Q0jWQxF0uuKO7f7vH7hIySQgoAhlUkAu+lO54nInM/neeYzUW15/JuuM8kvOnwebsPQZNLaIyG3NjxEZL352eyJlPy6tH0Sx4O8b9OuVJ7sESN1q3kaIYgaJF/lRB9t/RkYWPdaV6VqsMCAbRoSud86R8Cr5GvhQuKieFgQnmKF4HXDQYDK9HTCBRAGCQGyfSmQklubCYJmWpPL7NB0IX3fVnqRYdX5VRpzw+ghYEMSge8DEmnGJJ/EAiPylXbJywx3Bydq0P+wyAkDG5rTfEW1Wl1dTs3rzpUFBSqJo+FdC+4pp2mTCHCBM/FvMHJrpYv5CEl5YhMKHzVAVCdB1FUla+oHMLlXR2YiLAGmFKHkpnLs9E4OynldTcGt5pJ0K+Frqw9cO+dn6tI5EzjzwE00HTY3cCRrwI1DH/mIgZ/8oFg24OlxYhOqEdKXyHXKfMddJSbzOzQUGio8gHKC8GUjscWrLWD2L5fTRhA7feMgG1TooT+yCM0v52HTvA/5gIQdWxoEgHvA492Q6UpbEv4GtNnelRNAUQS4hz4LNgP3Lvqb81KdM1Qj8LjhXQQ3J96Eeo3W+H2ABUEuehvBSnj8c+4ZIy3RvBxQt4XZ1SJZKxwlqPxtO5jQ6FiwCTpRWGS8rQbXQwd4rR6P9uuL2BczIMCLt3RthEdUAIxDziKCCBh2e+ik7tUvc37GkK6WYRacGgZChAIXlH18doDhgpCoG8SUtSIYZEoZpE8gebIuVI/DNFaS9EfWVGXKvZSO1AlvpCGnhvZ9ztFDD5/bFOHjmMYSC5taYWRnD8gHLCisZZybgiJZO1QL1V84F0pvsWOOx6NfUkuKTMCW6oVxs6ZvohXezhVEldPMPrjO8ZJPvBNTRTdcwzrucGhWcRu6LnikWXJaOA7INwiUfZ/FwO19d9iTwVXkGcBVsIqnOa4bvNJT7saqfuJpfxBw3P48eZ8Lmfn//5n9/27dH5gcogIHeANH7oQx9iNyqrWghzZ/h3ITHDwG8IcbikDANdMCSbH/3oR9PHDCsf4jHuNSYd8ET+3d/9Xfm0T/s0whLx82mf9mnkhrnu3HYDHSskmZcyAMd03LLswG3wM9spN7oSPLSJGsFoquHkAY86ycCFv9YHF0VbALgJtqyVjq4YNibz42DQYWRuLp62WEFymYTxulVNHe4coh/4Z0qNGX3DT5M0DsqGJVHOK4Vy0wb5Sc03HYHcOmq6Seumg02QXT4QdvOZY8SxAQsOsTlTxWPHzd4Tx5UDdLGsVU8oOnIBtOoYK2uomNJHRAnvGCAKQyTEQZnoHQQeAP5vd7hRph0HxwFDNXZqil0tL270/aZMhAMQxqz63RZBj6x4B/8GZwwRUF+JTw/WEj4LwnkqsgH8uA7ZmK7GFgjkdkbWI2CR7ratn8mUIYffey/dlax1QBJL6Z/vEjl2hAHTxvMPch5DthgiC7lGINUzmow7TyAEL7MPiCy9UKR8OmDVGHODnknmZdQ6FMn0/ai8GpykolwcKD+CK8QKalkkguloTuTsp+al+rgQZsakaspnEDd/X8SCACBvgAwjSNy4Xv14MLeRDK7fiOMLZeHuhsQ5KxgUPEKyii+6RcJ/u3uAp8i546YHuqZ2PuDnB2gtKsfJg4/pwyHJawqh6XwbCv62JFTD/+/UCRslkT9pkjauK3eVyO7jXPUWl8UvFii4Unz7XZI8/xaJSiVW27FusdsK8AT4uCcU0tg6oN15cnZm0ZpIJD/dls5iSXqFgAJKazd55KnRCNnMp52C3OZ1GshiXiIxQ/W9ctpjN2jfhxrSK5WpXIc55GwbAHUklG/KZL5RcEDxoAo+LG7zJDSUAuHrzo4R3QzEtlb1d10xJ+6EwJadBYoi9dcUx9sBkhp/U23ROkwMcrGvYM02ZV6u9fbc1BrFITM2TZmXx6MdOnZjgkHIHRIhJ04CJUsn5lE7UtbuWVMhjQqhdxL0+jpQTEVHm5Lo1UATMoq9GDLCQcwg1oHH9gBHDsSHWE9DVRpTgRNw6NCxQyJj6A2nWozjQGcTwkS0ndkA/g8dEjg8AwfYYccr2aix8Oah85OFpo+Z7wNFMwiAUFofj0XXxeD7Vrx0UDwmUAYN5TLgulaWtLv9j4VIdHWgPpyxOEj5tJt9mB0gjKnACyCq5UiC2JN8uSOFWxuyeaEqpVOgBiBJAmTTl/Y+JGtQdrZku9vn9yEZd8qUyjdEtzgWr90Rb22DqIj03GDewXNwZto6ZwgYOpLMTdFXlXu6+akqLQPKjjov4AFXXlSeoSuA0QIHHFLAPnFOrGjGJNbiFieVjy2ORYhMLMMOr1lEuL1DPc/s+YVEKo/h+y7SXi1KUO5K1ArV641UD4MzXoCysB4z4iuK8uD80D5APq7GqI7ZqAH4HRIx8MkQt//VX/0VBS3QGULHC52e7EASBv8vDPzOJmXufnffdo9B8oYOE7pQkwx0mpDMoZsHwQ8877nPfS6FOADF3Gng88HMGR7KeB7gltkxiXcYfJi/8zu/k5ZfzosMJtO/9Vu/RUgoOndu4D2y42d+5mfkx3/8xwkX3a3E/yUnZsimd6O4CGzq8Am61gax0OhgtRUzTpJ3ZqEm3MPMnl0CRvlc5CSmzMXOmplNqrG0ykHTSPWIwh0Ai2HwMaX8CQadwL0bxJDGn3gdw29jQcJzQFAOm7r5IhFz0BuSrWEKahAL18VDsOFgi7zdYJNpt8+qrs4Xx8EXKVBimy42txRCAEWunm68UJUi9KTZVXl8bKbrGwzaXAKikub9OUFvqDBkUEelRwbEiKDQBevzy4aToXEwSE1+RsAVcZ+T3h9Sb9ySII3Y+IcfM1IoZEyXZDj5S4N9lyCOSsIyzx+V2A1/jlGfN/2z2dJuUhhI4aELsvqqEwxu993ZldxmR1Zuq8jmMV+rmDMqXoC5gd/zdyiMxHEsMT8gu0+fmbWA3Q7MHTyXAUglkk4CdTCFSmLzrV0P6WWFaeG7A0iMwooS2TjpSeWsz8Aa741gsjmP/1EhjaSwFEh7GgG3zsnFF5Zl+tGeicwA/oOKdCCBO5/47TiEmGepp53xE1c2OC+T+86l5uRxo5E+Lr3Gbi6lHmXjr+/Iv7d73Kj7tnvtcYbUw/c/WQmagyUjgEbho1iQOPCl+vb7JHrWddKaK8vqsxUaWz6LoMxXRbalnPTmeuLXAimdg/BQIp2mLzNI9hHcAi4HuBe6ME10HQJVPZxVXln9qK61mHsK+TYpeyRNm03pTFfZlaucbdMvC4qMzveMCIdav8BGKK11mRgw2rpJlUNTJ2THDNL1ZkSM9XD6VMwEw4kfMZjOq1kzO2NufTWFXQpdAOZIVTvMXT1eJgp4TkckNJ4VVW1pfWLoi6L9b/sIPhv2C3bOrGOIzQjvm4PCYMWT3GKfj4xBDhoVhPXzAuHggx/XiyXfRtfCPKygxNdw1i9eCmnn5Y7RQYdQhn5vsSfiWlHIhJxmTRpV8ENho+h095Ud1fMTv33whqG02EA24rOD7cGaot6g1yVN3p3aIuDGxk8ei1rIwORlCpVMnFdVusQgzQBqyPN2DleMfgC7TM3fCKeWHvY47KFI2iOpPhpI85B2DLGWOQXMrkEeMfdQaXUCLlCnpY8bRD988J71eGcqTXKpvDDh60G5EusounM4Zuy5TuRj48ZEZu9V9AmOEXxcFCwcfBZzbfllhynWMf3ex7mHRjhv3FdEkpVVngsHZ4dCLw3VscdGKI6omrST1cd1CzqqHA1kBR9b70icDwmBd3xEMbSPK/gytrHuqUvKmKjZ+abCpSVqTlqfyCPQLxoi1Q31KUQB5iIUTfOBhKsh4fPYX/C+Di7K+Mlifed/yO/+Va5WuFvhju1eB8MJeuw0AMtDEgaIJ8ySv+ZrvoZcqKtxAC64k2bFL/zCL5DPNpxQImnC8zGysEqMSfleX/ZlX8bfP/ADPzDyPrwOmlP4jQ4kjKizr42EDknpddddtyXv+fCHPyxXLDF79NFH5eNtUAq425ewd7AFp0xEfDiUsayqiuSNLX6riGrLvi+r7EQ6sKFi0556HP4pWsVDRRikbcV7qwwy+DtUi3KJWdlex2RnMRyUERsOkydTnQJkh2bVlsAzCXNdMyfLC0gGKk8ZsjmP3ThyTL6okKeBtlMlc11EZ86KqiQ4AT780iC8UW9I0lIDnqzRLzYKf2ZKkyQHP3MqjfjfzruHSgtU3yCgYnCVbRUU3fO2kzEfZTbsfg91uNIkKJvgjOjajXzO0Ptty03b5rHZYxx4Xhb2uEMgzsQP6mTdnvgXFiWuNyXxTrArhapr4UJH6keqvKbocoFkrcqLieRq4BhARAC2ClowUPiXJuidhUhimJ8a56IzBz8hX068pSvnPinPOUUo4gokppVPAWEHx6/EvG4cU4wLSO/k7wDaNmPHsAYoUqKFCPj0nLEOR0UDQnj2oWoMRdHydceVI2ZzacBoGucQyf/xIyK1BqvJ2etN03I3T911hn1D5jUyF2Sw4+Vu2+lajuuOjTM8H/c6o8aT3T3LJLERCi1YCx88I1Ipi9eBCl0i1UfhEaXJBrquB94VSgMcxKVQatdF0jykQS3MiHG/43JBWAFd3anHY86/4hrgrJ5snAi43sJ7C+sZPKiKhzfFu2eKc6J5cpZz5Pwnixz/R/Usg/8dIbFr/QIWgjvOt1IkQU299VKEASGZlryB23bQCleYmxsiU6fVVwvrXv1oWRMZriX95yvvSNX+FFKne4nAJsI6aKpmCMVGRSTgb0UrqAULIZzGw0o90KxjAEgh1nrHC0PXCsPxiXF/XPH4ek5wg/y2piIcgnpPAsAFgW6AKim6VVi/c6HkSkWJKwXC36ICnOXR4YylV4E/neMd98WjHD8uQpcKsGgTk3BQTsI88dhNBPuBBI2u+KsmBIUOGd4byrtc/4u6L8CWwX03oZgKY3N+XzMw4xHfH+4ZoU/DaZ4PQDqNvyimiInzhfXIccycoTNEOQDf9ls+ffSQiLX2qzk61ikk/840mglKKZZww+c8wXVCBxjJnbfQ5n5WKHUlin3ZP12TY9V1mS015YHHD0o80xVvE55r2qnFeuj4V4wdNhV54DjgDrarIlzqIVZY8+Tkn13kxh4950bx3n+3FqSsUMLv5MqqBIcOioeCKc4JkC1FDRxRJOH5QtGWqpmuyBpLuFInDL53wwFTysR81LnE2KLTL+CieKCCPFpQZiEZibohh1J6h4nYCGT/rQHb2q+x0/oNHjvevXJeOrNaFACMuFftxyUo7CBZw3nSwrTCI68JbNaTkDyiKwaVQIwXvehF8oEPfEB+/dd/Xb7kS75EOp0OuWDZJAeqjGioYOA3eFvZ4VQbs48ZVnLE/0gaJ+2W7Wb83M/9HAU6hhOzy+EjBiGT3YzP//zPlys9nta0GTMcARpDFZ36fhxMzKxaVlpSI11HSnVQBMJfrOJJ6GNmw861NdDl5gtU4+mImzbuQ2UXz2ktGEHZpPkdVwAmlVDXc+RyyPhjsQJ0h4uiKUOxwmJ+Nvoh+rjsNAjxB0nkTpJfN3b9u4uqMWSsKfmsm7E+xjZ7+MogKXvsrD6hkCfePZtQUB0Pmyi6ZpTBTfrBL4JJPBacIJeoZTtbw7L66QXqB6SuM7LTyHattk+0BlfSUUlh9vlbvdMm6LJkP8PYz7RNEjBJctbril9Q4jE4V4feviRJOS/tfSVygo6/NS/rN1Vk8RMS2bxBJNz0ZepRlRTHnETFuxHA1wiFA+1KtJw/TyGRpBBL43DA4BtFgPXr83Ly/1uT8582yyC4fgybt0dehd9VqA4SrPr1PQk3AmkvJAxM6G21opA1VmGxeaMDYkUAVLXLF5SnAugjOwoRYGCBJBZo+NUKOYb83C6Zr1ZEjh4UOb/EIIUVdUDMsmIeY/iMW67JXjzJhrtqk8yJ4ffa7rHbJXdP1Bj+rgJCZVL63coU16bl5yUyd7dKjmPNq55LZPk5It50V7ylgsQLWDhj6a3lpXgxYFAK8Rd2Sl+gHVe/F5K7iOEMazGXaET7SFVC8Ffq6Iopb4viJM1INk7kWeTSRELhjCpAo+ur31ATRvKLOsYrIgcoZqCOYBAwNrHOb+NEJJVz6IwFUr1jRbwbtPpFE2Os0aFTV+xL0rPuZZcJiRM5aZSHN/8qQP1MXANJjHKIFLXg9ggU9JhswfsyRudJi3jscrQVhuwCefLMkJRRiMSESlBEAwRxU6+NIhtUkTS9hlhjIda0vil+GXrwBfEB/YVxM4LlbixJWDShD/3eomtDTylQNR2PznjZTgI/t9kVv91TGORGW/z1Or3wmEA4RTazQCE3FN/dElpWPSotDswvZn07GLUzeVU4Hg6Kpszr4BdqUE+BE3ZGFSFAEQqDDXbySM5Q4bSOlXVN9drY57IOqW+m1Tx1lZhJfljtiu8ncnh+XQIvlkPlTenEofheLL3Yl3ylK70zZRarkFjgx3EIK/DpO+BJd0YNnanSaHs4YH94fSlA2Aq3hxQ+CmamJbjnUc4xf35WedZWcNJzEYvXaEqATqxdxySHJFNVRfHj1EFzgJdi7uyrSG7RpPsd5cuKwM4YHp8bEERV5FSzaxYK0tiprx7t0Dicm+wi67mmIqgVntWbDHB4RWqwg4jEyzTkaJjOa9XnqrFArfWgp8cOA/5eUEBEkoauDlQUIZPvRC4gjw/oIwZ+v+Y1r6GuBKTyMd761rcy6QIc0j1m2GMMj3GvcblHsoNGIbpWDz30EPlpSAxdh2uScfLkyYkeBxVKULp+4id+Qq70eDoxGzPYvcr1u14FaCns68MYefKaqrgIfg0W9xyIxtjcc4NS9k5KWEU/TNAAss1zuiFALQ8beGlZA1h6lGG/t/Y/qmVUXmRHSzdgLGwUDnEYeAo6mKwuoYgWIFiVldUqeyxl+Z03FWA9WGitG4hBjpotxlxYDU7Dal5DVcUwsNGHyw2RcxfFq6ClhwcahMyCRiRlPiTI+YKxxPWG+Kioe3jznOaFVFDEhwLmQUVEEvjRZJKkLQlTRt1xHBdtouRsVDI09PiBYZ9r4i7aOP5RJlDPilcMfNYxSdmoczGWe9HritcBtjaQ5OHHqd5VkENaWfU8mf+3c9KaPyLVM1BnVL4OKrZ+D52Jvhob5iTfCpcJMtDTsRTmmxKtVlmYYNK0IFR+c5tpYcmUTGNA0/rmuMVzobSOguAfMOBE94PzDOqLpvYWgZ+ETkIBcJZENo8jWXT+RwbNsnmYQmNxXSwpA4knWl2XcHaGXnhZ2J37mxVm4+MNdNLs2qbXcVxyPDwvMtcjm8xvC0ndKVnPzp1hVdNRHMcnecTLq+Jff1wEXdrcPq4hM/dpUqPGu5DMT2TuYyKrUpDuAgQ0PIljiBMk0jrSY/e1eRhVc4VqOzEMrFl4LiCNmGPtQz0pnoXIg65NmKPl812Jczn6o7Vnc/3A2TonWFchPkCPvcdE1qEqyu4YOiPWPcG6u6miHOj4ApKGH6zxhcWAgWzlvHaaph5tSuNQwdRwrUsEr64arovNVfEkcvfjkpmqIZVtDWFBzhcSLJo+O+l6k6+fsv8xJ2EFkUnC8ALuvd1t+N5SYRLGzfSiUniaD2QDBHAYoAdMkKTdlnh5Jb1+KGZQ3Q9J0cqa+I0pQgmlUpLeQlXCWo/8KML9TBjCKUDSTsAk9/Mm1gPbFSSxMIcOzkMspqdiHmZJwXUJBTkgKdDlseLKMEwxFfUBNM8layPmPb+365sS5ALJ1fPsDHHvs+Qb0Dm1uQGcULv5uOY8h/i7jO6/J8kMPDVz7F5Sfx9QP6MGYF9Hx8bB93pQXczHEhR6kkSe/O5L/1B+8L7/LNfPLMsN5SUp+D2ZClrysfCwtHo5OZcrSWFdRWcQB2Be4ZxRMOxoIlEF3Trt4tIzD/OQtjU+vb68YiTRvq5+ViTQCEKBMvEhoBVSmRLc7uDAfoVtA14FuwEIgDiVZTQic30bAypi1jVJ7s7kxYur/F45SC2hrWb5Q4EUK/I6ZdTmvEeYPBUunQIm1nFYSNTVYoLCUBtaVCFvHnTCppl+T3ly4EM6b1dvVVQR1n71ytPvFbto5X4iRxrJ1d4yexIMpn/4h39YPuuzPosUJCikQxwDnmNvectbKBjy9V//9fI93/M9FK1AsvXt3/7tTKgcvwq+YEjAIAH/S7/0S+ST/diP/RiVEh2nDbDC1772tYT/fd3XfZ287W1vI0cMCoVP5FheXmYnDZ0zJGIPPPAA/cPwGSHM8Su/8iuX7b3gaTas0AipfwiiOO4dOok4d5dK5bp6dvSrbDjyrXaJhHwXV2kD/0E3PvM3s06Vkq37IiDOUNJx0Wg2WleYCjYzp0pFFS3g8vM+TSHp+1PV57GSazAvQATIOXBY64aRgyFEZe+P1yb/x3hkSuDWx7uOmEssU+ilbQBM7gCXRGUQn8913gwGSXUuIw9rZReZqCfePLJX6zxg87Sgl0kZiMiFftmR/2OjB7fMKTfifkxkZJngqkCxMWu3MMQNy0Ibt4Uwjhn9oDtrOGTeVabON/SEsUqNo5QbR0EmByT+3W32/zgp/4nHDh0WV0FlVwnQxvWGxOcvSrhcY0B05K8eo5ABSObX/V1bph8Br0dNoJ3nHcUXNrWKiepl9RFfwg9MUVkRG2/1Mf2urNwasNsBU2CsLvi78jgUEZUv4ARniqfVZJSkckKe4GvU38zRAUbBY/4eFSrBhuwM1fGc+sFAqqfbDDC9G09IcNP1Etx03QA8NbjtZonPXeB8yip6po+BauOwt1gG9joqOR6ZqA+d851gtwPPG678Z9U8hxPu4e7eVSi/7+9fkOTMeQbghAoWTPV1n/k7VTSIQ6LEgLQeiDQDKT2Ul8JsS2buCamUCJ4JrjnmG8Q6GMStQtHPRABwOso9mbsXcve61rLDeygnpUU1VcdcoVKcWZkgAEW3Dp07DKzVNLJF4oUAnC+qc707ExGiq9L1vkTVmJ0MQK3wnch/8EHpnTkrAUyPLSFx0L0sHJIvad0xdLAQCFMpEN0saxY5g2b1rVI1PYWX43uonxe8stRQ2sn3I/GibYoGz1RINGEn5bM5ifuAwg9x0UEmwB3TRAhIBX9hnkI4XIfgh7myqusEOs5IoAA1bLUl2GxJuNmW3HrHEkpYblinzzpy6N5R5ZWfX7nH+cWampGjaOcUejGQAG4HPx8uRkBtdjgpGwEvjpeWaSRP2f12/zzjWqtwlyZigB2CkhChQ+bDoBxiGdqp8lfymqSbjx0UO5ncoSE8a8I11ZiQR6/alfxUW6Znmvz51o98ucSJJxudopwoLMvZ9ow80Dwg3cSXG2aWJVxo9e0XYOoMeHYJUF9PZp65IkE9UHPqDJfLURxy8y3JVztSmW1KcN0JLWqWS+KfOCrJbFVkqkr7iuDggb4yI84Z9tkeYOyanFFUBl0uqCsb1BaJdHshL835QGonkA3p7SyUGjeY3EIU0EARh3m5qVMC0or7kZwxLnFCzBT50XlLXlisz3VxiZvH6GLraydy4EMITAAhVksXfP/p4Wp8NaeSjdd1sdDVOp4Mg2l0uuA7Bp7Zp3/6pxPGiKTsP/yH/8D7f+3Xfo1y+OiYocOEZOIv//Iv0+fDy+vv/u7v+BsJ21d+5Vfy9X76p386fQzMl5GEoUsG5UIkQOgm7cbD7HKM7/7u72YShI5fVnwDkM3dyPbvpQOJZBXWA+CcIRHGD/5GlxGm03jMXsfTHbMxg9WdhiZEzocMg1hw822BmhcqcOXTtvkjoFzXqqxr4XNkv1jWksUCBF4ZNnlCCsD1OeBL5ZwJGKRwECfYgeDBFK5a/QUKAx017J3O+BoJnJP0p0wtumbY0A0m5jDy/J3x6sHi5xZaJJb4n8bZTqEKSVgrVv4dFmwiCLF5mc6wq9ihUseTZQdIqCJA+chWDe6UnmjzG8PtlPr10w2Fyo3YjLGZW8I3CnKWDbrTMUGgOlb1cfg9sq+VCYZ3glDytbP8pVEiIkMcJJeseQj0wAkYek99XLAzx8ipM1IuC5EmyI7YjXMUZkFlPEHSMjMtycamzL/9UXY71v7LC+Tip3dl9v15BtTlFXBiVDgAXAjMa3TGMLfBkwTkVuXEE2kc8pi0oTvGpD4yHgGKGwn+Bs9EuwjkzFQjVoG9yJd2w5fGIa2KEo6L4sWmek21IDrSUS4GjoM8TYgpNLsSl3OShAUJ1/GlsG6mKXUCtokqGsymcRvsGVLbBLwv5is6aqtrTF63k8gfTOwynMUhuOKopGxHY/JJxEO2g65OkpQ9ERw0nHsLvBFAH31nUy6+sMQEywkDOIGNHqY51do8iaZ60gR1oZYXf1Y7Wc39KluP4MsFseiIoXgAMQQGdY1Q1m6GzQe6DLHMfMy+a16OyfvGcZ+Veqo6UhJcpeEBvWou+HzN8llfWgtIYpCBJeK3MMd1PXYFr8ZBS5isOwXOWbS+TpgweFgQTNCOnBas2I0w9VpV2NOkjGqItnb2PST7CRf3iCihAqQTIcFAAO3UdRWyqAGs65JhvcTrQFkxD1VeCDbgPVA864ILF1GkBImK12iLB04ZBjpV2I8chDFO1G8Sb4XOFSHo6gMJ4Q9+d8oFfm8Ki03pzBXTvSu/roqrGOEGCia2NhPqDuWgliSNJjnGamURpNBjfcOtokv9Mfi9HOB/bvl+WPELySeERrp9rnh+HdBUCKR40t4HLlMiCTtkpmgYKn8rmu6J11YbDyRnYd1XpUFDwzApQ0IWJFKcaUkXMO0gluaH5xU9c7QhF1fLslotixwUeXbljLx16Vlyx8PHxV/OiXekSRoEEo7CclsSr0A+b/3WjhS9RAonNqXTzklvuaDQQ7PbKdywwctxw/yyPLo6L9Fjp8W77Wbxz15UFd56U7zZ6b5cPuE0sch0lfM0Luf7oi4dS7jM3gfHEZVU8Vahr/BuyymE1lQQIxM50e+Q2iWwI2wWC4TLAiIJLhyL1R6/P3P3NmTpuWUtHKQdJNjyqJ0GbkOhmkki1oZioErTDTWHV4ES3TOc2Trem9+Hp1sLWwYUDbcbxWKRioP42Q7eNwxVHB4vf/nLaVr9ZI5//Md/ZNIJU+3sgKLjY4+p+vKVGD/0Qz9EY2uIkiAZdQqV4NnhmJCYgcv3i7/4i3t6/acTszHDqWVpdUZNIxlIgJiOgvBUn5zqDEAdHhzBgCPtpr5faBA1+gbNWPAoYADpcMghY2MPRWpHAv6PAJfy+JTqBVleN0AHHXCSuuzUtYSBjSOHo1OB96Z4gsmOI5gm/MBgjl5GNphQGuRMyH+y1mJWxU0DCN7oKrr2P3yhDH5I6V7HGUAC4DoOhKwAxJ+XpFTQwIBBATAUiECguY6oDauymWMikUAnrdXaAilLRUXG8XN2Ae0alextG1SP65yMefy2RtpDgh6pCtkwVC37vDGQyxEH0v9NneKeJOhGgmQfuNfymJQg0OLvSklWn+HJzIfysnGzbs7li6ZmZipwgJ3QnyYW2TwJcYaEJq6OHwabCHIHcp7Un9GVYCWU1j4NRMunLaH1lSfUnVJVMkhM10JforJK7mPTZVdtVTdrp/SIYsn6rYlUH1EhifWbq1I91ZLccl3ah6el+NHTapdgyRk7Bqj4D3EVg6OHVBhlY5M/fQVH2flaj1D2HFCEG75v4OVGJOZj4FjuMWM7wnuBL17h5Mx/5o0SVQsSPnxOgoP7JXh8SfaFB+SRr0uk8GCRstcOok1oEk49fMqWcoSF++cDmX0AcFWRaNNnwQnXvHRR11DwFtEBKy0nsnxMJLesvLOZhzHf9PG0KpnTAoGP9dcaQ3P3t6VbDVMRDpfgY26yWIC1EAIPhjIArxbrLhQj2dltezL9iCf7PlKX8PFFERSf8nlJWh3ZuG6aHn3oOnM4o2m8V15NpbOoBay15PWY4bLzQKM0vfEiuqbEyKKciSeoxL0W96jACAl1JGomVAWYIxO0Rs/ESOw1IMTS6lK4g2usWZlwnXUQcqoiZuYavhNQ23TfG7w2JNqR8FAAxBUJYwnREQyQyHQIlfTwA+hcDKhJR2J8xzj/EGFr54t7Q/r90oRq2Itw3HxNocdjoMC0y4DpcqUo1fuaEj1vnnPCJcNIzgCb9YCbJlEOnbiA15jwxg6KRZ5E5VghrbbnOgGLGIqhQcIuWS6MZK7akLOPL4h3oiP+ak66y0UKiETrofzdoefKJ8w9Jv9p/11SzbXlXz96s5Tv1sr+/B+9j7DD+PnX0aJAGgHFQgr5nrQfmxIpxhJNawIZlntSzPfkUw8/JAfym3LPmcPsaHprm+TP4pyh8BQBSgx1VEAbcVYP7tfr3YulO5VX+GnaoVXeOBL69ZtKnGvw5oN3GbpnzYUc13t08wC51C6bdkkxr7XblbFCMFNyCIhA9bM9FzC+WX52WcoXYyKD2HlDh6xuZuVAZnTUgBzrde0Aigr6uqRZoDMGaKQZq+fNtoiJslFFrurxJEAZP55GvV4fKVO/srIykfH2Xscf/dEfyR//8R9v6RBCmfGbvumbmNiiy7jXxGxP9Qa4caO9iTbnmTNneBsO8l//9V/lqTRALiWWHIpElnix+ksPDg0uiaemD4zyHzDwP2AyrtXuPMhQNUZg4lQNuzDs7ECqVmFfVLbCYyqANvaNolMyLeCFWJjIe9DuFxYuJIkuqcJ70Jes2ic6Q9oX3T0sdOxU4P9kK4zGvZfjN9DM0aCY+mDdiNktwyaHBT8xvxNUV90mio3edSbwGIMqJhVkp5BGBu7dWNRMHBKFNjoREAwEDQgEwEPDa7tDcDBGxxPKGk/rAwZ/j/p76GecHP6WgHwc/2fgpv4xjQzUR3RKUljj0DEMwx8HjiMD80lvHzPYdUQigqQMf0NaGcENeCamoBQ3wRdbVxhXVaR8RjfR5WejsqmqiuheqUG6kr0x/x1EFzC16imdmwh8WEx4NMeCQuW0L6ULKoWPOQqYYnsGMGCFMuKNCD0rxEy4KJmO74nBZ1zXBPO8sKQqaDMPqgfUyrPwBfMlrHW1Au98y3C+P/KxLdeO18SSf1aZcV4ync3stR04/8M/E4xhyK27tjsl1gO2CuNEYHYrRjIJT+4SR/yxhyhEkADaTGGHiCa45TuL6rM13e/aYy3CJ5t6FNcYstkK7YY/HRu8oKzmFca0cUvEdRjFJayrKAjk18AnE5k+FcnGdR4Db4p3ALlQVq8zt66Bc4UBUZD8clvh3jMQpQG6QN9bEQl93zMtBJiU/r6uHHreBTnw3jUJLwKC0EsLVCsvWpC5+xEh9tdpKCQiSI1z4A6rB5WDI2lipZzd1OvMnT+zKCGf18yo2Z0gB00fQwEPcD8t8cvVevyBGTCUCP0WuF2RBsht/RtwcxxrsI72ITLVzPzrdqV37sIWwSauF/hh0UL5cs5nzNtoMPkqnt3UIDxBV6nDrhoHumNLyxJfWFL5+3QOqvATR8aeYuT3aqd5OgYK7D4DPo+/tilJMVS+n/GhqKxYjSSYNeI3TUgVpoiOWVDHBgiBjETC9UDXKIPjOQuaZLYruWpHyqUOO2WfeOBROXhsVaTjs5tWuBhIYRnFAU9ObczKXz72PPnjUy+VlXZZ5j+Yk/139uT4L36AiJD45CFZvq0g7f1IkBNZW6zK+mpZKjesiz8NrGMs+amO7J/blJccfEzacSjH8itSKHbY7XfnCkmZS2ypbInr1utKdP6CqhxbB5P7PztT2jlT5I0Wi4urEZMpjM1jOZ1nkKxfjaV0sUfoODprpdM1qZyqS/l8mwq+UPrMbUZSWOmyO4ukDANqpVOnu9wrShfbCmN3SS4KCOYPi3PqvAox31FgVu6+0kYAHU29/gyG6WgYeO2reTwZUMan4vjUT/3UkWqPuB1JkhtEyMQxuXGveMUrrtjxgLt35MiRsfcfPnyYSeNex6536b/4i79gloiThDYmlF4w4JcwiVP3tTLozQTfsQvGcUDrvm6wLOCeV2wDJ3lVpLRk8Kag3zXjcMmc8xVDEXFG5ZLV28ykk80fTNW49HEIhlkxsq4V4Ty2FmOTocGlwQicL4/zHMFrtM2zBa9FyIDJGjueGjtlWbgljEFB1EWS5/zNHOzGye07pRsqNrmNHBXIQJMrwDcKBlvEbyRpSLZQqcVwmzcTAzMPxWtSIj9rEtrrPwedHlR0M7DA7BgrxDEJ/yYTsA//bBHYGBUsjAvWM0nfgJfbENdpS+KVPa5s4jjufSbtgBh/jpVUert1VMHL4I3BPNoNsdzwS3fq/AC/p+bRGLp+XAsH4AlBehzzgeqIoAft1/lbOavz++B7EwbN6G44QQ9InmM+YqNFsYDBKT6GLzJzr1Zw6VvTUoPc9r6EcEgEzwhSkbRhI24fACRLjw0bubN3aB2uSvjIOYp8+KUiuY2cE1CVW5gbVPZ0CRg6aoBzOk7hUCcMgc4o0ZVx12kgubcO3LBwzW65kENvvvdr756/2+fscpDLhyIMjWkhzV2Q3lQhTSrou8VgDLBYmwNotK9gXVVBjvoR+Dap8AbWXqh1Tj0UMOnHXOK1n1EY2IEP1KX63kfk5J+dk7kHehqk4RSDFjUN+xFdwxFwdqZCJjOrzyqz8IU5Dghk+zAItSr60Z0FtFal+MmnrBkEcrYtq+88JI9+3qw88I2HtQOE5L6QZ/W/tZCnlYMKJJgfVMtMepGghYCDaUGLRS1DIzi+GJM0FtX6XB7nV+Uk7sE9JhQMt7ehGGlCOIXAeGlIJiEeFRE+6Nc75JFBIp2quWxKIekw6CLW4W63b1kyamCuOH9J/Is1GXwleIx1e3yf3FJdcssN8fDeG012cNCN9vC9y+f09d2eYZ2wZCDpU4VedronVS0dd6zDao2ttviNjpTO1lk0TedhPZBoQ4t9VDgElBHJGeeLneMmrqcm64SUmvgM7wtjyeV6cnx6TU7OrMr51rS0ewGFaHAd2gcjzp8j7+qI9/fzsnZxSpbefVjOvfE6KWwkUlhqa7cLIljtruy7oyXTD/pUCC0+kidEt9nKSbHckfJMUw7ObUg+7EkvCeSm8kWZD2pycn5VLnzG0S1dRPIC0SkFv29mRouaONeAfwJiaCI4nFewfDDF6JBm3H1BpdIKLCH0MeXzHXbFcqtNyZ1dE//CKj1Lc+fWpXzfogQt2KtE5JynRQKIhjT0O4DEuDudk+Jyj7cXV9QAHHBKvL/GHVpsrlyIGGO5rhngkPx8ZtFAQRDeYFD5mcmU954eV++AmiL4WvAMAz8O401vehNFNdwArBLJzvBAAgaDafC7AB2EGMmzn/1sCnXstVs1yQCM8/u+7/tkaWlpy3247Qd/8Af5mCcsMfvZn/1Zed3rXkfD6azyCBy892qmdjUOLhaQa606adw+zjnljyVQUgS0S/H+TMhqSmQFtKS0qLAvmizm+nwxB2txhs4IINAhY+cNgiHG8QKEhxtuCxCxhMeina2EwavzZEFA4yq9qP5SuATVP5Pudz4uzjCVhtg17fI57kL1LAIHOw7jLjjiNAjdlNAnb0hJwm4QHoM9EX442HgBYYky9xfyxLcnTNbs3EKqmUIfaM0Z58wlYfSwQbvOKZUAcpLT4GBEsjNSZGMbztjWCz3+KzDu9TIvPBJqOKpDl8IUkZzZz1jRkRGvOXAse+jeDLyXSxIcfw9V9G5PwoUFVseP/ebtnHuYP+u3YnPVzRxV5NaBhF0tdLxoigtpe0Kt4DUFGwg1rMa8wwbLQGQtUq4jhGXcRrwpMv/RWErLsZTPalW6dN5Tc1aTo0YXDsUFzl2oM56HGpwzFRYeB5RSGwdzkuwDIz8W/8gh8ueC6SnxDx+UZAbtZKcWgS9CpH5mUWQdwq0ed1kj9Ox1GE7UR82rYd7ZgIhI9md4Dm0n/z3iWEaOcXNhu07EZeqguTndfP5J6c2WpPWsI9I9PCOt/QUm5Nq50jWEstrsvoNXq78xH5D4h5mikHJItBOGudD6pDrnx62/8pgc/v27JLj7YUkAlTt7Xkr/9oDMf2CZtg4YkN2GETUUPVVUKSLklh3hilqcoHvi9YBaQPLvS+lskMKjUpGai57k31tlIgjY7nV/3xR/ekptPuoNKV2EWTuUJdGRAzQLgjk+u2FOMhyJFxI3/oZBs1mVUHEvs69QPdCCUOc95l6D5w/BcV0huupnpmbN6Mz1qjnCCwkxJGQPyVvEwJ9/E8oMNR6Qf2BAaIJLCOBRoHDzH110s9hIoYVuTcZcxudGUoeOaKPJdR/dMxpFw8Nyo0auarK2ka7dAwW3YZXRzLzPquWm3N7dFBLc6yDR43qKLAnqr20pLvWY5BeXwGP1pHgmJOyQa1uoIhNqsK2CICpTbP5kWDbKgFxHEl3XlNmZhsxXG+J7iVyoT8k9Swdl/ey0tK7v0NsMYiEl+JKGHqHXQA5UTyX9+VDNiRw+IN3rD4i3tCb5Ry7K3L0dCilxz24EEp8rS+N8VeLYl14UyEKxIc9HlQxbZBLIycqKrN4Wy/pLjrIYRShjsaD8vXJZ+dmdjhbicO1BOWBBV7utjX0QhNFEDZ1kfM9YXPA9qoCqf54WEwB/hDF1VM5LPFelT6GcuZB2UGFGTRuEdo8FAQxw/CzzAADsxUlEQVTAesF17E6FCqdl4SBmUaYzHUhpqad7AfiSHcDhYUEB3z+1f8B6gIIcvhOEJZthu7M1mHm0J1OPd1PT6aseyng5fp6CA6bXz3nOc+R973sfBUhqZiR/xx13TCRLjyTs/vvvl5e97GXyeZ/3eexSfeEXfiGbRjfeeONlPdYf+ZEfoZIlBnKgs2fPMll84QtfmIp/4G/chvt++7d/e8/vtWuOGTwPoOQyPCDDCdO6p8pAxcuHz42JX1Am1wyZHTSRHBYT1YDqlRox9o0iKU3fSVj5ZaveGXPiaQgufY9VKWzM4NOAP8HX08YBhRMA10FA25kzARCS5pXPE5gCF4JXbDgIXqgeBerXOuA9yo2jyt3qIGzRGZU6ZaSNE8B59yFklOMH/8E+I/cpBgQaFITryifggk8pfiWJk1cAKXwGCIl4AslklLrwhsZVc0mYmU2nFVUkdG5DdYpSGKbWyNewKusW+OIoToKTWc4+btSYwEtqWLr/ksYQ3HKAWyFO7n3Mcwym13/8HrohxsPAj5OQR2UVFXFAR/H/gd/7II/r3Le/lHMPxQAq2OEI8x6LBAq1cipxOidpII24DsElxGiqeGwglXMxpasxv1DM0O+SJ3UIhsCHb00TLcwtdCrIIwDEZQ6qe5Dnt0KE+eY4fiUes36TJ6WVWSn3rpf2kRkJ9iMTEAlqLS0YoFqcEUPBZ46cRPjQnBnoyo7gAw5YNIzRfdlidzDmGkx8+wiBkS1KnuP4Y6MEcUZxFy9HYnb0kLQWQmnN5aV6LpL2bChrN6ovkSrGarHIeYphLUWyAxgi1NxaJrAAKCsCrsp59XsE57BxNJbgkYocuiOW5VeelPm//Rhl05NeQ/mE6BKcuyhTp6akWy4wyStdMGhj0ecxYWDeYJ6RB7kQS24FggeA4qHrq/MbiIbGYRQUtCs792AkxcU2ZfFzD1/QhAPncHpKeV2x8sQAw1IRA53bGM5vElxhnieT+XZ7hVoBmA8Z+coqWkHIeM5k8sEfY7KlwgoIcBEou9cT3A/OWg4bFRINnx0NJGMcELkh39JQCgjeEbCj4NUJWZxxvF0G9sZXwhyO4UkHCJETCfFtHU4vvKEdnOQ9BmTd0ZG3btywyJKzs3Ads+FxSZ1l9xoowKyta1e8AK6UdnF6RXQ3nXWNJ90AHG9fOkc6kvRUKAlwqCRSjzN9DqQEcT0iJmWfe+IueceFm2W1XZLjU2vy4cePi+QSmZptSP2hGa5PvWIijVtzVLltz4TSOIiOlcj0ww1pLxRk/bnz2il9xk1SOy5y6P09OfSBljQOQQ3S5xxpHvCl3czJxVYoJ6dX5dH2frmheFHevv4suWP5KIVqpu9dlcgEd6JaTQIiS3yV0cfAtQGShUlZLMmUcrhygAwWfc7LFAEBul1T5zHnuHEXaUZNvmJXPEjq1xs6/1Gcmi2xAKB7sydxMa8FABwPhGGwV5RVjCZAt85k99FhC5sQVVHoMs4zjqGCQoMZgANqTBXHdRRzTYwMyr05kdWb1aC7tHiJisZXejzNMdtRRAPNHsj3T2WUuF/5yldSjn+SgdzjR3/0R7d9zLd927dRVXLfvn0j7wcVC8kWzKb/7d/+jRyx//E//gfVJ5HwORsCN44fP87kEcIj733ve1O5/Je85CVEDsJyAFzcJywxg7QmzNxAcssO8MvgH/BUGajsQBkvt64brauAQpiD1U0TxCAvgImMJjCEoUCdqGP3mVE1ggvIRFNxiwlK/znsZFmXivKvhsihwh2QgWuJdFcVQoYAFfh1KNxhUNAjcNAz5fgQRw8j6w3d7CFTDpUzBL+sRBNCqZ/TeULxtcv9wMF5mFERyYKIVACEJ8hVZ2NufIDMcJPGxo6gAQEAjq+YFy8TRMaFnPiuq4ZgAAs6ORumxkjBD0Rv1kVyQR9fF60W53iZIYi7MSLIzMqnD9w2ZowUZRiCuW25f9x7ZhLDrFfWKP+1sUnfCP5Eenv29bJeXNsQ57e8rpfT5yI5AwwGwZV1ffxqSY68XlWXzn/DCxgUbt6kcMKslw/NyJ2ynPHpnXQ4buOGe0GvJXk9XVXXw/3wJqMkOOZx7EnpjC+NYzF9qBDEQ/UUr9+dhcocglJwgtApQEW237luzQbSfOl+wma44ec8qdTQignJuaDoSZQRB0ghsP1r5K4bgtGRiX/mGvSv22B3bMt12s0YBVUcIXIwIH4wJCCz5ZqPuv8KwBmT598qSaNj8DpwVAJNrgt9P0YEoujCY/B3giq9CgsAIusUYF0XdvO4qrptXqfPgXUCYI6zj/REjh2U+O77+u/fbqta4ENL4t90lGsdigf1snXJpjCHIsJl4zzmCAJl45blUNH3ZO1mVRhtHkICIhI1Apk+C1VSTzZPFmX2TkvmUcTYrDEARmC5eSJHHo4bCGzBHyZnuDBoIq2wLePp8pro/gBoIt6HHUKbn4CIhd04TdY0WEZHGVwmE/3oZApZkMC3AhrPCbpjPfDOcF2QnJnokoOQ47uOtRUkeVcQGxpUQHQJFs3Duzr38Vh03KDiWIHTsHXTcIwo7mT8frJr07Aabfb713/C5ZmffF0mEVBxDSW/EkmVYiyBNA5iHcEeiW4jDMQD8cJE/HpI+BwMxpMCPg8uaCJBsSfz03U5VN2Uv3r0udLphvQUmys0ZWqqKZtSEo+bp6qJggeJolLzQEG6+3oy81HA9CCBHzDZKa70WLgorHZl4a6ObNxYYbxQOd2SKF+iLQR9UtdzklR7cteFQ/LMm87JbYUzMuU35X0XT0p8uC3nXjEvB02NlN6NK6virW9IcPMNTMzDA/tsr9WkiKIzZnfjuPE8VyYik5XO75WBUNBuFyHkSSh+Ny8ByfddPbdAwkCtlK+PKoLaM9DDr6Dfb7wXvg9UrTbbh8bBvBRWe9JcCBSRg4JcXREXQFkg9nB+ZURIFPrfrdk7m3Luk8qMqcA5fXpcu+Ouu+6iz9rwOHDgwEiY4F7H//k//4fQw1GJGTpbP/7jPy7f9V3fRWPtyOLO2dlZJmcuMRseSLxcp+xyj10nZt/4jd8o3/md3ym/93u/xwUPLTtkmPjQkIh8qgyoBIHISn7Weld6lVDaM7pQKcRPFyyaf5pkMBItrZRiczXCN/ZCmj7HNJV04gnESxtmXaVfESQo94Ey+IC+w0YmrzwepyiFTQNKYuiURYEtaBvq+ePZ4oVgg5K1Fe02ODNIwjIBlQDagNACfR968JjiPf4HvhxqSqnXDiqIkJI2zxz61xjpG0rGCBIgxZtKI4eBVs1YZYtpaAq4CwIFH8Ey+Bl4LioKVAozY2kEw9hMscCje+Nux22AxAQGqXGPtUB7C6Rvt8IImTGcJE0cZG8J3kd0NIaC9p06LyOPY7iLw18jPK8mDG5oQO26RK02O2cMxhBYgV+CILTblSN/9oA89P+7WQrLgfTKGlS77nAOxQYz1+XxopPmhD7WNRhdvUlhYthgaycSOfCBvkcTIb2AsOB+JH0NDZagkoYiAxIwJG0p3yCnfjkUtoFvIGAuDAg86RUCyTV95Te0uhLNVyTAF2mzJkkn6it6brl8CmFEUjZ87vsJ9uDzR6p3TpIU79GPbuD/SR876v4rkZi9/y7pftoLeE3Q/acJtCXVhCLB39ZEOMAFgyIi1ljMEcCrIJFN4aKCQbNBhQxENm5UUYTy4wE7HUzKYLp8sCqF3s0iK2vSu7jY5w9u1qSwFrMYQMNbiAhUISIQS7ihyVjxQiDNQwrR7c2rwXXbUATNg2hjJVKodmT2PVWZfrhJc2QPHaiLy9YN6pJLh3UNCnZIptSHUtUeEyviqVqviTsZrwzCIEEzZscAz8Pa6XhonGpICHOeBIDYMSdT5AADZnTRUNRyCZQTYOIFwGOA2nAcXsDzADu0904vFCpwporoEjokZ3g+Hp+iFPxBtUR0t8hdwhdNVR/5mujMNNB+xOv2aJOQtfzQuTYorJOawI8qIux1jChg4D3iNagzliVYq0v30DT3cl6XbiCteaBKDEKKNQ3QVnT8p2LxFtpSKvRSKfyZSlPmyw12yW6ZX5KZfFMeq83JHQ8fEz+nx13Od6V7YlPq7WkWIrD3Yo2s3BEqwgD+i0fUggB8q/xGxPPemcnL7F2r3D+jGZhPI3FX5cvED6RTiKWxWJF3TN0sn1a9V/7k3EtlabUq4amiFsWchQAUZ8ErC0MiWWCFwv0S1w0JOjqxXV+SnhaNgXThHg8T8kaPfMWoHFjxVgvOSLTCGuwSbG6WQvG6efHw+lhTYVYOVd8yYKHgkhU4p/X7oHEG1Ri5xusaTZ/Wkic5yOEbbQRTBN8VxFDsMluBLy5qoZnqkU2R/W8/K71Ds1JQVwcRExO5WsflEu54qop/IPk5d+4cO1PZcfvtt8vRo30O5aUOqMqOG7/5m79Jatbnf/7nU/7ejRe/+MXMa7Yb73//+5n/ZA2mP/mTP1k+4RM+4ZKO199L6/HLv/zLaVwHPChgjd/wDd8g3/zN30wH8SsxHn30UTp54+JBdATYUeBPQfbLjjvvvJMqLfBpQKsRxMA9jwQeNy2p3rci4WpLSo9vMLnCYAJlixsWdWzGjjSrUD+DARByAmnYmAkc5PGZiDXNQNQGEiPexoXSflqmeLfa5zsg0IDPU37Dk3ATFSo8R6GKGpiKVB+34BXVv5YmdNh86G1mlWhiu03ghJ32MKP6xc6eYinJL0MgQay56/RBuQrkb0uQsMmmfltIqkxKGRu4qTYiqOHm0FbJ5qRSlKSsBtMUDXGPB+8BG7ZL2AzCmPIaHNTMYJLj+AqTqN5tGUMbetoxGdUtGzcmFGfIvv4wJG1YNGKkV9t2HLM9cIZSTgaCKybHKqGNQI0Efgj8RLHM3Z+wY6vy4gpLc+bQSNidrx6tHEBf6fa9aUpLqtyIOYwkC+p72Lyb+zV4cRLqNBJeUyguoV5oAkBaHZL5lriBw8HOG7mXESG4K7d59JtCooaAi99VSnyrAiN4QelnHZEcD1yLMUpvo67X6BN6BQQ2xnHRdiOOcIVH/vEVmb23Rkg2YvrOQmRwVi0+oUuK65L6cJnYBb7PCBABYUwh41DmrIrM3uvL9H1Ihk1qH3MNa9DbbpfevQ8wKUt5nOi253My9WgjXY8ddBxeVFxHTYURyRgG/KoEhsLwXDrSkJfe+ojcevK8dBo5zt/OtKIBvJU1enwBHqd+XmWKziCJUiVdXTPhtadQrYSflwU+/F2LybXEvkElQ8IVexLUe/QXI9QL0vNN/WGxCxwgGAIDmgakGHhkhk6ABD66wOxcIFkDl6zRVLQBOmcofmHeUoXUrEn42wpdLgljh0uh58rjVUl7/mR4sRwGjWQCB0EJSO7XGqq4S5ijieDgvYYSLyfyMcwn4+tnubN7GUMdYfd9prJkryvJilIswrWmoltqEa8FDMsBd4VFR+E8rBQ8eisGB5qSRJ50O6EUCl05NKdZQLOXk9CLpdHLye2LR2WtWaIQyMJsjV2zi/ftE+9D05TZd6JhmP8o7i58rCetWZ9cquJSlybd6IjmVpqSX+9oIbPWoFgJkkckbZWLCZ8frqMK68mjZ/bJr5/+D/LQxX1SfX+J35X9H1gTv1qlQTiLaICQHt5HZEpSCNN9GPs1921aN6jfGAoEiFEwH7tTOcmtt6R4rs55iMeBY4a56IqxgNCqybZPblx8/CD/JoccheByjrBHFIUJOTdkq7PkgW2P2lTomg8uplpKGEoo8KQ9A7i7QtmRjIHjCdgxxFvwuNOff1TWby5LcTk2OPtVnrE8zTHbdnzpl34phTKQ2DhFxXe/+91MiCA3/0QMwBdhDD08ILc/TlkRIiXINT7xEz+Rht1ve9vb+IO/X/rSl/I+J2Syl7HrlRAnD3hO+ATcfffdxFcuLi7Kz/zMz8iVGvfeey8v2Otf/3oqteDDAw8KMp4bGxsbxHUCG/qhD31IfvmXf1l+8id/kootexm5RqTVTOD12zCyzackbJogloHPVmgAKz0NVc7CwoNNmJtqyU/J2Sp7rBs1ErSpU11t4ZsyF5M8bFYGAUP1mDDHki7wgPnQD62s0EQS6ZsabKBDxoTPPD4QOPsG+yosa2CL6jXJs1DHq/SVHTmMJ+fIyXhNHCMWZFdq5e0mz+w320yy1NDXAhwapUJmGPhPgygCBoGkzbpn3CT4Wgp7cFh0B3skmRijZ5u+wW2IZ0eSgAAii9sdkYQNw9J2LZ6Q6WxNFIRPKuc8JkgZDk7GBikmIOKUHbfloe0lwMFzUCUFbweJGDq4qIRjnlSrIlA77CXyXz/9HdK+qUXDZ8wjej3NoqLZnyuYPxD1QAHDdQtWnoNKtPE2AD2E/P6MJnA0MW2pfDIVQc1QGEp8SMhy68oX0s3bJMxPtPha5dMBuyJRCdAbfQwgMyG+v+BbZCplEDmAYmPWoDaFk7pO2DhZ+aF5s10H87KOcbwx95M55m1FatzvK5ig9R59TOTD9zIWISQ7D7nsWPbdpd12Bwl3PkoIPhGgObNnpwgLWwasd1j3KAAzB7J/TOGZbiWQ4t2nt553SLyDa+P70p4v6BpqvC6gBPgwLEsFJISJxEVIfEMMI5Zgvi3JkZbsn6nJYxtzstSoSFLPyeZxX059Rii9maKtRyacg+9HISe5zS4r/07ZFh1BXTO1MABREAS5+Jz51Q7V6sJ6jzL2/K4h4SJHDYljT0JIjRuPF6bV6GIgeEcnAogNwCa7swXpHJqW3v4pieaqklRL9IbUCwCZOhDyGiI4RhQucdwGQeSaXG+myoppomVJFQZN17MGxUNKuAj82Z1zXTQHg7bkjq9hxtSu4IMEaVyBa0CtdJK5OaYwlV03t3Syca4B8Wu0NRluQ9q9I+WLPa5b3FsddigfS3ejQL5Z1PX5kWrtgsyWmvQYO7s2Ix/7yElZWa5KuxfKsYOrMl1sSfsD81K9fl2aBxWlAmEOzGmiAGDvWfBl5tGOcrtKgWzeUGZ80VkoM2nauGVaokPz3BPzD1+U0rmGlBa7TPDAf4SfGrzTztWmKdOvAl8i9ZNTktxwVLz9C6pCe/ggebUoeCJm4d6az3EO83ygU0Y/tr64DBJ1nJPWARyTL7nVtqosQqyj0+cz8rmo2yHhw35wEeoc5mfX1I4b0USGKkr9/Ez92SEj8D1sHLDn4RwBxRM5VJFK7EPVmsq+5mmJZA3fE/CTi2uA02uhjtZDT49rdoCP9YxnPIONFDR6nvWsZ7HZg64TlBqfiIGGz0c+8pEtt7/5zW+WZz7zmWM5a4A8fuxjH2PjCOIl+MHfuA35yqtf/eo9H9OeDabz+TxP4hMxPvMzP5M/boDLBhESYEP/+3//77ztDW94AztogFji2G677Tae7F/91V+l4dtuB9vohYAcqWBlU+J8lclXnFOMOBYStkctkWKVCYVC5Q8bLAWJiqoNceFP1NemdKGtEsfg3MwGhIJhg6diGey80DiCyCFynE3FZTcXdGGitDgCUSjcQUGM0Ed7fUuqIPcM2WmncMaqGyxsZlSaGq/vBECQsLFjYVAFVQszNcZmrNBMVLS76PxF4lOFC0krEqtwIPB1hGGaVKMzZv45Dh7DShsSLGzYTN4UYuGem6rnAYZjkBluLOBVOFPSoTGaWD543/DfWRGI/rH3IWjDSdk4ntq4zlwK1dlyx1YfNIULjXqRbboiaTAyhn92CQObe4LADpt1tdoXJtmsUTb5zx56IQOE3kxEyCGrzEzOoHyHwLnf6aqcj1gBRWesACFEE/SA2hY5kZt9QZ3WgnZPWDiYUtGaukHbIIDjDEVRdGhNYeIGakBaELnpPzwsH/3w9SosYT5+5OIUw77YDDqADEDRQdh63sZeyyzn0ObIFkGZLJw2C6e6XEnQOMjXpKqcVwi+OG4c+HBTcnc+Is1PuUV6SISYqClnBoFaYa0rnZlcakyLJA5wJ3RTlW+i0GwKgUCVfgV+er709nekfjgvlXMKG9kycM0XZlKjZ8LHyAXW9ZIcXHLOPIkBh1yIxMtFErVDSbqerNTKsn+6JkHsy7EbL0r7fYdk4aM9yV3clOTYQUnuXhMPa1ilLHG1KI3DRUImKeaEzwi3kLOaXKHD0JkBzMsjqBl8IoU29otZrtuMgT2FewjXy/7tTILYMQPXTTsNfqyJmlfAXqQdtaBeMJl8SF2iTdntKy/i2oNHxk6WKpOqUEdCWCaHS8Ic9M0V0ZDMoRgkmmAp56ytyRvg5fSrwzodqHou1AABQ8eTXacNHKTMmrhnwY/teL1pAtnbuu43W+JPVUVqdUkOzOh+mQ94TlGA7Eyp2mt+2ZdWyRevGIkf6Pel3Q6l1czLyukZKR+oy2ylKRdzWMj0s3R6oZz/4BEJI4MyHqtJO6mKt68tzQMlFkahABpirYwCdupqh9W64dFX5akQGbTycuKvL2gybZ6d/qkLUjwHvtshKV/My+otgdTmA9loFOXw7Lo8dniOFAbEFv75FSolIjkTWDmQTzjFz5gswHwykaDRlc5c0SC2nnidmCqfSPYxf1zS1Z0psBiA4gG+m7nVlvSmC5JbrEl3X5WPY7F5pixxUeGL5NoD+eLimQbMoi1+KGpA5MzUKYxGJI6QT4aYBwJouA58v3pMASE8Hv6rEGHDucL9iD/UxBocYxS5PYkbzu/nKh1Pi3+MPzVJwk7Zb/zGb5DjBb4ZkrMXvOAFcvPNNz9hlwjCI0iiWq0WjwnwxP/7f/+v/PzP/7z87u/+7sjnQPQDkvy33nrrlvtwGz7TpcjlT5SYQX5y0gHJyydiwDfNSVdiAOeJTBtJmRvwW4OXwerqqszNzY18HfiwOS8213nDQDU0TJQjhUUo99B5aX7iCX0QZYl1A2WrH9CSyJISE8XAss3uQC+RworyDvhUqhyFXLDIT4PHDUjh9GTSoISBhHmeYYBjBlU7vDZUylTtse+tQiNory8ni4qzgy2qyIgGtqhAwy8K96kfUF88gUllxtJG/XUUaoBgwcEbALUAb4cJFYIG0eSKSZgXSkKomXLBmEhiXcb9BpMhJh3BDarGjnQMqKNTCnOJnoMz8m/jk2FkEqZB5bvRpbOtCZnbsLdyH7KvOdK0eug1t03OxnmrudebtHsxrnMzIkgZOJ5dBuMMnExgBQEYfbw41UEyUJU18IDq56uSXw6kc7QjEXiHnZAQXMDMUOF0c0gTNYXAVs73JCqG2rHI9QsK4I4Bkgh4LuYtlEUBQQtNRh3EbsxtN4+wicdoVlwIpDvjS/2YQiPvuvM6Slc72CSeg6JKgMIEYDYQT2ii06ifY/QJsLkxRqAle85HetyNu15XcgzNhZFz8QlMyPh2va7kPvwAE/zmfCDVsx0a6FJlbr/ztwtNbRABFoRgfCb0uN5cD6wyDmn5XlVfd99HYpl6zUdphD5ugB8YLZRZTUchCwUAdmVNJZRBKQ9SFfk6tiYHSzkJGp40u748fhZE3ETyB5oir6pL6z1VKZ3JSXTXfZqUY/0plaQ3lVeOJNY7m/NezpP64ZA+Te0ZNehV6XsEwaqc6Dt+DxI5iCuYaS6lwslX0+SUSZsTDWnAKFr3GCrddmPJQfSDwgxoEWtCF4PzNlMWmValPA9JGjtmts45mXxCztGG6IqH+7CO43EYKI5xvVX4OL8zlpyxueI4mFz/Y+OgYgGAgX1HecGuC+fOl0ucLnUuDos9Ze+y90vVJTPfURwfFRpvOEm1ynCtK80TzpxZaPOBhJ2CWrmYIh7JckFKF9B9TSQ+AON6kcbZqpx89impHc5LY60kzVZearWiVFDsDEXOPz4v4Vog8b6eFAo9KS5qoal1uCf51VBWnqv88xDJRgtzJ5LcZiCH/sd7RA4ekN6Fi+S50tPNzlkuiiQ8uCBBqypTpwI5/x8LciaZlbgUiayHMvveM7p3ooCJ5LpYkHh2SnplBBBOoMyX3IYiGNy8Ypd2taXG0xDqKIWSlLWQoMVVIIUiJl8UApmvcH6ymELrFJPfx96NUQhNaRFCTjq/Eb+gAILinVMXVZhyn36B4klRlEOG4brMOXjNwd+V/q2JFC+2aO7eOTaXCt+go9zec2vhiRlPc8zGDyRBN910E1FwSMTQNXsyxjd8wzeQIoUOXaPRIFUL5tG//uu/TqjlqAGYo8sVxhlQ4zF7HeGkcpTZk/lXf/VXvA3kOAxAByGVv5sE7lIGVCFB2HPdMgxk3sMEwoMHD6b3jUvMkBX/1E/91Jbbe5WchB1Annxp7y+Id7CSJlDOQwaDfDJsuG0l8rL65BBl8CApBRJ0Y4ljVUUiMbagOGq0+4nNzuM2T/IkuCbSAjwGSECSp3UPbc3DHwpyzH1OGjZ4wCY3rlepW1ZTrfWPxym2O5HulC5wSMrQRXOwRYWGZfzV7LM5/yBAJF2gDQ4FFt7eQlU88hfiAb8cVuHw+QlZNGhjlOExYKahUyaBbnzoZkDFDZyJjlMLCzSQyEAkWTK3BCFBduZud2NIwjx7+yiI14DZ7xZGbV+2PtslG1fp3U4lcdsxnFwNCUYMvk80Ev7jZPVHClCMOAcTDV4foR8OXw8Vcie7HATyhb/6j/Jr7/xMaR9EixdkjUR9x6DgCCu0qonaQBCkjg3VU3WxSqimodiUiwqlRVcMsLKwhmqtdsU2r9OAhVwyRd4QZrR5YyyVR8Fl0A6ZEtFRLFA/KrwGfNewyeN5gPriewdOPgN9OxdQZ4ygJJYxEN8yN7ZRz3TXKqvEuO31faLGsAz+E5kcjjocBMLPuJ7rWnN/TjZPJlI5rWuQdv4Drl9cM/MKY6TpLKTgO7Hk17oMJhdfUGAR6eT/O08oGtUyTeRgeDAgf/FtLHipiIB2sDDcGpYKKGGNBCLP9yXqFLgGImEsXwgsORRphkUpng7l2J88aGuYnleal1cKPHZVmTTBGhNSwrramlNJckB0sWY7TiyVGMFdfnhVmtfNSX6jxyDWLUPkLuNvdDh6GZElsywBH01fy91mSZnxbwN4iTlYONY4cO5KeV1feSK8tDgm5YJ467XUN9IrFijyw8SPvpJmKI2OSAaWmMKA3TxzptH4jQKcK3zsZNOQve9yzNfh4hm8CJ2wkUEzkzPndW2bmZbChYb0Zou08kABAJ0ZJAxelOecw3XAOgXOdnS+qN35osjH/ONSWAzEm42li4/T02JQ8xD4rMoFCC/mZOadISGsQAxUH0IhVmT2Yz6huY3repJ/OJRj/yRSecvt2lG+oHwUl5Tx7yji7UG3K51n3SrV0205+f9ycvEFVSnBe/R0Qiirt7IhEva0g5nPs2vqzRW5dWD+5JpqMI7vFjZntWbA/AiYWDEJ65oASClk4Rhqn7RpYMKP4pZxhguIQ0xdshNJXILKskFiA/DBtFDdmldfPXTPwKsLEP+wAGFTEdBG84lTg3fl63dmc0oPAdfSDNXRQetO56VXXZD8cpOfqTtfsiLOVc4xe3qMHVA1REK2vLx8xTtkX/mVXynT09Nj7/+Kr/gK/iAxQ9cOqpDbjS/5ki+Rr/maryGtCnob7rWRrP3zP/8zu3AwzL6iidnv//7vp3+DqPfFX/zF5HgFBh8A1hKYy+0++DghkZ3cuYHXBAbVjTNnzhDW+EVf9EVUiLzUAW8CnEQ3cGKRuWOhAjcsd7Emsq+gHS0IChT9FJ+N6lHaLbOkjEmIiRkAspcH7A8VJMAiGSSofwgkYZGMuYQq8FWpDM8FdDGVWUbjyLx/WGmyIADHU9jApqYLdO2IBrQYTvLeccRykPjn7QobcskYAmXCDh3/At01LOB4LhZHZ3JKFSs1asUxQT7fi0FkRyao5F8o4AHeyCCBiZbJrmMgQCDkAbJklg2KVd1YnVNVMD7HSTk7ojoGYJN1kOoyQVmmizYQYBtXiiPe6lGVKiaabPqoZG6UQfUwVHKsl1jmdSbqog1LoWe7gJnEbVQysCP8ZxcJQv/8efQtitbWTJ2xJd5UlcnNX599nvjgNXYCdqVah60rShsEkXZucD7RrHS6D5sFhwydYHLBqPYFldJEGkf0O4H52JmPpXgBnWQ1dQW/YvoBLXZEKOZTJVVhwZ3ZhHAe8h5yejzBXFu6y2XChQorIDWhk42JjZLtYBKf5ZelUCtn5m1zBcpygzAs/+pJyMa9/3bB7uWGWY4Ycbsl4bllKR/FdQhk9l6RxmG9bpgDMGIurkbSOFLiOou/wcGqHS+SQwaYEpKUQ+9tiP+R+0Uw/w7sk8QZgo/wnsOcbc4V1NgWogLgrBmigAq2mAoGpiDkNdcvRsV+Ips3ocDkSeWUL15LZOEDoez7wBo7EMlUWQQiIzAwr1akO1+R2jFN6DBopg41RqiElj2u7QgYoU6Z20AHoEdxBUDEMDoHp9K/s1dJza21I6am0BD56GU6Yya4lAp4ZBJUJFhAGAC6iDUUcELkSA7iV4BqLgJ0qJVCYSdHnpBIS7toSHrda5tiLr8DPMFW3CAcMqF6K18zk6wNFJV4jTKiOuk6pd+jgdsvR1JG9EEGbm6dOqcOycQTx47zUy5JAgsNnAdco6WO9EpFqR2DKbTI3Luakj+3IdFcOU0+ehX1FqsdCaV8KmAXLckn4q/k1HIhDz6sR/oA4NmzD6GrpAIYWK9KFxOiBtZuzsnMI+CXB1J9vCn+v2hSttOABH71T98r4c03Smthn5z42zWJK3kJFzcpWc/PBV52Bb0npQy4wdik05OoqsUExC7tOU2a2BlDkg7lZEvoUXCG4Ax5efDF68US1EC9CKR1uKT0hyoglpEEGyB5JVSSxPlBfIDkL7fckNxHzkvt5bcqIqiNeMbikp6+bw4N3zwUXJU6AY6xo3eg8BzjGBBLUeFXhYIKi1At0wI3vhvgtcWuXX21jqehjNsOqCB+//d/P2lJMIueZNx5550Tn/7nPve5/D2p2XO5XObPTgMUKfDI0FHr9XopUg90qjAMKVaYbRztduy6EQwOFzzLXFKGgb+R3ICwB9GNScf3fu/3yn/9r/9128dkvdEgzf+KV7yC7zMs6gGZygsXoBDQH+5/3DduoN04suWIhsBaS6LZ0iB/CutXiEooZJYVu03OikEY/a4lYp7h2PkcC+bjvt8TYIKsFjmJZFSMkCxBDQkSy+CbmWQ0qruo6rmEilUnJlma2M081pPOVEjRA0IcrZOHRRHJG+GNU66SqpsH+D4MTOyY+N7Gx9COmTOUdtwzXRB5vDRNzZhAY7MuIflCQmbqX9h0XRKFjdxgFnwegg1sBkjM8NrYHAh5NNdjfgCTie4BhrImPswHEWwgEQRsxoLlkR44CJ6dspglZyM7akPJzQDfayhg2BOHKxtAOj7ZGEGSHbtde6ksb2c6PErMAsGUKTMGBw9IAq4Kzpklxhc3D3A+gPODTlYXcwrxYTGR/AUNRAAd687E0p0RSRa1G+IEbjDfKxfQZTMZfEhU4yPlYmkd1sAYKqOtgzH5a8VF5a/hvXjYSi2TmkEYS+c92XxuRwqP56VxoifPvfVxuf8dN3Bjh+WDmvvCd8KEDJywQcbKYDhRziZl6f3OB2AEp3FHI+kna4w7pit8rO7cJXNTUjrflOrtKzz3F//9ceXOQmkWcuAdBGO9FNbn5OUxn5r7QhrxBpsteusl++ckeeAx8eFHB/EWFHqsuw5oIwUrjh6iul1cKErlXEfaszmpHQGvRxN6x0fEutqeU/NowgbrCi/DXIRSY+2GSPyZjsy+MS/++SWR2WmRR8+wU8b3RNe1YHufCYwg0aMXJBDZULE1iXys8es3FqS0FErpr98n/gtvU0l763QRIowgk3sG9oqoj0KA7QhgxafP9uHVrlgwymDc5mK4b16TMzcg9EFF3E4f7oZh3mRMzvCdR+EC6y+gok5yH8eKx4O7Z5fHyeETyujmUzIC2pstJmXWwC3r8HCiPYn/4oh10HkSpq+R/W3wSnYCsQ5j/5BQwqW6JKWc5Gt5OfjBHvlU/iba9ZEEqw0JjN/s19u0eolzZXaTgAzoBYBxe5w/5Mq2RWYe8mTqtHpzVc52WSDAmlU902WSc+D9dYUMgqf1L+oPuauxti5T71PMnzOvxRoNziM/X6uriJYYaotIKHMSrreYmAU1kfaBCgvJ+fUeEykmnrCCADdROoQtYgKqBL8lSuBjFnMsUisNw5fA85mYxZWCSfqjwKY8tRhqlnMlCf0jMnXXRWncvE+Lbs7rHOq9hCiqjQrNrE1YjPUAcDDhsxahY9YjfF5th/A8FMVjzsNgExBdX6LK1Y1lfBrKuP2A8iK6VM973vOY3ABSmB0QGRwez3/+87WLP0YC392H386TbHiAx8a1bYLx4Q9/eMttyBmQ7KGxBMRgVi7/RS960a6bVMNj17Ma2SFUEodJb045cTdj//79/JlkoFOGpAwfGh28YVftT/qkT6JaZLfblZxtTG9961t5nONgjNsNLDjRFMitUBhSD5DulOHnmUhBadFgZgbrC2yz8jqJRIC7dCJya9huB/SEqs8uSVMVOtIGQHqFohclk7VKBM4FO1YQ3oDSESCJIK7biIraXcNrojsAaWZsFKg+ER5jHjeETHb7IiD5De3GAeoIci0G9jMETC4xBDfIEfNxLFFox+K+Bzg3lbz4ja766uCLkIUZ4vwjq3RkcgznSQZ5ZZDZERCY8hcldyUkEV86sSQtbI4m1d7tio8KhnsdktR9jeEA+0g3cquOZgePZ9C42QXawwHCsHzz2HkxHJSPG6NMfcd4rW2BRA7dP+o5277nQEdvDHxoy1PtMwOKi+Arl1POGa4lveV88svAiad1AmLUCyrSAPnxzeuxoXuEJwZ1bJhQ0cP3RgsOILljvmOENaGJtL6xFQbQqu1ZdR+Ff6BzIC43Z/yylgqLAHJGs+Ky8Ssv5CmZj4l6ZnOGEMnphx1sxwoK5CsiwDSvq3QuDcFgs/BXwIJQhR4hrb8rf7tx1+lqTOYuwyBHpt2S9iG1J/DuWhH/yCFWvdtYs8xaQc1nA94OTkn9WJHFKax1pSUsWCLeRl1kflaS+x/R62ad9BicYCQbBrnlfa22+K28FJaNN9YOCLuiXL4VnDBfOmWr2kMbA80Gg26jyIWiQlDzJYrzsnk0kGocS/TQY/2ECGtctWyQS0URsPDA9VOTMUIlbV/IoRu4hCQ0YlKmsMSuyOPnxJuDEhM8AZxPiS+yBilK5YDFyyv6nujuAPoNmKDN2xhIiDGjt6SBDOaoPzMt8fqGrp+m6Mr3YVfNxDvM8oQ8JfyNRBTJnOvOcb1VWxYCOLBu4/gg6e+EgbLm9jvwYbdAiEeZo0/y/RgngJOFk7s1l+JRjnqAPUZpB+TYrfWk+th5kUpJxA8k2dhgMUBFUtQWoHdoWvx2TwpLbQkOhlzH4o2A64wrllbPAmaqHSd0yJAAMcGhFUQsuXM1ie6+X4JL+N4TWj7QFc0EnX4g8XSJnaY4zElurc+bZ7IPugG5vzkqfoJe4WCt9Dhrdimxz5cCRBGJGFWVDTUT+FJ+dI3dXoxws60FVQuO2Wkr+BS8yaGwB/GQhxalePqcdD/5Nt7uYhZ839PDNj9YQn3TpE0TNMCZHbzS+f5lxcbwPcwvqXLw0+PaHDBw3ou8/aUOeJZdjoEEDHnJ5R67Tsy+9mu/lm26hx56SF7ykpfwNshEoiWJ+67EQFIGhRNI4aM9CHl+N1w3DIQ9cMVwbIBbQsof5D1gQPcyCE0MAZeC272RrrFIUdZeF1yqyBnMg3A+GERWINWMgBTKhYDUQNpVfXjw/KgKSVndMJBAsbpqyQN9RVA5QhyJ90LXC/BB122zxUiry5qAoeIE4jIChMJmTK8U8jewALb1Pg2GLPmyIILJYoyKrZJrsbmkyaH5lXChhCWAQw/i2Mgl0/vZ7cDmRVgEFldT/UKwYYGt+IBKmEwlSeiGJ8JjHB/NqTYWYETdUdiJ+exQepmVwQb/RsV24DoRhpapmLpNHQmJQSP4/KFgYJyi4TiZ/WwytmOAPqoKPHx/9r1HKTDudgMfet4A5G6CQIecDD4x0QCA8D8kZiGTaXD8wvVAZenBgUQ8Ca58TaQDk9ZIRWkgRe4jr65Ekr+Yk87+Hrtf4Js1D5pcOmKLdV86B3sSrAPi64tXDySsmShCBbxI5UlCsAbCIkjSKhfUkgLdlrWbchQPATetM4PnBrLSnpXSiseOWmEDSSJU69CZdcHfYEJNmOLQ9WPwCrVRqoqqGl02uR1O3lM41m7UGMdxwkaodo583pUYlytZtM8T/tMH9Vziu7yxKaWlBXqC4fpDGAYJGYs+ecCzAy0mRSLtaV9acwXJb+Zl/qEzGrAhwQBky8m08xokktSbmkAjSIU5eq+SQtAp6rCcEKKmliJACahZLTq+mE+AHDq7BnTzyJec6onUQznw+veJ7FuQYH6Wnf72jQcl/JePcJ2HMBS6AChysYOA5NKtqWwtaWDKwBb+Tw0o2fZohk3YIAL/VluSjZqeM3TGoIQ6xG1M/QX3dBkSJmX4HcFGIL3MHhM1Jh9cn+EInlf4GxAMbs0tWeDvLEzQPXNlLjOeB/xxi3qte/9Rh23wcf3zEjzLxlpUGKRyhJUEn8rPDNUheDS0FHnRbCl3cX1DgoP7JbnuiHgXVpnkbN4AZUNPZu7d0OJOIHLg3YvSPDmrFIZeQsNozGHMayQ8zlaGRwPRF1gebHYkuuteudQBeDkgu/6CdUV7JtjEwnBEiGq0UKSojN8DVytmsuXlQ+lVc4T5ki4RqTo0ZPtRrMVjfMzZWosS+ypkpjwynmIghDbaFADByC3V0m6Zj3lN6XqlHiRBnt9rWFaEL7xZC73vvUfiT72NhTs1XzdumCFzkDjieNhdMhoF+ZVIqANf8mttfS+HzkEy2UHXL5CkNVnX40kbT0MZtx3gae12nDx5Ui51wAf5cg74nb3xjW+k/sXhw4fJL1tYWHjiEjMkRkiGfuVXfoWO3Rg4EOBEAU28EgOdL3xg/Bw7dmzgPtfOhBjJP/7jP1L2El21ffv2UYJzL1L5GGzN+0h80PUKCGFw3CWntMVqDzZPw3RjwXBQxr5UvGvbo0ocEAJAyVdAeQDnM4PV7GDi1O7xcfQRQUJkZqPgpSEoYIJkZHZishEDNRPJwdPM5JaVa6bnBx01rehqVZfYb6gt0YdnWLIZgUuPRFzAcbDpgMisnjv6fMeB0Co2IiqDKxLy4yu0ERKNeCxgNMTBG9cHA5sKpJrxP6XJMmIheKxLzBxkFpsqjhHJAgIZQnSUSwBCdxqwZZOijCz6VpGH/vlOORLZausY2CCCeb3YfWGRidTwRnBjxj5OX3jr/5NAfIYDklEV6REDwQmhYkhIcIFxrawoAINvGJhC+rm9oPwddohhRg59HQjVTMMsNxC/jYTGiPAIUpq+xKWYwTgSMiRcIMKzO1uBP2BPEvgFrcNzTBOxXqMviNDaJ7LvDv3OVB+tS1SBiWkgzUNmZJ133ByRmfsCSvarwh3mtSqLORNUFQFRqGJ26DU0Tg0EA5xtQ5p0bZVkHk7md5sIp9ds+NoN3zd4oOPv28vIHue4+bnL4c/NSuyEDLA2Qqp8blaK7/6YrN30XIofFJctWbJuFpI0CGnwkKDIuGId+wPzer0Wu6miZraQgb9ZozKBB6gQQgAjgKhHcU6CDopgpj6LHASIAlC2oKSINRBCSiEMp+10RJ74yzl2ff1bbpTkwiJl5ZNaXfJIqp55k3TnywxCwR3roeMHddnIAnGqTGqHTAtYqmLrXViWeLNGlABea1RxKYVWMxmTyzLGydIjUfMaDQlmNenEvub1fDUkxncAkvEIuGkzYZ5mVkhzyRmv1pDVxMhO2PiDG9FJ20WnbJvPmyruutcHwgL7klkB0CIA55l7lp13oC+Azlje4L5z6jNm5MCHOiyMbtw8RdPyYK0psrgiJSRz81PkbRVWwbNVf0/Hs3K8KnaiWl2J77hHLtegAia6e/ygBtE2sSyIvORX2hJ0ckT3ILYoNbrkgtHbL9E4ABcPFgGF1R7jFB/7KZA9gDQCXgzl5MAXH7EKFJSdHD7mM5Qaq0WLYdT2xnXX4NNHCkVBKRwsCOPzv+BWJldMpAin1QIzzhU6aIxTTNWaqtSW2PIjokBhiRwpIe79AvXKo6fa1TyeTsx2HGjyAAWH32imHDhwQN70pjfJiRMnaHs1ybjnnnvk8ccfJ8crOz73cz934kv1wQ9+kJoWGLACQx4xbuB+ULqgDH/q1CkaSkMA8ZZbbuHngK8zPJ6HBQknHbue1YAQ/sAP/AB/nFzkpeIpdxrgoe3ERXNEv3e9612X5T0pFe8UjAhD9Ky9rqbSqEZp4GYcAZecIYBw0CkmR4BM6GaCpE0f4yB8utGxOoXFxhYkvjYXQU3IuAD6PiEyoSVo+YIv7WkNMOGdg2NCRWzqVFs2jxckhyou/D/WUTUDPlwXbwQOhOKAUBtCwcw+HxdaTRSZjKLb0I4l75I5JIfs8PX4mSh/js85VSTMQ+Dd0unR3JLnxH6DaA3lKP3gfW8eJaJbQua4aqYCxlHIS3z+onbP3HNRHacPVUISPofB0xBMc6ONJktu+r43LpjIBOvZoMKu45b/x3HAMkFj2lVx4hHjuGTZYxx+vb0E48MBt7ttTODNbhlFT/oms6jg+4VZvVZGoHc8ARiCQmJ68zjmokJopa6+dDDu9axT2Z0B2dyTYDOQzgHwHALpzKKbjPkoErVCCddCCnhQrKEOSXWR0pKaREOopnwOtwWy70Ob0j5YosIXlc4eV64S5jjm7OozAimdhlmsFhuQ+HWmQd6Hpw7mrs4RfkZLxHld7LOn5wL3AcKY8mS29zkbe99uk5xhqOt2CouXmkCN+15choRvlOR3sr7B7y49FyHSsqBrYHEtlihn3QYoKULBbQrdtFi6JZ8BoF+DpDeghOYv6FTr3PXB/x3fOmdlGutG9zwoOVT3D+bSeUX/JLMGgVANREVhjJ44XtvhSIoXAU/TALB+86yUHzut0Enz7wourki+q9yaEIUuFB3ySPp1fVX5/0i8dleLVq2OxBcXle8QhhRxGMmP2mNXbCJI9ZjBBA0dmKpyktDZ5KuFsHYJqJZLoZC2a43jBOK7YxwtqJvinPOid8fbg0wwpwbVTy9hbo/6vuB4nXeb6GfCPuFPT5lJdv+9IKnvLcyxYHjsbTXugYXFhpSjhF5eAbo1WCeRzCIpwP7ZjSV/EdjqWHx0m8AhY6Jrc8EUCy/LcPYDZmWQwlLxt0FMsTfDcwz7cXN/nrYOgCkqSgb0AI/InNqxnORq+jchiYb6QcWCVgvGAUfMQhgkBWdinRfY302Yxu90xZutqBozkUJaSHZiaEjynNcZxDp4ntEhz/kSEh2kBYwUOolYhGJOvoQ1Jbwj7sD/VMJGXNSFQInCKPn76XHNjne+853yWZ/1WfIpn/Ip9AV7zWtew8TsjjvukP/9v/+3/L//9/+2ff7DDz8sX/AFX0APtCzvzPHHxnHMsuP06dPscL373e+WWRSrQOdcW6OWxZ/+6Z9uaQY56hZoXU5A8OjRozxmNIig6ohjArXqT/7kT/Z0Xi5pVl/phOzJHAgOAl/VlVQxThcIJC1OzEPLh7pg+bUuu0RJCYubClmwOoQkgkEPEjRX4TG4Ytv5n8Xk7qQSXakBqSPGqzGzAJ6Iyi+8cDoqkU+lRA8eQKpch0pZ+UKXErP5tR4hNVEEFT0l+TJ5Wlzl68aH9klvBupimoCy4gX4gO+rxC4CbKsGE9qG43CvUVGFruzxIfhNZsoalGQeL21VaETQhIWdm1wtT34aE7hsUoZAaGOTVXb/8EHlB6yt6zlxGxICAheMIOBG8ofKNjH423iHZX/bJj4gyDH8XMI9DYbp/nePm6BLNhL2tpux2wBluyRsu0qzk8F2oioIwnC+cU0g/BFFcuqrb5Xm4Viqj/qUIUfnllyLTY9KinGocFhuqqVIghL4WZ54K3npTeviGO3rsDuGqDg62JXqPYDDqFqednHVcw+vP/dAJI0DmiyXL2AuiZRObcrmJ82xqDD7gBLWGocK/D4ykSt4EpA/qRt8T3x2NXKbjudo1X8b+Mz4rLGpzHGYtHbKL7vUBOhyJFBXYuzUkbuEY89KfmPuw6IgOHmTTD/alW4V1XzXxUI3XuFMMJktQr3NrmNxWdcrytaBZ4ViQXaTdQUQzFdcK4ggFAsSPXCatwdrDYlzFclhmihNSucmEHgwN4d4zFIi7RlVDi1eQAdBub0YpY82dU3J8Kii5RUJpqrir9SoagjYF4oSWNOdkiI6ZLJZJ1QRwiSEKA6f3z2O4XVkCwx3hJps9r5hfiyTMxgSb2xKMDcjHoj34JYmOS00Gp+XZtROht+g5bDRIBc1b8mPcdWyPpADMN8dPtO2XLXdDOMba+c7l/qwAQLooLDsniFJgecXigZ6IIq+ALqj15PN68o0g06LkjgfK2s8R4Txhb7kz29K9LH7M1JCGhKE83PcH5D4XraRPY84ZiRijreNdRrcbSAeWh0mWkG9K7lSoBxbUCogMY9iKgqvjR6hjigo8Acvj0SSPC5AVrF/J+Lj+jbRcu5IBNn+609qcu4KrEjksOeiu2pFPRZ0jd+b8s8gyY/C9rp+F7xyQXzsN4WAisy8zaFbLOlzBWQtJmsHmoVtxBnGbaPpOgysr+JhFOrL8jpPxQFl9p/92Z+leOAUBN5svPKVr5TXvva1Oz7/O7/zO9mVgkQ9fsMcGvL7QO9NqooIHzNoU6Bb5rQz7rvvPlKzcN+b3/zmbZ8PD2Wo1DtbsWq1SlrVOA+0K5KY4cNvp2aCDPapMECeDVD9QrUGMrCQN6bRcq+/mIC/Qk6KwrnSRIUwRqgUacJD5UbrrAEnTViVW4icYAoJ6n2BC0II8De6EUz+FD7oOnNBD90zbIguOVNlMHT60OXKb5p4B5I+8Dmw2EFxam09hf35y+sS+jNUXYpgLmnH7aT+8TeDI1bNegNkYx+Kfdh4XZLkoIwYlpSlYgtYhOemtBKLzl9DVap6pbKE2AiQnDmYSaNJDgQrsnOA2kAApKdiITwm45Y4OEe6oXuGt7dg2gJsp+I4suPFcz0iKXMdvOFEbTghyxioXvbgeLcBcrbDMqpyvEPnzSm9peeQaolaEUdl/PB7mrL4vJLK1UMOnB55nlTOONivSPdoR6Tty+zBTSmEkaw3itKOffGDWOJmCHMoCaY6UtrXkPp6UerP7Ej+FIJbkdIiOr5qEQFzYXRPCutIuDzpVk1BrNmV+Xua1uVQmExhFZs7oLZ5KjhGbYURUTCko+I3SAAQBCCoZFBmPLr0s48xv81W8CcW/LiURGwU19DdPup6XkpnYXjs0AHe6+D3A+dvdVNycxDOyBFK6Lgl4AkWV9QKpH4gINQK3TMGkjNFCXMBId9QngtLRXLNCAV0hRWnoInHYL6aoAuSpsKaQWihLBdqB5Z+YFCIh0pjvt9JK1/A+6r6bXkpkuSDd434LMqpjU6dVgXEo4clmalIAJNdLJuwCWk02SFEMpqe10sYw4nUuPsmnZ9Zfqz7HyNaXZcA3Y+pql4v+LUVoCCIrLkgHjzS1jdF9s/3kzPyidGx7KaFDBS69tL1cqiFSxLVGfqMmoRZcgZF32pFPHD74p6Kypw6y8cDCg8EBm0A8NipMqGLWCdWn1VlVxfw2ny5TJiuj3242RqbeLEzejlHapytEHteK9yOa4W9ynXNkBgXS9ZN86S42JTOXFFjlESkuNhSP7CyeqxBPVJNz+Ed2NQOWaen8Qk4ayhMbGykXMXeQ4+KnwvFP3lc19BCKPGZcyLPuJ7JGYquLBrntbtFhV/UpC3Jh/k5O2IPn+IxBsePaAfOitAp19xxw03xUU+BJceghvRiCYlYiqVQ3wozv6rG01DGbQc6XaO6SgcOHJClpaUdTy+Sore97W2kLgHNh5+Xvexl9Cf+ju/4Drn99tsn6tq95z3vGRA0xN/wSgZEcdxweVCr1SKdKzvQQctqYVzxxOy7vuu7Bv5HpokPj6wSPLOnyiCm2WCMYU2JrcBOM0Ak1FBl81kdcgIWxoviIsQum8EdCRU04QyDBijc0RIydKAQKGYUh9KUABuFkXCZzHmodIGnAz5bLO25UHJo+SeAVQBWlpCcDrlfJHKs7hlZVkU58moajC4UNi4ki64qZf4gqXcOHt/tSrK2oV01VNAAGcxAQNit4v8RIT+jBqWml1UtLJi2qgg2k2pZOgeqEh+oSOFCTYMrJHpIygp5VcgqFMQ/cZS3MVkDn2xVPbZSLhoPJCEPihwNlyS68+m80TCGYYl8buax6QUYcdvAhzKVvwkCn1GVa/tny/MHlSJHdPnGjWGukHveqNtHDcD8HKwHFXDAdUj8x3Wq0LsGComAGSKIRtDbLHrSmlchBQS9uTN56R5ty3y5IY9dWJBcoSdBoSeFQleuP35OVlplaXZzsnYKWvoi83cE5JDh7860l3bMCuuRbB7LSfVsV/KbCjfL3X+GwVVuvSKdG9T8sXWoIu1ZVfabOhXLxgmfiCuof5EH51Q/EagXQglwbhHMoMLM7xuCSIMEYcPP8lCcWl2mC6lBZ78LOtKqYaexW/7ZMJz1cnXRtoNKDh/DJYy044SCS1cV63Cu2wtqm4DkCLyzgx/oSms+lNJSh1V3rkNYj1o9aZ2YleJmXXoXl9SzDBfZeJHOi5DdrXJBwuNHeP1a+yBtrjLdmJvsypptA7mMgFFa1xe8RMBiAQVnUWqo+OKC/GB+TuJzfUuWCFDri574J47pWtFGZ2Hx0oo1w+dvjNDQcFI2PCa9LTuQTPooglVK7Ax5iSnn2hqbHN4ncvqCctLwPYKCJNVbu2qJ4jqYVOhVg2cdo03B9fvXV0Z1x3jJHLtUql/3Aicgxe859jEcy9n+dURn0z96WLwpQPVCiaZLEi7V+DlnHgqlfrRAiXkUH9kFhaXAEzmc56bB79nlx7XC58I1wHeYsEZ0xNDlVH9QrHkUP6JtD2gKnuRW29KdLUj1/lUJTswQWVM+H5Mvh0JzNJ1TSG7dFKchNoJixMZm/zphj4UvHqCaJ49JguIt9mLEEe0efVfJ7zbLHf0MQAnZPnzyCOHlSOgZY2DO4HYWVjLKi0QuRBSn4Uvws+m+zFgIRuxQf356XLMD0EFoVQxzsW6//XYmNzsNQBVdpw3JGSy1kFRBIARdr0kGfIuRx4x67SNHjox9Hoyl4VkGShfeK+vD9thjjz2x4h9oHY4av/Vbv0Xy3FNl+GeXiHGGaWMyo2RXJ8Lh4G2sCiGZcN5l2KSwSCGRwl5GGIQ+hkbKVL0CkRqdsywsxxYiil/gsRYsGlSBXmjW1ucihq4A1qVSSJgWSb0bERfUcKPFCllvX0VyZ9fIdwjAeYAvDl4b5Ej8mNkmE0XclyERc+AxploFyXqBxK3xchAQpWOCdZGqVxYUREvL/Qrg8oqEjyTiH9ovjWceogIWPk9uraykeWw8gALh/aar5vMTE+bIc2bG1Txuw/umATaqmhYMODhLKmzheG023P3ub76MOxdZDhwnxgiD6MwYluAfHmO5GEP37xlGt12nbNzrGb/McWG0O6nnKV5ZlejFzyDUsHJWTc2hQoYuAwx06+BzUVUL3YZEvI2cPHL6gHhBLJ1GTvxcLLkwko+dOSTJckESGIz7iUzdHzIpCxoiZUDKpj0prKv8+MbJUGYf7BI2nP/o4zpXcVzzsxJVi9YVVYVHHAc6Y2rzoEI15GpSGQ9eODBUDaS4aNcRlWAknTY/BoRAcL/7zqEA4cQOMvL6ziR3z2Mv8NTh7u6ljnGvcyVl/Hs9Cc6vyhwNYsEP9WiZEDSBSPBk+Vk5KayrnHdxCQaOUKlVOHXx8TWJV9d0nuYKvGZRrTZ46LlQLUqAIjB/NKrSUtzI/B+xXJiXWmtOPaZY4Td7EcAqi6sx1/3whuvoIebmQ9JsslPhzMhTjlvsS/ToqdH80ZGneGe44fDf2ccNry+jfPh2M4Y7ZzAHxzrrWRGO3xXrMlOsCSqV7Y4kgPWB58vCRqAm4HiBjFIju25WrBtQQB3qzGb9zi6X8In73vBYsH/gGKFO6c4jOmQQdHEdc0C2TZkW/nkYS5+0X2bvRbIqkv+XOyU2H7Ts61+x70t2pHxK9bJT+xJPvxPYko4cUpg2ED21llr9zMFPxFQMHeoHa59D/eRAb+iRP9edDkl1IGrGuO4s5uLFIVZTq2XmYyQCIRupEi2jMY2+T4qucSblWE8xZ/C8ItQaTYk5K/KF305siXu5iXg5Cwf8vYnYBbFUL03e1JMPMNtBIZ2rbTztY7b9ANwPKup//ud/zg4ULLfe/e53y/d93/fR42yngWQI3C4kdi996Uvll37pl+iHBp/jrAfydgPey9/+7d/OHObFL34xb0Mug1xnHBxyWNUR8MXs+Nu//dttu207DS8Z59K2ywEII4zfnCDItTpw/MCKfvrsV0soOTVvBHcBKkwVrSbRuNaUFlOPMkIbdVFCy52kV1MuRHLEzhjuo5qi8rhUGMTUr+iZYrAQLErYDEloN5EKcNMseSLGmolZri8Jbt09Em1BUEeHoK4JlFeDYRoWTa1OsQqFpCajkJgmHoCk4BioXqX8L/7OiiFcxs2IPB98VlTb9i8QRrJ5yywVo3LrLfE3muqrM1XRzwgyOo7XBFRSjL3BmXj8gK1gU3bJmgvCXeXUjWyXc2hsSdSsk+KUIhlwWKJ6qSM9p8NwxL2MjDfXmDcb/Rx0IpxRKauwlqijMp4LpX7LvNpDUE1LVUchNY6kaPOYr5L5mMIndaNMGqH4tUDifZbE10LxO6roqMas6Fr07RvyNVXmK61EklvvsCNc+PBDejzYjHFMkPYOUXSYIuTGGZ/2SmpCWj8M4j06bhoYIOiG+hhMf5HwF85tiLcJczRw3bosOkhGqTG1ZuB3BNCsDFfCSZdnz++QhP7Y8zvifO/q8aOet9vnjnqtnSCNu/WW2mag2+Th+50PpX7DjGyc0LWncVg7roAXIikvriRSOdPhdx9rKHgl/umLDEJZEPJ8dszc3zw08+iCXxJGfqlO9cT2XE4VOvNYK7Qmhs4s55xNS8Imu1b4ArdssaeIA5hbA551flETEHTw19ZTTtJE/NFddjh3giOOS8pGeTIOP37SMZAoGgfT/U0+L9YIF1AbpC8VYJqu0gKAxTwHi8bIcM9G7h97/T5MMBzUFXMGiAq+BRRoZ6YlWlxOYczoekIi3+3L2MPrx8pcT2ApM/XnH+ivD04d9Aoc72Qfyif8koJMU1Opam50ZF78TfiHen3zZ8QqEAarqnw+Ch7wINOELaDvWWt/QcqnGtKZV74uEjbyzdtdSR56nJ83LUggEZyZVlGuGUO/IHah8FYs8aLCz2gEf9A8ajlXjBrglCTd/pJBaWBdTgcei/Wee3tMtEz68TEHbd8HH/WfTv22rK+vX1WaBy6OvO2bf06CQvGSXy9qt+Sjr/+Rq+5zXuqAiiKU1P/gD/6AHSp0oKIoov0VbguGFJSHx1ve8hZK1X/hF34hVds/+7M/W+6//352q/7sz/6MXLVRA97GWUoWXgNiHnh/DPd3pVIZaXJ9pcdlk7SBegqkI58qQ6EcgS4W3S7x9/5MReJSgZs55WOR4aNqTyC18lq8JhTdcn0OGYYlZZSId8G9u88lR65an5H4Tbs6hM1pp4EPhdITKsM9hR441SO+bkvJuGGjo0kgvHJc9So1e7YqF5ILJGEuGHUcLve4rI/OhBXh3Q6V1G7q50YQtFaQqcfOinfkoKy9YJ9UzuQlaJTFA6keG8kMIBRIzixxct5p+I1rRe8pO6UmqZu0O2rU6ipzbqNIOTBWoRvqoqXXBZt1pmuWBuz6wEvanLfAGi8Hr2dEJX0kfDKjUMmNFxswumUY3PiVt9A7OEOeBaCyMX16RGr7tcMFz7wyDFUhbANPqDXFjCEJK6x40pjxKZ2P/2EyjaA4v6GBOCBk8NXBBWvs96kuiiC6cVNJ9v3LOagL9TfmqbJyGBodVoXZzavmpXEoL2FTVU1xLEwacanQMekmhDkOGJOCYwJ+JOaCGWen1zr9rskgP9Gqs6lVAs6Xmf662we6auOu36UqLA6rjV6JsR0/8RLmJnk3K6sSHj4k/tEpKS2ZZ13Rl8IG/MvUd6ywAXsSQBDzqi6HYG+zlibFDLARILtOjDMS9o0PXFBur4PlosCD29AVw1rNH0JmE6oy4v+iFQgKKz3zd8RarebChOxhjVpcHvQaCwb9xkaOSSTjM4/dLrkblXgNd9fcY3bLNxt7/wgfNb/ZZBLA4BjfERQPc2WJYWyN79nsjBX/NPjmukKfS4PjjeKgXcF57eYNz4cVGtkNz1oWoANrHl0c7ViCx89LfP1NUjnTFu9f7+irLIOz5oSSqEZ55ZLKkcN9By0ZpnruVFW61+2X2omSFNZLUlhsUh4fBQYKI83kKAIGFUkMFo1RuKq1xEvykquFsvbMKiHkjGmiQOIeKBzAlZsqsrMZwXxHNxW0Adsv4T2KdRXiOO4YsacH6FCiqNbtSry2IT7My7GvZFEoXF+RgLlz6JAw5jeHgSQfxRF6t/VoOaHrtFFKnh7X7EB363d+53fkv/23/0bvYSgavuAFL5Cbb755oud/xmd8Rvr3TTfdRLVEJFLDidflMLa+qhMznLTsB0bD7fz58yS6/c//+T/lKTOwiPnA0DuPrUi888sSGMTQm5uinDOyMZVyVZw1u1mExqhQh2dwx9TY0iqPKVzRtfZd8pW+v6nDuYTOz3R3LKAECbmwCA8STc4wIOjBxyGAwSKO1wH+PxUZMclfbC5W2Uxvd5yaIU7TSIn3vXZ2xj0niQmjEUBpEPieOiszF5bEO7hPGjfNi9ctSmG5pd3IXEF860LynMJEEwIiPAFQ/TOVKEccRuUWgbhL4AhTtOtKWUCsECZ0gU0lK6mfhTFSrlsThexxu3OU+p/tcE6yAdXIivulCjtkgryRwdqY809TbswjCGU4oZcwlObBotSOqieUMyEvL6EYoB00CM0A1tiag6+TqoUW1hJpHBIpnEPXAj4/EPFImKzhbeYf6cjSc/JM0CrneuT3OI88CEBA4ZSd3kqJ36ke4MT4vkwXGGDg+4Zgo7jcM0ijwolhZE1YGgQfrIuM4w3XO+LV29oNxlzAdeT3IDfIVcRwQgSEQGnilmRktdMCR9aHCXPWuEgDIgbDHact3k0ZIZrtEroJFTYnHqO+v8Oy+ZN4q+1yoEuRqx2S4oW6rD57Rvbd3ZXSqQ3xVjZk/ZNPqlItlrxSQOEPbx3cFl/iDASNCZOrpLrPATGOelfaxYJ09pWpMIfrrh0ADUpbZaAYEs5j3Fc5n0hr1uad+SmF9V5qa8Lr7LpCmBZQ5GtBar3KzlkM/8dL4f1tJ9gz9P+4RCv7vd5OhXHg/bZ7zA5dQFoHbG7SB40JIwJtFC1npxl8o5PiHdgn3samJi8Ge+canPJy7TsynNBeKXgg57Tts/zfipg2h8Bh7kIxGPQEGIK3mhKdPEwIY7jakMgglqoA2tVuEdaFoKAJp9kFTMQFvsThOHi4Dnw3FnM9yT26KHNLZVUxLuXJHSO8e6PDjhhgweo75ktUCrl2uq6VytjnpD2jfF0Pgk1dK3BUysrZxnAUDvDEkTzheLBPsICXuXb2+aPlVRq0Y8+EuAqTs/0LyvMDFHZmWtVU0XkjCsbFQ4bucbZDUNQEmggwR+yZWAM476CgeXVDGTmeTh53HPAsw8/lGPMTNIj2Ymx9VSdmn/d5nzeQmEEFZf/+/fLyl79cnvGMZ8hTZrh2u2QqOEyoIsJq8Lnh6QWlISx06KAROsj2vCeJ+WwQfsdumHWpiLmGEVShT2xNlQLd+0HdA86rhidn1wb3ucQCyYHKRAPm5dfaKhCCNXFuSrHeGHgvKIah0kSsvck/4zM4iXAHMRklRT0ukM8GbDt1CIYTvQk2LVZqGw3x4Dfje1I6c168o4ekdus81foAySBmHpsLEE3g4EGymgZF2GSUE5Emt+788zwYz45vBI+uTOLlKoDOt8DNc1YKLZmLoP6Yk8SRju0zpsFN5vNtF0xtfwL2DmPck8cWVSzzacKfDpyzdkfO/OeuTL8fJuuaNCEhUwhiLDmQxF1HGI22VU3WCqtdmTrtycaJPDtsKqYDU+pY8jX1upl9KJL8WlfhNrgsU0jsMvwDnHdKNovkVjf70FMHpQKPDNeoWJDu4Rl+/5pHKxqMG3mdsJxax8RvDCbsgnqeBwv4ISqDoDNfTI2AB7qmJhDiChhMqrPJgb2e49Kk3bVsALqD2Eua0A1f/ysZsI76PxtgXeb3RRAbfuRBChBNVwsq9NFoU467+tdL0vjsF6qYkfN63D9HzhMgLQ5iG9ebWxIMPD4A7HlfgfOoXO9Jfq2jyTy6qyVAvhPJoUZWVANzrBv5uvIVMY+L52ra3cG6innmoN88cLvu4LKtrvfP1yQiKnuFlKYnbfzrj1tjhpUa087i0Htux1kbl6CpoJFakyQ186vrFMSfmZIYXZNlQ5zsX9AEDWsyhB5QDHTFL3ayRnPOrsTgZ4AYCb6jzg7E1CdjqDMeUEU2JFrd/VUWo8B7Ld/dFxBw/nzYm56skd2TnboyYNkKyYQhX0s6x2a5njb3a7GR3ydSKPqequRgAgkChcO1pgSdotQP+4SXRxALQfixGvI7RxSFS5TwPq7rhSlpyTavsaFq0gKVl9AbjoeLbjf4ifjbuH3JZk2TNHTAsoVQwkWVV8bbkbhhL3KCX27/RoJcuMrl8rHOXIbE7HK8xtU4AFsEZBFy9xcvXiTHLDuguDg8AFvEcwDpxN/bjb/8y7+U3QwoLA6bVD8Z0NFdJ2Y/+ZM/KR8XA5UoVNPhk4FFCUE9FDdaKj6RJg70KstLNJXXbplV3+ndAWKsddHIM8NwkMGmmXYCVgUsNd8Ti491LVzHwpGrTbggbe87PDaeDzx3N2eBNCJccNUyk8slZKnXjFW4MgnZrhTm9iJg4MaoAGPM61FoZH2DlerkzHmp1hoS75uV5okqK+vkpaFyCXUo4/O5aiiTDF5DYo64gSTFoc5aloDszk8KH7WOm0vcLDnjvfR6g8R/5jMNfYadPIbcY3bsZF3qec4EdWMr4dZxcAUCVkg7XWm8/FlS+dDjcuAtBemWwM/Bjy/FlVg6VfiF+UysUJnFNSh2FFKIyix/92KZOt2VwoU6SeHoQtNTB+R6z5N8Ka+dMIFyokj5fEu6M3kpLXZUkAbFA5vnPCaDoqbWCRj084EZek8axyrsvAHaSPuILroj6rsHGCSSLw+wGsh+W/BA7yIkYrR4UNgqOzIIHl1Cju4zAnOToeZ5zJ7DAQERI81nT2+SsXHIXPsslNTdRl+9UQnaiE72FRtX+PUh3BFOT1GcKIc1CwGa8RyhqOlM76EUx3lUOSLh4qYmassrqfgQuWbsnunrosMa1qakcyhHf7tcXbsB4NQgOe/Ml6jU2J5CEQfJGAzKFT6L/zEXc+fMMxFdMlbpE/EO7ec6S6l1ds8yRZns78zYlXfhqK7kLgRfRsnmj4IzponXUOFtVNdtuy7ayC4dFAvx23E18d1aWmFQzaKNnbtU+dQdU0ZIZeJzs5eRKkDqnucXwMEy9AsKOWtNiaYgLKRFp6ATS2l58P2z/nxP2siuISgUhBafeKhQQlisK4XHVyS/VOB8bu0r0G6kckbXREd5ADedfqKwrkGMEugaDB8/FN/A3aLPWC8vXrskiTQVgePiE0r0i8VGYV/sBdc5e32zyT6+v843LhsL2R6boG3tTMyBYME+i+869gDn2YbfKIzamizOM+3pcU0OCGwgyXrVq15FIY/t4IdugLvnHoekaZLnbDfAL4MAyRvf+EZ6oA2PSUyqn/TEDJVLyFvCZyA78IFw25PxIa7IYOISDQTvkIiFgTI6VB4CCiRP9Sbl5unRhUUSCxzUGWmSCIECqLuF9C9D2x8VJHSrQrT0qTZnBFdTiktJsQgKnCwvE4wM7BHBgQuiUfVDAIsfp+Q4zBVzKkfuNgtIBww9L6X6u50owbjXHFabGyMywOSs1dbFvVYXv9ORcpJIZ39ZoqKaecO2IGjAXw4VQDsHrtPIinnAhZwbCYJgVgCxydoXOgPb0zd1HZtMYsbbXRfVdVSNd+SUxUZAP3cK0K4Yidyd38z5H9wkrdPnkgp0gJDgm0JZ88U3cqOuv/gEjVZjqJbZ5k0PKr6HsFvsNXoS1BGYFdQBIgffv55WY1cBeYLR9JoITGwbbbU7QEDUKUpuo6FdYyRLIP/un5PmiRnxZ8oSuGprGxBE7UYTVpjhh5A3GHQlWO5JdbnGY49mStI4Upag09OOTCcgnyI1Mae8er9wQbEYvC6+QwZ1ZFXdXX8rbKRqn3g8AoesVx8PxnkOajFFLR3631NNznRe0hTZKt4cCEZ4MEnm++qgkSOuafa24fFEqcVdwuidPccORHD9CYlrdQluuk7ihx+TmXvWpXFySlU3837KiwEHKMD1NcsNirdYF4aDHKKu5DbaUsz70jionDOv4ksB87HeUyPrZky4FtQaewWf8vwhHgeJcAgL4ZSGSC5yksxW1b9rs07xAcw7wq0xJlgjd8XJHU7IdrEOD1t0jHvvcZ36nY5zVBdtJIeVNiXKy0Sxg3Of5tTmIYhgHoF7f+Xtf9ZxkvqXc2C9C4vp95LfcQb3yssO1hsSzZRNTTmR9kIoxSvVrb5Mw9nDcE3CD3hcVJiEt6Qn1ftWJZotUXHRs2KmU5hGcuY6ylB1bs2FNH5nYaTsq3E6BMXQNXMFT1Ix1L+OcQfWw5YKwGTX1IE5kiILEnI22SnLoFSy153rMNAKkEDH9zAo2jXqGF9N6SBUaOQTrvJ482kfs23Hn/7pnzIh+k//6T9NfEp///d/P/0bSd2ljh/4gR+Qt7/97fLbv/3b8lVf9VVUZzxz5oy8/vWvl1/4hV+QJ2PsOjEbJ+LYbrdJ5HvKDKgAhdatclwlLEZdNd6UIow4E/EQ8HW6EsCGq5CTaFrb/I5gy2QAax/4EqjylIoky4IoG+xb0IQsSAxmZbwz46MhUEwFK7AOGZRSkys7TvwPSAITMgSNWCTNbHKAC+W6ZZlK/LiE6hIrk1tee1RytlPQkdkMWamElHGzqYpa50QKnTmqUrKqDt5ZMRAfmhA4xxmpeyZr3FC0G0L/bBgQu/PKBM4qgFlII66D62Q6cRfnEWMJAo2zuSFF2yZlO56rKzVGdFxGJYIpLC8D+VSeD6AtkdQPgZOAzRscLlVPRGALvhmM13PnN7hh4oomXSQ1alRK+OBmXSW0US0v5CVeXNakA1CnzHeL8x2b7mNnJbl+Vvymmr2iS+xU0Aj0ZWfUZJdpWhZpUsfvkfILg25Pptab0puvEGIcVfKqjrqyJhHMUk0m3/2mjxGOwamGYYArgzmCIGdlVbxIoXTOyy8C/AZqbgg4yTmxAouJxaRCMUge0KkDVBTDJXKWnCk02biLOH5L3gDfc1Lj2wasVzpovIKvTVjY8grFC+LHz+h5efiUhAu3SmcmpGgH+GHOqBZrZHTrCQkfuwjMCY2mHefGL2knBiquYTknYSNg9R/JWa+Ul/wmLBPa0pmBWExCoRp05yJComGr0FWZ8dmKistA5AFJWbujwhbgwA4FnruBGG7pjI8TWBn+f8IEbZi3OqpbNnw824mE7CQMMupz6d6icEFeG8i2kl8GNEdosvUoZuVVkCl9M8e1HF2k2uL9eClQb3wmfq9D5TghCYCQSb0pyX74KyZSO1mSqYfq0pmu7B2i+kQNQ70wGTZDbcQPKBbnokQ6h6bS70+43JB4qqC0CyB6KJYTKv9yLpAegAhgA5RUIRVJGZMzJGYUxTE+meucdZoqpGSqx9lrlHqu5TP7KpJ0V9DK2NlkVZEJywSnDCMbvxCKaskYXpuUEHyuoe/kVTaehjJuP5AzQLRjr+OVr3wl4YrwQxtWxfz8z//8kVDI4QFp+z/6oz8iHetrv/ZrKXOPY4IX2hve8Ab5iq/4CrlqE7Pf+I3f4G+0DX/3d393QLcfXbJ/+Zd/eUpxzFAFipNePwDHgoGAFRs2AjEL2sgHw8BiiPOzFhNCQH8cJGMGsSNcAMlaRnmR5FjrUKR+XKg6YiPDMDNMz/2NZDFblTd4FWFWeIxb7KiANVpNceRmeynB104Bxji+zHavM4orhSDOYF8xkE9WlQWcySn28fziXEM6kJVB7WC6pIrJsUuwXEeMSbBx+HCojsPkBm+313GbQyZBSzeLLR9nRPX6ya66jqv+uiTV/Z3PkZ8AlTp4gLkIChwxBK/5ekxDXpiuctPnfDT/GszHVqRBLc6jg7bgfCHRcAGkk+SnChfk8GeZOC1/zjNl5qGmeOvwHDIoC891LyWhc+NGMQLfQ3f+8T5OaADk8Cgn4eMN6Z3YT2glk0SKeGgS7UHFzxH6w5z45TITNE2kfE30UBEGn6TbU/WzYLoPCbZzSI8+95lMetsp9dEI2SXyMHV30Fq8toPJ2hwiTMh5+GDu4FzBHLcT0vh3oGgy6js3igf6ZM+3SdUasbxNTam8duBL7r33SPD8W3h+AGGEJxPnVhRL+NDZ1A4jhadhTYAoB1UC85I7G0slmtFuqVmUgMfYnc7T2BYwtaCDayXSnULRocO1OlzapHACB9YFg4Rz7RmXHO8mcRqFChj33FHd0QnGdhDqUb5oO73WTsnZSFi0KyagQ4P1IW9dDnTRnA0JOpIt+NLhewi14oxK7uAbXLry4TA6AMMVW2kbE0oyP801AkWlItU5Y6m+8f19mHFWZfkqG9lCU7xR00IQ1iXwMQ+dFEGhLEqked0MvwflxzYV3QM2NYQ/ioFUT3dk7VYUOXWdR+GtM5OTXA1QRQij4DWxjkPcyVNPOysIx5ubhBRv6aqiSArYIa0tPEX3OPEt646543frntoyqACX5xkXsGfFaHftHfIBj+s8wWbfT4/LOr73e79Xfv3Xf11e+9rX7gmS+I53vGMLJ8xxxd71rndN9BpQcXSeZ4BGOnn8l73sZfKt3/qt8mSMiROzX/u1X0s7Zq973esG/AWQ9V533XW8/akyUPHzvdyAoA4hAw42YpVyBlwkExssMYECXEt6s5DbN3NoLIz1topyVCviAxpFRaEe2/oeVI5cdYgLkW1k2DDwGGxOUKizkZX3VsU4S954kJkAIOsbkwYDfT6Le8yexnbQxO2Cld0EGiM4NazMIQhzcC+ci6mymnwbVj7tchJLH0qQ2VS5IaEK6PhorlPhNhYXePumIsbXcgqOFjSkm3VvwJ9nFMzncvu+XfIYOhbw91LRk1wo7VsOS2cW/lFmYhp4Uj7fk+aBkNwydBtgAMzz6KYQuHsGs0XCrBVRq4DjXEAdDwEurtvCXH+OFwuy9pJDUn0M0spt8SoVmXqsJSEga0zKuqaCOVgtZ4drZtpU81TkJd5QDlKqtoYkqNtTQQhTQcVjXIdlgF+DgAZGqp2OBNWKfu8uLKaVXXTHAqiToQsAHpR56vjwp8HxZDtbme8ab0cBIW8dMZPg5/cXapNUfs1J4pcscTRrDTzPwUoLEQVOkBhmiy1PpeQMI9rcFP/mE+KfusAk2T+7Ikm1RG5XsLLG89dbXx/wpuIwxTxcN66DgLm22xIiicNnNyhdAquTapEw29x6JMWlQNZuKSliPUQirN1irtHOU9L5H0L0YZSCYPbvSda1YdXL4dfLIgsmSd4mGJdqcbKdJ9q4+wY6aEA72GfKQnvTtdWsYxLP+LvbJUF7nc/Z9892xpGUIVlEUYcKroDPQt5fxF9vSPKi28T76IN9QYqrgWM2ZgwIDOHzEKovUrrnnNRedEwKp2oS+j69WEm7cKJYgcjKs8oy+wBgiYChq5IpOmedmYBFDKJ/usr75PPAnW/3PU5HxRgphN+ESZwNC4+LNiQm7pHdHynWqWu1QwDxOURTdHXddNBHx5FHh/ZqHk9DGbeMYcEOdLXe9KY3yW233SY515TYQbzjzjvvTP++5557qAyfbRS9+c1vlqNHj8okA0nZI488QlVINJcArXzJS17CTtpwJ+6qS8xw4BiveMUreLLgE/DxMkaZiRJmCFgdqreo3MPvhkEAoI45chbAkaByXA3Ye9t2EMBXyloxbDS1+ouFFL8p6Y6Fz9r/LjlD0Dk8sp5bDFQUXpcqXwmqTCP4Xumfk3ndDDx3p4RrEojOXsYIFUFwPQD3ojHyxRWJTxxSg+9GlxwjbLDA0RNrbzwVbr6EliKBUx6BBvAZYRYM183gk1y3zYk6ZJTahpKykUavkwYSl4vkPu61x71m1r8M8Je1puRWRDZvmaYoQpQXqR8JCVtEAsXAxfekMx1K0Iql9Pimcs+KgNCg2xiIt6hdECQXLmDAdwTJD85t7/g+aR4qMgCC1D5N0juh1J5/SKoPradQ3D4xPFMxtfPkjH5hsMpCSZYfCP4R+EEu4URRwzpqadBoyop4PT/nMehihwvJ/CaSPCOhFwsSHj2sQcjikkTG+0SwnvKNhscQJHjgcXg/JF7LnviHD+rnA7wHc9Q6O+zOUm0yR6g0EmZwVNnRG5Oc6fwbUlO8lgbOy+mLXFeRpHm4voCKonCAZNiSsoEOQebzOo8x8HtZAMB8mK7qeUBQt1aTYHFVAsxzCwjn6zOy9pwZzuVSMzJFRpXI5/VutdRSxNT8tu06b/edHYcQGLU2jypu7aTauO1p3eU6P+Y19DAme50BeGOWy9z0VciJhUaFBLu1lgVGQr+UPjCSW7n3D9DnldmeSsNwfL/AK6xqYY979WaHgjFQW6YvKTpCDjIrV/9gdxeS/qH5rc1NSX69K72pAgVw8uc3qDpJiXwgCVo9iYpV6U7b+kkTdvWabC74kqsFEjRgKTE0B11xGPtirx9GutolXwrUFqconSJ9rKCKMUytwICYj+Uzjs+bPtYeku3OAdV0NY+noYyjxTuy4wu+4At2fV6f//znc3/HzygT6VKpJL/5m7850WsBvnjHHXfIv/t3/05+6Id+SD7ncz6HHbxutyu/+qu/KtcExwwkuY+XMcwJGFaxwg+r9wisllfEg7hBLxRvo0m1wLhSkF4lJ14px44ZoVEIDJzCHHDubhMip8kgdtYVchwXdOXYWbMErH+AST8ho0pSxucsa4ib/SwpBGgP28y45GE4qNgDgX0v78+AKYkJhwK+Xo4e1K4ZeEFMcJVjwsQMpwaBNqCOkGcnrt3OF1/bKriOX+YCfRO9oJqVCX4wgEaQP1RFz/qYTZyUbVdFn/S5O41tCOzkD2B+odNgHV5AcUEGBx8P8vfg4iCBQrEhB0VFzLdEZPNEUfJrRQY14FcG61AYtXNHuIkF0GbUyy47zNo3W5Ivh/Saos9Yuyft/WWFRiJAsjnuuBNbuhP8Zaa7eEyW9+q6ZrjOToWz3qBJcfa8OdihvpZ+X6jwNxwsAMIIHorxHtz3dc/Vc+Mq4djjcxfIr0qO7uddUHIlbAgVaffw+SpNtRGseEsKdU6PLwPP6hcHhpKza6VrlsTSu7iY/stk++YbJXn4FOGEQbUq8W03SLBSF1lbl97i0uDTnT+WuzaYh2sbChudqqQCP8nyat80fm5Kyue7UjuWk/xaIAHOu/NTSv2ZMibLe4AWus829rYxhbNtr9t2xzC05l5qUuZeY9hzcSeI4xaPPkOhsBsCnrXb91DMxHB+gWZi3CdRX3pxDzxQVfozaxoUjABZxToO9EQbfNiuJOWCJiBIVqb1+05oM5IP8pqubj7TqAQt7PQkf2qV63E8PyWytCo5x2VfXWex7OB7C7L2jKrJ3+s+B2uUsAHpfJiw++K3FW2C68NzZHY0jFGc0mZ233ccM3QlrTNKPlpGFdpBvt1w6AVXeEn5c9t0bZ8e197IinfsdTzyyCPc99Htev/730/LriyCD0KEWVTfduO7v/u707///b//9zSp/tCHPkSe2XOf+1y5ahOz7/me75Gf+ZmfkUqlwr+3G09Whnm5h24q29yXCcSJ68YkgGkioI34G1XuzbrknZqRI8FCqACVeVTwIbd/YB9VFlmZRWAISA64JeiUIfBCQQhy4CDIU3DAZLszkEZ0I9LKUv8gBzZGleHObtxjOBOXklQNQ292EUDsNSlM5f4BPT27KMmR/RJeWJfWDQv02XKQDSRjJDs7URYE75BVz3pVud8Q/bCOJaGR7u2ylgVZufOs0uFug6Htgq+dFMFGcVZ28T6K5w806UfBwCX3hBZBwS6iqXd3pqDmq+BgmHKdX8pJ5WxHVp5dldJSJH4nkfJqXQRefk69KyNggTnvNmbv4gq/F5TEz4UU6YCsvd/JwEt5gBoMpka+Q58H1Vl2VyAMg+8KoMV5ExaAMbFdJ3ZTEEwigCDfYUQBweTXR3GJKPqQqdJecrJjx45jiVbWCG3G+Y+O7ldILmw3MtYN5E5GBbXpgLExeXtD13KgY2tB77WWnGUGk9f7HqGZMwQaKLF/apFdsO0k1lN/RscjxbqK+Y3HWxEiHRdXpEChoGlp7ctJ0MpLgK67W1+xBvOPEZ3I4W7WJOd4J/6tu23ce4x6zPA6epk7paM6btt5n+30XF5XM2mmd6DBg1Me6nBnRt/k0j5XkOmYkXKgYQ+Eo8hjPL2kaz4UCLtdaV0/L+2ZUKb+/g7llOfz0hsho31NjKVVrn+Yyz7OASDUELM5fojFMq/dEf+hs1J/xa3kl8UFFcaBCXsMEVoUN3NWjDQON6+R82XNo5gXU8xJlVI7KoiEorOjeUQZ5UbnvZYteGS7sm4/d0iLcVztawUR8DSUcaIBD7P77lPPwFtvvXWL6vvwgDAHxrDv2V4GhD++5Eu+RApAvtlr4wfcNdz31V/91XJVJma3334723oYH/7why/ZN+CaGsOVzTHcqhRC0B2S0uZz+p2wdBhRPT6/KD4kbp0YBaqJFASwqpF7LrzRkLQRWmOcFmxyuM26E7wt40s20MHJBnLDVdpsAjAJ6XwSAY/djOFzO4IrMwCnGREEoXNJGwI8rlKRbjWQoOWRK4WkggkWXwty777OYaeCl75PxiQaxGOnqsnbLMHGJtPOdMuG4WRZqNmo8zNOAGCnx+809hp8U8oaCVlCcRl0jNo3zEhxqUMoLro14CbUritJEV44qHoXC9Kr5qRXCqR6pie1I6EUNtTclGahJjlPUQsonrnk1wIjwnabHYn2TzNx7kHKGaIMkNZ3vALnXzZB59F1r5icu2pwG9fYV8EQM852JtIp5ySdUwaPdMnXdh2Oyzicbxk8EXHsQacr0U1HOc/8B09LfMMxGsdH5TyZoexawLtvsyaxCYIMcxvT7objYV3DyRmuK7vhTqUNwSGLI87EdvRzEBi6c+ofAcS5S9W9eHVN1evAIwRnEPOdyRnWhBlVq0N3vWE8mGwSn75BfEkQ7Ikg4ZO81/DasZuC2i4D2wGj6iGY4ZakbAiRMU4hMvUBLZfNTBhmz7mUkzQg9jDi9Xc1nO8WBtYG+N9VCuwAdSuhhEggUBzBcUQxlWZLsE/A3orvZNZ76xobSCjxfQAE28N3Ik4kALIHnFasw+goQyxhH5Sk1WzdB3IXtY/IOmZQPUZnkX6hxiEmRs+uPfYPxCIOhYC1FtQOt+67wpZZ+QwkZem1DEYmYiOLnNm5frWvaU8nZtsOqCe++tWvpmy+s9oKgoCJEmTrh2GPo8YDDzxAJN8og+of//EfnwjK+Jmf+ZlbksHNzU3ed9UmZln4IlRQPq7GNhtef9FQvoojOzv+ykD1HYGgGTGqPLbyFmhu22gqjh33W/Wcr1Gq9KF2BqVgFQqeOuaV5DydHBaefwNuMKqKmdnUBoxIh7lo48YOyem2zxsOILbjaYx4rSycZtxiDQEAdC+pzoZmGIyPmVD1ky5IcGP47cz5yZgrqwSvqYlB3cqdf3cfqoIkLiuMbEDpbBRmPnN8A7+3S8p2G3zsplKf7TZiHsIrjIpZxrebqkr1/lWJqkUJAfFpdSWeL8vUw3VJ7n9EvCPKt8qttSXKq2EvpJVxW+/YPgnva2pVHHMQctQIfq2DzKTWZbroYkyVpTdfkrDRk840yrTImgF3NF4Cumq43ruAbJJ76CAM1hEk3MaSar2vD2PUcz3EIXqihhVMOLdNtj948IwkRw9IdMsJngMmx+1I4Y04H7EWbuidSPNV6xDZGEjOstDGbLHlag9mhgbOS3jDdVp8OnV2UKVyzGBCVyhKfPrcIKcQ0Oe1NZG1NQnm57Rj0+5I4XxdRRHyIQs3XEO6pdQWYccxihM2KYRx+L5LKXJN8rwxj5mIjzYJl45Fj3j710XRxAXopnwbra5LMDPN6z0u8U7fZxdzWCGTHV0HiuqvxmKdj6KQL1Jr9GX0u11Cq1GQYsKYCfSQ4GyxTLgGhjtmF4/wu4GiBTrwUCTFHMclKEfiNwFV7CcUVGkMFc4IM3aF8xtfzDwhBRBsKyyjiMI1FgU5vC8goixW5xX+3zX/xqFYYNdwxfT5fRGqp8e1N77xG7+RjZ+/+7u/k0/6pE/ibf/2b/9G4+lv/uZvZsK23fid3/kdKifu27dPDh06NNA0wt+TJGaIfUY1m06fPj1RYnhVcMy+7uu+jvKWUzAAHHLP/vZv/3b5vd/7PXlKjh0qp9xE0gXGhDeyCw2CMKvAMmi14JFqZKWS+FbNj7ttSWo13QTAbXEJniV2/uyMYvQBs6nVU/luYuGzcIC0K5Dhk7nungUp4zbMXVVoxz1nVLK23f8TJGmDXIfBpIjnslaX0IKtytvukca/e6YUlqEgmJHMZ9KGBDrzftmkzCViVBN04hPmM4dNxbqVajas1xrXJYVQbVflHRUYPxHdmW0S5xQWiyQUc2NxmdXO9o1zUjxdIw8hj3lbKkqM1wBXa2ZKvEZHCoue9GbyEoc56VZ88Zsd6bHDUZQEwZUzOwfPwJS2UsgtoHvTBQkb8NPxpXS2pkExRFlwjaCiaJ5ju+34MOAziFRaxQW0xoIHJ7s/mEQ/gUal4+aBmU5DPCWYnZbegprdopPD4APqrqGvZvU4R0jmjAcz8DpbChkTKDhexYNdleVVzqlJAuM0ELUiGRI0J8OdqoVagMrkbG2dIk4smM1NEeLm15pqT+K6RDup2G6XEO3lfO/l8cNd+EsUAZmER5b5Z+i9BguaA/uQu914Z1kZe+556MBkO77Zz7eb44cABuDJlhCkBSLbA7DGoHjHjg869OBXAYp3/ynt3vF99Rj4XbsGk7JxgwgTEzIKDx6QAx9I5MLn9iRpgJ+NDrI+DklatwT/T+UEJ5HytJ0arjCBNZsSrPOEkxttw1kAOfVG64xuV4DYCa7Yn3PWYQPm/ir2mH5a/GP7gYTsLW95C6Xp3fiMz/gMJlzoYu00fvZnf1Ze85rXyA/+4A/u+tq84AUvSAVEPv3TP13CjG0QunfgsU1yDFdFYvaHf/iHdMMeTsyazSbxmE+lxGxbNapRidq2XTV9jA9Vu4wiHPx7nAy/YuE1AXMKcq6bBSEP3BYtLkswP6vkdcAQWJFCYGZt/2xgxph0yJiTHk6j4SfuMw9AoCaBdg53xEZ1gMac34Hjm+A52fvcZp/tEiAxUJU++HB1WP2EIhXFQHDYgUc+U//zOF8zfBsT3bgZvJnZMhIDBG2AL1pyxqe5jd4gpQPnZLvPcandsb2OUZA2U7NLPweC4NkZfubSY+sq6oHNGwI3hCR6BkNscTED9C6o4XxNS2shRzhiuH+B5y5e29AgC3MZHV4EPFBQLJeYcCFJqx8tUH6/8siG9KYLTNBgfApuWHxxUQPydltFOYaT8Z3OGcVhFB6FJJyvs51R8xM1st+ToaIDCzo4Z4B4RRGFGqMpKIwCSpQhMgPOiCTDjKg5nHx0NChONCzaMHAceqNc7YMcwT0MJmUooJiIAARVFU0QpkE2ujRUduUbaYc93MSc6bEzN3FCc7nh3duNoe/wwDGMfPhkXYhxptTbeaFli4FZpMYwTFjPw5CgR7Z7n4VH5koKsyMCYeiz7mK9JAIlU9RkR4zPT2yth/qgWtM4Cw+dJ72BJIyUA3RtFxauXa7ZqGHnEsJI7RkUbBGTgFcmEpg7D2sYhP97Ehd1DQrgHYZziHOEa2QCKWozo+IqTMhQBAMseJSnqkHJB+bQqPVpm/nH/7PCT1fjeBrKuO1YWFgY2ZWamZmZSPl9dXVVvuiLvmhPlwYG1Bgf+chHmAxmvZmdBdh//s//Wa7qxAxYUHwJ8APsZRGQgEx2+Q//8A87EvautTGK2LwdlG6HF+NjyGPBAuVuNyltBhAaHgyqKprBZn/jiqS3uCzhCXBRcn3vF8ksgEPvud3nSx83/Bkm5SwMb5ajOBUTji2S89tswq4qO5ycuc8F2eXgzgdFTh6RXLsr3YWKBv5QAgR/L6vGyPcxNTYMBPM4l85rBdfMqbRZJZBdIXRetlO43Cn4faI7F0PvheQVST7mEzgfwXOfKbK8rvDDbJDCxEhVzcBt8qEEihfA5js9Jbn1loSbHVl79qwEN03L9IfOij8/K/HKmhr/wgh83wIhu14ckLsBPlr5XEc3/FJOFTNxfg1SAJgNlRRd0Jx+HzOiNhOcu70G9VdkTHDM7Io73ujpCxIWC9K9+Yju8Eh4kaDhFEHNEl3IDN80aWcgmSPKyGMDoGsgOdvrGO5yjDQwRuIOOBcCdCQE5ZJEyysDj9kWgj3qccO3X84xCXQ5s6aPXJ8m4bulD936/JH7IN9zvBLalufY+2btCNQ3To3YCWHGPB4+55PMWUOmKIrdvA0xYsCCFQ4cNGDVgfcyQRAUMeKi+idCgAuJJta8VluC2VkeGwqpQLk8JUama3nwL+4TSW6V5U/owXaSLTN0y8KmmH8ZEjbrljk4I4yfAe13CB2gEnJ2PjGwbwK+brYn23ITt4mtJp5/T49rbvzYj/0YBQX/+I//mFBEjPPnz8v3f//3y3/7b/9tx+cjKfvHf/xH+ZZv+ZZdv/dP/MRP8DcSsC/90i9NxT+uhjFxYgajNdf2u+WWW7bcj9t/6qd+Sp4qQ/kIg1XDLWTUSROPcXCMzAbDAGIYKrFNpyk6fVaCw4fSZEJVp2B4rK+5HcdspJJWpoI19vhHvNbA59ouYBnxeYY7cwOJlfFBRh1jWgGlZL2eD914+9K6zmsunitL7tSyePPK18MmQ+n7lDs2/B4qwZ7aDhjnLCu4QpuEWmf3n3scXHOvY7v3Hk6sxz3OOi0cj52VmMpaXfERoJjROcMjJGSQjc7nuJEjkKX6FjgZnSqhibO3t2XzWfPSeNYhKT+4Ih6huFBeM+8vdHgxX0tF6R2aleaBvBRXutKZ1QUxgGI/veewweeYoCBAVhEcS8IzHaFrLqmY4FgJZ8a5BnkeegXg8z1wVpL9cypYgCo01EVLOQaXXhOdShM3QBBkQijDXbPs2GoIPAJSvF0H/EkYNHm+gga/jheJ+c4ucbbDk0UUGEdx1/vAk3UeR629o9ahPXT2svMoFZoaeq9+cXFEEjeGd4tCEfjC6NLjuzBKKXWnAUN4vjTg05YY8NoBcj5T1Y4ZkM3wGDW4ImTyoR5IhVo8Ds8FnxO+oxCLgTroE5mUPQFzxgmtQOBk9uG2dKsF2bwlUqPp0JNeyZPCBsSzVKmXyBPnTYZhaAauMyjmYS9m58x1Js3CYjv+tY3sHNkp8bpWkjKci7QIfImv81Qcv/3bvy0PPvggzZ3xg/H4448zSVpcXJTXv/716WMhPDg8IGmPBO69732vPOc5z9liUP0d3/EdOx4DfNDwXseOHeP/kN//kz/5E3nWs54l3/RN3yRXdWIGARB0y/Ah/uIv/kLm5+cH2n6QlzxyBJVdeUrK5e+oDjQp6Xp4o5wksB91l0seMMidsIoVFsdMoOU2zKyKICGOQ8IkYz/juGPcBic+8vmT3DeUpI1LLp3qJb2laM69NWBzny94/z0i+/fRgyuB+TE6X8O+V9nfjtCM3+SdxEpYdt0zSjr3dle9nuRxexmT8F22mV+EJyIBMHgOE6jQki9AHFFBSjtm3gBcyS+WGbQk9aZuznMztIKYbnekcet+qT9jQcrnLuh5gzANXg/QMlwzdNCaHSmshRIHHvlpQSeRsGGbGLzn5qfFW69JsDBPSXkGeCbBf01VTMed/7GwZ3R0PZX8h9CPM8le2ZCgV03V5BInX40gkjyO2OBE8YABq3vdLXygTNI1UvF0tx2K7GPd57tMA3MGXYthRcDLPQbMkE0QZrjDQ3gkpMGt2DCJcNGTAlseddse0Aujbs/8M/6+nd9g67Fl5h74wsH0VN/PKgtpnOj1Tc3YJWRuzcf6tg6ebNU800zoCT9QhCyXJQZPFkUkSOVTtTav0NaMyfkVH1cCAjtiZNURC2c2ZGp+QcoXfVl9hicRqMEFkW7F49rslI0hkkNVR3oG9tcafje8Qp9/llGIHqYspLz5jJ/kxOika2k8DWWcCE641/G//tf/IgTxne98J3+Gm0WTJGZf/uVfzgTsq77qq9itg5fZs5/9bHnDG97A/ycREHnSEjO4YmOAEHf8+HHxHezr431sR07eLpnJbuS73LDdYto7c1bCA/sHJd8nhNUMLHo7VVUn4PMMcGYuAc44+LIjlJrwt4OloDoHDpOR/EdV3FwCG641pLu/qh0zwDGc+IfzZIktGXOiH0hwQQg38jKFI1BBheTwOCnncefmSoxx13Y7nkvmWFIrhqza2DNvkviOe/odCnAH0DGDuImD4JrICTxxnJgNeAQoCDBwXlyWEiCMtxyXjc96tsx86LzEU2UJltclXl7R6zRbkaUXzEj1TFeCrnEiA1RnAwkBlzY+VYgAoFulvDNl+knQ9/k6+nGGvPuutrHT9zrzvRuA4mJ+AYKJoAfBIaCfGJB6rwu7Zc5jD0a57JxZt42Bp1N9dceQvl2mE70NsX5AuGEUN/FyfPZdDCdSMFal73KPUbDszP9UDRwnCDIOXeDuu5yJ627P8aT70TZFugEbFrfOZs2FHRzRfMPUqiIQj2iG0dDz9P2H5hk7x7Q1MPPwCQtOvM+4wlklZBYwXdce/FMaTJsJveNGAQGA4hHWHIxOR3qnzj4xCfXwZ3oC3xPXInrgYZmBQvS+GamcLUrjUE7qh3yJcSnZYfQGYIxpsutoF1T3jVO7HzWRHiFpP5yIZT738LzbKTnja1wF1OGnx96GgxPudTzyyCOXfOrvvvtueclLXsK/3/jGN7Lz9u53vzuFSF7VidmwsVuj0WDLESZs2fFkOWU/aWM3kL5xnae9BD42wMMhJj/rkzYi8BoIukYlZ8PHkz1md/t2YwTscFfJSzaxG3Hc6TBpcT4NzzOYmz7WNv1MFY5BAzoPMDdOKhS0YLXPdRUopQy5X1NfRMLmfMqY7MUpuRlJya6SsivZLbvEobASJXDT7DUySXaXqDnBDeBXLJHzgr6QApKA4ORxlds3SeSEwZPH/4NHz8vM+ox0js9LdyqU2ifOSn7zhHSmPMnVE8nXYomKvkQlX3x4jkI5sxTQzBR/B019LYiBJOW8eLNllbC+/1HxD+ynOIh2UK7O88uxi/nvVF35r/seUxbfpwcX5yfmLDhoONflQirvLknBVOYiTWBzluAhObPvVhbii5GVMx8rVT2K27PT5xqGqF2t1+YSx4CP4U4wQfe4Ufdf0kHsMlG+DO8/nJRlX3vYOoSKebjPcaa5PvcRG2MhyZljxZrr1qFtRamGjxG/oayIghE6/66D5tQ50f3BXoC1DMWNtq/wRSRlYSAJfLvqbek9flqesDEuUb7Sxb3M9UMSGmzUJH/isOSXEgnaMxQG4f24lDmFUrOY6ZK07OXAGlVIuN86jvIwHSR9zx0+2yQd2Ku9o/a0KuP249SpUyyQXCqMsNPpMEm78cYbB9QVJxnwaHb8sn/6p3+Sz/3cz+Xfz3jGM+TcObVbeaLHrlsZwGJ+9md/NlUZb7vtNkpOZn8+LseopGKbbtXI2/e4+KJ6mxpMZypY+itjmDxiY90itDHqOPd6bLvplA0f78DL9GEQrtqfwifMjJgcAIOdoLvTf9kMTBGcJfiw0IsM3R9X7TYeGSp8gN3htS1JYwei11NYi4M57bZCfSU21d12IEccB0142fHSz+pXqxLUWnxtds9c1RpJgEt2jdTtAqTk4pLCGKeqqVEpyPKqKtqV5OwFyV2sSViPpHwB5qQJkzKqNzYtcUbxtaiwmea8L625gBVad1wg5yNZc9wG/9jh9Dj86Wp/Po9J7K+ZMcDLsWIDvOFWVrUAYXzHZH1T4VnNjnjtrngtXKtEpJBT3z1YaeAa0L8tN3j9tyvIbJegjTrW7c71bmDO1/oYVZAa9fc1nqAOzAmbSwNGwfaYLQbBhLt1B7iP/G3FteHX3fJ8PC/72AnnE4uVuZwmZQ4VYZB/mpRj4KWyyRoEnUoFTcraPUmWlgek/J/Q8SSuZ+CbJfc9It6FZZl6cEMKG4l0pnzxukN8KSBJHKcHa5I7l6AaYAytM8OKjGPHhN+VXUFnn2wo4+X4eQoOwAidT7KDEb7//e+XH/3RH5Wf/umf3vH5aBB9/dd/vZTLZeYjaBZhwLoL6vGTDDzvda97nbzrXe+St771ralE/tmzZ6ka+WSMXX/zv+u7vkvW1tbkfe97n5RKJXnzm99MCf2bb75Z/uZv/kY+rseTWCFmErHLMVCx7N84+PuSDmpy8YDdVMdSJShnBg1FPwSjVLbsV7MHgk9AVFpqmMwEDI8BNA4/zqcM0AskFPzJJCfolO2kvLj9h9v5MZM+f9xrTcp1cwOBCFT+VteUy4QRxfSB48ZpQX2aDDvbAMcLQAIHSBcSMgdrRBAGCJ752OA58QOPqGpjI5JcLZaglTDJas8G0przpXEwkPa0T5J52FZTcBLIkcQt1yVc0p9goyke4JCnzkh8fpHHBjNxehUN816uxSQtkzz1uU4eRRBU1EOhtbTMePSUdjrrbc5njwUHMwjH96CQV186iLW45CzzPgMCOZlkbKTA0V7P4zg44NU4LnW+ZAsfoxK1yzkXJ1mf97pGuMeMeNy2nQk3b1Po+GAhwHVsh+HmI18qYwQ+dm/b4XPongYYpSEqkDxYosYEDcgASyLYdQYEz4lV4HK1upIsrVDw6EpyGnf4EFu7rU/ge8ftlsTrm+S2Tv/bYzJ317rEeZxTdM587dSz+GO+cMbnS1E7uNau2+k+j43h23aaG25tGpX4Pz2u7TEKRvie97yH/K4/+IM/2PH5P/zDPyx33HGHvOMd7xhQikeC92d/9mcTHcMv/uIvUmTk5S9/uXzZl32ZPO95z+PtyGfcsT3RY9ff+Le97W3yq7/6q/LiF7+YPDNAG7/yK79SfumXfkl+/ud/Xj6ux264VZdxsSUHg++n/Kux/mvbBPgD/jPZzf9yHefwZj3ivbdThMzCWJycMW93UESTdx9Iytx7EZYYi9doK1wF3bFaQ5LNmopTZJ+Lv13ilu0qjjr2Sc/NpQank3Qft7tWw9cawbrJ/mNDpdAEzEFRTXZV60yC4KreTnqcAb8F8UiOaMp68ID4M9N6uIDTmZoZz+m9j0jxfF3yax3Jb0aSa8T0LyutxDJ1uiflxUjymwmTMb+TSK4WSW6jw4TDQ0cO9gZIqFGhhRk7fPyQWx7YJ/7C3EDyMbx5X1VjN98l85iDChxEB6KNTfrCYV7i/Ednzkl06rTE5y4oTNcFRCb9zeQM3TOXnA13b4bm85aEzD3uUsZuuuZPxBhe1y73sW3H4bqc62j296TIjN3CrwduGvQmyz7WzZvsejsAm7V5NipAH0BKDF+PLO/SDJ7HPX/kZyUKoteXwnewOwysc1A2haE9hHQKgSTFkPBgSsOvrukadjWNyz1Xt0GpuPuQnCXonm1sin/6olQeWBMf3DynZAx0ShaV4gaNpAeh0/bPwLXeqdg5ak0a4HVeA0UfB2W8HD+TDsThn/AJn0BUGyysILBx3333DTym1WrJq1/9anaEIJ4Bv64LFy4MPAbdp1e96lXsRuF1IGHfy4i9YCAheuELX0goIBQSJ0mmLieM8K//+q/lta99LQ2qAYnMdsEeeuihiY4BCdnS0hJ/sj7MgFKik/ZkjF1/2+v1eupXBgM4QBsxkOmOkrP8uBm73Qx3E2zvEEgEMzNaafz/t3cm0FIUVx+veQv7quxGUaKiuICBSFCDcYm4xIiaRBMXzKcYt2jcJSoiiBhJ1JiDGk3EGE1ijFs0Cu5RlLjgrmDU4A4iyL48eO/1d/63u/pV11R198z0zPTM3N85A29meq3uqa5b997/bcQAzJOTNxlomuFoCjMwLlsIORgz6gDANrj2Z1RljhTtwlVOlCIoxvBMtItncEESmYp6ewWjYeiRVwIy8EpcvB+yJ//Wj73UD4eEHs40yFHDMj2BEwzyITRBBpZ2vyH0sa59B9/TRjL6Hdp7YUrNlGtGqlw9urv3HtQC6d7s5g6QPvpcNH74pej4wTLR9a2losvCtaJxTTN50jp/vIZCZjp+uUk0NCGvAQqayFXb6F4zGOGyLARUJBFyJGfFkXPVva3YvT5ITBWFHBOF8G7yFRfdnL96Mt4weBJr17nXlDwD3mw2XsgfbNfo1km0DeLD7mPVENBfkjAjp1ShvHF+GyavlvToF+t+iWrfMGztmk+IZFzPvra97NIK2YaY/p38O2t55TisfbyiIKz3v36IbwzoeeCVkCDjAZ4yNXwd/yFEGvlkUr0RIiCYaMJ+0zDBEyc9osigNAoiIFrRxyA0/f1FbrkZTwXa95YB2b6eYRYIA43KHw+JrMm6h+TyaZr0SVEoI9QJYXRBQh6heTB+DjjgABq7S84++2zx4IMPirvvvpuWR9jeEUccEahNDKMMuVvwYCEqDkaXKoSBnC4ss88++1CRZkTTnXTSSWL27Nmxj7XQMMIvv/zSWD8Z56oaalHU19dnFbRGfbNy1WbOWfxj8ODBZH3joOHygwsQf6Nx+/fvL6oGMpxiLCMxJTCHPTTDOl1TCKB8b9iulPGV/5OqlKeUpT7kpCiGWpxZfhd6fEUO0VRz3fTaOIEaS+7CbepevkiCVg/N+5yMif593baQs3wwEjyxCoqB90Q+ZOidr/BkSsQu9WBfTdiP6X2IIzGMAb70MsGoRdhby/KVbmFjDEy8vDoKT1TvDxhljgwTctyyBQgDQr0yDPy9EEa3QHerqyjYtYs7+4ywySVf+oYFlBYbt9nCDSNqcM+r3RdrSDETqoOtHdu5CmqeQiaBAQBU0j5b5BnnCFXyljO1XRqNswTQVQFb1qyhsr4ZPxwL4Vpu106iIJB3h1fTu/bW8CzdCxPHaDH1Y8Vud8+Dkq3CmmdOV5xjLsf9VOj+8slF1f7O6n9j9jHmzbsF4oOeS88jpgtD6Puje7Y+vuAP1SbzDDCU2+jbi/ovCsODQYHDQAmVRhyDO3EHIw31yjIIb0d/JkMzy0WxcjVzMNKpv1iz1g1LX7Va1GPy7csG4aDUipwc8/KB/SLSmDz1Co0HhFtynVCwLVMJBlmRWLVqVeA9vE16YWSkF6nAoIKBMW/ePDF69GixcuVK8cc//pFENlD+CsycOVPsuOOOZMx961vfIkXCd955h7xYffv2FcOGDRNTpkwRF154oZg0aRKVyMKYf5ttthG/+c1vaBtYf86cOeLaa68VY8aMiR1GePjhh4vp06eLcePG5RxGOGLECPGvf/2LcsqANMb+8Ic/iFGjRsU6BngKzzvvPPHEE0+IJUuWUFkwFRipqTfMzjrrLN/FCKlLWLiIB8WFytWNWfGEGEuBQY7NaxTW8di2F6NDo4Eb5d5oDzzlWP2BTKFevVzIcVtGNSfVONP8+36cuneOdV8b4OYYUL6YW+ySwiClkUbbzA6NUOWc1XCakiPbP8d2Cwtl9UNJ/DBP97/6zXu2PVzxAdTMOnVyZz5le6kdlmcEUCgkPDfIJ4DRhdwm5KyRJLXrxYRHC/kKUnIfEwcZHMuHi1wPKLxrmJXdrCvlLtStWi/qlqygbTkdUEC5wa3Z5XmEGrbqQCIYzYuXiIZem5EHjQZsBon4qkIZ0AYGsaj7tHYdzfpRSCoGlTCiZRI+VEVxTWCsbaij0gYyLNWI2ndFGST6ssoxWfvHqP4vBn4dJL3IsX9YMY879g5TYOTn4t0zefcLJCuqQt225Ten90Xu/66RRTX76PuQ+nTyXveUS/1cyIixUuuaNaIOfdn6DXSv1zd7IkXobzB469ldtDTWi/q1bm4s1cWUBZGRs9zgKTk2lSmkUf3tFGXzmdiGtq/Q6+Vb169d77YhiQ61o1BzikCRAmR4zkbsUxJ4xqr9QtyJ6zT8LkuoyohSVSoYg8NQCgOGGJC1h2GgwYuGPCwJQgdR4Hnu3LlkmOF/RMHBKJPA2Dr11FPF22+/TUJ/WEbdhlwGnrO4yDBCGJyqx+rkk0+mEMoorrzySnHQQQeREYkwy9/+9rf0N7x8el0zGyeccAKFbaJQNZxLuXjaUmOYIZ9MMnz4cPHRRx+JBQsW0EXt1auXqBridIy20Bjbd2H7sBl4+rKmfZgOjTpJr7imPmOpbVfKzIceXyHEWN+kEKkeq/rwMOUrqPkMvucMM6UYjEr5VD8xOfvaZOemlUmNq0D8NqJQVrtHNFBWgIxVbxnZtmgz6R2jFby/tdkkd2cZ13vW0urWHsKAqKlJ1KFjhYHQqZPIILwFghVeeB2FP8ri4KtX00RCHTxrMNLwgiGBAcHSFW7OlBcaSZDaWjtS4KQwVK/4sGpYV63XTA81I8+RZ5xhRhtFefGFFDpAu3RwPY2UqI9m3FhHMvwydzDuvmIfl26kqf8nOZiShYdleK6y3YAHrdruAdt9bZvQy6f/Vge+Bg9WcFBt375cRh/8y1pnfg007zkk11GPX3rJApNKEb9tv9yJF7JNedjoJxD6DEGd5StFPQyKDo2ipXsn0fDVWiGgcIrnRbeu1M+1fLFElA11/JBv9IqyXlbtOS3KxDgGUO4BN0rF9Ygh1zWD6wKhKKQReDnaMpJC9VYG9m88RG+MklGEY9Tz19vD9j6tJKWo6LTJy3fr5uZyA91bptPa2kqG0p577klFk6X6IRwpPXq4udoSGGH4Ti6jGmXye/ld2DIwstavX0/igHHAhCKMKnjbZFTe1ltvHWtd5JYhjBIKjDAk4elDzps0LOOA/SKUEl7BtJCzYaYDqxYNUSqamprEyJEjSYnl1VdfDTTmG2+8QbG1L730kujduze5Ny+44ILCdqh2jHGMJtsD04Y+cAlbRj2mKOQMo5o07c0+qmGDYTNlAa9aIYNc2+Ag8GAIl0I2zdL6gzKLhwiyv+Sh6dSJcp98g0zuGx2XZyxkeRUtBmBRCfOUyu9jbUaG/igzzCZjxatRRuGM8H41NIiWFStIOt9d1jt/PydNzUk0tAkV5251Z0/hkenbxysK7Rpuvuqf561RvTb4jAxpWq7ONcQ6dRTOZj3c0CJ8D5Ww3pu7dYfqu4k65MVBPl5RcfMHi+UMQSoWhvvQH+B6vwVZAsGVtW7XllsDowxeA/QBMHRpmQbhtDT4M+FJGkwB9JnwOH1qjvuSHpRso8FQJ6sQymnsm0Lbbd/b/s51XxF9TtZkmaV91OeO7z3zf6NeQepANIdWs8ybSKhr597rsiZa2LlBOMeveYl1UVKipYXCtqmfwcTQxo2ioWcP0bxVH5FxOoo6KJ1uanFFotJAVI4h8Nop0L5eu8jnqknNMPDcsxnGyu/U72MwmbOmlYSf6vv18RV5/dQJeBy9Z0SYwIefL+5PJIdEGTEEjDLVMIsC42EoH0qjJ20gFwzj9Ntvv52MSGmoHX/88eJ3v/tdLK8ZapfdcssteR8DvJB6+GJFGGbnnHNO7A1CsbGYwNAaMGAAGWYqsNKR4AjXKmJf33zzTfF///d/NCuQS6G6AHEHD1FesbD1bHHXphnmXGfLMFO4qdn1LLSogzjFO+XvqyWRPIJQDLN/WfVxLOchj6ltUTckJiwkU4a8QCAB4XNUD0quL2dqtb/LGgaXy30W04jVw0GNYUAyhBF5SF27tnkWEY6IzhL/ywRv7z0G9i1r1pKHRuY2+qD4NGZTkWwMzxe8WqQU2N4V8vASw+s6dnCTy+XgGsW98XdDo2hdv1xkYFg3NIhWFKzu3k1kenQjGWvkgbjS/RlXobGlRTR/uSxrkF4R6J7wPAYkqhGCa0j5frjuEE6R18/LBXFa2mr4tRVJzri1+lRlPa1GVc7HF3eiSR9QBk8s3r6UZdVrrxbtDuy30ImmtAwcbWHyYeGj+bSrdi1tHniXtgkhuraeV0z1yJgML3+Qbvg9+N6aVs/Lq3rhIn7r6j0MlUEIGDnNGwKeYvKmfb5I1A/e1l1n8ZfZfVqxyTM6pS1fXAvpzTRar7NRFEzxcpuKz6vXha5DazPlcLei35X1Lf1SCV4NULltHcWQVMuyBJ7jCfSLaSGJUMZ8OOOMM8RDDz0knnnmGb+AM+jXrx+JeqDsleo1Q64VvpPLoJ6YilRtVJfRlRzxHoZjXG8ZbAuEHEKIBF49MGfOHHHmmWeKc889V9x4442h68OIQ2qVLtKxbNky+ixOfth1110nLrroIl8vo2IMM3im4lDs2MxHHnmEXJX33HMP/a2CPDfcbJC7hJsWai9wccJQzNswC+sY4nQWUZ2sbviZDME4IUBhxyJrUEnjy1+uPjIXoG02SxQvNMO4qJrULzvx8HwRPfxFbkcODJqXLRP16IRooFpiT1gxyOUhrgxupKFONXyU3AHfI0YS0969IRUY9dwyb7CPGltyAOOHJXkzqlTDBiFB8FJie6gj16WzaIVRBgPN89DVQQ1TCTlSQ0qdFqgyug94XD+xzC34moExh1nZxkbaT8VfR2DKqcjTSPPVGdH2JAbiXTOA693i+AaxOzByVehosCoHZ2oItHy45TOgN3nJDMfshzQFDMYEBmTqoFP/uxDKNViMGsBHfRdn25GH0DbJ429au2buINsVmqH+xssp8xUW9WgMbbIt29vpqgwHJtFyOWbv3oJxZqP53fcD/ViqsISUZk2yul/E+r35i6shper6tglaGX3jle6Aim/rsq/8/huCQ/5ytv36IaptYxKZb0hfq9egovv37LDOvLcTe1GHvFD33XcfydlDoEMFKUiNjY0kdgGZfABBP+RZScEM/D916lQSw5BGD1QTYXQNGTLEX+bhhx8ObBvLxBXdABjL/+Mf/6BcM8nBBx9Mht2PfvSjSMPM5ulCZB3sgDgcddRRVKganjd46NA2Kl999ZVIpWEmK3OXE1ji48ePp7oFJvcmYkqhOKNeDCQiQvVl+fLlWVKY6gXEK0v1hjofQ+2UJDsLbaYq8JlpubgGnPe/9I7JEBCpjhTo0LX9qR2xv4yhw847FMkw+2oKswh870rOBfblewhMD6a2ld2Hf6B9wxPYTfLQRSPuDH7cQaDl4a0a4e4gyRU+8QffnvFFD1VSLPO8YjB8yOui7ccb6FN+l9y1NpjBdxmsKzs5b18IK0Woo58z5rR3w4bUUBlVbEV/uGueHLcmW8TMalJhc8VENxpy9UwpuaIUWuQVf6WZa/nwkhNn8JBBgVOGnKqTGL5x5oaWFWQk6dcwZHDZJgrR5m1xCQ7eEjN+8zWsyn0P5TIZGAhbDonOiLNPta6Y9pyQfUqWqqL3vy8eoU2w2fLTsvLSZAi+l4sUOLeY5xHX2CprQemYmPKt/faRy8gwRTnZRWJgQSNLXpMsYzfMOFPaXU7YklEmw929ibmAVL5lwrft+JVlsV5WqCuTCwhfhOLiAw88QLXMZE5Y9+7dyeDB/yeeeCJ5qyAIAmMLhhwMKgh/AESfwQA77rjjqEYxtnHJJZfQtmVe2ymnnEI1xBDFhug01DhGkWioJMYFBpGepwZgDOI7G9dff73vDIICI2qxSeAlg5cQgiZxgMcsbRScY1YKYBVDOQU3AuQxP/zww6xlcOPoMwNqsqLNMEMxvssvvzz5g87Bm2ENt5HvTYaRYR96OEAgjANhanAvy7we1WjRHgpZioRxz7NQD2LW4opny/Dg8Aeieky8ehzy4YKBKkI6PaVAI4pxUBLihmqEeEON906YYIoE3rMNTW59K2/gTg9TvCjEpIHkkX0DinIHgg9Qp9necdLhrd/Q5kWXYiIkqd/qetSg4AhVL+xr9WoKj8l1xtooXmG5B1KPbZY7wuBU83t8OXJFSZOMa31mUc0twW9D9SaQTHZI/lIYORo8VtEh9a2USDcdRy77U9s3TR6zfI3eXL1/Nu9snOMLmaSiXFF1Uss0gRdHcVc5Dz1/WPXkBoSacolcqZR+wITSjlmTq6b+XV3Vm7zyf0OB4s5eCKlqWPnbbWtrW7459b8NmMBrCop4xLjHzCkV7rMpy3teoSStyhgH6WVSvVBSEh/jaABJ+7q6OvKYwTEBJ8YNN9wQCBFEGCRUGGGwde7cmeTsJ0+e7C+D8TaMMNREgxoiwiVhJMWVygfYNpQlkWPWoYM71li/fj2NycM8bzh+aRsgdQnHK4FzRpbwigPOK22U1TBDXCc8WmHMnz+fwhdXr14tJkyYkPgxYJtqDh08ZrokaV6EzdzbvrctG+dzixoZxYFLsQXE0ge8Y/aHu1UgRB8M+qejPSRND0yrRyf7vTEBWZ8B1gkJ36AHepyEbosRWNSHer7bzmGApRvaGS/h3s3t8Ga8MbPt/Q91Mno4ogA3RCNgoMkwOT1HyQAG+fWQu1+3ngwwWgcz6y2trgAFvG6eIAXCEkmcxStSHTi/KG+i+WRFxRMVwqzlZpFXWR3YwrOI3zswiN6o+5C1zdoGcC3Fm2zQ929YRg2dzhLgMUQGhO4vbP+FkOQ9lq/BaIq4KPQ4VGzXR/FouWjeEUXUweZxsU76qZ4wTawqcIwx7qOsdcoVfpoLIc8widEYk79lJY/c3ZznidYiQrLy+WTuHhWmN+f8qfls/hhDelJRccDLGVbrzJlEtQwn5IZS47kDmw7PCWy3oa1UQsWSsCpjrEVjhD3CCJoxYwa9bAwcODArVFEHxl/cVCcTMOhgyMGokzXMXn/9dTq+sELVKG4NUNz63nvvtTpe4oAQzjCgOF9ThhmS+6QFb2PQoEHkIkWooi4NCu/ZMcccQ1XJbYmIarKiCVOBvpKEqBX4MDU92PQHJjpPCiPBjJb0LCgPKXf56Dy6UM+Zb6h5eV5RISZqm0TMplrXsRl8IQ9e8hiis4fHJmR2Me4xpoKI4zN5ywLhK36Okafmh9A3T1VLlZvGMq0rV+X8kIR8O4l84GGvxnujkCvuKeQ5yWNDWCSdixI6pxxzZF2qUlKKAZ7NM64MTKW4hZ97I+8HKvCqbcsLEZK16ciLphhsbUa6EkZYyIC2ECMpYGDmuE6lekfy8YCp6+VKnP3oYZBycO+VJggNI7dEIfieGOXZE8gnM5ybv6zXPnWNbq5s4BhzPe9KMNI0gmG/2d5EfxlT6K9aw9I34NqMIloEbhn5d71b/sSd8FGVTpXr7j1HaIxRX09iUKrQmO16GsF5eWMUGQqpl8Bgqg9I+L/33nukEYGyW+DHP/4xjevjCIioaVbSIM1V6wLetbB1KqLAdJJA0h6vKBBPesUVV/jvP//8c7Ky77rrLpLOB3B7XnzxxVQ4TybvIRERNREKsabzIskwqjAvkKl4tIWsEDF9RtJklNn2pS6jDIis9dDMB29PXtY8Z4HjM3j2AuGHEcYZvDjWczAcYzUQVGl08z1cg8yb6ZaDInivcNqeESVnW8moxQO3tTnXHVNIHMIU62EQQ0wEBZBxzVauJuOgrmsXt56ZF3rn3qcb7ZLwSTyoCx2UFXNgZzKG1N+2IUwsy8OlFOOlZSjECOFKbn05ut4Bj7gW/mwaUJWLsPDtOF7zqOuUpgF6vsZZqVCMXl35NTtvSEHx1gTzxyJEJpR1fa+wtz/XAICXJ6VtVSQiDeGwdQN5X155AuojvL6gEX2sMllDfT4mWV1vVpvHTBpn7qQt8I1BqO/q10XrT7Ke+SRIpOUoex68SieD2zeJR1YV3+LQjIB+RL7cfvvtYvr06WTgge23316cf/75lB8XB93jBxsCn0E4EAIo5aAicsx0V6JM9IOKipQB/clPfkJxqUhqvPDCC6l2A9ykMha17ETF3dsMqwjPTdvsZXaukZ+DBfEPhJWZFOz0emf68WihDNawRdu5ms7H34XZ46f/nRjKMeHBTrOuUZ69tGMbtBqQgxkq8AwBDhhnMoRE8aZRTSv5YKb6Px3ccNg8vRKux221qKMJE89zS7VuGl1DjeoJbWobwMHDq8/60ky9J6mfdOhYsTxCxQpvC/NK+7kkLW70i8whU8KSXOXG4HmoSnlts+FFPE9Tv+YJFsnjCZyjrW9UzkHdjvFvE2kb1OdzPDn0AXmhesu0MLqAQJR27Op3+iRclmFH96gWdWFSAVTvD9XDrh5nDueTmusf81j0Z2Z2NESjL+ijLxd4pvoTPYrwFp4DnvS9O66QgkBa7q/X7vhMesvkdUAoY9u1DE9n8HPbMplATcvAspVOGUIZKw04WiCRDwVIWctMAtn8MGA8XXrppVQaQJXbhx7F0qVLKf8tChlCqUfjoSwXDL4jjjhClJqKMMziAKUZ5KJBNQZyoL169RITJ07MXyq/GBgemmrYofpZ1GyR6knKNmiCXiwghR4CcsHKw0mdKTfmdYR0sPr55DrTZZp9tYpWFAIe7gjhoppOMQYwYYPCCkC/Fv4sJNT40M50Db1cMnXwoxVolgOiTH07CgWl7WzcFNtIonyzrl3dnCfPW0Pqj+3rySjD35RX4E0iAJpIUBQDfbXApAZTAU9vMC8zFSTltfIMNVPeluqFlPeAWpC+qO1i6T+M+W014NUumLD8HVvfHfe3pIaW2vpn9VliCEWXYbe6YIXv2Y0dVhnsu0OFYUzbMHme04DBEA3NKzP9duSz3wtR99MXZPipup7puUqeK4Q9K0awNM60aAm/9AoiUPA8wLNApj40tvcm+yz5wvK9F65Iue9MTXLbbbeJn/3sZyTYsfnmmwdCCjOZTKRhhiLUEDtBQWrJ97//fSqXNWnSpFiGmQ1E27300kuiHFSkYYaYUFOC46677iqeffZZUUnYZsD8h19IJ62un2WcqR2xHGQ1b8r2fhhml/WClfox+IafxfMQmhOk5SsEztXSJrY2swqU2FekGT0kKSsnU3mz6jExhp7qkuRU5woP5DaPBeXhwXjDwxU5HR07uPkDeAjX1Qln3bqcje+W1atJFbSuZw+/OLSaY0ZevPUbqJA0hduBdu28EBpvYFek0EEaHErhi7QYaOqkgB6+l2sele7JkGXJvMkYNWcItacCXolc9pMHwb7MEqYYtv9yX6ckiPKMmr7PYbIs0WO0TKTJSR0bqkBN2/0X0pdb+uVAbpS74eD/ldif69En2vEZQ/6zJpbavqcJWJmDJ3/f+n0hryE+Vn/npM7ojQO8WpPuchmRQfijMkaweSupyL1qMMttK897955xozUqXXkxbaqMlQS8XXCgQIQPKpG5smjRIrHHHntkfY7P8F0c/BJZHrjvsS4Mu+22206Ug4o0zCoSQ9iOLf46KuQna9YxoMBk2J+Wr5LlOTMsowoLZJ2HCbVjjjNo171zYXXULNsMPKxkqA2FXsQcyKXtAV0IISGvftK4XpMKL3wEj5UUwJEFMWGgZRxR160LCX/Qat27iebPPqf7Ryp36ZMHWXmP6nFAXGTDBpHp0tl9376dcFatIYNMFit1YBx27OAraEZez4QIJJzTB0ox23LeJ/o1zSV/Kub29fYtpRJaaF+hD77LfS2SJGY4ne/5UPtyoK9r+u3n6hkLI8LoizTKNCl9PULDJAFvmyQJiIFI1D4t7HzTeP9E3N/GEESPQJsp9wb66Kx6Yqa20crDqGHtzialjAo8GXXq8m5kBbxd9DzwvJ+0DS9c3s81U47bz2/GJGlInaqqoQwFpisJ1Co7+uij8zLKwLbbbku10375y18KFehPxDWqevTokSX+AeMM6ux/+9vfRDlgw6yURIRShBkh2ZvSCkUaZzLVnI26wMylKqMferxSIMI2mxtYNiYWL6DN+ArfVPZDKRIpciHj5qtpwGfAGH6U8QozY6Yb+V3Q+8BMqZdzJuu+4bO67t1E66o1FOKCkETympHh5IU9yppDMpfJm0nN8ppiBhZGGQwxhDD23lxkenR3DTLkmZESZGtbOD11ljKUpvjGgju49MI2pVqlKoaRxnskn2MzTRCplOo8c/VspLH98yVmCKEfIiYsXiKTcVbMdsuKnrBHK2QZDbrHz99kdj2uwDaNz5r63HIvK3xiLWsZbTIsEKKoqiLqE78w1vzoAFfcKcsjp0zMUphiBh4uhKGibT0vu9/ve/UtlQLxBEVFaBEa3jnQhJ6p/iRTc0AT4u6776bSWflw+eWXi6OOOooKSsscs+eee0488cQTZLDFQVV2BDASIUoIo69BeoxLDBtmpcI025hLnpN1s+EeJ/jAA4nVcpued8BYN0rdvQx3suV65TObbXgom7xk/jmo52ZSjVNy6eJAKoNSvr1aclQsbe97y6Qamm+MaoMhqidW7xtlMi/R9VhtIqXG5o8/bQuLUfbnJ/h765E3zZsA8EMQyQDcKJwvlrrLwOhbsxaSTKhZ4YbMrF7jFkZGAjpm0DwDGsdFk7VSrKWYhrQcOBg8ALkWv06MMG+I7hXJJZQryZy9aqXY7RPTQFND1rIMIz1kLM728wl7jPEssoaky2gKxWufZYRZctQCofG262HyLEe1bZru/TDPp99GLZ46bkj+tXd/BNINlG34fZjSB8hnapYYF12repFRJ8u8QtT+MdAkVkOW4EibKIh2HiaDLE3XIWE4lDGcadOmie9973ti1qxZYpdddvEV1VVxjzBQIPuFF14gkb/777+fPttxxx3Fiy++KHbbbTcRh7333jvWcocccggV0O7fv3+s5QuBDbNSoT9UrJ2vRsjD02SUGffrJ0y7HTLlkGGmDOEOUqkxLOxFrmMzzgwD9VwGsPqDxiabHMhBkeemDEizQvUi9kkzh5ZBeMViCHsNfu0+nN0cBK+YKD6TBaW9OmbkKevcSbSsXOluz8sbaHvYylpEyj3hKXq5RUIzbWIe3vHIhzVtA4aYFB1B7tqmTSLTuRMVpKb6Ochzo9la3JveYIP2rYQaJu1FiwiBovuvXIMI9braBnH5TjJU8cCoatrC0Af7A2fPA9L2WQ7nlev5hoUzBjzy2TlnAaPS83rZJuKynm0yZ0n29SbV3lyvWxqvc8ikWsAg96IIsryRIRE5WUawatjr3kwvV9wfP2AZxeulKmgib1v1jnk7IrEo9Zls9ZKl/DoUBKsyRhpmKCQNoQ2gi3/EAWJ/d9xxhyg28MqtL5FQDRtmpSTEKMtFxCLrgaSFJqkGjh+uUB+ceaSHPHKIVNn4XIwzk6EpBwdx8kYMWNczzQJHGKxZhWmV/fuGo7cdvw1M+6o0ItpXJs7jnP2HM4UseoVC8TdCDju0pwLRgXUVQRo/bFEaatSe3owsGVJuToKq+OjfOzDgsAw8Yliv2TMG27dzPWeefD5yzRD2SPvHPeyFLwUHbwmGOYYYZXoNoJIY83HChU2/Bds9oP9W8/GaVDu2eyANBpvsg/XCu97f0pttHACbvE35nE/ExI/8TC0ebRN6yfauaQXODeen5kP6UQCm/j7Xcyv39Q3LHTM8g7Pyq6O2bVnG+sxVn+dScIXmAZAHgUm3NkOMSqrAkxe2v3L/dphU8pvf/Ebceuut4oQTTsh7Gy0tLeK+++4T8+fPp/dDhgwRhx12WNnCEJOgco+8EjHldqgenwijLKC6qNWH8Qe/lnwcYwKx+sCTs2ZhgzXFa+XPpukx7GGD5KhBoG3fIfkJbQ8rqQYpjdGQfWCWOVAYUwnxq3QMbSgTrv3Yfs/QkCGK/j2D2lfwjDU0klEmE8hVlU9XJhlt7BYcVRW9MriHM5Bqdo07Ms7Ia+YNGmXNNBhdCFXsvrlrlDV4Rg+8t1gHBlrnju57Cq/c1LYfeU7K9XIHqubwV79NCm1WKR/tz0gXX7EwdNu20MY465smiMJ+m6bfXq0MtNR2Lffg3TueTB3qC4b8FmwhY8U4dkt/o/5vumcC/a/SH0feh7ZcrEKvTbmvq4I1MsVDDT0MLOu1iSx5ora7LQol+6NguR19fUTa+JNxUSie/axolxqBQxnDad++vZ8blg9vv/02yeMvXrzY97r96le/ohyxBx98UOy8886iEqnNX0sa0BNzbbPhxlXbZsr0vBuTcWHM3/I6WzVWPLDfsFl3dV1pzNk6f9s5RQ0ao9bVBpeBc4l6sHnL6m2V9ZBLszch5vGpAyCa2VQMMfcB73q95MO8DjlfntGNcEIZekihjkp+g7zXyHDzcg5cIxfy+3VCYF3sS4ZI4nq1tJAcPkIkaZ+Llwixdm2bcQYPGfaN9anYqZu/QOuTly1oIKgiHWqb+MfsefX88MkkrqnqnSgXqsdL/S3o723r2n6L+jbV35jedlHtmObfTo6YBr/lBDmysu/C/3gGqP2ZUR69GBjus6i+17BC8H/t+eY/a5S8prz3FedYUnB91edYTpNMXnv5xrkSpi89i3qb+c9CNWRSndwyeUhlLUqlf/V2ElgW92lsr161qzIm8apCzjrrLKpFli8nnXQS1Sz79NNPxSuvvEKvTz75hEpnpaqGcY6wx6xU6AOiuOFHCrpQhn0ZGTqmFJ9WOmxVSU++J1RvW1RHqnfYUd6mMK+XYXtZ35m2Z1nPz2UIM/60XAd/m2kqGJLvLLDqPZXXxXElt6XwiW+kwQhqbXVruymdP2qOofZYQ5/ewkHIId0Xji+nrBsn/n1DD24Z0uqpX0L+fv0Gd0C5YoWo77W5t5M2JTFS/sLfkO3HPmSxUxh4+Nsz1MiA9OrsyJlbN8Qxe5AWyDmk41XUyvJo17aBrxoSK0qPIR/EuIwtpMjW94T8poyoAg66iJB+bLrXpFI8b3rualpQ288PIXdV9GiCxVQSJUlMIZFRnkUt3N03FEz9t8k4kP/L+y7peygF96Ie9WEMabSvnDU5a8zbtkyiZo0tTB5KNeeMJgAaRKbZnRgI7CtwvUpXfoOpLCDS8eSTT4qHHnqIDCxd/OPee+8NXf+1114TL7/8sujZs6f/Gf6eOnWq+OY3vykqFTbMyhUSE/a9ROsUbTNoMpQvuIwXziAND0PogzlXLYeRphqiEDbYtRlhBkPNeI4xtx1YN45hGdiMm3cmjZlcBUyKQo7nIPE9Ylr9IzXkj3LMoKbleVxJCMbLMXPXh7HWUbRCOdFxqF5N2w7aFBjb3iuH1dymyEUSyygYXZcRDX16kbhH85KlomHLAUKgE4YxiNBG5JX17CoyLZiNbRSiGQ905KB5YVHYFg3koNjozQR7M7fUDurxyNl15b5pu9flbHLMNjY1u6dqqSqklW3gEcfDbPvcFhamL2Mh8HszGAqWlbK9cWketMVoh7JhMLqRg+WoOaSlaFvdsJKhdPqxRoQpqpOK7mbD++A2Q0BOQqb8XrIRkrMXZZQF68FlG1y2tAZ3eS38W3n+txmEwfBTowASTV54E35eqHzw9Mo0gZUCOJQxuobYEUcckXf7br/99uKLL74go05lyZIlJHdfqbBhVgryeUAaOjf5f8BzpsSVy33JB5pMFA92sEEvhz4jF5AmjnuccXLHcvGemdYJ+d43ROKEUpo2pSozShn5XI3UUhNilLW90WW1PVVOmS+F/6lsQL0rd+wly0ImX3pY/RAiZRCvzlarg3N/H1QOTLkf4Y3Ddtatdz11HTuI1i+XuWGKXbsIgWNobRGZtU3C6drRXa8O4jS4Jzf54ZF0h9Ix1YlMi5t7JouU1rXv0KYKKQ1FVbDGO/6AgaZOLOTx+6RQHT8/rwKJEz4dMXmi9x/WviPKex3lFZfv02gAp9Agp3uT1BqLPMFkMe5NSoKBPlsTtQh8ZvMIm54TfmSI11+n3dCPwPTbMmJok6iwR2Oov9efy2gCKYSVZeB5uYD+RK+sXVZnCIlW11MnB2sRVmUMZebMmQWrOp555pli0qRJ4lvf+hZ99p///EdMnjyZcs1WrVrlL9utWzer2uIee+yRJRbS3Nwsnn/+eTF69Gh6jyLWm222mSgFGYck1BgJLmT37t3Fd8RhogFFeBNr6RhheracM9/bEZHHpXvX5ABc65TVwaTdC1eC8IM4M/Zx1pd/x10vbHtyG5X4gDeEoukKbnRPePLalCPQrp1oWbtO1EOqHt4tr8g0cs+o8LQMjVFVFU35IIaBgW8kestQ/hqMJxhcza7QCBlcMM6wDDxo8IjV1wmnEQ/+VpFpanZz0Fo99UbZXcHQ27jJ3YYsZlpf11YIlZZpC+vRjzNQyyeJNpftXu3kMshSDPmC+pNKCXtMI6VqO+2+yMrLs+xfD4EzeYd0YRN/s/VtBoIqdpJliKb9Nxrxm7KqMBueU6Y2VPtlfwJWnVDytoM2RB9N8vfq7pQoEnqPiTT04V5fjEgLWhfhszLnXT/eIrV7s7NJPC0eECtXrrQOvMs5jhx14GTR0Nih4O01b9og5s6amLrzLJR9992XwhXhOdPbb+zYsRTmGAaKQevy+tKkUd/jb6g3mqivrxeLFi0Sffr0CXy+bNky+sy2XjFhj1m5O179wWnowGRIommWOtDpKsV/pZfDGNqg5FHFnu0vRuda6PYi8hhyohINsahwUULJnyOkYldjUOrYe6DSfYVwR9WgD8kHNM7S6gMHRaggA5EPb2YqI7w6N3g1uLXMZC4bdanoYGVIVl29EO08I7PZWweTDBgkkPHpeIO0VpGBgUde0GDpCHkMiV5naXxoUt6powSD0+xBdYgnOxeDody/y0o2DMtwzMYwRg2TAWHKpwrcO2GTm4FJvpbwNII0XccYEx3ZohyK6mKuRpkeYSPXkzavzN8NbiR4vLK+lBpKbupb9bDlGoRDGcN5+umnxUatODnYsGGDePbZZ0UUTz31lCgUabjpwDDr3LmzKAdsmKUF24PD0nFbwxy0sJAwpaWsB6DsYGNK6xaNXPaldv6FhEyEhXClHD2cTn3f5jHS2kd6l6igtCeiUd+OCkljOYQz6rLXuqqn96X5mBRRCFJzJJn8jb6RRjltyEWDkQbjCx6xpo2uND4GBzg+aXBhVqx9O28wAM8Y8tLQmdYJB+cFhx5EQ1QFSmzHq7ejhnAWBbr/sgdKqaIEkypZeSRxjMG4Rk8uhmWxrkMlGmhluCdD86IMx2Py6ATfeyHVnlcm8HzScqOs0Q4B722Kf6cR2MoKZAmmmFcO9tveRJwUgzK1mxrWT8s2ep4y8pi5YY3BPNMYfWya+8mkkSqWSWyninjjjTf8v9955x2Su5e0tLSIWbNmiS222CJyO3vvvXes/Z122mmUh9arVy//M5nbBqMMddQg3a8eA44RIY7lgA2zMoSXZaF7GYyLWLxcId4LN/Qje/YwkCwtwxv1B1apOk5L3kDs/VsewMbvqg1DfqEpl8DPFZPx/jC81m/wBUBgCJFaIwwo2pYnfqLlIBoHW4oxHyzFoFxXrw6aAxEQymlzDbMMjC05UwXDDfXLOrR1jnSsCFOU28XxguVuXpmDfcOIo/NwjThSkJTKkVJm21TTKWHUcKuyi8YUiyR/V3p/qBteUVEGtjykpI5PP1Z9//6fhkmvtFGKgXBEHljc/VuNOmlIKGIXgdzpmJ7XWGJVpSTL25dDu+TibVbURfUIHKh3IkcX/WSg/I63HoW9qwYh+mz0u/hbHZfE7ffS0O5MWRk2bBgZRHghnFGnY8eOBcno69xxxx3ivPPOCxhmCDWVHrOuXbvSPiXt2rWjnLXx48eLcsCGWZmTtOPMBNtmwfzC0BZVwqxCpKpMvpKLljry7bhNg71qfQhEeFbVsBU8bKXRRfcACkvL7708LKOssrKtKHUwNZdNqha2GWrevrywRmyrdfVqUSdl8xGaKGPF8TegXDT0UA2+6qLTgIEAJca6+6SC1g4ZYpTnYBoYlDhfMPVCIHHbIkx4Qx9IRg0uI7yrgeXkfWJaXz+2XM4nSQwRB205wPaw38BnpSLMgC3HMRS6KQqHzlaBVA2PKCKFakpNzGgPY8RCWJ9j8H7J/Fo/X8/bt1paQeaKBUphSKVPWcZE9slK+RTr/qv5ORwFi38YWbhwIRlEgwYNIsl8FIRWjaI+ffpQ7ldil8EgpSGFR7BviId0Qg68EOLDDz8U999/v9hxxx0DhlwpYcOsHOgDFVvHZRhsy5BDdSCsdriqwZYVn6+FObqHYinKHHZMSXWyhYQe6sdiCmmsxodBjNBNvcaPzD2E6AcZZTIXkR6yXl4A3kMMxLu/TKExxnwFVebaz1dQC1i7dWwyCIFBDlYGdcncdVqXLiPDi7xnXToLZ+Vq93hQu0zOXmEQgLBEKEVC1RHhj14HSt4xdTDmCZdk9AFDWsNw04b6u1GNJD1PRDfE1H4sbLtx96/uQz8u9X/976QJ60fIe6NMcOEnRYXM3d9Aamqfaf1+3iqkUbvRBKWsaAaFKSQ/dt0u2SfJEMWYOZ6p8W7G8JS1LWoQRYlpkJkX0aJu5PEoE3mu98yNNiCjTB0oe5EWob/FWjbIPHDVkiiNmsLp84IYOHAg/d/qCXUhnPHjjz/Oyjf7/ve/X/RjefXVV8Xtt98uTjnlFLFixQrylKGe2tKlS8U111wjTj31VFFq2DArhFzyHuQy6kAml05LC8PIegiq8uZSec94yMqMW5jXzHZsSXa0hc6o2QaL+nfVRIT3QRpMejmFQBgQvvfyvihEEfcKlvc6ReOASRtAyCT0wHunlWZb3feeYUSD+oy7L8Rwq8nl9fWu3P26dSKzerVrMMJQw8B2zVrKE6O6ZQid8ZZtEwvxBES878lIk0aZJwyC88kSL6nW+yIucc8/Tiihyaum7yNsO3EnUQq5ZoVce904Vbep9p/SW9bS9reppmLZSisoJS5oUiTpUFtDaGfW91r7ZdXciutVlcuq/RoZwhUaVZGD4W4zZLWFsrfrTazo0TJZ5628R2i7XNafyJP79frZVqj2mrZj2F6Acrc5kyrP2eGHH075XAhr1BUVW0qQFgDD7LrrrqO///GPf4i+ffvSZ/fcc4+YOHFiWQyzGi4wkQByJjlHAyv2OlEDHBk6pgs9eHLoAe9InNBI1dNSiple06Anzjphn9dwpy9LIQApeKGGo9Csp7zOsnabFwJEYh9+zbs2407ZeHBnyiy83C+kluHpggGGWmWBew/3IwpJezOvtC/ktbXv4OY3wIOGcMSmJgpzbFm1mvLgIOWP//E5tl/fo4frMUNe3Lp1dNwk608H49Xv29Tsfl6mQXDFYjKwTF4x0+BW34a6rK2/M3nj9OMp9Les71+ei36d9H7P1AbqNvV9+H+2TQRkKeTZBhmm40kK9dz1NkgCbzsmr5evyKk8p3RPfFA4Int947bVdiwkOkLv40pNDvd3pLiHyautfabmCeNZYBobUMgiIhjQR3uTuzSOwPKdO4pMO1fxtgUTZ2qNS29d67GFva9mYGgk9apCUINs6623poLQCCV86623qK7YiBEjSLGxFKxbt45yzMCjjz5KoiCQ4Yfn7KOPPhLlgD1m5SSOEaF7lQIPE00RST4ApdiBrryoPM/88DPP+xa7sGWS6DPSubSHbVu1gGFwrOcDBGboYaDJMEYl7JUMNWU2XyZ+u/eJUrvMM94C94UeZgsPXFMTSdVTfTHptdUGo63r17ufkyokCku72yNPm/RyaesgRMnNi2gO1EaT50Rgmah7thQDgkofdETNflvC+ozfmd7bvE8qcX/HYcZe2Do2I9NkrJmMmqxNKv0mfmNyQCuNkrD+Lcx7Y1s+j3tM7ReKiR7ubDQolEkd/ztL/237TasKjW7NzpwOsvzPipj3VrHOhfpTTKB5yryZjh2Eg8k5r9QIyo7Ude7Upoi7foNohTFm6J8LMo6rHJbLD2fu3LlUqwy5XLgXkVe21157+YWj4bkqNttuuy3llMFzN3v2bHH22WfT5zAWy1UzrkZGsikl144sLHxNfe95JOqgcKfOEGt1zYwS+aUqLt12EPGNsmJjm00vJybPhBaGalLrUsNa6SNPkVEt0koeKhn6quYPeMupcvm4lygXzPtcHVTRy8vpIk9X04Y2NUR1xtabocXnpNDo7ds/TgyyGhrdlz6b63mAsW16rV/vG2X+uWny/n5bMfndZ+rftt9FVPvavFO2EEF9wKq/cpnsiXvMYfsweYpNyyvlGNTfXWB/Mt+zkNDLQu5nk/esmBg8Urraq2/UKqH3oVL7Cn4ZjAImEf2+r9R9vum+j0FW35ZHxInfd2MCbeNG91mBotKo54R+vr3b18NQc5DXu2qNaF25yo1CsAksMUweIFRReqtgnH3++ed+Dtq7774baxuod3bssceKUaNGic8++4w++/Of/yzmzJnjL4PvbUYWwhWh2AjP3ciRI2k70nu22267leW6pmgEWkUUY3CvdX5ZoR7SmwYvgifAEFhXfyhHhD0UHUtoXEHtlsc5SCM2ckBULkJmRK2eTV0aWV3e83yRsQUvlxwkeWGvCCv0B5m4n/CQRogiPFp+7ZqgUS+Xz5Lt1wwvmbfgG2hSeMRbXxpdZLipoiRhvyeE3uCYTeE+tvu9Uinm4FHvD9S/9faLCkHUtxs3lCmO4WA7HvUe0UO45O87KoxR/TuOkWb7LOQc1DzP4GZKGFKX1G8h5H6UkuyB9waPmmlZI7a2tHwXiQzztoSdppWs/j6Hcw9M1KnGMYwz5OxK+Xzk8jY1Ud4ujDd4yiiagsnjgiX4qkJ23nln8frrr9PfMIquvvpq8dxzz4nJkyeTYmMUyAMbM2YMSd3Du9aECV8hxMqVK8WVV17pL3fjjTdaFRZ/8IMfkPDIyy+/TPXTJPvtt5+49tprRTlgwyxpiunWVwax1llbz0tBnbAXdiBjwU2esLIVkw4beJXQaxVQUFPbMk1eM0vIS5YBri6vecfoY+WhDGAo+cvIbXpeKD9PUXq2oIoIgQ1dllo/Nr0NtRldkwGXld+on4vtXvGWx3no3rmkifR0lII4hmqSmPKtovJJor5LyljW7h1j4V3DJIKfE6kubzNK9femviGf8zBECaS+zEJc1N+6IU9M97ZLj5e1Tqe6zTDjLJ9DVcqEeAcnqh5vbKBP6pEhhtyxZcvdvs7L1ZVY61gyoaC0S1KvauSSSy7xlRlhjEEM5Nvf/rZ4+OGHxfXXXx+5/hVXXCFuuukmccstt5CSomTPPfcUr7zySuzj6NevH3nHEE4p2X333cUOO+wgygHnmBWLMsddtz2wlP8jHjypGxyUIrzR9tA37bfc4ZaGnDI5sFEHOwEBEN0wosFQWw6ivl16q+Zu4c5Zs9bNASOjbGP2INUWcqWHpXnvXXUwi0fPVAdK/d9wvFmfh3gZCwrHqsVcCtM9kot3w9RmSfyONGPful1tosfmYc7arn7clns5qXOoWPTfmiF8Mat/ipLTzyd6wRaBEYGfC+sraVoUR9V9JH3dkuyv4u5SqTXpl9bxzqtljRsarh+bL/SR1P3P1Dzwdqm5XgsWLBBfffWV6Nmzp6/MGAbCHUePHp31OYpHQ/q+UqmBKaISYQqlSVvHZTmewIxlGo45ziC8HKTAKDPNXKr5GqHeANUzJY0khA0qXlaStIfsPeqIyVwzvNq1iYfEbhPbIFnxXgS/zp5VN4Wd2QZ21pCoAsNjfa9q2n7T5ciLCTv/uB7PXNrQFnaYi8Fo8uqG7c8UqhnmtbWFOMbxKur7StP9FQfLOdpUGvXcslByaYs41yruftRr4l3H1HjM5f9J3CdqCLrpN6r0fVn9X6Xdp+WiNcFXjbDZZpvFMsqkp+v999/P+hz5ZXFCIdNKika9FUzc3IM0kEtSfDkptnGb1utjuVY2YyTLmJECL5a2CwyIVE+CfPAir8CrFVbf2ZWnrx/QlyTrs8IYTccbhT4Dqw3a1Pf6cfqewCivhzrorTbPRjGPJRdjolT9h82o0//Xc8hMYZj6/zajUd+mim17+rJy8sGU32YzJtN0n+VCzH46ssaZqU2LcBxZq+my7/o1UQWxinGNTBMBaVGSTNtkVIXBoYzFZfz48eKss84SL7zwAhlzEA+58847ScyjHPXHkoJDGYsUzpFad7/poZe2Y9TbLcl2NG0rjSFqiofMFgKUZby0fRH83HtvnaVW1pUCHUj2rmtoEM769UJ4NWt8b1uUZyLq/teMs7ilGrK8uto5GyWz03RNi9HfxLl3TWF5+vuI61R2AyLqPHP9PN91bX2H6Tht96RcLir8Lo3PD52oyZ8Q8Q/DQmU9X6PnqCQ7bk3/RGIxn8kMkycXXXQR5ahBqAP1yBDW2L59ezLMfv7zn1dsu7JhVmzjLK2keRCgDuoTNsrcAYJS/03uL00YHsKm2WaTdHIgoV2GK4YZPXpbewVGCU/sg4y1sEGmTpzrphgFJoGAtsUs3rGwmdx8Z9wriVx+G1EDqrDwpCiDr1gTJmn36Id5MvIYwAbyK9McLmbycEWuEtLv6J+Z/i4FcSY2iv2MVPth/bjKPXmYxnuxEkhKUTFl6f9pIZPJiIsvvlicf/75FNK4Zs0aMWTIENGlSxdRybBhlhRRs59pJ23HW4zBSS7GRSkxPJD1GWa1/o9KIARQl0JWwg71wVHge2/fsvaZKmtPYh/FvDcMEwTqOenetLbV6uJ5fJKg3JMW+QzKcm0T2/Lq58VsB5uxqB5HWtENMZsXLfBR9n2dVcA9jZ79sPvHukqM/OVS3GNR6Pe6elyl2G+UUcZUHlBTTEJRsUpVGZOiXbt2ZJBVC/yLTwrZsXJMdvJU64NJffiHGGXy7yivmXGAp6wfNYPtKzGqRnEhA5N8rpsh7DJLYlvdvh7SVwzKOVCMk38Stn6c7QPFY2pdz2Q8JdHu+j71a2ozUtLYL9ieAd57eS+b5OGNRlnUNUkLMY2uQM3IkHYqWz6V+rfeDxZzUiLsfFPoQbWWN2EYpmDYY8akm3J7K4qFJVTTlmMV5imT78PWz9o+5KE9D5lxoCS9i4W0f76hqL5xFu5pCOyj2si33W2hZqb7TW27sLyzOHmFxfKW2Y6jEvoEpX0D9QINx271KlWC18QywWQi1CMYXNAc3lpKD1Yp0L1ltt9kvn1pkSikflwtkYGmTALOriS2wVQObJgx5SXsYZOiB1HimB7A+gBNG+SoQhl6kVa5bJQMtbp8IJQx7DjzIYkBtD4o09qgau8NEOfcwkIVw0KyTAZOmHEUZuCV8jdaidfbP2bPMFNyPrOX0dDD2tJknNmM5Kj7zMvzlfUWrQP8chonxd6+6Tekfyf/LuVxMcnDoYxMHqSop2dqjrgCEdWCOtiIOneDUSb/zwrrs+SweAsVZjAVI1Qt33W9wZnRKKu2e6UUIVr5biup8NFc1y+nYVLgvrPCFU0GtP47UUPo0mSUxbkPbOGn3u83yrMf6qFNW1vExdTv6+/l+dnyzhiGqXoq6hf/r3/9S4wcOVJ07NiRKoOPHTs28P3HH38sDjnkENGpUyfRp08fUmpphrIck04MHpGqRn3I5jk4jiU7rYaa6O0at52TzGtB2GShOQm2WXnTeya7bWy5Snqenmk503pJ592E5ZWloW8o9DxVT5keShp2fiZDLS2YzsM26aR5zwKTSrY2MG3D9HklYfJk6+cV5u1mKopMa3IvpnaomFDGe+65h4rJXXnllWLfffclg+utt97yv29paSGjDJXAn3/+ebFo0SJx/PHHi8bGRlqHqQCqOXQxzmAzYnY0dJY5IsxHV2nMOoa4eT6lzkmo5vuhWJgGdLqHwzYING1HXz/K0xv3mpmOLyzEK9ftp40IQ8z/fdsmU9I+UM8l+sF039nuW5Vy5Z0VQpTRGXY+lXB+jB0OZWSq1TCDEYbq3tOnTxcnnnii/7kqj/noo4+Kd955Rzz++OOib9++YtiwYWLKlCniwgsvFJMmTSI5TRNNTU30kqxatarIZ1Pj2B401f7wMYWsyM9Nyyi5GHJAZzTKbNvU2jNgGKlhMnGo9mtTiYQN2ExGmD7ozdWA0icVTOtGeUri7Ef93/RdpZDjgDpLcdXU5mkml9Bo24SB/j6OZzxiQqqsmCZAosh1eYZhqo6U9/Yur7zyivjss89EXV2d2G233UT//v3FQQcdFPCYzZ07V+yyyy5klEnGjBlDhtbbb79t3fa0adNE9+7d/deWW25Z9POpWcIGdLUYtmkz1vy3beqJodszfRfmAeGHfuWTi9cqzu8rakAY5sEy7TPqOKM8dJWOKbxPnRBRJkaspSBMRlm1/HbDQmuTaOs0wEYW4yT4YmqGlPRg4fzvf/+j/+H5uuSSS8RDDz1EOWbf+c53xFdffUXfLV68OGCUAfke39mYMGGCWLlypf/65JNPinouNUvUDH+1YhrM6n9HDGCz5OHjPPBNy8XJaUkDUQMsrx6SfFUt+V4r9TqbPFiqF83U1vq9o36vGhdhHoE4xx21TCUPbHPImYI32/obVydTKqUdbEa3LSTTdG65nqu+DZNRHHWcldA3VhLcliLjOIm9mNqhrL3QRRddJDKZTOhrwYIForXV7XAvvvhiceSRR4rhw4eLmTNn0vd33313QcfQvn170a1bt8CLKQKVMqgoFmGGmG1Q6w02aEbdNjCLO7jVZ+zTjOZR0I0xfzDrvaqWXK6TyTOTyzYtxkCW4ZtUaF3ckMe036sqNuNWXybqt6gbE+Vsg6QH17kYYEnvO8pQq4S+Me3E6YMYhklvjtm5554rTjjhhNBlBg0aREIeek4ZDCp8ByVGANGPF198MbDuF1984X/HVBmV0PHrM8T6Z1HHr8yoFzxwTXtbRSELXtcCUfeG6fso72kYIdsKFCA3LZOkQWXLh6sUwnKgwpbJdZulJNf7UF1HvZ665zVsMirOvsOON2wSTA8RrYTnSCWhtn/cqJBqhsU/mEozzHr37k2vKOAhgyH27rvvir322os+27Rpk/jwww/FwIED6f2oUaPE1KlTxZIlS0gqHzz22GPkAVMNOqZKSFsnbxp82QaZNuMsatDC1AZxBqem+80UIha2fZu3Jq4XIxcPQ5gxacunqkSizlO+N12rSjNIczH4w4xT3SBP6tj0ftYWSskkix7mXMsgAjGJZuBIxpqiIp6CMK5OOeUUcdlll5H6Igy0U089lb774Q9/SP8fcMABZIAdd9xx4vXXXxezZ8+mfLTTTz+djDqGKRpqWJJpZjjMu2GbXdThh1ztYbsnosIRcx3g6uFHESFfWQqCcYjpHfaXrdT7PcpzqV+fOKGNlY7aN5oMcJsBV8j+4myXc8qKRzXexxXEM888Iw499FAxYMAASvm5//77A987jiMmTpxIQnqoC7z//vuL9957L7AM9BuOOeYYGn/36NGDFNHXrFkTWOaNN94Q3/72t0WHDh1IOO/qq68uyflVOxVhmAFI5R999NFkeH3zm98UH330kXjyySdJBATU19eTKAj+h/fs2GOPpTpmkydPLvehM9VI2GA21wGWzYgzzbAztUOceyhurlau+wsLb5QlHJI0NKO8fJWOydBVz7lazxvEFd8wtUM+/Z6pLza9GKZKxT/Wrl0rhg4dKmbMmGH8HgbU9ddfL2666SbxwgsviM6dO5OK+YYNG/xlYJRB0RyRZxhbw9g7+eST/e+heA6HCKLW5s2bR2N0CPTdfPPNBbQYAzIOTGcmcLNBNv874jDRkGnklmGiiRMaYwpbzNV448EEY7rnTANc0/1i+0xfN9f7MG5OXKG/gUr63XN+TfVcZya1NDubxNPiAVLUTpNwmxxH7jvsItFQX3jEVnNLk3jytavyOk94zO677z4xduxYeo8hPzxp0Hg477zz6DNsFyrmt912GzlA5s+fTxFoL730khgxYgQtM2vWLHHwwQeLTz/9lNa/8cYbSZAPqueyTjAE/eCdg2gfkz88Dc8w+ZKrcloliwAw5UENdTV5AnRva5jnKeSz2OGJcberHr+eR1UNOT76Odi8P+ydyT10m6MDGMZq8KmvpqamnFtq4cKFZEwhfFECI3LkyJFUDxjgf4QvSqMMYHnUEoaHTS4zevRo3ygD8Loh1Wj58uV8BQuADTOGyZdcBpaFDkJ5sFJ72DxN8jtTrlLYMurnGnmFJ8a9J6OOoRLvbd3gqmQjs1ToRrqNUrdlJd5/TGWpMibxEoLyuGBEyde0adNyPiRZ19dU91d+h/+liJ6koaFBbLbZZoFl8qkdzKRclZFhKj68plTGmUnBjqkObNc0TLwg6n6wKQDqBlGYRycpz5ZqXJrU8vh+rm6qwUPKMPmAWz6T0HaEEJ988kkglJGF7aoTnipiaotqGSTwLG91Y1L2jAqNsykb2tQaTWF4uYTb5iJOonuXbEI3TLrJ5zrZ7r+0UOnPAqZmgFGmvvIxzGRdX1nnV4L38jv8j9JTKs3NzaTUqC5j2oa6DyY/UtpTMkyRqPSHsC20jalcwrxlUZLeUeF0ttwn3QAzTVjY9lsMmXG+nyuDQtQ4+RozNUa5VBnD2GabbchweuKJJ/zPkK+G3DEomgP8v2LFClJblEAFvbW1lXLR5DJQakRNYQkUHAcPHuyrpTP5wYYZw1QauogCUz6KdQ10qW/5WUh9sdjbjbNuWJhhUrLmTG3ABhlTqyScYxYX1Bt77bXX6CUFP/D3xx9/TCqNv/jFL8QVV1wh/vnPf4o333yTSktBaVEqN+64447iwAMPFOPHjxcvvviieO6558QZZ5xBio1YDvzkJz8h4Q/UN4Os/l133SV++9vfinPOOacIDVlbcI4Zw1R6/pG6HHvTqmPQGeW5isorMy0XJnOv3zu5qowyTDXB/ShTwbz88stin3328d9LY2ncuHEkiX/BBRdQrTPUJYNnbK+99iI5fBSKltx5551kjO23336kxnjkkUdS7TMJxEceffRRcfrpp4vhw4eLXr16UdFqtdYZkx9cx0yD65gxBVOILH4u2w/LG2Jq616KqqmV730Rtq5NMp7vQYZhSkDa65jtN+S8xOqYPfHOr1N3nkxxYI8ZwyRJKTxXtu3ygLi6UO8hUwhi3OtdzPvQVFeNDTSGYZi8whDNfW1yOWZM+mHDjGGSJJdQsCT3x2Fl6aNQ4zyseHGprneuyow8OcAwDMMwecOGGcNUAzwgTh/55GnFNbp0JUW+/kwcOHeKYSq2jhlTG7BhxjAMUy5MYa9RnrJi5zBWG2yMtMH3C8OUrutJSOo+Sbl8Jv2wYcYwDFNO4oajcu5WYe3LMAzDMCmHDTOGYZg0YJLIN33GHiCGYZj0w+IfTB6wYcYwDFNscjWmwrxo7AFiGIZJP60O4hCT2Q5TM7BhxjAMU2zCijvL96bl2AhjGIZhmJqBDTOGYZhSwwYYwzBMdcOhjEwesGHGMAxTqvBFzg9jGIapERIqMI3tMDVDiaqUMgzD1BimMEQOTWQYhmEYxgJ7zBiGYQohzAvGHjKGYZjahEMZmTxgw4xhGKYQwrxg7CFjGIapTUhNkVUZmdzgUMY4RBV+ZRimcPh3xjAMwzBMDcMeszjwrDfD1NbvjEMQGYZh0oXaL9NEHt6L9IJjTeK5lqZnI1N02DBjGIYpxYPQVquMYRiGiUbtO5MyeooJ55gxecCGWdzQqrR3AAxTi1SSZ6tSjpNhGIZhmLLAhlkYPJBimHQbY/wbZRiGYdIIi38wecCqFgzDVBZsjDEMwzAMU4Wwx4xhmPRQSaGJDMMwDGODc8yYPGDDLE3woJSpddgoYxiGYaoBKmOWgGxkmpUnmcRhwyzNg1IWH2EYhmEYhmGYmoANs7TBwgYMwzAMwzCVDYcyMtUs/vHf//5XHHbYYaJXr16iW7duYq+99hJPPfVUYJmPP/5YHHLIIaJTp06iT58+4vzzzxfNzc2i4rxmqqeMYRiGYRiGqSxaW5N7MTVDxVgA3/ve98jIevLJJ8W8efPE0KFD6bPFixfT9y0tLWSUbdy4UTz//PPiT3/6k7jtttvExIkTRcXBeTYMwzAMwzAMU1NUhGG2dOlS8d5774mLLrpI7LrrrmK77bYTV111lVi3bp146623aJlHH31UvPPOO+KOO+4Qw4YNEwcddJCYMmWKmDFjBhlrDMMwDMMwDFPSUMYkXkzNUBGG2eabby4GDx4sbr/9drF27VrynP3+97+ncMXhw4fTMnPnzhW77LKL6Nu3r7/emDFjxKpVq8Tbb79t3XZTUxMto74YhmEYhmEYJm/YMGOqVfwjk8mIxx9/XIwdO1Z07dpV1NXVkVE2a9Ys0bNnT1oGIY2qUQbkexnuaGLatGni8ssvFzUHS/MzDMMwDMMwTGooq8cMoYkwusJeCxYsEI7jiNNPP52MsWeffVa8+OKLZKQdeuihYtGiRQUdw4QJE8TKlSv91yeffCJqAs5jYxiGYRiGKQ6tTnIvpmYoq8fs3HPPFSeccELoMoMGDSLBj4ceekgsX76cFBnBDTfcIB577DES+YCB169fPzLYVL744gv6H9/ZaN++Pb0YhmEYhmEYJgkcp5VeSWyHqR3Kapj17t2bXlFA5AMghFEF71s9GdFRo0aJqVOniiVLlpBnDcBwgyE3ZMiQohw/wzAMwzAMwzBMzYh/wOhCLtm4cePE66+/TjXNUKNs4cKFJJEPDjjgADLAjjvuOFpm9uzZ4pJLLqEQSPaIMQzDMAzDMCUV/0gijJFVGWuKijDMUFQaQh9r1qwR++67rxgxYoSYM2eOeOCBB6ieGaivr6dwR/wPQ+7YY48Vxx9/vJg8eXK5D59hGIZhGIapJViVkalWVUYAYwxesDAGDhwoHn744ZIdE8MwDMMwDMMwTE0ZZgzDMAzDMAxTEUADIZOAcAeLf9QUbJgxDMMwDMMwTJJQblgCUvecY1ZTVESOGcMwDMMwDMMwTDXDHjOGYRiGYRiGSRCntVU4CYQych2z2oINM4ZhGIZhGIZJEg5lZPKAQxkZhmEYhmEYhmHKDHvMGIZhGIZhGCZJUBw6w+IfTG6wYcYwDMMwDMMwiYcyJiGXn4Bxx1QMHMrIMAzDMAzDMAxTZthjxjAMwzAMwzAJ4rQ6wkkglNFhj1lNwYYZwzAMwzAMwySJ05pQKGMC22AqBg5lZBiGYRiGYZgqYcaMGWLrrbcWHTp0ECNHjhQvvvhiuQ+JiQkbZgzDMAzDMAyTdChjQq9cuOuuu8Q555wjLrvsMvHKK6+IoUOHijFjxoglS5bw9a0A2DBjGIZhGIZhmCRBCGJSrxy45pprxPjx48VPf/pTMWTIEHHTTTeJTp06iVtvvZWvbwXAOWaWJMtmsUkIVihlGIZhGIZJHTROS7E4RlLjSHmeq1atCnzevn17eqls3LhRzJs3T0yYMMH/rK6uTuy///5i7ty5hR8MU3TYMNNYvXo1/T9HPFz81mcYhmEYhmEKGrd17949NS3Yrl070a9fPzFncXLjyC5duogtt9wy8BlCFSdNmhT4bOnSpaKlpUX07ds38DneL1iwILHjYYoHG2YaAwYMEJ988ono2rWryGQyopLB7Ap+yDifbt26lftwqgZuV27bSoPvWW7XSoLvV27XOMBTBqMM47Y0AcGNhQsXkvcqyXPVx6S6t4ypDtgw04DL92tf+5qoJmCUsWHG7VpJ8D3L7VpJ8P3K7VpJVNP9miZPmW6c4VVqevXqJerr68UXX3wR+Bzv4cVj0g+LfzAMwzAMwzBMhYMwyuHDh4snnnjC/6y1tZXejxo1qqzHxsSDPWYMwzAMwzAMUwVAKn/cuHFixIgRYvfddxfXXXedWLt2Lak0MumHDbMqBvHHSA7lOGRu10qB71lu10qC71du10qC79fa4KijjhJffvmlmDhxoli8eLEYNmyYmDVrVpYgCJNOMk5adUYZhmEYhmEYhmFqBM4xYxiGYRiGYRiGKTNsmDEMwzAMwzAMw5QZNswYhmEYhmEYhmHKDBtmDMMwDMMwDMMwZYYNsyph6tSpYo899hCdOnUSPXr0MC6DqvH6629/+1tgmaefflp84xvfIPWmbbfdVtx2222ilonTrh9//LE45JBDaJk+ffqI888/XzQ3NweW4XYNZ+utt866N6+66qrAMm+88Yb49re/TUU7t9xyS3H11VcXfH1rgRkzZlD7ot1GjhwpXnzxxXIfUkUxadKkrHtzhx128L/fsGGDOP3008Xmm28uunTpIo488sis4q6MEM8884w49NBDxYABA6gN77///kCzQIcMKnL9+/cXHTt2FPvvv7947733Ast89dVX4phjjqHiyOiPTzzxRLFmzZqabt6odj3hhBOy7t8DDzwwsAy3K8OkBzbMqoSNGzeKH/7wh+LUU08NXW7mzJli0aJF/mvs2LH+dwsXLiQDY5999hGvvfaa+MUvfiFOOukkMXv2bFGrRLVrS0sLtRmWe/7558Wf/vQnMmYxwJBwu8Zj8uTJgXvz5z//uf/dqlWrxAEHHCAGDhwo5s2bJ6ZPn04D5ptvvrnga1zN3HXXXVTTBmUzXnnlFTF06FAxZswYsWTJknIfWkWx0047Be7NOXPm+N+dffbZ4sEHHxR33323+Pe//y0+//xzccQRR5T1eNMI6ijh/sNEgQlMtFx//fXipptuEi+88ILo3Lkz3aswfCUwyt5++23x2GOPiYceeoiMkpNPPlnUMlHtCmCIqffvX//618D33K4MkyIgl89UDzNnznS6d+9u/A6X+7777rOue8EFFzg77bRT4LOjjjrKGTNmjFPr2Nr14Ycfdurq6pzFixf7n914441Ot27dnKamJnrP7RrNwIEDnWuvvdb6/Q033OD07NnTb1Nw4YUXOoMHD875WtYSu+++u3P66af771taWpwBAwY406ZNK+txVRKXXXaZM3ToUON3K1ascBobG527777b/2z+/PnU186dO7eER1lZ6M+i1tZWp1+/fs706dMDbdu+fXvnr3/9K71/5513aL2XXnrJX+aRRx5xMpmM89lnn5X4DNKJ6Rk/btw457DDDrOuw+3KMOmCPWY1BkJuevXqRdXgb731VgofkcydO5fCR1QwY4nPGTNom1122SVQuBFtBg8PZna5XeOD0EWEg+22227kEVPDQdHOo0ePFu3atQu087vvviuWL1/Ot6cBeHHhXVR/03V1dfSef9O5gZA6hIoNGjSIvAsIXwZo302bNgXaGGGOW221FbdxDiCqAIVw1Xbs3r07hd7KexX/I3xxxIgR/jJYHvc0PGyMHYTSI8x+8ODBFP2xbNky/ztuV4ZJFw3lPgCmtKFi++67L+VCPfroo+K0006j+PwzzzyTvseDUa8Mj/cwMtavX09x/0wQW5vJ77hd44F7ELmNm222GYWETpgwgUJurrnmGr8Nt9lmG2s79+zZk29NjaVLl1Koren+XLBgAbdXTGAcIDwZg1rck5dffjnlOr711lt072GyQM8/RRvL3z8TjWwr072q9qMwLlQaGhqoz+C2FqFhjAitRf/5wQcfiF/+8pfioIMOIoOsvr6e25VhUgYbZinmoosuEr/61a9Cl5k/f34gET2MSy+91P8bXgnEpsMzIQ2zWiHpdmUKb2fkQUl23XVXGuz+7Gc/E9OmTSMhGoYpFxjEqvcmDDXkOv7973/nySom9Rx99NH+34juwD389a9/nbxo++23X1mPjWGYbNgwSzHnnnsuKSqFgdCafMEAY8qUKaKpqYkGv/369ctSE8N7KGBVk7csyXZFm+kqd7IN8Z38vxbaNcl2xr2JUMYPP/yQPBW2NlTbmQmCkGXMiJvajdssf+Ad23777cX7778vvvvd71LI6IoVKwJeM27j3JD3I9oNqoxqOw4bNsxfRhetQR8BRUG+n+ODPhd9A+5fGGbcrgyTLtgwSzG9e/emV7GA8iJCwKRHYtSoUeLhhx8OLAP1K3xeTSTZrmgbSOpjwCDDbNBmMLqGDBlSU+2aZDvj3kTuiGxTtNXFF19M+TyNjY1+G8Jo4zBGM/A6Dh8+XDzxxBO++mprayu9P+OMM/K8qgzCvxESdtxxx1H74n5Em0ImHyDvETlo1f77ThKE2cFAQDtKQwwh9Mgdk4q4aE8YwMjrQ7uDJ598ku5pTOQw8fj0008px0wawNyuDJMyyq0+wiTDRx995Lz66qvO5Zdf7nTp0oX+xmv16tX0/T//+U/nlltucd58803nvffeI5W7Tp06ORMnTvS38b///Y8+O//880lZbMaMGU59fb0za9asmr1MUe3a3Nzs7Lzzzs4BBxzgvPbaa9RWvXv3diZMmOBvg9s1nOeff54UGdF+H3zwgXPHHXdQGx5//PEBhba+ffs6xx13nPPWW285f/vb3+he/f3vf1+0a18NoJ2gbHfbbbeR+trJJ5/s9OjRI6AiyoRz7rnnOk8//bSzcOFC57nnnnP2339/p1evXs6SJUvo+1NOOcXZaqutnCeffNJ5+eWXnVGjRtGLCYI+U/afGHpcc8019Df6WHDVVVfRvfnAAw84b7zxBikJbrPNNs769ev9bRx44IHObrvt5rzwwgvOnDlznO2228758Y9/XNNNHdau+O68884jhVDcv48//rjzjW98g9ptw4YN/ja4XRkmPbBhViVAEhedsv566qmnfFnhYcOGkXHRuXNnkn++6aabSD5bBctjuXbt2jmDBg0imfhaJqpdwYcffugcdNBBTseOHWnAhoHcpk2bAtvhdrUzb948Z+TIkVSOoEOHDs6OO+7oXHnllYGBA3j99dedvfbaiwyNLbbYggZyTDS/+93vyHDAbxry+f/5z3+42XIAJUP69+9P7Yf7Du/ff/99/3sYDqeddhqVc8BkweGHH+4sWrSI21gDfaCpL0UfKyXzL730UpqAwW98v/32c959993ANpYtW0aGGJ5jKEny05/+1J8kq1XC2nXdunU0aYiJLpR1QFmS8ePHZ03McLsyTHrI4J9ye+0YhmEYhmEYhmFqGa5jxjAMwzAMwzAMU2bYMGMYhmEYhmEYhikzbJgxDMMwDMMwDMOUGTbMGIZhGIZhGIZhygwbZgzDMAzDMAzDMGWGDTOGYRiGYRiGYZgyw4YZwzAMwzAMwzBMmWHDjGEYhmEYhmEYpsywYcYwTKr4zne+I37xi19U1X5POOEEMXbs2IK2sfXWW4tMJkOvFStWWJe77bbbRI8ePQraFxN+LeV1uP/++7mpGIZhmMRgw4xhGEYIce+994opU6YEDKHrrrsuVW0zefJksWjRItG9e/dyH0rV8/TTTxuN4N/+9rd0DRiGYRgmaRoS3yLDMEwFstlmm4m007VrV9GvXz+RBjZt2iQaGxtFrQGjmA1jhmEYphiwx4xhmFSzfPlycfzxx4uePXuKTp06iYMOOki89957WaF7s2fPFjvuuKPo0qWLOPDAAwNejebmZnHmmWfScptvvrm48MILxbhx4wLhhWooI/7+6KOPxNlnn+2HrYFJkyaJYcOGBY4PXjV41yQtLS3inHPO8fd1wQUXCMdxAuu0traKadOmiW222UZ07NhRDB06VPzjH//Iq31w/ltttRW1zeGHHy6WLVuWtcwDDzwgvvGNb4gOHTqIQYMGicsvv5zaRLJgwQKx11570fdDhgwRjz/+eCBU78MPP6T3d911l9h7771puTvvvJO++8Mf/kDtjs922GEHccMNNwT2/cknn4gf/ehH1B4wfg877DDanuqZ2n333UXnzp1pmT333JPaPg5R53XNNdeIXXbZhba95ZZbitNOO02sWbPG/x77OfTQQ+newjI77bSTePjhh+n49tlnH1oG3+HcEcLIMAzDMMWEDTOGYVINBsQvv/yy+Oc//ynmzp1LRs7BBx9MHhvJunXrxK9//Wvx5z//WTzzzDPi448/Fuedd57//a9+9SsyJGbOnCmee+45sWrVqtD8IIQ1fu1rX/NDB3MJXfvNb35DxtKtt94q5syZI7766itx3333BZaBUXb77beLm266Sbz99ttkAB577LHi3//+d05t88ILL4gTTzxRnHHGGeK1114jY+KKK64ILPPss8+SYXvWWWeJd955R/z+97+n45s6dapvSMJAhWGH7d18883i4osvNu7voosuou3Mnz9fjBkzhtp04sSJtC18duWVV4pLL71U/OlPf6LlcY2wHDx9OA60vTScN27cSEYU9g1j74033qDre/LJJ/uGcBhR5wXq6urE9ddfT22MY3ryySfJUJacfvrpoqmpie6ZN998k+4THB+MuHvuuYeWeffdd+n6I4SRYRiGYYqKwzAMkyL23ntv56yzzqK///vf/8LV5Dz33HP+90uXLnU6duzo/P3vf6f3M2fOpGXef/99f5kZM2Y4ffv29d/j7+nTp/vvm5ubna222so57LDDjPsFAwcOdK699trAsV122WXO0KFDA59hGSwr6d+/v3P11Vf77zdt2uR87Wtf8/e1YcMGp1OnTs7zzz8f2M6JJ57o/PjHP7a2i+l4sPzBBx8c+Oyoo45yunfv7r/fb7/9nCuvvDKwzJ///Gc6TvDII484DQ0NzqJFi/zvH3vsMWrT++67j94vXLiQ3l933XWB7Xz96193/vKXvwQ+mzJlijNq1Ch/P4MHD3ZaW1v975uamuj6zZ4921m2bBlt9+mnn3ZyJeq8TNx9993O5ptv7r/fZZddnEmTJhmXfeqpp+jYli9fbvxebR+GYRiGSQLOMWMYJrXAC9PQ0CBGjhzpf4bwwMGDB9N3Enh7vv71r/vv+/fvL5YsWUJ/r1y5UnzxxRcULiepr68Xw4cPp5DCJMG+4F1RjxfHP2LECD+c8f333ycP33e/+93AuvAg7bbbbjntD22A8EWVUaNGiVmzZvnvX3/9dfJUqZ4keMk2bNhAxwGPEDxEau6a2lYqOA/J2rVrxQcffEAeu/Hjx/ufwwsmc7Cwb5wvPGYq2DfWPeCAA8gjCq8a2mP//fensEdcvyiizgv3BEIy4Z1EqCa8pDg29XuEt5566qni0UcfpX0feeSRYtddd43cN8MwDMMUAzbMGIapeHQRCoTC6XldSYDQOH27akhlHGSO07/+9S+xxRZbBL5r3759AkeZvT/kXh1xxBFZ3yE3KxeQh6VuF9xyyy0BQ1QavnIZGMAyH02ld+/e9D/CS2EgwZhEDtsll1wiHnvsMfGtb32roPNCntj3vvc9MrxgvCG/DaGlMCRhBMMwO+mkk8goxLWAcQYjDqGoP//5z3NqF4ZhGIZJAjbMGIZJLRCVgJcDuU977LEHfQZxC3h5IFIRB3hv+vbtK1566SUxevRo37PyyiuvZAl5qLRr146W042JxYsXk3Em86CQ26XuC94eHK/cF45/3rx5JFIBcNwwwJAHh9yqQtsH+1L5z3/+E3iP/aK9tt12W+M24H2EQAe8imgngLaKAssOGDBA/O9//xPHHHOMcRnsG8ZWnz59RLdu3azbgqcQrwkTJpDH7y9/+UukYRZ1XmhzeERhaMGgBn//+9+zloO38JRTTqEX9g9DE4YZrj/Q7wGGYRiGKRZsmDEMk1q22247UvFDqBzEHRASBwEKeJrweVww0IY3BIN4KAf+7ne/I7XHMJEJKC1CFOLoo48mQ6pXr16k1vjll1+Kq6++WvzgBz8gL88jjzwSMDogRnHVVVfRsWNfUAZUa2HhHCBMAsEPGA5QQ0QIJMLysB2oRcYFniaoGEL4BO0BZUo1jBFAnAOeIyg34phhpCAM8K233iKhEIQQIgwU+8V5rV69mrxWIEqEAx4rHAMMUgh6QEgDQi1oWyhTwmCbPn06HRuEVCCoAiVEiKtAhAPeRoiNfP/73ycjD4YWFDch6hFF1HnhWmP7uNZQXkT7QmxFBSqcUPncfvvt6ZifeuopMnbBwIED6fwfeughEpuBeiaEQRiGYRimaCSSqcYwDJMQugjHV1995Rx33HEkaAHRiDFjxpAoiATiH6rYBYAog9q9QYDjjDPOcLp16+b07NnTufDCC50f/vCHztFHH23d79y5c51dd93Vad++fWBbN954o7Pllls6nTt3do4//nhn6tSpAfEP7Avbwb569OjhnHPOObScKjQCMQwIaUAYo7Gx0enduzed17///e+cxD/AH//4RxIXQdsceuihzq9//eus9pg1a5azxx570DI4rt133925+eab/e/nz5/v7Lnnnk67du2cHXbYwXnwwQfpnLGeKv7x6quvZu3/zjvvdIYNG0brom1Hjx7t3Hvvvf73EBXB+ffq1YvactCgQc748eOdlStXOosXL3bGjh1Lgh1YH+c4ceJEp6WlxdoOuZzXNddcQ9uW983tt98eEPTAPQEBExwXrgHuM4jLSCZPnuz069fPyWQyzrhx4wL7ZvEPhmEYJmky+Kd4Zh/DMEz6gKcKnhEITUyZMkVUAvDgwcMja60VE3iX4MmDcIcqqsK0AW8ayiCotfAYhmEYphC4jhnDMFUPwueQO/Tf//6X6lVBEGLhwoXiJz/5iagkUBgb4XQIfUwSGBgQ3IBgBpQMUUsMIZJslGWDXDQOaWQYhmGKAXvMGIapeiBugVwx5B8hSGDnnXemPDAp0FEpxqVUgBw0aJAvaJEEKHaNvCwIkiCXDtLxEM1AaYJysdNOO9E5m0C+oU1wpNigDAOk9wGEXlSlSoZhGIYpBDbMGIZhmFQboiZFSL02GsMwDMNUOmyYMQzDMAzDMAzDlBnOMWMYhmEYhmEYhikzbJgxDMMwDMMwDMOUGTbMGIZhGIZhGIZhygwbZgzDMAzDMAzDMGWGDTOGYRiGYRiGYZgyw4YZwzAMwzAMwzBMmWHDjGEYhmEYhmEYRpSX/wcqtkLtPLFY7gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import fsspec\n", "import xarray as xr\n", @@ -117,7 +146,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -131,7 +160,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-uk-deterministic-height.ipynb b/datasets/met-office/met-office-uk-deterministic-height.ipynb index f248922..28eb133 100644 --- a/datasets/met-office/met-office-uk-deterministic-height.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-height.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -42,25 +42,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "8f95ecac", "metadata": {}, "outputs": [], "source": [ "collections = [\"met-office-uk-deterministic-height\"]\n", "asset_id = \"wind_speed_on_height_levels\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T18:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2026-01-21T15:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0032H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0072H00M\"]},\n", + " ],\n", "}" ] }, @@ -74,15 +74,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "id": "edb71afa", "metadata": {}, "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -99,10 +97,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "id": "45613dda", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_62252/3941445104.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", + "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", + "To opt-in to future behavior, set `decode_timedelta=False`.\n", + " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" + ] + }, + { + "data": { + "text/plain": [ + "(array([ 9484810., 13163555., 16411390., 13364060., 2963926., 661696.,\n", + " 293995., 141227., 69532., 47249.]),\n", + " array([ 0. , 4.78125, 9.5625 , 14.34375, 19.125 , 23.90625,\n", + " 28.6875 , 33.46875, 38.25 , 43.03125, 47.8125 ]),\n", + " )" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAHWCAYAAABew+k1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQQZJREFUeJzt3Qm4VVXdOP7FIIMpOKAgiKI5Z4KCIJqZiZISZZOkvsKLU4P2oqQJmSBlYo6koaamNjmnVmqY4ZSvGInSa+UMChmDVAKigsL5P9/1f879nXu5F+6FC/fC/nyeZ4tnnz2ss88+++7vXmt9V4tSqVRKAAAABdCyqQsAAACwvgiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgKAZ+POf/5wOPPDA9KEPfSi1aNEiTZ8+vamLRErptddey9/HzTff3GjH4/zzz8/b3Bh84hOfyBPF8Pbbb6eTTz45denSJZ/DZ5xxRlMXaaP385//PO2xxx5pk002SVtssUVTFwc2GgIgaGLvv/9++tKXvpT+/e9/pyuuuCL/wdtxxx3TxuyWW25JEyZMaOpiFMbjjz+ePvOZz6Tu3bundu3a5RvYT33qU+l///d/08bsJz/5Sdpzzz3zZ951113TVVddVetyb7zxRjrmmGPyDWaHDh3SZz/72TRjxox672fp0qXpnHPOSV27dk3t27dP/fr1Sw899FCtyz755JPpYx/7WNp0003z9/A///M/ObCor4aUtb6fv74uvPDC/DDga1/7Wr5OnXDCCWlj9ve//z0/sIgHIU3hhRdeSP/93/+dPvzhD6frr78+XXfddU1SDtgolYAm9fzzz5fip3j99dcX5psYNGhQaccddyw1dytWrCi9++67pQ8++KDRtjl27Nj8fa9PcW599rOfLV1wwQWlG264oXTJJZeUevbsWWrZsmXpd7/73Rpv95BDDslTc3Tttdfm4/yFL3yhdN1115VOOOGE/Pqiiy6qttzixYtLu+66a2nbbbct/eAHPyhdfvnlpe7du5e233770oIFC+q1ry9/+cul1q1bl84666zSj3/841L//v3z6z/+8Y/Vlnv22WdL7dq1K+27776la665pnTuueeW2rZtW/rUpz5Vr/00pKz1/fwN0a9fv9JBBx1UKoo777wzH7NHHnmkSfYf50js/+WXX26S/cPGTAAETeyxxx7Lf+Tij21jefvtt0vNWXMPgN5///3S0qVL18m2myIAqs2SJUtKnTt3Lg0cOHCjC4Deeeed0tZbb53Ps0rHH3986UMf+lDp3//+d9W8CCTi+5g6dWq1hxKtWrUqjR49erX7+tOf/pTXj6CyLILmD3/4wzkQqnTkkUeWtttuu9LChQurBaex/oMPPrjafdW3rA35/A2x0047rbTN5vo7a44BUEOvy+PGjcv7f/PNNxtl/8D/0/R/haHAhg0blv/AVU6VN5STJ08ufexjHyttuummpY4dO5Y+85nPlP7+97/XekP9t7/9rXTssceWtthii1KvXr2q3v/5z39e2m+//fKT5y233LI0ZMiQ0qxZs1Yqy1NPPZVv0GL92N9HP/rR0oQJE6re/8tf/pLLGzdB8dQ6bp6HDx++0pPnRYsWlUaMGJEDnDZt2pS22Wab0oABA0rTpk3L78fnq/mZGxIMxbJxExY3jFGLEWXZc889S7/61a9WWvY///lPLks8IY+yxE1pPAFfvnx51TIzZ86suoG94oorSjvvvHOuGYmn9eX3brrppmrbrc/3EqIGoE+fPrmMsd14Kt9cAqCw995756f69RE1G/EZ4jzaf//9S48//vhKAVDczJ533nn5fOvQoUM+PnGcHn744Wq1avEdxjGrKQKHWO/UU0+tmnfllVeW9tprr1L79u3zudm7d+/SL3/5y1WW9f7778/HOP6t9OSTT+b58Zsoi88SU01HHHFEPl8qvf766zngqHT22WfnAKQyqAkXXnhh3lf5txbvR61QLF8pjtlmm21WOumkk6rNj/3E/irVt6wN+fz1EQFAzd9sTPH7CPPmzSudeOKJuWYqzvV99tmndPPNN1fbxqp+Z+XPG7VVcY2KbcT3/Otf/7rW3/QZZ5xRdX3p1q1brt0qBwn1OQfLbr311rxcHP/NN988/x7K17z4zdf2mesbDK3tdTk+X819xzaBxtG6qZvgQZF95StfSd26dctt66MvwP777586d+6c3/vDH/6QjjzyyLTzzjvndujvvvtubsN/0EEHpWeeeSb16NGj2raiH1G0849txcON8P3vfz+dd955uc9AdF5+88038zY+/vGPp2effbaqU230V/j0pz+dtttuuzRixIjcN+H5559P9913X35dXib6GgwfPjy//7e//S23SY9/n3rqqaqO/V/96lfTXXfdlU4//fS01157pX/961/piSeeyNvbb7/90rnnnpsWLlyY/vGPf+Q+T2GzzTZr0HF7+eWX05AhQ/K+hg0blm666ab8+SdNmpQOP/zwvMw777yTDjnkkNxnIo7zDjvskPtfjB49Os2ZM2elPkixjffeey+deuqpqW3btmmrrbZKK1asWGnf9f1ennvuuXTEEUekbbbZJi/3wQcfpLFjx1Z9v6sT5Y9pdVq1apW23HLLem1z0aJFadmyZWnBggXpZz/7WfrrX/+avv3tb692vehLEscwEnVEx/c4D6JPURyj6FdUuf0bbrghHXvssemUU05JixcvzusOHDgwTZ06NfXq1SufJ//1X/+VLr744tzvLbZR9tvf/jZvI94P0e8hfhdf/OIX83kY38///d//pT/96U/puOOOq7O8cW6HPn36VJvfu3fv1LJly/x+7CO+39jeiSeeuNI2+vbtm37/+9/nz7D55pvneUOHDk2PPfZY1e+rvK/ddtst98epuX6IhCZxjOJ8iHOgZpnatGmTj0u5zGXRdyfO30cffTS/bkhZ6/v56yvKEn1+zjzzzLT99tunb37zm3l+nNtx/kcijFdeeSX/5nfaaad055135r4rb731VtX1Y1W/s7iGxO8nroWjRo3KyWDuuOOOdPTRR6df/epX6XOf+1xeN/pKHXzwwflaEschridxLv/mN7/J15NOnTrV6xwsX89imcMOOyz94Ac/yPNiu9EvLsoc18g496688sr8G4ljUD4WDbGm1+W4PsVv9J577knXXHNNvkbus88+Ddo3sAqNFEgBa6j8dLVmE7h4WhhPVP/1r39Vq4WJp6ZDhw5d6UljPGWs9Nprr+Un09///verzX/uuefyk+jy/OjfErU68cQxnq5Wiqf1lc1qanuCGvuO2oCyqBE57bTT1lkTuPKT0coan3i6Hk2Lom9F2fe+973c3Oell16qtv6oUaPycSk/bS0/mY6nxfPnz6+2bG01QPX9Xo4++uj8dLfyKX7UEsW+63PpLX+vq5sachyjuVt5vXh6/pWvfCXXuqzKsmXL8ueNz13ZXCn6ldSssYxzqWaTpjinorYwagjKXnzxxbxu9HGoFLVCPXr0qDrvot/SRz7ykVJDxfkXx7k2USMZfXZC1BpEOb773e+utNzEiRPzey+88ELVvHLtZaUo3yc/+cmV1o8n/7Fs1PpVNqeq/K2UfelLXyp16dKl2ryax7YhZa3v52+ocu1rpagxiX3/4he/qHbORPO/qFmJGuHV/c4OO+ywXOP83nvvVc2Lc+DAAw/MfZ7KxowZk7dx9913r1S28jlT33MwaoajLKvq37c2TeDW9rpcuQ1N4KDxyQIHzVDUUMST43iKWvmEPJ4ARg3HAw88sNI6URtS6e67785PjeMpYzwlLU9RexNPJB955JG8XDxxnDlzZn6yXzPNamW65shuVRZPcGNbBxxwQH4dNR9lsY14Qv/Pf/4zrSuRbav8VDjE0/d4Oh+fZe7cuXlePIWOp8VRO1L5+QcMGJCWL1+eM6NV+sIXvpCfaDfG9xLbf/DBB/MT7Kh5Kounx/Ekuj7i88RT6tVNv/zlL+t51FK66KKLck1BPBGP7y5qg6JWYlWefvrpNH/+/Hx+RW1FWRyDjh07rlQbVV4mzr2o4SnXelSeI1FjEpnSKssey/7ud79Lxx9/fNV5F+dSPNmPNPENEbUSlWWtFBnR4v3yciFqImpbrnKZELUxlbU/5ffrs/7q9lW5nxD7Kdf+NLSs9f38jSHO+bimRG1KWaRsLme3ixqzVf3O4nt/+OGH83UqamvKv9OoOY7fStT2Ri1uiNqgnj17Vvvtl5XPmfqeg3FuLVmypM5sfY1lTa/LwLq1QTWBixuWSy65JE2bNi3fiETVcNxg1Fc0Qxk3btxK8yMdaVwIobl4/fXX87+77777Su/FTXTcXMc5G01FyqLpSaW4cYibqPijWpu4SQmvvvpq/nfvvfdeZZniRiJ+P7fddlu+Ia4UTdrKomlTNEuLZj/R5Oaoo47KN/PRZKyx7LLLLiuNpRM31SFS1sbNRHz+aDJUV1BT8zPUPH5r873EjVzcZNZ27GPd2gLYmuJ4NeYxC+XmPyGaQEUToghkosni6j5zzc8S509t5fvpT3+aLrvsspzCN1K813V845yIJlOx/Uj7HgFrLF+ZWjlSS0eTw2jiFd95NCmMpm/RXGpVIliP4K42EbyXg/nyv5HGurblKpdZ1b7qs/7q9lWf/dS3rPX9/I0hvr84N6JpXaVyU7Hy+VPXeRBN5+I6FU3CYqrrtxrN4+JaFQHU6tTnHPz617+em9lFc9bYdpxbEZREevjGtKbXZWDd2qACoLixiKc/0fb385//fIPXP+uss1Z6GhPtf6PfBWzoat7UxFPGCBLiqXo8Fa2pof1u4uYg+tCcffbZ+UY61o99xA1DZV+ZWC5qXuIBRdQ2xEOLaGMfTz7jZmN9iTJFrcy3vvWtWt8vB0xljXlT2Bji6Xl9xoeJ73Z1NVe1iafk0Y8naoUiWGuMz/+LX/wiB1TxYCrOk2233TaXb/z48VWBdtmXv/zl3KckaoGij0WsG0/pK4PLuIl+8cUXc1+06N8VNQBXX311GjNmTK0Ps8qiL1vUwsWNc5ShLIKCqFmIGsQQtXhRoxIP1Goqzysvu6p9lWsoVrV+LFc5v+ayq9tPQ8pa38/fXK5T5b/PddWORvDb2OdgzI/a3HhoEdfImKJ/UgTmEUBtKNdloAABUNw8reoGKp6MRQfrW2+9NXe+jCfaceNVHqk8LiyVF5e//OUveaCza6+9dr2UH+qrPBBq3PzVFE81o7NvZe1PbWLwvHjSGE8ga97s11wuRIf4aB5Wm//85z9p8uTJ+aYzbj4rn2bWJm7A4glrTHETFjUN0fG3/PutWXvTUOWnxpXbeemll/K/5SQE8bkigKjrM63L7yWaGcWNT23Hp7Z1a3PppZeu8ia/skxrOlBjBD5xHKPGqq4AqPyZ47N88pOfrJofT9aj6WQ8lCqLmqSoFYpgt/K7ieQPtd3QDxo0KAdA0ewtOp/XNjhuHM9IeBFT3MDHw684lyKZRbnpV101XdF8L2ogy+J13ICW349ai49+9KN5fk3RjDM+SzkBQl1iW9FsKTrfVyZCiPUryxJ/j1q3bp33FQ8JyuIzxY145bzaNKSs9f38jSHOj6hpje1W1gLF76H8/qqUaxGj5mN1v9X4Tcd1alUacg7GQ4DBgwfnKcof16sf//jHuSaqtlrmxlDf6zKwbm1UfYCiOcWUKVNyE524IEf2lXg6XddNWmSKiQtQPK2G5iQCiLhJiSeREcyXxR//qFWpvKmpS9woxhPGuImu2W8hXseT4BDBSfwxjpvPyn2VlwvlJ5U1t1PzhjWeOlc2hys/aY0nzpVNd+KmtuZyDRH9i6KGqSxuPiNjUhyzaP4W4oYyrgfxhLem+Jyr6/uyNt9LHK94mn3vvfemWbNmVS0XWaZqK8+67gNUs7lfiPJHjUo0VaysJagpamWihikeFFU2q7r55ptXOl9qO0/i5jy+h9pEc7d4CBVP6mPdqBWqVD5HK29YI7NgbL+yaVNNEahFgBXZsyrF62jyHIFXWWSYiz5GlYFFBKnRLyX+hlSK77J8Y1+5fpz3kRGxLM71qE2Ifk7lLHnRXypu8KOGIgLOssiuFoF6zX3FfirPnYaUtSGff23FOR/97m6//faqefHbiqxm8cAxMtmtSpx78ZAyAo/aarciQ1pZNH+LB5eVv/36XKtqOwdrnlsRvJWzrJWvVeWHTDXP87VR3+tyXaIWq2Ztahy3ms394voa89bmOgsbtdIGKop+zz33VL2OTEuRWeWNN95YKbtMbYPZReajyL0fA8tBc8wC99BDD+WsQHvssUceOyOyP0UGpzhvZ8yYUa9MQePHj8/vRTaliy++OGfd+ta3vpUzK1UO3Dhp0qTSJptskrM8nX/++XnMlzPPPDOPL1L28Y9/PI+pEaPXX3311TnLWYzDUzk+RWRbisxrMV5QjFIfmcKOOeaYvMxll11Wta0oS8yLfdxyyy2l3/zmN/U+XlHG3XbbLY+rERndYkyRyCAVWdjic1QO9BnjbMQxPPnkk/Nnv/TSS3PZoozl41U5PklNtWWBq+/3EpnhIgvcDjvskMceuuCCC3ImqhgjZX1feuM4RIa1yDAVA2/GOCkxNlIcs/oMwBvnQ5T5oIMOyuPyxPcWxz/GcqnMVHbjjTfm5WJfsU58P7FcZEqrLVtdZOuKATtjnRiDqrZyH3XUUbncN9xwQ+mb3/xmHiNm8ODBqy1zOTPaF7/4xfyZI0NfvK6ZfSuylMUYOpHpLs7LOJ+6d+9e6tq160rZymrLAlfO4lYe4yc+d/ze4nUMclwpxsKK8ke2wjgf47cU50jl76yuLHANLWt9P3/5+lOfMWZqywIX2SFjHK7IKhjfz1VXXVV1nCrHEVvV7ywy5sXvJ86FOGfiuhFZHOO7j99L2eLFi/OYUPG3/pRTTskZ9mK8pQMOOKA0ffr0Bp2Dcf2Ka1pc7+Lcit9Eeaye8jhhc+bMyfuK7ce4RpH1MsY8qo/GuC7Xto34DDV/S+Xx5MrjMlWOY1RzDDPg/7fRBED33Xdfnhc3NpVT/BGKG7Ca4qYr3ps7d+56LjnULwAKf/jDH/JNZwwCGSlb48avroFQ60qVGumiYyDA8m8ibtwjTW6kIq70xBNPlA4//PA8IGAsFzcecTNT9o9//KP0uc99Lt8kRKrruOn75z//We3mKW5o4yYwAqPyduL/I2CqOSL6cccdl7e1NgOhRhnjhjI+U23HL26Y4gHILrvskm/QOnXqlG86IhCKVL1rEgDV93sJcQMcAzrGvptyINQf/ehH+RyIzx/XvQjYosy1pWSuS3yH5UFwY3DX2gZCjVTEcUMa31H5Rj+uzXGDVtd3/PWvfz0fj7gm1xQ3sHGTGjfGsb24+Y/zq+ago3WJG+ndd9+9ahDcCBgqU7uXzZ49OwcK8V1G6uZPf/rTpZdffnml5eoKgOKB2llnnZVTWUc5Y7DSymC85uC4cQ5G4BPfQ/wWy6miVxcANaSs9f38v/3tb6ul625oABQiKIhBkeP8in3FA4mav5lV/c7Cq6++moO0OIbxMCYGOI3Pdtddd1VbLtLPn3766fn92FcE8nF+lQdkru85GNuNwDOCydhOPKiItPAR9FSK4DF+u+X09Q0dCHVtrssCIFh3WsR/0gYo2uZWZoGL6vdoRx4DqtXsWBjV8OVmMZXJD6K9dm1V6UDzFX18oj9FdIxnwxeJECItdzSjiuZZrF+RJCT6zUa/utpSbANsjDaoJAirsu+++1ZlvVldn57ouBudVmP0aACaRqRkjj4x0bdD8NM04m9hdPoX/ABFskEFQNFRNJ5SVQYykT0nOntGMoOoAYqOw5H/PwKi6DwZmauiY2Nlp88bb7wxd2Zenyl5gVWL32s8xKhLdICvHHyUDVc8qIrxfSJjV3T6HjFiRFMXqbAaOshs0dUnPX0kDaktxTXQfGxQAVBkvjn00EOrXo8cOTL/G4MuRkaiyLpzwQUXpG9+85t5XIZISRujnX/605+uWidSXcayMU6ACxQ0HzEeV81BEytFNqlHH310vZaJdSMyv8UDq8gAduWVVzZqWmZYl+qTnj4ezpbT8QPN0wbbBwjYuMQ4MDEuTV223HLL1Lt37/VaJoBKM2bMyNOqfOxjH6tzjCqgeRAAAQAAhbFRDYQKAACwwfcBin47MfL75ptvntNfAwAAxVQqldLixYtT165dU8uWLTfOACiCn+7duzd1MQAAgGZi9uzZafvtt984A6Co+Sl/yBi8FAAAKKZFixblypFyjLBRBkDlZm8R/AiAAACAFmvYNUYSBAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAojNZNXQAogh6j7m/qIjRLr100qKmLAAAUjBogAACgMARAAABAYQiAAACAwhAAAQAAhdHgAOjxxx9PgwcPTl27dk0tWrRI995772rXWbp0aTr33HPTjjvumNq2bZt69OiRbrzxxjUtMwAAwPrJArdkyZLUs2fPdOKJJ6bPf/7z9VrnmGOOSfPmzUs/+clP0i677JLmzJmTVqxYsSblBQAAWH8B0JFHHpmn+po0aVJ67LHH0owZM9JWW22V50UNEAAAwEbXB+g3v/lN6tOnT7r44otTt27d0m677ZbOOuus9O67766yydyiRYuqTQAAAM1+INSo+XniiSdSu3bt0j333JMWLFiQvv71r6d//etf6aabbqp1nfHjx6dx48at66IBAAAFs85rgKKvTyRL+OUvf5n69u2bjjrqqHT55Zenn/70p3XWAo0ePTotXLiwapo9e/a6LiYAAFAA67wGaLvttstN3zp27Fg1b88990ylUin94x//SLvuuutK60SmuJgAAAA2qBqggw46KP3zn/9Mb7/9dtW8l156KbVs2TJtv/3263r3AAAAax4ARSAzffr0PIWZM2fm/581a1ZV87WhQ4dWLX/cccelrbfeOg0fPjz9/e9/z+MInX322TmNdvv27Ru6ewAAgPUXAD399NNp3333zVMYOXJk/v8xY8bk1zHGTzkYCptttll66KGH0ltvvZWzwR1//PF5INUrr7xyzUsNAACwBlqUojNOMxdpsKMPUSRE6NChQ1MXBxqsx6j7HbVavHbRIMcFAFivscE67wMEAADQXAiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMJocAD0+OOPp8GDB6euXbumFi1apHvvvbfe6/7v//5vat26derVq1dDdwsAALD+A6AlS5aknj17pokTJzZovbfeeisNHTo0HXbYYQ3dJQAAQKNo3dAVjjzyyDw11Fe/+tV03HHHpVatWjWo1ggAAGCD6gN00003pRkzZqSxY8fWa/mlS5emRYsWVZsAAACafQD08ssvp1GjRqVf/OIXuf9PfYwfPz517Nixaurevfu6LiYAAFAA6zQAWr58eW72Nm7cuLTbbrvVe73Ro0enhQsXVk2zZ89el8UEAAAKosF9gBpi8eLF6emnn07PPvtsOv300/O8FStWpFKplGuDfv/736dPfvKTK63Xtm3bPAEAAGwwAVCHDh3Sc889V23e1VdfnR5++OF01113pZ122mld7h4AAGDtAqC33347vfLKK1WvZ86cmaZPn5622mqrtMMOO+Tma2+88Ub62c9+llq2bJn23nvvautvu+22qV27divNBwAAaHYBUDRpO/TQQ6tejxw5Mv87bNiwdPPNN6c5c+akWbNmNW4pAQAAGkGLUnTIaeYiDXZkg4uECNGsDjY0PUbd39RFaJZeu2hQUxcBANjArG1ssF7GAQIAAGgOBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAojAYPhArQWIyPVDdjJAHAuqEGCAAAKAwBEAAAUBgCIAAAoDD0AaJR6dMBAEBzpgYIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACF0eAA6PHHH0+DBw9OXbt2TS1atEj33nvvKpe/++670+GHH5622Wab1KFDh9S/f//04IMPrk2ZAQAA1k8AtGTJktSzZ880ceLEegdMEQA98MADadq0aenQQw/NAdSzzz67JuUFAABYY60busKRRx6Zp/qaMGFCtdcXXnhh+vWvf51++9vfpn333bfWdZYuXZqnskWLFjW0mAAAAE3fB2jFihVp8eLFaauttqpzmfHjx6eOHTtWTd27d1+vZQQAADZO6z0AuvTSS9Pbb7+djjnmmDqXGT16dFq4cGHVNHv27PVaRgAAYOPU4CZwa+OWW25J48aNy03gtt122zqXa9u2bZ4AAAA2yADotttuSyeffHK6884704ABA9bXbgEAANZvE7hbb701DR8+PP87aNCg9bFLAACAta8Biv47r7zyStXrmTNnpunTp+ekBjvssEPuv/PGG2+kn/3sZ1XN3oYNG5Z++MMfpn79+qW5c+fm+e3bt88JDgAAAJptDdDTTz+d01eXU1iPHDky//+YMWPy6zlz5qRZs2ZVLX/dddelDz74IJ122mlpu+22q5pGjBjRmJ8DAACg8WuAPvGJT6RSqVTn+zfffHO1148++mhDdwEAALBxpMEGAABoKgIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgNDoAef/zxNHjw4NS1a9fUokWLdO+99652nUcffTTtt99+qW3btmmXXXZJN99885qWFwAAYP0FQEuWLEk9e/ZMEydOrNfyM2fOTIMGDUqHHnpomj59ejrjjDPSySefnB588ME1KS8AAMAaa93QFY488sg81de1116bdtppp3TZZZfl13vuuWd64okn0hVXXJEGDhzY0N0DAAA03z5AU6ZMSQMGDKg2LwKfmF+XpUuXpkWLFlWbAAAAmn0ANHfu3NS5c+dq8+J1BDXvvvtureuMHz8+dezYsWrq3r37ui4mAABQAM0yC9zo0aPTwoULq6bZs2c3dZEAAIAi9gFqqC5duqR58+ZVmxevO3TokNq3b1/rOpEtLiYAAIANqgaof//+afLkydXmPfTQQ3k+AABAsw6A3n777ZzOOqZymuv4/1mzZlU1Xxs6dGjV8l/96lfTjBkz0re+9a30wgsvpKuvvjrdcccd6cwzz2zMzwEAAND4AdDTTz+d9t133zyFkSNH5v8fM2ZMfj1nzpyqYChECuz7778/1/rE+EGRDvuGG26QAhsAAFjvWpRKpVJq5iJjXGSDi4QI0XeI5qvHqPubugiwUXjtokFNXQQA2Chjg2aZBQ4AAGBdEAABAACFIQACAAAKQwAEAAAUhgAIAAAojNZNXYANkUxnAACwYVIDBAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDDWKACaOHFi6tGjR2rXrl3q169fmjp16iqXnzBhQtp9991T+/btU/fu3dOZZ56Z3nvvvTUtMwAAwPoJgG6//fY0cuTINHbs2PTMM8+knj17poEDB6b58+fXuvwtt9ySRo0alZd//vnn009+8pO8jW9/+9trVmIAAID1FQBdfvnl6ZRTTknDhw9Pe+21V7r22mvTpptumm688cZal3/yySfTQQcdlI477rhca3TEEUekY489drW1RgAAAE0aAC1btixNmzYtDRgw4P9toGXL/HrKlCm1rnPggQfmdcoBz4wZM9IDDzyQjjrqqDr3s3Tp0rRo0aJqEwAAwNpq3ZCFFyxYkJYvX546d+5cbX68fuGFF2pdJ2p+Yr2PfexjqVQqpQ8++CB99atfXWUTuPHjx6dx48Y1pGgAAABNnwXu0UcfTRdeeGG6+uqrc5+hu+++O91///3pe9/7Xp3rjB49Oi1cuLBqmj179rouJgAAUAANqgHq1KlTatWqVZo3b161+fG6S5cuta5z3nnnpRNOOCGdfPLJ+fVHP/rRtGTJknTqqaemc889Nzehq6lt27Z5AgAAaLIaoDZt2qTevXunyZMnV81bsWJFft2/f/9a13nnnXdWCnIiiArRJA4AAKBZ1gCFSIE9bNiw1KdPn9S3b988xk/U6ERWuDB06NDUrVu33I8nDB48OGeO23ffffOYQa+88kquFYr55UAIAACgWQZAQ4YMSW+++WYaM2ZMmjt3burVq1eaNGlSVWKEWbNmVavx+c53vpNatGiR/33jjTfSNttsk4Of73//+437SQAAAFajRWkDaIcWabA7duyYEyJ06NChqYuTeoy6v6mLAGzkXrtoUFMXAQA2ythgnWeBAwAAaC4EQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhrFEANHHixNSjR4/Url271K9fvzR16tRVLv/WW2+l0047LW233Xapbdu2abfddksPPPDAmpYZAABgjbRu6Aq33357GjlyZLr22mtz8DNhwoQ0cODA9OKLL6Ztt912peWXLVuWDj/88PzeXXfdlbp165Zef/31tMUWW6xZiQEAANZXAHT55ZenU045JQ0fPjy/jkDo/vvvTzfeeGMaNWrUSsvH/H//+9/pySefTJtsskmeF7VHAAAAzboJXNTmTJs2LQ0YMOD/baBly/x6ypQpta7zm9/8JvXv3z83gevcuXPae++904UXXpiWL19e536WLl2aFi1aVG0CAABYrwHQggULcuASgUyleD137txa15kxY0Zu+hbrRb+f8847L1122WXpggsuqHM/48ePTx07dqyaunfv3pBiAgAANE0WuBUrVuT+P9ddd13q3bt3GjJkSDr33HNz07m6jB49Oi1cuLBqmj179rouJgAAUAAN6gPUqVOn1KpVqzRv3rxq8+N1ly5dal0nMr9F359Yr2zPPffMNUbRpK5NmzYrrROZ4mICAABoshqgCFaiFmfy5MnVanjidfTzqc1BBx2UXnnllbxc2UsvvZQDo9qCHwAAgGbTBC5SYF9//fXppz/9aXr++efT1772tbRkyZKqrHBDhw7NTdjK4v3IAjdixIgc+ETGuEiCEEkRAAAAmnUa7OjD8+abb6YxY8bkZmy9evVKkyZNqkqMMGvWrJwZriwSGDz44IPpzDPPTPvss08eByiCoXPOOadxPwkAAMBqtCiVSqXUzEUa7MgGFwkROnTo0NTFST1G3d/URQA2cq9dNKipiwAAG2VssM6zwAEAADQXAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAoDAEQAABQGGsUAE2cODH16NEjtWvXLvXr1y9NnTq1XuvddtttqUWLFunoo49ek90CAACs3wDo9ttvTyNHjkxjx45NzzzzTOrZs2caOHBgmj9//irXe+2119JZZ52VDj744LUpLwAAwPoLgC6//PJ0yimnpOHDh6e99torXXvttWnTTTdNN954Y53rLF++PB1//PFp3Lhxaeedd17z0gIAAKyvAGjZsmVp2rRpacCAAf9vAy1b5tdTpkypc73vfve7adttt00nnXRSvfazdOnStGjRomoTAADAeg2AFixYkGtzOnfuXG1+vJ47d26t6zzxxBPpJz/5Sbr++uvrvZ/x48enjh07Vk3du3dvSDEBAADWfxa4xYsXpxNOOCEHP506dar3eqNHj04LFy6smmbPnr0uiwkAABRE64YsHEFMq1at0rx586rNj9ddunRZaflXX301Jz8YPHhw1bwVK1b8/ztu3Tq9+OKL6cMf/vBK67Vt2zZPAAAATVYD1KZNm9S7d+80efLkagFNvO7fv/9Ky++xxx7pueeeS9OnT6+aPvOZz6RDDz00/7+mbQAAQLOtAQqRAnvYsGGpT58+qW/fvmnChAlpyZIlOStcGDp0aOrWrVvuxxPjBO29997V1t9iiy3yvzXnAwAANLsAaMiQIenNN99MY8aMyYkPevXqlSZNmlSVGGHWrFk5MxwAAEBz06JUKpVSMxdpsCMbXCRE6NChQ1MXJ/UYdX9TFwHYyL120aCmLgIAbJSxgaoaAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYrZu6AACsrMeo+x2WWrx20SDHBYC1ogYIAAAoDAEQAABQGAIgAACgMARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACiMNQqAJk6cmHr06JHatWuX+vXrl6ZOnVrnstdff306+OCD05ZbbpmnAQMGrHJ5AACAZhMA3X777WnkyJFp7Nix6Zlnnkk9e/ZMAwcOTPPnz691+UcffTQde+yx6ZFHHklTpkxJ3bt3T0cccUR64403GqP8AAAA9daiVCqV6r94yjU++++/f/rRj36UX69YsSIHNd/4xjfSqFGjVrv+8uXLc01QrD906NB67XPRokWpY8eOaeHChalDhw6pqfUYdX9TFwGgkF67aFBTFwGAJra2sUGDaoCWLVuWpk2blpuxVW2gZcv8Omp36uOdd95J77//ftpqq63qXGbp0qX5g1VOAAAAa6tBAdCCBQtyDU7nzp2rzY/Xc+fOrdc2zjnnnNS1a9dqQVRN48ePz1FdeYoaJgAAgA0qC9xFF12UbrvttnTPPffkBAp1GT16dK7SKk+zZ89en8UEAAA2Uq0bsnCnTp1Sq1at0rx586rNj9ddunRZ5bqXXnppDoD+8Ic/pH322WeVy7Zt2zZPAAAATVYD1KZNm9S7d+80efLkqnmRBCFe9+/fv871Lr744vS9730vTZo0KfXp02ftSgwAALA+aoBCpMAeNmxYDmT69u2bJkyYkJYsWZKGDx+e34/Mbt26dcv9eMIPfvCDNGbMmHTLLbfksYPKfYU222yzPAEAADTbAGjIkCHpzTffzEFNBDO9evXKNTvlxAizZs3KmeHKrrnmmpw97otf/GK17cQ4Queff35jfAYAAIB1Mw5QUzAOEADBOEAALFqf4wABAABsyARAAABAYQiAAACAwhAAAQAAhSEAAgAACkMABAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAAAUhgAIAAAojNZNXQAAqK8eo+53sOrw2kWDHBuAelADBAAAFIYACAAAKAwBEAAAUBgCIAAAoDAEQAAAQGEIgAAAgMIQAAEAAIVhHCAA2AgYI6l2xkcCalIDBAAAFIYACAAAKIw1agI3ceLEdMkll6S5c+emnj17pquuuir17du3zuXvvPPOdN5556XXXnst7brrrukHP/hBOuqoo9am3AAAq6VpYN00D6SoGlwDdPvtt6eRI0emsWPHpmeeeSYHQAMHDkzz58+vdfknn3wyHXvssemkk05Kzz77bDr66KPz9Ne//rUxyg8AAFBvLUqlUqn+i6fUr1+/tP/++6cf/ehH+fWKFStS9+7d0ze+8Y00atSolZYfMmRIWrJkSbrvvvuq5h1wwAGpV69e6dprr63XPhctWpQ6duyYFi5cmDp06JCamqdJAAAbJzVjzd/axgYNagK3bNmyNG3atDR69OiqeS1btkwDBgxIU6ZMqXWdmB81RpWixujee++tcz9Lly7NU1l8uPKHbQ5WLH2nqYsAAMA6sMOZdzqudfjruIGpOSjHBA2sx1mzAGjBggVp+fLlqXPnztXmx+sXXnih1nWin1Bty8f8uowfPz6NGzdupflR0wQAAKx/HSc0r6O+ePHiXBO0UYwDFDVMlbVG0czu3//+d9p6661TixYtmjzijEBs9uzZzaI5Hhsu5xLOJ5oj1yacSzT3a9Pmm2+eg5+uXbuu0bYaFAB16tQptWrVKs2bN6/a/HjdpUuXWteJ+Q1ZPrRt2zZPlbbYYovUnETwIwDCuURz49qEc4nmxnWJdXE+rUnNzxplgWvTpk3q3bt3mjx5crXamXjdv3//WteJ+ZXLh4ceeqjO5QEAANaVBjeBi6Zpw4YNS3369Mlj/0yYMCFneRs+fHh+f+jQoalbt265H08YMWJEOuSQQ9Jll12WBg0alG677bb09NNPp+uuu67xPw0AAEBjBkCR1vrNN99MY8aMyYkMIp31pEmTqhIdzJo1K2eGKzvwwAPTLbfckr7zne+kb3/723kg1MgAt/fee6cNUTTNizGQajbRA+cSTcm1CecSzY3rEs31fGrwOEAAAAAbqgb1AQIAANiQCYAAAIDCEAABAACFIQACAAAKQwDUQBMnTkw9evRI7dq1S/369UtTp05dN98MG43HH388DR48OI9W3KJFi5wFsVLkIYmsitttt11q3759GjBgQHr55ZebrLw0XzG8wP77759HwN52223T0UcfnV588cVqy7z33nvptNNOS1tvvXXabLPN0he+8IWVBqOGa665Ju2zzz5VAwrG2Hy/+93vnEestYsuuij/rTvjjDOcTzTY+eefn8+fymmPPfZo9L9xAqAGuP322/M4SJGC75lnnkk9e/ZMAwcOTPPnz2/wgac4YpysOFcieK7NxRdfnK688sp07bXXpj/96U/pQx/6UD6v4kcOlR577LF84X/qqafygNLvv/9+OuKII/I5VnbmmWem3/72t+nOO+/My//zn/9Mn//85x1Iqtl+++3zjeq0adPy2Hyf/OQn02c/+9n0t7/9zXnEGvvzn/+cfvzjH+fgupLrEg3xkY98JM2ZM6dqeuKJJxr/XIo02NRP3759S6eddlrV6+XLl5e6du1aGj9+vENIvcRP7p577ql6vWLFilKXLl1Kl1xySdW8t956q9S2bdvSrbfe6qiySvPnz8/n1GOPPVZ17myyySalO++8s2qZ559/Pi8zZcoUR5NV2nLLLUs33HCD84g1snjx4tKuu+5aeuihh0qHHHJIacSIEa5LNNjYsWNLPXv2rPW9xvwbpwaonpYtW5aflEXzpLIY8DVeT5kypeGRJ6SUZs6cmQcUrjyvOnbsmJtXOq9YnYULF+Z/t9pqq/xvXKOiVqjyfIqmAzvssIPziTotX7483XbbbbkmMZrCOY9YE1E7PWjQoGrXH9cl1kR0A4huAzvvvHM6/vjj06xZs/L8xrw2tV6jkhXQggUL8h+Jzp07V5sfr1944YUmKxcbtgh+Qm3nVfk9qM2KFStyG/uDDjoo7b333lXnU5s2bdIWW2zhfGK1nnvuuRzwRHPbaEt/zz33pL322itNnz7deUSDRAAdXQOiCVxNrks0RDwAvvnmm9Puu++em7+NGzcuHXzwwemvf/1ro55LAiCADfRpa/xBqGwbDQ0RNxgR7ERN4l133ZWGDRuW29RDQ8yePTuNGDEi90uMBFGwNo488siq/4++ZBEQ7bjjjumOO+7IiaIaiyZw9dSpU6fUqlWrlTJNxOsuXbo02hdCsZTPHecVDXH66aen++67Lz3yyCO5M3vl+RTNdd96661qy7tOUZt4krrLLruk3r175wyDkazlhz/8ofOIBolmSZEMar/99kutW7fOUwTSkdwn/j+ezrsusaaitme33XZLr7zySqNemwRADfhDEX8kJk+eXK0JSryOJgSwJnbaaaf8o608rxYtWpSzwTmvqCnyaETwE02VHn744Xz+VIpr1CabbFLtfIo02dF+2vnE6sTftKVLlzqPaJDDDjssN6eM2sTy1KdPn9x3o/z/rkusqbfffju9+uqreaiQxvwbpwlcA0QK7GgiED/mvn37pgkTJuROo8OHD2/QQad4P954clGZ+CD+KETH9ei4F/04LrjggrTrrrvmG9rzzjsvd/6LMV6gZrO3W265Jf3617/OYwGV2zxH4oxoGhD/nnTSSflaFedXjO/yjW98I/9hOOCAAxxMqowePTo3NYlr0OLFi/N59eijj6YHH3zQeUSDxLWo3A+xLIZziHFayvNdl6ivs846K4+dGM3eIsV1DD0TLbCOPfbYxr02NTxBXbFdddVVpR122KHUpk2bnBb7qaeeauoi0cw98sgjOUVjzWnYsGFVqbDPO++8UufOnXP668MOO6z04osvNnWxaYZqO49iuummm6qWeffdd0tf//rXc0rjTTfdtPS5z32uNGfOnCYtN83PiSeeWNpxxx3z37JtttkmX3d+//vfV73vPGJtVKbBdj7REEOGDCltt912+drUrVu3/PqVV15p9GtTi/hPw0ImAACADZM+QAAAQGEIgAAAgMIQAAEAAIUhAAIAAApDAAQAABSGAAgAACgMARAAAFAYAiAAAKAwBEAAG5Gbb745bbHFFmu9nU984hPpjDPOSBuyHj16pAkTJtT5/n//93+nFi1a5Onee+9Nzd2jjz5aVd6jjz66qYsDsMESAAFsRIYMGZJeeumlpi7GBuNTn/pUmjNnTjryyCObuijpf/7nf1Lv3r1T27ZtU69evVZ6/8ADD8xlPeaYY5qkfAAbCwEQwEakffv2adttt23qYmwwItjo0qVL/rc5OPHEE3MQW5s2bdrkssZ3DMCaEwABNGP33XdfbtK2fPny/Hr69Om5CdSoUaOqljn55JPTf/3Xf9XaBO7888/PtQk///nPc5Owjh07pi9/+ctp8eLFVcssWbIkDR06NG222WZpu+22S5dddlmDynj11VenXXfdNbVr1y517tw5ffGLX6zWlO7000/PU+y7U6dO6bzzzkulUqlqmaVLl6azzjordevWLX3oQx9K/fr1y829Kj3xxBPp4IMPzjf/3bt3z7UlUe6y+fPnp8GDB+f3d9ppp/TLX/4yrYnXXnstH9877rijan/7779/rlX785//nPr06ZOPU9QYvfnmm3Vu5z//+U86/vjj0zbbbJO3EcfnpptuWuW+r7zyynTaaaelnXfeeY3KDkD9CIAAmrG4CY9g5dlnn82vH3vssRxEVAYIMS8Cjbq8+uqruY9LBFMxxfIXXXRR1ftnn312nvfrX/86/f73v8/bfuaZZ+pVvqeffjoHI9/97nfTiy++mCZNmpQ+/vGPV1vmpz/9aWrdunWaOnVq+uEPf5guv/zydMMNN1S9H8HRlClT0m233Zb+7//+L33pS1/KTdNefvnlqvLH6y984Qv5/dtvvz0HRLFeZX+e2bNnp0ceeSTdddddOSiLoGhNjR07Nn3nO9/JxyHKftxxx6Vvfetbufx//OMf0yuvvJLGjBlT5/oR5P39739Pv/vd79Lzzz+frrnmmvy9AdAMlABo1vbbb7/SJZdckv//6KOPLn3/+98vtWnTprR48eLSP/7xj6hKKb300kv5/ZtuuqnUsWPHqnXHjh1b2nTTTUuLFi2qmnf22WeX+vXrl/8/thHbuuOOO6re/9e//lVq3759acSIEast269+9atShw4dqm2/0iGHHFLac889SytWrKiad8455+R54fXXXy+1atWq9MYbb1Rb77DDDiuNHj06//9JJ51UOvXUU6u9/8c//rHUsmXL0rvvvlt68cUX8zGYOnVq1fvPP/98nnfFFVfUWfZhw4aVPvvZz1abN3PmzLzeDTfcUDXv1ltvzfMmT55cNW/8+PGl3Xffvc5tDx48uDR8+PDSmojvrGfPng0qNwD1pwYIoJk75JBDcq1MNBuL2ofPf/7zac8998y1IFFz07Vr19zEqi7R9G3zzTeveh3N3Mq1I1G7smzZstzsrGyrrbZKu+++e73Kdvjhh6cdd9wxN9s64YQTctOzd955p9oyBxxwQG5WVta/f/9cuxPN+p577rn872677ZablpWn+FxRtvCXv/wlN+2rfH/gwIFpxYoVaebMmbmGJWppIoFA2R577LFW2fD22Wefqv+PZn3hox/9aLV5q6ph+trXvpZrtKL5YdQcPfnkk1XvRfO58uf4yEc+ssZlBGDNtF7D9QBYT6J524033pgDgU022STf3Me8CIqir0kESKsS61SKYCSCh8YQgVU0E4uyRPO5aBYW/Y6iv0x9ApC33347tWrVKk2bNi3/WykChPIyX/nKV3JTu5p22GGHdZL1rvKYlYO3mvNWdQwjyHn99dfTAw88kB566KF02GGH5f49l156aW7+9+677660TQDWDzVAABtIP6ArrriiKtgpB0Axrar/z+p8+MMfzjfhf/rTn6rmRVDVkKAial8GDBiQLr744txHJxIJPPzww1XvV247PPXUU7nGKgKefffdN9cARW3KLrvsUm2KjGdhv/32y/1par4fU2RGi4Dwgw8+yEFUWfRHeuutt1JTigQIw4YNS7/4xS/yeETXXXddnh/JHsrlj9ozANYvNUAAzdyWW26Zm2RF87If/ehHeV4kGojxYN5///3V1gCtStSynHTSSTkRwtZbb51TaJ977rmpZcv6PR+LpAozZszI5YlyRo1H1IxUNqGbNWtWGjlyZK7Fidqiq666qirTXDR9i2xpkYUu5kVAFNnVJk+enD/zoEGD0jnnnJOb0UXSg8h4F5niIiCKmpU4HrGvSJIQ249kAxGQxSCuTZkuOmrCokleNHGLLHdxnKLZ4qpEYoWo7Zo7d26uIYqMf2GvvfbKgR4AjUMABLABiCAnbojLtT3RTydujOfNm1fv/jp1ueSSS/KNd6SRjiZt3/zmN9PChQvrtW40c7v77rtzs7f33nsv1+zceuut1fq2RHATN/R9+/bNtT4jRoxIp556atX7kR76ggsuyPt94403cra0CHg+/elP5/cjEIo+QRGYRW1Y9IWKmqvK8XJiGxEcxXGK/jmxvcjE1lQiYBk9enSuDYtALModfYJWJcofn7MsgsEQ/ZyiHxcAjaNFZEJopG0BQDURsEUigGgC1txE6uxoJhcpwjckG2q5AZoLfYAAKKxomhbNAOPf5i4yAEZZ13SQVwD+f2qAAFjlTXdkNKtLNJ3bUGuAIvHCokWLqlKDR9+i5iyaEUYTwRCBUDlJBAANIwACoF433bWJTGYAsCERAAEAAIWhDxAAAFAYAiAAAKAwBEAAAEBhCIAAAIDCEAABAACFIQACAAAKQwAEAACkovj/AAnIaIPQMMU4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import fsspec\n", "import xarray as xr\n", @@ -116,7 +149,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -130,7 +163,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb index 84fbcaa..7255278 100644 --- a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -49,18 +49,18 @@ "source": [ "collections = [\"met-office-uk-deterministic-near-surface\"]\n", "asset_id = \"temperature_at_surface\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T18:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2026-01-21T09:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0001H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0054H00M\"]},\n", + " ],\n", "}" ] }, @@ -77,16 +77,27 @@ "execution_count": null, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "StopIteration", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mStopIteration\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[19]\u001b[39m\u001b[32m, line 6\u001b[39m\n\u001b[32m 1\u001b[39m search = catalog.search(\n\u001b[32m 2\u001b[39m collections=collections,\n\u001b[32m 3\u001b[39m datetime=\u001b[33m\"\u001b[39m\u001b[33m2026-01-21T09:00:00Z\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 4\u001b[39m )\n\u001b[32m----> \u001b[39m\u001b[32m6\u001b[39m asset_url = \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43msearch\u001b[49m\u001b[43m.\u001b[49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mitem\u001b[49m\u001b[43m.\u001b[49m\u001b[43mproperties\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mforecast:horizon\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[43m==\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mPT0054H00M\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m.assets[asset_id].href\n", + "\u001b[31mStopIteration\u001b[39m: " + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " filter_lang=\"cql2-json\",\n", + " filter=forecast_extension_filters,\n", ")\n", "\n", - "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "asset_url = next(search.items()).assets[asset_id].href" ] }, { @@ -116,7 +127,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -130,7 +141,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb index 17d5ee7..a927064 100644 --- a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb @@ -49,18 +49,18 @@ "source": [ "collections = [\"met-office-uk-deterministic-pressure\"]\n", "asset_id = \"wet_bulb_potential_temperature_on_pressure_levels\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2026-01-14T12:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2026-01-14T12:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0052H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0052H00M\"]},\n", + " ],\n", "}" ] }, @@ -80,9 +80,7 @@ "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -135,4 +133,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb index f8bde1f..daa7142 100644 --- a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb @@ -49,18 +49,18 @@ "source": [ "collections = [\"met-office-uk-deterministic-whole-atmosphere\"]\n", "asset_id = \"lightning_flash_accumulation-PT01H\"\n", - "datacube_extension_filters = {\n", + "forecast_extension_filters = {\n", " \"op\": \"and\",\n", " \"args\": [\n", " {\n", " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:reference_datetime\" }, \"2025-12-05T18:00:00Z\" ]\n", + " \"args\": [\n", + " {\"property\": \"forecast:reference_datetime\"},\n", + " \"2025-12-05T18:00:00Z\",\n", + " ],\n", " },\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [ { \"property\": \"forecast:horizon\" }, \"PT0037H00M\" ]\n", - " }\n", - " ]\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0037H00M\"]},\n", + " ],\n", "}" ] }, @@ -80,9 +80,7 @@ "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang= \"cql2-json\",\n", - " filter=datacube_extension_filters\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", @@ -136,4 +134,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file From 27ee039e213e9b1b0fc192c3213bfd15b877d15a Mon Sep 17 00:00:00 2001 From: Jeff Shepherd Date: Fri, 30 Jan 2026 12:53:14 +0000 Subject: [PATCH 03/12] update notebooks based on review feedback --- ...t-office-global-deterministic-height.ipynb | 623 ++++++++++++++++- ...ce-global-deterministic-near-surface.ipynb | 617 ++++++++++++++++- ...office-global-deterministic-pressure.ipynb | 623 ++++++++++++++++- ...lobal-deterministic-whole-atmosphere.ipynb | 618 ++++++++++++++++- .../met-office-uk-deterministic-height.ipynb | 628 ++++++++++++++++- ...office-uk-deterministic-near-surface.ipynb | 66 +- ...met-office-uk-deterministic-pressure.ipynb | 633 +++++++++++++++++- ...ce-uk-deterministic-whole-atmosphere.ipynb | 633 +++++++++++++++++- 8 files changed, 4258 insertions(+), 183 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-height.ipynb b/datasets/met-office/met-office-global-deterministic-height.ipynb index e272b78..8c7311a 100644 --- a/datasets/met-office/met-office-global-deterministic-height.ipynb +++ b/datasets/met-office/met-office-global-deterministic-height.ipynb @@ -13,7 +13,9 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office Global Height collection](https://planetarycomputer.microsoft.com/dataset/met-office-global-deterministic-height) on Microsoft Planetary Computer. This notebook outputs a distribution of cloud amount on height levels across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { @@ -23,8 +25,11 @@ "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -57,10 +62,10 @@ " \"args\": [\n", " {\"property\": \"forecast:reference_datetime\"},\n", " \"2026-01-14T12:00:00Z\",\n", - " ],\n", + " ]\n", " },\n", " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0144H00M\"]},\n", - " ],\n", + " ]\n", "}" ] }, @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'cloud_amount_on_height_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/height/20260114T1200Z/20260120T1200Z-PT0144H00M-cloud_amount_on_height_levels.nc?st=2026-01-29T11%3A03%3A24Z&se=2026-01-30T11%3A48%3A24Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T19%3A29%3A35Z&ske=2026-02-05T19%3A29%3A35Z&sks=b&skv=2025-07-05&sig=52KmEAOjBs2tXb9d55MvK6174sucyd%2BsiVfwjKmY05M%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,25 +109,586 @@ "id": "ee73ba3d", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data" + "Example usage: Open and inspect NetCDF data" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "fbc72d2a", "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_52053/4283676169.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", - "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", - "To opt-in to future behavior, set `decode_timedelta=False`.\n", - " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" - ] - }, + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 649MB\n",
+       "Dimensions:                                    (height: 33, latitude: 1920,\n",
+       "                                                longitude: 2560, bnds: 2)\n",
+       "Coordinates:\n",
+       "  * height                                     (height) float32 132B 5.0 ... ...\n",
+       "  * latitude                                   (latitude) float32 8kB -89.95 ...\n",
+       "  * longitude                                  (longitude) float32 10kB -179....\n",
+       "    forecast_period                            timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time                    datetime64[ns] 8B ...\n",
+       "    time                                       datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    cloud_volume_fraction_in_atmosphere_layer  (height, latitude, longitude) float32 649MB ...\n",
+       "    latitude_longitude                         int32 4B ...\n",
+       "    latitude_bnds                              (latitude, bnds) float32 15kB ...\n",
+       "    longitude_bnds                             (longitude, bnds) float32 20kB ...\n",
+       "Attributes:\n",
+       "    history:                      2026-01-14T15:53:04Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT168H\n",
+       "    mosg__grid_domain:            global\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    gl_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 649MB\n", + "Dimensions: (height: 33, latitude: 1920,\n", + " longitude: 2560, bnds: 2)\n", + "Coordinates:\n", + " * height (height) float32 132B 5.0 ... ...\n", + " * latitude (latitude) float32 8kB -89.95 ...\n", + " * longitude (longitude) float32 10kB -179....\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " cloud_volume_fraction_in_atmosphere_layer (height, latitude, longitude) float32 649MB ...\n", + " latitude_longitude int32 4B ...\n", + " latitude_bnds (latitude, bnds) float32 15kB ...\n", + " longitude_bnds (longitude, bnds) float32 20kB ...\n", + "Attributes:\n", + " history: 2026-01-14T15:53:04Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT168H\n", + " mosg__grid_domain: global\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: gl_det\n", + " source: Met Office Unified Model\n", + " title: Global Model Forecast on Global 10 km Stand...\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "eccb60f7", + "metadata": {}, + "source": [ + "Plot the distribution of cloud volume fraction as a graph" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f07cb1e2", + "metadata": {}, + "outputs": [ { "data": { "text/plain": [ @@ -123,7 +701,7 @@ " )" ] }, - "execution_count": 4, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, @@ -139,11 +717,6 @@ } ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"cloud_volume_fraction_in_atmosphere_layer\"].plot()" ] @@ -151,7 +724,7 @@ ], "metadata": { "kernelspec": { - "display_name": "PlanetaryComputerExamples", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -165,7 +738,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.2" + "version": "3.13.11" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb index 14b5b5d..0694263 100644 --- a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb +++ b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb @@ -13,18 +13,23 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office Global Near Surface collection](https://planetarycomputer.microsoft.com/dataset/met-office-global-deterministic-near-surface) on Microsoft Planetary Computer. This notebook outputs an image of global surface temperatures across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "id": "2132d393", "metadata": {}, "outputs": [], @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'rainfall_rate': , 'snowfall_rate': , 'wind_gust_at_10m': , 'wind_speed_at_10m': , 'precipitation_rate': , 'wind_direction_at_10m': , 'temperature_at_surface': , 'pressure_at_mean_sea_level': , 'visibility_at_screen_level': , 'wind_gust_at_10m_max-PT06H': , 'rainfall_accumulation-PT06H': , 'snow_depth_water_equivalent': , 'temperature_at_screen_level': , 'fog_fraction_at_screen_level': , 'rainfall_rate_from_convection': , 'snowfall_rate_from_convection': , 'precipitation_accumulation-PT06H': , 'relative_humidity_at_screen_level': , 'temperature_at_screen_level_max-PT06H': , 'temperature_at_screen_level_min-PT06H': , 'latent_heat_flux_at_surface_mean-PT06H': , 'rainfall_rate_from_convection_max-PT06H': , 'snowfall_rate_from_convection_max-PT06H': , 'snowfall_rate_from_convection_mean-PT06H': , 'temperature_of_dew_point_at_screen_level': , 'radiation_flux_in_shortwave_direct_downward_at_surface': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/near-surface/20260121T0000Z/20260128T0000Z-PT0168H00M-temperature_at_surface.nc?st=2026-01-29T11%3A25%3A59Z&se=2026-01-30T12%3A10%3A59Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-26T15%3A17%3A02Z&ske=2026-02-02T15%3A17%3A02Z&sks=b&skv=2025-07-05&sig=WyKfmaAfc65bmPQ30TX4t%2BeYg8FHHBPNdRG9yHYDuIA%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,32 +109,585 @@ "id": "ee73ba3d", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data on a map" + "Example usage: Open and inspect NetCDF data" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "id": "fbc72d2a", "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_56340/2895931206.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", - "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", - "To opt-in to future behavior, set `decode_timedelta=False`.\n", - " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" - ] - }, + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 20MB\n",
+       "Dimensions:                  (latitude: 1920, longitude: 2560, bnds: 2)\n",
+       "Coordinates:\n",
+       "  * latitude                 (latitude) float32 8kB -89.95 -89.86 ... 89.95\n",
+       "  * longitude                (longitude) float32 10kB -179.9 -179.8 ... 179.9\n",
+       "    forecast_period          timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time  datetime64[ns] 8B ...\n",
+       "    time                     datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    surface_temperature      (latitude, longitude) float32 20MB ...\n",
+       "    latitude_longitude       int32 4B ...\n",
+       "    latitude_bnds            (latitude, bnds) float32 15kB ...\n",
+       "    longitude_bnds           (longitude, bnds) float32 20kB ...\n",
+       "Attributes:\n",
+       "    history:                      2026-01-21T03:57:24Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT168H\n",
+       "    mosg__grid_domain:            global\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    gl_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 20MB\n", + "Dimensions: (latitude: 1920, longitude: 2560, bnds: 2)\n", + "Coordinates:\n", + " * latitude (latitude) float32 8kB -89.95 -89.86 ... 89.95\n", + " * longitude (longitude) float32 10kB -179.9 -179.8 ... 179.9\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " surface_temperature (latitude, longitude) float32 20MB ...\n", + " latitude_longitude int32 4B ...\n", + " latitude_bnds (latitude, bnds) float32 15kB ...\n", + " longitude_bnds (longitude, bnds) float32 20kB ...\n", + "Attributes:\n", + " history: 2026-01-21T03:57:24Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT168H\n", + " mosg__grid_domain: global\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: gl_det\n", + " source: Met Office Unified Model\n", + " title: Global Model Forecast on Global 10 km Stand...\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "84b285d5", + "metadata": {}, + "source": [ + "Plot surface temperatures on a map" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "aaf25841", + "metadata": {}, + "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, @@ -133,11 +703,6 @@ } ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"surface_temperature\"].plot()" ] @@ -145,7 +710,7 @@ ], "metadata": { "kernelspec": { - "display_name": "PlanetaryComputerExamples", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -159,7 +724,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.2" + "version": "3.13.11" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-global-deterministic-pressure.ipynb b/datasets/met-office/met-office-global-deterministic-pressure.ipynb index bec599d..23546c4 100644 --- a/datasets/met-office/met-office-global-deterministic-pressure.ipynb +++ b/datasets/met-office/met-office-global-deterministic-pressure.ipynb @@ -13,18 +13,23 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office Global Pressure collection](https://planetarycomputer.microsoft.com/dataset/met-office-global-deterministic-pressure) on Microsoft Planetary Computer. This notebook outputs a distribution of wind speeds across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "id": "4bafd899", "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "id": "2132d393", "metadata": {}, "outputs": [], @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'height_ASL_on_pressure_levels': , 'wind_speed_on_pressure_levels': , 'temperature_on_pressure_levels': , 'wind_direction_on_pressure_levels': , 'relative_humidity_on_pressure_levels': , 'wind_vertical_velocity_on_pressure_levels': , 'wet_bulb_potential_temperature_on_pressure_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/pressure/20260121T0600Z/20260124T0000Z-PT0066H00M-wind_speed_on_pressure_levels.nc?st=2026-01-29T11%3A32%3A54Z&se=2026-01-30T12%3A17%3A54Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-27T04%3A16%3A51Z&ske=2026-02-03T04%3A16%3A51Z&sks=b&skv=2025-07-05&sig=obHImcmdGvzHw30Ac%2Bwxy8KNfeQtxvb62opmXH1kgdU%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,25 +109,588 @@ "id": "ee73ba3d", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data" + "Example usage: Open and inspect NetCDF data" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "fbc72d2a", "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_57719/3941445104.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", - "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", - "To opt-in to future behavior, set `decode_timedelta=False`.\n", - " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" - ] - }, + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 811MB\n",
+       "Dimensions:                  (pressure: 33, latitude: 1920, longitude: 2560,\n",
+       "                              bnds: 2)\n",
+       "Coordinates:\n",
+       "  * pressure                 (pressure) float32 132B 1e+05 9.75e+04 ... 1e+03\n",
+       "  * latitude                 (latitude) float32 8kB -89.95 -89.86 ... 89.95\n",
+       "  * longitude                (longitude) float32 10kB -179.9 -179.8 ... 179.9\n",
+       "    forecast_period          timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time  datetime64[ns] 8B ...\n",
+       "    time                     datetime64[ns] 8B ...\n",
+       "    flag                     (pressure, latitude, longitude) int8 162MB ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    wind_speed               (pressure, latitude, longitude) float32 649MB ...\n",
+       "    latitude_longitude       int32 4B ...\n",
+       "    latitude_bnds            (latitude, bnds) float32 15kB ...\n",
+       "    longitude_bnds           (longitude, bnds) float32 20kB ...\n",
+       "Attributes:\n",
+       "    history:                      2026-01-21T09:33:07Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT67H\n",
+       "    mosg__grid_domain:            global\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    gl_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 811MB\n", + "Dimensions: (pressure: 33, latitude: 1920, longitude: 2560,\n", + " bnds: 2)\n", + "Coordinates:\n", + " * pressure (pressure) float32 132B 1e+05 9.75e+04 ... 1e+03\n", + " * latitude (latitude) float32 8kB -89.95 -89.86 ... 89.95\n", + " * longitude (longitude) float32 10kB -179.9 -179.8 ... 179.9\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + " flag (pressure, latitude, longitude) int8 162MB ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " wind_speed (pressure, latitude, longitude) float32 649MB ...\n", + " latitude_longitude int32 4B ...\n", + " latitude_bnds (latitude, bnds) float32 15kB ...\n", + " longitude_bnds (longitude, bnds) float32 20kB ...\n", + "Attributes:\n", + " history: 2026-01-21T09:33:07Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT67H\n", + " mosg__grid_domain: global\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: gl_det\n", + " source: Met Office Unified Model\n", + " title: Global Model Forecast on Global 10 km Stand...\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "33583b2d", + "metadata": {}, + "source": [ + "Plot the distribution of wind speeds as a graph" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ae845190", + "metadata": {}, + "outputs": [ { "data": { "text/plain": [ @@ -139,11 +719,6 @@ } ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"wind_speed\"].plot()" ] @@ -151,7 +726,7 @@ ], "metadata": { "kernelspec": { - "display_name": "PlanetaryComputerExamples", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -165,7 +740,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.2" + "version": "3.13.11" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb index 5ffd63a..45a1b9f 100644 --- a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb +++ b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb @@ -13,18 +13,23 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office Global Whole Atmosphere collection](https://planetarycomputer.microsoft.com/dataset/met-office-global-deterministic-whole-atmosphere) on Microsoft Planetary Computer. This notebook outputs an image of \"Convective Available Potential Energy (CAPE) most unstable below 500hPa\" across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "id": "2132d393", "metadata": {}, "outputs": [], @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'CIN_surface': , 'CAPE_surface': , 'pressure_at_tropopause': , 'cloud_amount_of_low_cloud': , 'temperature_at_tropopause': , 'cloud_amount_of_high_cloud': , 'CIN_mixed_layer_lowest_500m': , 'cloud_amount_of_total_cloud': , 'CAPE_mixed_layer_lowest_500m': , 'cloud_amount_of_medium_cloud': , 'cloud_amount_below_1000ft_ASL': , 'CIN_most_unstable_below_500hPa': , 'CAPE_most_unstable_below_500hPa': , 'cloud_amount_of_total_convective_cloud': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/whole-atmosphere/20251212T1200Z/20251214T1800Z-PT0054H00M-CAPE_most_unstable_below_500hPa.nc?st=2026-01-29T11%3A42%3A33Z&se=2026-01-30T12%3A27%3A33Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T00%3A07%3A36Z&ske=2026-02-05T00%3A07%3A36Z&sks=b&skv=2025-07-05&sig=Ag2wDijrJCP%2B30dbcH6Y7QHb8Gsf0/zCMaBRaH77zWo%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,29 +109,584 @@ "id": "ee73ba3d", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data" + "Example usage: Open and inspect NetCDF data" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "fbc72d2a", "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_61335/1359586566.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", - "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", - "To opt-in to future behavior, set `decode_timedelta=False`.\n", - " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" - ] - }, + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 20MB\n",
+       "Dimensions:                                           (latitude: 1920,\n",
+       "                                                       longitude: 2560, bnds: 2)\n",
+       "Coordinates:\n",
+       "  * latitude                                          (latitude) float32 8kB ...\n",
+       "  * longitude                                         (longitude) float32 10kB ...\n",
+       "    forecast_period                                   timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time                           datetime64[ns] 8B ...\n",
+       "    time                                              datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    atmosphere_convective_available_potential_energy  (latitude, longitude) float32 20MB ...\n",
+       "    latitude_longitude                                int32 4B ...\n",
+       "    latitude_bnds                                     (latitude, bnds) float32 15kB ...\n",
+       "    longitude_bnds                                    (longitude, bnds) float32 20kB ...\n",
+       "Attributes:\n",
+       "    history:                      2025-12-12T15:24:20Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT168H\n",
+       "    mosg__grid_domain:            global\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    gl_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 20MB\n", + "Dimensions: (latitude: 1920,\n", + " longitude: 2560, bnds: 2)\n", + "Coordinates:\n", + " * latitude (latitude) float32 8kB ...\n", + " * longitude (longitude) float32 10kB ...\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " atmosphere_convective_available_potential_energy (latitude, longitude) float32 20MB ...\n", + " latitude_longitude int32 4B ...\n", + " latitude_bnds (latitude, bnds) float32 15kB ...\n", + " longitude_bnds (longitude, bnds) float32 20kB ...\n", + "Attributes:\n", + " history: 2025-12-12T15:24:20Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT168H\n", + " mosg__grid_domain: global\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: gl_det\n", + " source: Met Office Unified Model\n", + " title: Global Model Forecast on Global 10 km Stand...\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "0dd86875", + "metadata": {}, + "source": [ + "Plot Convective Available Potential Energy on a map" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "865dd115", + "metadata": {}, + "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -133,12 +705,6 @@ } ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", - "\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"atmosphere_convective_available_potential_energy\"].plot()" ] @@ -146,7 +712,7 @@ ], "metadata": { "kernelspec": { - "display_name": "PlanetaryComputerExamples", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -160,7 +726,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.2" + "version": "3.13.11" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-uk-deterministic-height.ipynb b/datasets/met-office/met-office-uk-deterministic-height.ipynb index 28eb133..ac2499a 100644 --- a/datasets/met-office/met-office-uk-deterministic-height.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-height.ipynb @@ -13,18 +13,23 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office UK Height collection](https://planetarycomputer.microsoft.com/dataset/met-office-uk-deterministic-height) on Microsoft Planetary Computer. This notebook outputs a distribution of wind speed on height levels across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 2, "id": "8f95ecac", "metadata": {}, "outputs": [], @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 3, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'wind_speed_on_height_levels': , 'temperature_on_height_levels': , 'cloud_amount_on_height_levels': , 'wind_direction_on_height_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/height/20260121T1500Z/20260124T1500Z-PT0072H00M-wind_speed_on_height_levels.nc?st=2026-01-29T11%3A53%3A13Z&se=2026-01-30T12%3A38%3A13Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T00%3A07%3A36Z&ske=2026-02-05T00%3A07%3A36Z&sks=b&skv=2025-07-05&sig=UDjvEJ0T7t0fq/T3NZsIgW5R40a/5%2B6i8/vRpxciWgg%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,25 +109,591 @@ "id": "56d27e19", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data on a map" + "Example usage: Open and inspect NetCDF data" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "45613dda", "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/yp/d6xvrkd943dgvqg5s9cpymc40000gn/T/ipykernel_62252/3941445104.py:5: FutureWarning: In a future version, xarray will not decode the variable 'forecast_period' into a timedelta64 dtype based on the presence of a timedelta-like 'units' attribute by default. Instead it will rely on the presence of a timedelta64 'dtype' attribute, which is now xarray's default way of encoding timedelta64 values.\n", - "To continue decoding into a timedelta64 dtype, either set `decode_timedelta=True` when opening this dataset, or add the attribute `dtype='timedelta64[ns]'` to this variable on disk.\n", - "To opt-in to future behavior, set `decode_timedelta=False`.\n", - " example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n" - ] - }, + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 226MB\n",
+       "Dimensions:                       (height: 56, projection_y_coordinate: 970,\n",
+       "                                   projection_x_coordinate: 1042, bnds: 2)\n",
+       "Coordinates:\n",
+       "  * height                        (height) float32 224B 5.0 10.0 ... 7.5e+03\n",
+       "  * projection_y_coordinate       (projection_y_coordinate) float32 4kB -1.03...\n",
+       "  * projection_x_coordinate       (projection_x_coordinate) float32 4kB -1.15...\n",
+       "    forecast_period               timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time       datetime64[ns] 8B ...\n",
+       "    time                          datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    wind_speed                    (height, projection_y_coordinate, projection_x_coordinate) float32 226MB ...\n",
+       "    lambert_azimuthal_equal_area  int32 4B ...\n",
+       "    projection_y_coordinate_bnds  (projection_y_coordinate, bnds) float32 8kB ...\n",
+       "    projection_x_coordinate_bnds  (projection_x_coordinate, bnds) float32 8kB ...\n",
+       "Attributes:\n",
+       "    history:                      2026-01-21T16:41:13Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT120H\n",
+       "    mosg__grid_domain:            uk_extended\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    uk_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        UKV Model Forecast on UK 2 km Standard Grid\n",
+       "    um_version:                   13.8\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 226MB\n", + "Dimensions: (height: 56, projection_y_coordinate: 970,\n", + " projection_x_coordinate: 1042, bnds: 2)\n", + "Coordinates:\n", + " * height (height) float32 224B 5.0 10.0 ... 7.5e+03\n", + " * projection_y_coordinate (projection_y_coordinate) float32 4kB -1.03...\n", + " * projection_x_coordinate (projection_x_coordinate) float32 4kB -1.15...\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " wind_speed (height, projection_y_coordinate, projection_x_coordinate) float32 226MB ...\n", + " lambert_azimuthal_equal_area int32 4B ...\n", + " projection_y_coordinate_bnds (projection_y_coordinate, bnds) float32 8kB ...\n", + " projection_x_coordinate_bnds (projection_x_coordinate, bnds) float32 8kB ...\n", + "Attributes:\n", + " history: 2026-01-21T16:41:13Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT120H\n", + " mosg__grid_domain: uk_extended\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: uk_det\n", + " source: Met Office Unified Model\n", + " title: UKV Model Forecast on UK 2 km Standard Grid\n", + " um_version: 13.8\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "2c6eeca5", + "metadata": {}, + "source": [ + "Plot the distribution of wind speeds as a graph" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "dbb70cea", + "metadata": {}, + "outputs": [ { "data": { "text/plain": [ @@ -121,7 +704,7 @@ " )" ] }, - "execution_count": 16, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, @@ -137,11 +720,6 @@ } ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"wind_speed\"].plot()" ] @@ -149,7 +727,7 @@ ], "metadata": { "kernelspec": { - "display_name": "PlanetaryComputerExamples", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -163,7 +741,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.2" + "version": "3.13.11" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb index 7255278..fa96a67 100644 --- a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb @@ -13,7 +13,9 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office UK Near Surface collection](https://planetarycomputer.microsoft.com/dataset/met-office-uk-deterministic-near-surface) on Microsoft Planetary Computer. This notebook outputs an image of UK surface temperatures across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { @@ -23,8 +25,11 @@ "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "8f95ecac", "metadata": {}, "outputs": [], @@ -56,10 +61,11 @@ " \"op\": \"=\",\n", " \"args\": [\n", " {\"property\": \"forecast:reference_datetime\"},\n", - " \"2026-01-21T09:00:00Z\",\n", + " \"2026-01-30T09:00:00Z\",\n", " ],\n", " },\n", " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0054H00M\"]},\n", + " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:variable\"}, \"surface_temperature\"]},\n", " ],\n", "}" ] @@ -77,27 +83,17 @@ "execution_count": null, "id": "edb71afa", "metadata": {}, - "outputs": [ - { - "ename": "StopIteration", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mStopIteration\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[19]\u001b[39m\u001b[32m, line 6\u001b[39m\n\u001b[32m 1\u001b[39m search = catalog.search(\n\u001b[32m 2\u001b[39m collections=collections,\n\u001b[32m 3\u001b[39m datetime=\u001b[33m\"\u001b[39m\u001b[33m2026-01-21T09:00:00Z\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 4\u001b[39m )\n\u001b[32m----> \u001b[39m\u001b[32m6\u001b[39m asset_url = \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43msearch\u001b[49m\u001b[43m.\u001b[49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mitem\u001b[49m\u001b[43m.\u001b[49m\u001b[43mproperties\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mforecast:horizon\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[43m==\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mPT0054H00M\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m.assets[asset_id].href\n", - "\u001b[31mStopIteration\u001b[39m: " - ] - } - ], + "outputs": [], "source": [ "search = catalog.search(\n", - " collections=collections,\n", - " filter_lang=\"cql2-json\",\n", - " filter=forecast_extension_filters,\n", + " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", - "asset_url = next(search.items()).assets[asset_id].href" + "items = search.item_collection()\n", + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -105,7 +101,7 @@ "id": "56d27e19", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data on a map" + "Example usage: Open and inspect NetCDF data" ] }, { @@ -115,11 +111,25 @@ "metadata": {}, "outputs": [], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "ffa6be66", + "metadata": {}, + "source": [ + "Plot surface temperatures on a map" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "820f3c35", + "metadata": {}, + "outputs": [], + "source": [ "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"surface_temperature\"].plot()" ] @@ -127,7 +137,7 @@ ], "metadata": { "kernelspec": { - "display_name": "PlanetaryComputerExamples", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -141,7 +151,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.2" + "version": "3.13.11" } }, "nbformat": 4, diff --git a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb index a927064..02dd493 100644 --- a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb @@ -13,18 +13,23 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office UK Pressure collection](https://planetarycomputer.microsoft.com/dataset/met-office-uk-deterministic-pressure) on Microsoft Planetary Computer. This notebook outputs a distribution of wet bulb potential temperature across a forecast period.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "4bafd899", "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "8f95ecac", "metadata": {}, "outputs": [], @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'height_ASL_on_pressure_levels': , 'wind_speed_on_pressure_levels': , 'temperature_on_pressure_levels': , 'wind_direction_on_pressure_levels': , 'relative_humidity_on_pressure_levels': , 'wet_bulb_potential_temperature_on_pressure_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/pressure/20260114T1200Z/20260116T1600Z-PT0052H00M-wet_bulb_potential_temperature_on_pressure_levels.nc?st=2026-01-29T12%3A36%3A49Z&se=2026-01-30T13%3A21%3A49Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T22%3A08%3A23Z&ske=2026-02-05T22%3A08%3A23Z&sks=b&skv=2025-07-05&sig=lPjOidbCqI9EkofjQK65t4kb3yg31NzpiJO/eOXh8yM%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,7 +109,7 @@ "id": "56d27e19", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data on a map" + "Example usage: Open and inspect NetCDF data" ] }, { @@ -100,13 +117,601 @@ "execution_count": null, "id": "45613dda", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 12MB\n",
+       "Dimensions:                         (pressure: 3, projection_y_coordinate: 970,\n",
+       "                                     projection_x_coordinate: 1042, bnds: 2)\n",
+       "Coordinates:\n",
+       "  * pressure                        (pressure) float32 12B 8.5e+04 7e+04 5e+04\n",
+       "  * projection_y_coordinate         (projection_y_coordinate) float32 4kB -1....\n",
+       "  * projection_x_coordinate         (projection_x_coordinate) float32 4kB -1....\n",
+       "    forecast_period                 timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time         datetime64[ns] 8B ...\n",
+       "    time                            datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    wet_bulb_potential_temperature  (pressure, projection_y_coordinate, projection_x_coordinate) float32 12MB ...\n",
+       "    lambert_azimuthal_equal_area    int32 4B ...\n",
+       "    projection_y_coordinate_bnds    (projection_y_coordinate, bnds) float32 8kB ...\n",
+       "    projection_x_coordinate_bnds    (projection_x_coordinate, bnds) float32 8kB ...\n",
+       "Attributes:\n",
+       "    history:                      2026-01-14T13:27:58Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT54H\n",
+       "    mosg__grid_domain:            uk_extended\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    uk_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        UKV Model Forecast on UK 2 km Standard Grid\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 12MB\n", + "Dimensions: (pressure: 3, projection_y_coordinate: 970,\n", + " projection_x_coordinate: 1042, bnds: 2)\n", + "Coordinates:\n", + " * pressure (pressure) float32 12B 8.5e+04 7e+04 5e+04\n", + " * projection_y_coordinate (projection_y_coordinate) float32 4kB -1....\n", + " * projection_x_coordinate (projection_x_coordinate) float32 4kB -1....\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " wet_bulb_potential_temperature (pressure, projection_y_coordinate, projection_x_coordinate) float32 12MB ...\n", + " lambert_azimuthal_equal_area int32 4B ...\n", + " projection_y_coordinate_bnds (projection_y_coordinate, bnds) float32 8kB ...\n", + " projection_x_coordinate_bnds (projection_x_coordinate, bnds) float32 8kB ...\n", + "Attributes:\n", + " history: 2026-01-14T13:27:58Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT54H\n", + " mosg__grid_domain: uk_extended\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: uk_det\n", + " source: Met Office Unified Model\n", + " title: UKV Model Forecast on UK 2 km Standard Grid\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "efd9379d", + "metadata": {}, + "source": [ + "Plot wet bulb potential temperature as a graph" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a10e4591", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 3740., 22304., 229263., 756270., 918013., 490304., 249852.,\n", + " 161589., 116896., 83989.]),\n", + " array([273.875 , 275.07501221, 276.2749939 , 277.4750061 ,\n", + " 278.67498779, 279.875 , 281.07501221, 282.2749939 ,\n", + " 283.4750061 , 284.67498779, 285.875 ]),\n", + " )" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAHmCAYAAACBAkS6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASLFJREFUeJzt3Qm8jeX+//+PmZR5SsaTMoRkCGnmoKhEJYRTSoM6KiUaSBOHilTSSJOSSqcIiSgZo8GcTkRlqMwyu/+P9/X/3uu31rKHtbnsbe/9ej4eq22tda17Xqv7fV/DnSMIgsAAAAAAAF7k9DMZAAAAAAAhCwAAAAA8oyYLAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFlANrZgwQI755xzrGDBgpYjRw777rvvMnqRYGZr1qxx+2P06NHetsfDDz/sppkVXHjhhe6B7GHnzp124403WpkyZdwxfOedd2b0ImV5b775plWrVs3y5MljRYoUyejFATIlQhaQTe3fv9+uvvpq27x5sw0dOtT9T7VixYqWlY0ZM8aGDRuW0YuRbUybNs1uuOEGO/300+2EE06wf/zjH+5kef369ZaVvfrqq1a9enXLnz+/nXbaafbss8+m+pl//vOfLkDcfvvtCc9n7969dt9991nZsmWtQIEC1rBhQ5s6dWqSZWfPnm3nnnuu2w8KK//+979deEnUb7/9Ztdcc4074S5UqJBdccUV9vPPP3tb/5Q88cQT7oLDrbfe6n6nOnfubFnZsmXL3EURXWzJCCtWrLB//etfduqpp9rLL79sL730UoYsB5DpBQCypeXLlwf6CXj55ZeD7KJVq1ZBxYoVg+PdoUOHgt27dwcHDhzwNs3+/fu7/Z2e6tWrF1SuXDno3bu3O8769u0bnHTSSUHp0qWD9evXH/F0L7jgAvc4Ho0cOdJt53bt2gUvvfRS0LlzZ/d80KBByX7mgw8+CAoWLOjK9ejRI+F5XXvttUHu3LmDe+65J3jxxReDxo0bu+dfffVVTLlvv/02yJ8/f3DWWWcFL7zwQvDAAw8E+fLlC1q2bJnQfHbs2BGcdtppQalSpYL//Oc/wdNPPx2UL18+KFeuXPDnn38e9fqnpmHDhkGTJk2C7GLcuHFum33xxRcZMn8dI5r/qlWrMmT+QFZByAKyqZkzZ7r/kep/6L7s3LkzOJ4d7yFr//79wd69e4/JtDMiZOkYO3jw4GGvaTl0op/VQtbff/8dFC9e3B1n0Tp16uRC1ObNmw/7jMJ0pUqVgkceeSRNIWvevHmu/JAhQ2Kmdeqpp7qwFe2SSy4JTj755GDbtm2R1xR69fkpU6akOi8FK5WdP39+zEWaXLlyueB8NOufCAX1+Gker9+z4zFkpfV3ecCAAW7+f/zxh5f5A9kVIQvIhrp27er+Jxr9iD5pnTZtWnDuuecGJ5xwQlC4cOHg8ssvD5YtW5bkSfvSpUuDDh06BEWKFAnq1KkTef/NN98M6tat666gFy1aNGjfvn2wdu3aw5Zl7ty57iRQn9f8atWqFQwbNizy/vfff++WVydauvquWpDrr7/+sCvo27dvD3r27OlCVN68eYOSJUsGzZo1CxYuXOje1/rFr3NaApfK6kRPJ6VnnnmmW5bq1au7Woh4W7ZsccuiK/1aFp346kp+dOBYvXp15CR56NChwT/+8Y8gZ86crtYhfG/UqFEx001kv4hqMurXr++WUdNV7UJGhKzkFCtWLGjbtm1CZVVDo3XQcdSgQYPgyy+/PCxk6YT5oYcecsdboUKF3PbRdpo+fXpM7aD2obZZPIUTfa579+6R14YPHx7UqFEjKFCggDs2VSv39ttvp7isEydOdNtYf6PNnj3bva7vRFIntBUqVHABJbmQ9csvv7hQE+3ee+91ISc6OMkTTzzhphN+1/S+ardUPpq22Yknnhh069Yt5nXNR/OLpu2uR7zmzZu7Y/to1j8lChnx31k99P2QjRs3BjfccIOrYdOxXrt27WD06NEx00jpexaur2rd9BulaWg///e//03yO33nnXdGfl9OOeUUV0sXBpFEjsHQO++848pp+6tmt2bNmpHfPH3nk1rnRAPX0f4ua/3i561pAki73BndXBFA+rv55pvtlFNOcX0d1DejQYMGVrp0affe559/bpdcconrP6N+Abt373Z9Kpo0aWKLFi2ySpUqxUxL/brU70LT0oUbefzxx+2hhx5yfTjUB+ePP/5w0zj//PPt22+/jXSkVv+R1q1b28knn2w9e/Z0fUWWL19uEyZMcM/DMur7cf3117v3ly5d6voI6O/cuXMjgznccsst9v7777s+LTVq1LC//vrLZs2a5aZXt25de+CBB2zbtm3266+/uj5ocuKJJ6Zpu61atcrat2/v5tW1a1cbNWqUW//Jkye7PjXy999/2wUXXOD6sGg7V6hQwfWH6du3r+uLFN8nTNPYs2ePde/e3fLly2fFihWzQ4cOHTbvRPfL4sWLrXnz5layZElX7sCBA9a/f//I/k2Nll+P1OTKlcuKFi1qaaV+QHqUKFEi1bLq26NtqMFZNNiBjoPLL7/cbaPy5ctHym3fvt1eeeUV69Chg9100022Y8cO99kWLVrY/PnzrU6dOu44ue6662zw4MGuH6KmEfrkk0/cNPS+qB+KvhdXXXWVOw61f3744QebN2+edezYMdnl1bEt9evXj3m9Xr16ljNnTvd+OA9Zu3atDRo0yF577TXXpyo5Xbp0sZkzZ0a+X+G81NdN/aOinX322e6vBrHRNtLxoGMgfpny5s3rtku4zCH1pdLxO2PGDPdcx6LWXX3r4mlen332mdveJ510UprXPzVaFvXBuuuuu6xcuXLWq1cv97qObR3/Gvzkp59+ct/5ypUr27hx41xfoq1bt0Z+P1L6nuk3RN8f/Rb26dPHDQD03nvvWZs2beyDDz6wK6+80n1Wx+t5553nfku0HfR78ueff9rHH3/sfk90LCdyDIa/ZyrTtGlT+89//uNe03S//vprt8z6jdSxN3z4cLv//vvdNgi3RVoc6e+yfp/eeOMNGz9+vL3wwgvuN7J27dppmjeA/3MEwQxAFhBeJY5vLqirnroy/Ndff8XUJunqb5cuXQ67YqqrpdHWrFnjrrA//vjjMa8vXrzYXVEPX1d/I9VO6cqprhJHU61DSFf4k7oSrHmrViOkmp3UmlodTXPB8ApvdM2VagnUDEt9XUKPPvqoaxr1448/xny+T58+bruEV43DK+y66r1p06aYsknVZCW6X9q0aeOuUkfXRqi2S/NO5Cc/3K+pPY50O2r76POqlUvJvn373PpqvaObdqmfT3zNq46l+OZfOqZU66majtDKlSvdZ9XnJJpqt9RkLzzurrjiiuCMM85I87rp+NN2TopqVtWHKtpVV10VnHPOOZHnydVkhbWw0bR8F1988WFlVYOhsqq9jG56Fv1dCV199dVBmTJlYl6L37aqqdFras4Y7/nnn3fvrVix4ojWP621yNFU86N5v/XWWzHHjJpKqoZINdupfc+aNm3qas737NkTeU3HgPaJ+qCF+vXr56bx4YcfHrZs4TGT6DGoGm4tS0r9LY+mueDR/i5HT4PmgsDRYXRBABGqadEVcF0Njr7SryuZqqn59NNPD9taqtWJ9uGHH7qr37paqqu94UO1ULqy+sUXX7hyunK6evVqV0MRP0Rw9FDj0Vf4dSVa02rUqJF7rhqckKahmobff//9mO1RjeIWXt0W1SKolkHrsmHDBvearqbrqrdqeaLXv1mzZnbw4EH78ssvY6bZrl07d2Xex37R9KdMmeKuxKsGLaSr4Lqingitj662p/Z4++23La207gMGDHDHxsUXX5xi2W+++cY2bdrkji/VuoS0DQoXLnxYrVpYRseeaqrC2pvoY0Q1PxqBL3rZVXbSpEnWqVOnyHGnY0k1FLrFQVqodiV6WaNppD29H9L3QLUliYx2qVql6FqscF6qkUlqPuH70X+TKxu9TKL5hLVYiXw+fl6Jrv/R0jGv3xTVCoU03Hg4aqJq/lL6nmm/T58+3R2LqnUKv6eqAdd3RbXWqo0W7aczzzwz5rsfCo+ZRI9BHVu7du1KdhRIX470dxmAPzQXBBDxyy+/uL9Vq1Y9bKvoRF0n8DpBULOakJrpRNPJiU7U9D/upOhESP73v/+5vzVr1kxxD+hkRSfm7777rjvpjqbmfyE1A1MTPjWRUvOkSy+91AUGNa/zpUqVKofda0on7qLhlnXCovVX86rkglP8OsRvv6PZLzpZ1IlsUtten00qJMfT9vK5zaKHhdZJqva3mlUlus7x66LjJ6nle/311+2pp55y89HtCZLbvjom1LxM09ctCxSKVT56WHANi67mmWoOp32u5pdqJqimZSnRBYF9+/Yl+Z4uEIQXDHTyrTCgeaqp7pHQtDSEe1LzCd+P/ptc2ZSaKSby+fh5JbL+Pmj/6dhQM8RoYbO68PhJ7jhQM0P9Tqn5nB7JfVfVlFC/VQppqUnkGLzttttck0Q1/dW0dWwp+LRs2dJ8OtLfZQD+ELIAHJX4EyddLVUQUe2Aru7GS2s/KJ2AqE/Tvffe6/o16POah05KovsuqZxqkNSXQP1EhgwZ4vo86AquTmjSi5ZJtUu9e/dO8v0wlIV8nnj6EPaZSo32bWo1cKF169a5k0nVQCnoqf+OT2+99Zar4VINno6TUqVKueUbOHBgJMyHrr32WtfHR7VZ6vOiz6q2ITrA6kR95cqVrm+g+tupJmPEiBHWr18/F/iTo76Fqk3UybmWIaTgoRoS1YSK+rxo+i+++OJh90JSUNZr+rzuaZXSvMKalmjhPcjCealc9OvxZcNyyVHNqWqxkvt8/LwSWf/j5XdK7rnnnmRreRWwfR+Del210rowot9IPdRfTOFfIS2z/C4DSB0hC0BEeDNinQDG09VZdfCOrsVKim5gqSumupIaHyjiy8mSJUtcU7qkbNmyxd3QVie2OsGNviqbFJ3k6UqxHjrRUwd1dfYOQ1Z8LVRahVe/o6fz448/ur/hwBNaL4WU5NbpWO4XNcnSyVVS2yepzyblySefTDFIRC9TIjdL1cm1ApZqQrQvw5P+RKYvWpfopoWqIVAzUzXfCmnAE9VuKVBH7xsN+JFUaGjVqpULWWoiqAEHkmqyp+2pQU70UEho27atO5Y0gEnYTC5eOLiBmjqqJjWk5zrJDd/XgBdaj6RqxhTAwoEHdMKeHE1LTbw04EL04BdqMhu9LKo5zJ07t1sGXYgIaZ10sh/9WlJUU1SrVi33+Xial7Z7GJoTXX8fdHyoxljTja7N0vchfD8lYW2oanBS+67qO63fqZSk5RhUs8LLLrvMPbT8+r1S4FaNWlK15T4k+rsMwB/6ZAGI0AmwToR0RVUjdIV0gqHaoegTp+ToZFRXSnWiHt+PRM910i0KQPofvk5wo+cVlpPwimv8dOJPinX1PLrpYHjFWFfOo5s56cQ5vlxaqL+XTn5DOsHVCbG2mZoKik5a58yZ465Ux9N6qqnYsdov2l66Kv/RRx+5E/mQRi9LanmOdZ8sNWHUsqnGRTVYyTVVSopql1RTNnLkyJgmaKNHjz7seEnqOFEA0H5IiprpLVu2zNU46LOq3YoWHqPRJ8UasVLTj24GFk9hUCFOo7JF03PVSinciean4yj+Idpe+rf6joW0L8PwENLIhzruNdJmSMe6akX02XD0RdUeKkSopkW1ZCGN2qeLARqFLprmE33shPNS/7TooKXQrj5N0Z9PdP190HZSP8ixY8dGXtN3S6PlqVZGIySmRL8PGp1Q4SapWjqNvBdSU8Hvv/8+5rufyG9VUsdg/LGlgBiO3hf+VoUXsuKP86OR6O9yclQbF18rrO0W3zRSv6967Wh+Z4Es4ygHzgCQxUYXnDp1qhttqlq1au7eMhpVTCOD6Z4qP//8c0IjUA0cONC9p1G6Bg8e7EZz6927txuxK/rmqZMnTw7y5MnjRg97+OGH3T2R7rrrLnf/ndD555/v7jmjm9eOGDHCjZ6n+1RF379Fo3hpRD/dT+vpp592I9Bdc801rsxTTz0VmZaWRa9pHmPGjAk+/vjjhLeXlvH00093953RSIG6545GJtPoflqP0K5du9x9aLQNb7zxRrfuTz75pFs2LWO4vaLv3xMvqdEFE90vGnFQowvq3ku6N9djjz3mRjjTPYTS+ydfo/RpnhpdTffniX6MHz8+1c/reNDnmzRp4u5bpf2m7a97HUWPgPfaa6+5cholUJ/R/lE5jcCX1CiIGgVON83VZ3SPtnjaf5deeqkbce2VV14JevXq5e6hdNlll6W6zOGIexo5UDf81ciPeh4/qltS0jK6YDg6YHgPLK23vm96rhs+R9O94rT8GgVTx6O+SzpGor9n0csQf6NnjdSn+2FptEd9h3Tsly9fPihbtuxhI/Yluv7h708i92BKanRBjTqq+9TpnlXaP88++2xkO0XfZy+l75lGYtT3R8eCjhn9bmj0S+17fV9CO3bscPdM0+h8N910kxu5Ufcja9SoUfDdd9+l6RjU75d+0/R7p2NL99YK72UV3kdv/fr1bl6avu77pdFUdU+wRPj4XU5qGlqH+O9SeL/F8L5l0ff5ir/HH5AdEbKAbCq5kCWff/65O7HVjVg13LBOLpO7GXFyw/xqqHPdjFPBQg+FA51AahjtaLNmzQr++c9/uptyqpxObnTCFPr111+DK6+80p2IaJh2nVj+/vvvMSdoOmnWiabCVzgd/VuhLNrOnTuDjh07umkdzc2ItYw6adU6JbX9dFLWt2/foEqVKu4ksESJEu7ERmFLw0wfSchKdL+ITrJ1U1XNOyNvRpzUjU3TOgS89mF4I2rdYDmpmxFrGG2d9GqaYZiYMGGCOwlMbj633XabWw6F7Xg6SdaJsE6+NT0FDB1f8Tf+TY5O1qtWrRq5EbVCSfRtCXyFLN1E+Z577nHDsGs5dcPg6MAff4NqHYMKVwrnmk84zHlqIUvWrVvngpOOOw2R3rp162DVqlVHvP6ffPJJzFDzaQ1ZouChG5Pr+6V56aJH/Hcmpe+Z/O9//3NBUNtQF3x0k2Gt2/vvvx9TTrdOuP322937mpduNK7jK7wpeqLHoKarcKvAqunoYsjNN9/sglU0BVR9d8NbL6T1ZsRH87tMyAL8yKH/ZHRtGgAc79TnSv1bNBgCMj8NfqGbxarJWUoDTODY0MAw77zzjuvnmNTw8ACQ2dEnCwCQrWg4cfVRUl8bAlbG0KAdGuiBgAUgq2J0QQDZmjq4awCB5GjQg+gbACPz0oiTuv+VRoJTR/+ePXtm9CJlW2m90XN2l8itFTRQTFLDswPIGIQsANmabgYbf+PSaBqlbMaMGem6TDg2NKKghm3XyHLDhw/3OqQ4cCwlcmsF3dogvJUEgIxHnywA2Zruk7R79+5k3y9atKjVq1cvXZcJAKL9/PPP7pGSc889N9l7uAFIf4QsAAAAAPCI5oIp0J3YdfNR3c3+WNyBHQAAAEDmoEHZdWP3smXLupuJp4SQlQIFrPLly/vePwAAAAAyqXXr1lm5cuVSLEPISoFqsMINWahQIb97BwAAAECmsX37dlcBE2aElBCyUhA2EVTAImQBAAAAyJFANyJuRgwAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8Ci3z4kBADK3Sn0mZvQiHLfWDGqV0YsAAMgkqMkCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAAIWQAAAABwfKImCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAGRUyDp48KA99NBDVrlyZStQoICdeuqp9uijj1oQBJEy+ne/fv3s5JNPdmWaNWtmq1atipnO5s2brVOnTlaoUCErUqSIdevWzXbu3BlT5ocffrDzzjvP8ufPb+XLl7fBgwcftjzjxo2zatWquTK1atWyTz/9NOb9RJYFAAAAADIsZP3nP/+xF154wZ577jlbvny5e67w8+yzz0bK6Pnw4cNt5MiRNm/ePCtYsKC1aNHC9uzZEymjgLV06VKbOnWqTZgwwb788kvr3r175P3t27db8+bNrWLFirZw4UIbMmSIPfzww/bSSy9FysyePds6dOjgAtq3335rbdq0cY8lS5akaVkAAAAAwKccQXQ1VCpat25tpUuXtldffTXyWrt27Vwt0VtvveVqjsqWLWu9evWye+65x72/bds295nRo0fbtdde68JZjRo1bMGCBVa/fn1XZvLkyXbppZfar7/+6j6vIPfAAw/Yhg0bLG/evK5Mnz597KOPPrIVK1a45+3bt7ddu3a5kBZq1KiR1alTx4WqRJYlNQp7hQsXdp9TrRsAZHWV+kzM6EU4bq0Z1CqjFwEAkIHSkg3SVJN1zjnn2LRp0+zHH390z7///nubNWuWXXLJJe756tWrXTBSs7yQFqRhw4Y2Z84c91x/1UQwDFii8jlz5nS1TWGZ888/PxKwRDVQK1eutC1btkTKRM8nLBPOJ5Flibd371638aIfAAAAAJAWudNSWLVJCh7qB5UrVy7XR+vxxx93zf9EoUZUWxRNz8P39LdUqVKxC5E7txUrViymjPp9xU8jfK9o0aLub2rzSW1Z4g0cONAGDBiQlk0CAAAAAEdek/Xee+/Z22+/bWPGjLFFixbZ66+/bk8++aT7mxX07dvXVf+Fj3Xr1mX0IgEAAADIyjVZ9957r6vNCvszaUS/X375xdUAde3a1cqUKeNe37hxoxvRL6Tn6islKrNp06aY6R44cMCNOBh+Xn/1mWjh89TKRL+f2rLEy5cvn3sAAAAAQLrUZP3999+u71Q0NRs8dOiQ+7ea+CncqN9WSM0L1deqcePG7rn+bt261Y0aGJo+fbqbhvpLhWU04uD+/fsjZTQSYdWqVV1TwbBM9HzCMuF8ElkWAAAAAMjQkHXZZZe5PlgTJ060NWvW2Pjx4+3pp5+2K6+80r2fI0cOu/POO+2xxx6zjz/+2BYvXmxdunRxo/xpeHWpXr26tWzZ0m666SabP3++ff3113b77be72jGVk44dO7pBLzQ8u4Z6Hzt2rD3zzDN29913R5alZ8+eblTCp556yo04qCHev/nmGzetRJcFAAAAADK0uaDuh6WbEd92222uyZ8Cy8033+xu+Bvq3bu3G1pd971SjdW5557rwpBuGBxSvy6FoaZNm7qaMQ0Dr/tZRY8C+Nlnn1mPHj2sXr16VqJECTeP6HtpaaRD9Q178MEH7f7777fTTjvNDfFes2bNNC0LAAAAAGTYfbKyG+6TBSC74T5ZyeM+WQCQvW0/VvfJAgAAAACkjJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAe5fY5MQDILCr1mZjRiwAAALIoarIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAICQBQAAAABZpCbrt99+s+uuu86KFy9uBQoUsFq1atk333wTeT8IAuvXr5+dfPLJ7v1mzZrZqlWrYqaxefNm69SpkxUqVMiKFCli3bp1s507d8aU+eGHH+y8886z/PnzW/ny5W3w4MGHLcu4ceOsWrVqroyW49NPP415P5FlAQAAAIAMC1lbtmyxJk2aWJ48eWzSpEm2bNkye+qpp6xo0aKRMgpDw4cPt5EjR9q8efOsYMGC1qJFC9uzZ0+kjALW0qVLberUqTZhwgT78ssvrXv37pH3t2/fbs2bN7eKFSvawoULbciQIfbwww/bSy+9FCkze/Zs69Chgwto3377rbVp08Y9lixZkqZlAQAAAACfcgSq7klQnz597Ouvv7avvvoqyfc1qbJly1qvXr3snnvuca9t27bNSpcubaNHj7Zrr73Wli9fbjVq1LAFCxZY/fr1XZnJkyfbpZdear/++qv7/AsvvGAPPPCAbdiwwfLmzRuZ90cffWQrVqxwz9u3b2+7du1yIS3UqFEjq1OnjgtViSxLahT2Chcu7D6nWjcAWUelPhMzehGQyawZ1CqjFwEAkIHSkg3SVJP18ccfu2B09dVXW6lSpeyss86yl19+OfL+6tWrXTBSs7yQFqRhw4Y2Z84c91x/1UQwDFii8jlz5nS1TWGZ888/PxKwRDVQK1eudLVpYZno+YRlwvkksizx9u7d6zZe9AMAAAAA0iJNIevnn392tUynnXaaTZkyxW699Vb797//ba+//rp7X6FGVFsUTc/D9/RXAS1a7ty5rVixYjFlkppG9DySKxP9fmrLEm/gwIEuiIUP9QUDAAAAgGMWsg4dOmR169a1J554wtViqR/VTTfd5JrnZQV9+/Z11X/hY926dRm9SAAAAACycsjSKH3qTxWtevXqtnbtWvfvMmXKuL8bN26MKaPn4Xv6u2nTppj3Dxw44EYcjC6T1DSi55Fcmej3U1uWePny5XPtK6MfAAAAAHDMQpZGFlS/qGg//vijGwVQKleu7ALMtGnTIu+rX5P6WjVu3Ng919+tW7e6UQND06dPd7Vk6i8VltGIg/v374+U0UiEVatWjYxkqDLR8wnLhPNJZFkAAAAAIEND1l133WVz5851zQV/+uknGzNmjBtWvUePHu79HDly2J133mmPPfaYGyRj8eLF1qVLFzfKn4ZXD2u+WrZs6ZoZzp8/341WePvtt7vR/lROOnbs6Aa90PDsGup97Nix9swzz9jdd98dWZaePXu6UQk1hLxGHNQQ77pfl6aV6LIAAAAAgG+501K4QYMGNn78eNd36ZFHHnG1RcOGDXP3vQr17t3bDa2u/lqqsTr33HNdGNINg0Nvv/22C0NNmzZ1owq2a9fO3c8qpEEnPvvsMxfe6tWrZyVKlHA3FY6+l9Y555zjQt6DDz5o999/vxuMQ0O816xZM03LAgAAAAAZdp+s7Ib7ZAFZF/fJQlpxnywAyN62H6v7ZAEAAAAAUkbIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHuX1ODACArKpSn4kZvQjHpTWDWmX0IgDAcYeaLAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAjpeQNWjQIMuRI4fdeeedkdf27NljPXr0sOLFi9uJJ55o7dq1s40bN8Z8bu3atdaqVSs74YQTrFSpUnbvvffagQMHYsrMmDHD6tata/ny5bMqVarY6NGjD5v/888/b5UqVbL8+fNbw4YNbf78+THvJ7IsAAAAAHBchKwFCxbYiy++aLVr1455/a677rJPPvnExo0bZzNnzrTff//d2rZtG3n/4MGDLmDt27fPZs+eba+//roLUP369YuUWb16tStz0UUX2XfffedC3I033mhTpkyJlBk7dqzdfffd1r9/f1u0aJGdeeaZ1qJFC9u0aVPCywIAAAAAvuUIgiBI64d27tzpaplGjBhhjz32mNWpU8eGDRtm27Zts5IlS9qYMWPsqquucmVXrFhh1atXtzlz5lijRo1s0qRJ1rp1axd4Spcu7cqMHDnS7rvvPvvjjz8sb9687t8TJ060JUuWROZ57bXX2tatW23y5MnuuWquGjRoYM8995x7fujQIStfvrzdcccd1qdPn4SWJTXbt2+3woULu2kVKlQorZsJwHGsUp+JGb0IQJawZlCrjF4EAEgXackGR1STpSZ4qmlq1qxZzOsLFy60/fv3x7xerVo1q1Chggs2or+1atWKBCxRDZQWeunSpZEy8dNWmXAaqgXTvKLL5MyZ0z0PyySyLPH27t3rliP6AQAAAABpkTtNpc3s3Xffdc3z1Fww3oYNG1xNVJEiRWJeV6DSe2GZ6IAVvh++l1IZhZ7du3fbli1bXLPDpMqotirRZYk3cOBAGzBgQMLbAgAAAACOqiZr3bp11rNnT3v77bfdYBNZTd++fV31X/jQ+gIAAADAMQtZaoKngSXUHyt37tzuoQElhg8f7v6tWiI15VPfqWga0a9MmTLu3/obP8Jf+Dy1Mmr7WKBAAStRooTlypUryTLR00htWeJpJEPNI/oBAAAAAMcsZDVt2tQWL17sRvwLH/Xr17dOnTpF/p0nTx6bNm1a5DMrV650Q7Y3btzYPddfTSN6FMCpU6e6QFOjRo1ImehphGXCaagZYL169WLKaOALPQ/L6P3UlgUAAAAAMrRP1kknnWQ1a9aMea1gwYLuPlTh6926dXNDqxcrVswFJ432p1ATjubXvHlzF6Y6d+5sgwcPdv2jHnzwQTeYhmqS5JZbbnGjBvbu3dtuuOEGmz59ur333ntuxMGQ5tG1a1cX7M4++2w3uuGuXbvs+uuvd+9r5I/UlgUAAAAAMnzgi9QMHTrUjfSnG/9qtD6NCqih3kNq5jdhwgS79dZbXeBRSFNYeuSRRyJlKleu7AKV7nP1zDPPWLly5eyVV15x0wq1b9/eDfmu+2spqGkYeQ3vHj0YRmrLAgAAAADHxX2ysgvukwVkXdwnC/CD+2QByC62H+v7ZAEAAAAAkkbIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEe5fU4MAABkL5X6TMzoRThurRnUKqMXAUAGoSYLAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPuE8WkIVx/xoAAID0R00WAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAZFbIGDhxoDRo0sJNOOslKlSplbdq0sZUrV8aU2bNnj/Xo0cOKFy9uJ554orVr1842btwYU2bt2rXWqlUrO+GEE9x07r33Xjtw4EBMmRkzZljdunUtX758VqVKFRs9evRhy/P8889bpUqVLH/+/NawYUObP39+mpcFAAAAADIsZM2cOdOFlrlz59rUqVNt//791rx5c9u1a1ekzF133WWffPKJjRs3zpX//fffrW3btpH3Dx486ALWvn37bPbs2fb666+7ANWvX79ImdWrV7syF110kX333Xd255132o033mhTpkyJlBk7dqzdfffd1r9/f1u0aJGdeeaZ1qJFC9u0aVPCywIAAAAAvuUIgiA40g//8ccfriZKAeb888+3bdu2WcmSJW3MmDF21VVXuTIrVqyw6tWr25w5c6xRo0Y2adIka926tQs8pUuXdmVGjhxp9913n5te3rx53b8nTpxoS5Ysiczr2muvta1bt9rkyZPdc9VcqVbtueeec88PHTpk5cuXtzvuuMP69OmT0LLE27t3r3uEtm/f7qapaRUqVOhINxOQYSr1mcjWB4AMsmZQK7Y9kIUoGxQuXDihbHBUfbI0AylWrJj7u3DhQle71axZs0iZatWqWYUKFVywEf2tVatWJGCJaqC00EuXLo2UiZ5GWCachmrBNK/oMjlz5nTPwzKJLEtSzSG14cKHAhYAAAAApMURhyzVHKkZX5MmTaxmzZrutQ0bNriaqCJFisSUVaDSe2GZ6IAVvh++l1IZBbHdu3fbn3/+6ZodJlUmehqpLUu8vn37uuAYPtatW3dE2wYAAABA9pX7SD+ovllqzjdr1izLKjTIhh4AAAAAkK41WbfffrtNmDDBvvjiCytXrlzk9TJlyrimfOo7FU0j+um9sEz8CH/h89TKqO1jgQIFrESJEpYrV64ky0RPI7VlAQAAAIAMDVkaI0MBa/z48TZ9+nSrXLlyzPv16tWzPHny2LRp0yKvaYh3DdneuHFj91x/Fy9eHDMKoEYqVICqUaNGpEz0NMIy4TTUDFDzii6j5ot6HpZJZFkAAAAAIEObC6qJoEbr++9//+vulRX2bdIgEaph0t9u3bq5odU1GIaCk0b7U6gJR/PTkO8KU507d7bBgwe7aTz44INu2mFTvVtuucWNGti7d2+74YYbXKB777333IiDIc2ja9euVr9+fTv77LNt2LBhbij566+/PrJMqS0LAAAAAGRoyHrhhRfc3wsvvDDm9VGjRtm//vUv9++hQ4e6kf50418Nh65RAUeMGBEpq2Z+amp46623usBTsGBBF5YeeeSRSBnVkClQ6T5XzzzzjGuS+Morr7hphdq3b++GfNf9tRTU6tSp44Z3jx4MI7VlAQAAAIDj6j5ZWV1axsIHjkfcJwsAMg73yQKylnS7TxYAAAAAIBYhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAj3L7nBgAAAD+f9wQPmncpBnZATVZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4FFunxMDAAAAUlKpz0Q2UDLWDGrFtskiqMkCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEe5fU4MAAAAwJGp1Gcimy4Jawa1ssyGmiwAAAAA8IiQBQAAAAAeEbIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADwiZAEAAACAR4QsAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgEeELAAAAADwiJAFAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPMrtc2JARqnUZyIbHwAAAMcFarIAAAAAwCNCFgAAAAB4RMgCAAAAAI8IWQAAAADgESELAAAAADzKFiHr+eeft0qVKln+/PmtYcOGNn/+/IxeJAAAAABZVJYPWWPHjrW7777b+vfvb4sWLbIzzzzTWrRoYZs2bcroRQMAAACQBeUIgiCwLEw1Vw0aNLDnnnvOPT906JCVL1/e7rjjDuvTp09M2b1797pHaNu2bVahQgVbt26dFSpUyI4HNftPyehFAAAAANLNkgEtjoutvX37dpcjtm7daoULF86+NyPet2+fLVy40Pr27Rt5LWfOnNasWTObM2fOYeUHDhxoAwYMOOx1bUwAAAAA6a/wsONrq+/YsSN7h6w///zTDh48aKVLl455Xc9XrFhxWHmFMTUtDKnWa/PmzVa8eHHLkSOHHc/CZH081brh6LBPsyb2a9bDPs2a2K9ZD/s069mezue/agCogFW2bNlUy2bpkJVW+fLlc49oRYoUscxEBxghK2thn2ZN7Nesh32aNbFfsx72adZTKB3Pf1OrwcoWA1+UKFHCcuXKZRs3box5Xc/LlCmTYcsFAAAAIOvK0iErb968Vq9ePZs2bVpME0A9b9y4cYYuGwAAAICsKcs3F1Qfq65du1r9+vXt7LPPtmHDhtmuXbvs+uuvt6xEzRw1TH18c0dkXuzTrIn9mvWwT7Mm9mvWwz7NevIdx+e/WX4Id9Hw7UOGDLENGzZYnTp1bPjw4W5odwAAAADwLVuELAAAAABIL1m6TxYAAAAApDdCFgAAAAB4RMgCAAAAAI8IWQAAAADgESHrODZw4EBr0KCBnXTSSVaqVClr06aNrVy5MvL+mjVrLEeOHEk+xo0bd9j0/vrrLytXrpx7f+vWrem8NvC9T0ePHm21a9e2/Pnzu2n16NGDjZzJ9+uCBQusadOmVqRIEStatKi1aNHCvv/++wxaq+wttX0qGrG2c+fO7ub2BQsWtLp169oHH3wQU2bz5s3WqVMnK1SokNuv3bp1s507d6bz2sDXPtV3WfuwcuXKVqBAATv11FPd8NH79u1jI2fy72po7969biRq/T5/99136bQWOFb7dOLEiW5EcX1f9f9VTSu9ELKOYzNnznQnznPnzrWpU6fa/v37rXnz5u4+X1K+fHlbv359zGPAgAF24okn2iWXXHLY9PQ/Bp2UI/Pv06efftoeeOAB69Onjy1dutQ+//xzd0KOzLtfdeLdsmVLq1Chgs2bN89mzZrl/gej/arp4fjap9KlSxf3P/6PP/7YFi9ebG3btrVrrrnGvv3220gZBSx9RzWNCRMm2Jdffmndu3dnd2bSfbpixQo7dOiQvfjii26/Dh061EaOHGn3338/+zSTf1dDvXv3trJly6bzWuBY7FOFLgUx3RtXFyy//vpr69ixo6UbDeGOzGHTpk0abj+YOXNmsmXq1KkT3HDDDYe9PmLEiOCCCy4Ipk2b5qaxZcuWY7y0OFb7dPPmzUGBAgWCzz//nI2chfbrggUL3GfWrl0bee2HH35wr61ateqYLzPSvk8LFiwYvPHGGzHlihUrFrz88svu38uWLXOf0b4NTZo0KciRI0fw22+/sckz4T5NyuDBg4PKlSsf02VF+uzXTz/9NKhWrVqwdOlSN41vv/2WTZ9J9+n+/fuDU045JXjllVeCjEJNViaybds297dYsWJJvr9w4UJXta0aq2jLli2zRx55xN544w3LmZNdntn3qa7q6Erqb7/9ZtWrV3dNQHX1Zt26dem23PC/X6tWrWrFixe3V1991TU92r17t/u39nGlSpXY5MfhPj3nnHNs7NixrkmgvpPvvvuu7dmzxy688EL3/pw5c1wTwfr160c+06xZM/c7rNpKZL59mtx0kvuuI/Ps140bN9pNN91kb775pp1wwgnsuky+TxctWuTOk/R7e9ZZZ9nJJ5/sWo4sWbIk/RY8w+Id0uTgwYNBq1atgiZNmiRb5tZbbw2qV68e89qePXuC2rVrB2+++aZ7/sUXX1CTlcn36cCBA4M8efIEVatWDSZPnhzMmTMnaNq0qXu+d+/edFhyHIv9KosXLw5OPfXUIGfOnO6hfbpmzRo2+HG6T9UioHnz5u43NXfu3EGhQoWCKVOmRN5//PHHg9NPP/2w6ZUsWdK1LkDm26fxVMusMi+99FI6LDWO1X49dOhQ0LJly+DRRx91z1evXk1NVibfp++88457r0KFCsH7778ffPPNN0GHDh2C4sWLB3/99Ve6LDvVGpmE2qYqfSupJ0VXvceMGXNYLVbfvn3dlfDrrrsunZYUx3qf6oqN2icPHz7c9ddp1KiRvfPOO7Zq1Sr74osv2AGZdL/qdb3WpEkT1w5dbcdr1qxprVq1cu/h+NunDz30kBtESH0iv/nmG7v77rtdrbL6ByDr71NdJVc/yquvvtrVgCDz7tdnn33WduzY4c6ZkDX26aFDh9xf9V9v166d1atXz0aNGpXs4HDHRLpEORyVHj16BOXKlQt+/vnnZMuoXapqN9RuNdqZZ57projnypXLPfRv7Xb9u1+/fuyZTLhPX3vtNbcP161bF/N6qVKluJqaifer2o1rH+qqXUg1kyeccIK7Iofja5/+9NNP7nu4ZMmSmNdVq3zzzTe7f7/66qtBkSJFYt5XPwH9/n744YfpsPTwvU9D6lN32mmnBZ07d475ziJz7tcrrrgi5lxJj/BcqUuXLum6HvCzT6dPn+7KfPXVVzFlzj777OD+++8P0kPu9IlyOBJBENgdd9xh48ePtxkzZrghY5OjvhuXX365lSxZMuZ1jawSfRVcQ0TfcMMN9tVXX7mhZ5H59qlqOkSj6qg/lqhN8p9//mkVK1Y8xmuAY7Vf//77b9d2XFfZQuHz8Iocjp99qv0V7qNouXLliuyvxo0buyut6oOnq6gyffp0976GFEbm26dhDdZFF10UuTJOX+fMv1/VMuSxxx6LvPf777+7liLq88N3NXPu03r16lm+fPncudK5557rXlMrIN2GId3OldIlyuGIqN9G4cKFgxkzZgTr16+PPP7+++/D2oRrtCqNWpUa+mRljX2qq25nnHFG8PXXX7t+PK1btw5q1KgR7Nu3L53WBL736/Lly4N8+fK5aWlUOl2hu+6669x0f//9dzb4cbZP9V2rUqVKcN555wXz5s1zV1affPJJt38nTpwYmY76eZx11lmuzKxZs1zth/oFIHPu019//dWV0RVz/Tt6Osjc39Vo9MnKGvu0Z8+eboRB9dVasWJF0K1bN9diRKM0pwdC1nFMGTipx6hRo2LK9e3bNyhfvnxCTRYIWVljn27bts0N/62mSBqy9Morr4wZ+huZc79+9tlnrnOv/udStGjR4OKLL3YDm+D43Kc//vhj0LZtW/c/bTXr1CBD8UMKq4O1QtWJJ57oOmZff/31wY4dOzJgjeBjn6psctNB5v6uRiNkZY19um/fvqBXr16uzEknnRQ0a9bssCaGx1KO/1sZAAAAAIAHjC4IAAAAAB4RsgAAAADAI0IWAAAAAHhEyAIAAAAAjwhZAAAAAOARIQsAAAAAPCJkAQAAAIBHhCwAAAAA8IiQBQDZwOjRo61IkSJHPZ0LL7zQ7rzzzsjzSpUq2bBhwyw7OZJtmR23EwBkZ4QsAMiEOGn/f/71r39ZmzZt0m07t2/f3n788Uc7VnLkyGEfffSRZQfxoR0AsorcGb0AAABkJgUKFHAPJG///v2WJ0+edNtE+/bts7x587JLABw3qMkCgHQwYcIE18Ts4MGD7vl3333naiz69OkTKXPjjTfadddd5/49a9YsO++889zJfPny5e3f//637dq1K3L1/5dffrG77rrLTUOPRKmG5LTTTrP8+fNbixYtbN26dSnWCKmWQfNLyY4dO6xDhw5WsGBBO+WUU+z5559PeHm07C+88IJdcsklbl3/8Y9/2Pvvvx9TZvHixXbxxRe794sXL27du3e3nTt3uvcefvhhe/311+2///1vZFvMmDHDvad1u+aaa9x2L1asmF1xxRW2Zs2aw9b3ySeftJNPPtlNu0ePHi4gpLSd45sL/u9//3PTLl26tJ144onWoEED+/zzz+1Ia87kyiuvdPMLn4vWsW7dum7faTsNGDDADhw4ELMtX3zxRWvdurWdcMIJVr16dZszZ4799NNPbl20f8455xy3vCFtvzp16rjP6TjT57TNtm3bFrNcr7zyipue5l2tWjUbMWJE5D1tU8177NixdsEFF7gyb7/9tv3111/uuNAxoenWqlXL3nnnnZjtP3PmTHvmmWci21fTSqo5po7b6OM8XG4tV+XKld08ZevWre57VLJkSStUqJA7br7//vsj2hcAcDQIWQCQDhSYFEa+/fZb91wnlyVKlIgEgvA1nQzrJLhly5bWrl07++GHH9zJq0LX7bff7sp9+OGHVq5cOXvkkUds/fr17pGIv//+2x5//HF744037Ouvv3YnpNdee+1Rr9uQIUPszDPPdOum0NizZ0+bOnVqwp9/6KGH3LrqZLhTp05umZYvX+7eU7BUGCxatKgtWLDAxo0b5wJMuC3uueceFwq0vcJtoSChoKTPnXTSSfbVV1+59VUAUjnVeoS++OILt731V2FNJ/h6pGU7K/BdeumlNm3aNLcNNI/LLrvM1q5dm+ZtqXWUUaNGufmFz7UOXbp0cdt22bJlLhRpObU/oz366KOunEK8wlDHjh3t5ptvtr59+9o333xjQRBEtl1IIey9996zTz75xCZPnuzW4bbbbou8r8DUr18/Ny/tlyeeeMLtM22vaOG+Vxlt+z179li9evVs4sSJtmTJEheOO3fubPPnz3flFa4aN25sN910U2T7KuglSsv9wQcfuP2k9ZWrr77aNm3aZJMmTbKFCxe6UNq0aVPbvHlzmvcFAByVAACQLurWrRsMGTLE/btNmzbB448/HuTNmzfYsWNH8Ouvvwb6Sf7xxx+Dbt26Bd27d4/57FdffRXkzJkz2L17t3tesWLFYOjQoQnPe9SoUW76c+fOjby2fPly99q8efPc865duwZXXHFFzOd69uwZXHDBBZHn+rdeC2k5WrZsGfOZ9u3bB5dccklCy6X533LLLTGvNWzYMLj11lvdv1966aWgaNGiwc6dOyPvT5w40W2LDRs2JLvcb775ZlC1atXg0KFDkdf27t0bFChQIJgyZUrkc1r+AwcORMpcffXVbvmj1y9+O2tbFi5cOMX1OuOMM4Jnn302xemktE3Gjx8f81rTpk2DJ5544rB1PPnkk2M+9+CDD0aez5kzx7326quvRl575513gvz580ee9+/fP8iVK5c7/kKTJk1y23f9+vXu+amnnhqMGTMmZt6PPvpo0LhxY/fv1atXu/kMGzYs1XVr1apV0KtXr2SPp+S2r7ZH9CmLljtPnjzBpk2bYr4jhQoVCvbs2RPzWS3/iy++mOqyAYBP1GQBQDpRUyrVXOl8WDUTbdu2dU2wVEulWqyyZcu6pnyq0VEthWpewodqBg4dOmSrV68+4vnnzp3bNWULqaZDzbLCWqMjpdqI+OdpmWZKn9df1ZKpqVuoSZMmblusXLky2WlqG6qmQzVZ4TZUk0HVrkQ3lzvjjDMsV65ckedqNqiakLRQTZZq1LQvtT01Ly33kdRkpbQ+qlGLPibCGiDVUIZq164d+beaL4qa6UW/pm2wffv2yGsVKlRwTfqit3+4fVWTqO3VrVu3mHk/9thjMdtR6tevH/NcTWNVs6b5a9vrc1OmTPG2XSpWrOiaBUZvI+0LNfuMXlZ9Z+KXFQCONQa+AIB0oqaAr732mjsZ1KAACjl6TcFry5YtLoSJThTVxEv9sOLphPhYyZkzpwuA0cL+SZmNtqGaqqmpW7zoE/P4wRnU70cBIy0UsNQ8Un27qlSp4vqOXXXVVTHNEn2sj/pgKZjHC/sjxa9P2IcpqdcSXcew79vLL79sDRs2jHkvOpxKdBAOm5GqSaBGZ1TQ0vvq45fadkn0OIyfn5ZVITm6CW7Ix+0LACAtCFkAkM79soYOHRoJVApZgwYNciGrV69e7jX1I1G/G52wJ0cjqYWDaCRKgySoX87ZZ5/tnqumQv2yVAMThg/1nYmmvi6pjRI3d+7cw56H00yEyqsfUfTzs846y/1b01GtnmpUwpNq9a/SiXjVqlWT3RbahurLVqpUKTcAwpFKZDtreTSIgwarCE/2owfYSCtt76TWR/srpWPiSKlm6ffff3c1qeH2D7evar70+s8//+z6y6WFtosGBAkHc1Gw09D3NWrUSHH76jjU9yR6n4d9rlKibbRhwwZXYxs9YAgAZASaCwJAOtHgDWrOpdqVcMS+888/3xYtWuROPsPgdd9999ns2bPdAAU6uVy1apUbWS56wAKdRH755Zf222+/2Z9//pnwyfsdd9xh8+bNc4MCKBg0atQoEro0EptCmAbG0Dz79+9/WOhK7mR68ODBbh00sqAGp9AACIlSedXw6fOapwZGCNdVJ/aqqenatatbFg1QoXXQAAphczhtCw0QohCibaFaD31OA4voJF9NM9VkTDUcqh389ddfE162RLazmniGgy+ollKDTaS1Nix+nhpEQ4FB4Vs08IT2i2qzli5d6pojvvvuu/bggw/a0Qq3r5Zd20rbSIOJlClTxr2veQ4cONCGDx/u9pFGe9TAHE8//XSK09V2UQ2fjmUtr2pnN27ceNi66nhUKNX21XZTjZlGI7z//vtdM78xY8ZEBiNJSbNmzVxTR40Y+dlnn7lpat4PPPCAO64BID0RsgAgHSlI6cp9GLLUV0VX9nVCG9bMKIipj5ZOaFX7pVodnWSHNQ2i/jk6iTz11FNjmr+lRCeuCnAKAerXpP4qqu0Jqd+XRo3r3bu367ul2oToGqbkqAZOJ7FaTvXV0cm3ppUoncQrMGi9FSQ0zHdY26FlVj8ejQ6nZVIzPI0W99xzz0U+r75J2nbqE6RtodCnzykcqXll2PdN/YrUHyktNVuJbGetrwK0RjXUqIJad9WqHKmnnnrKhRONtBfW6Gmaug2AwoO2g8KxakTVL+loqXZM20gjJDZv3tzth+gh2jUkuoZKV7BSsz8dwwo9Gjo9JQqA2g5adh3vOsbjbxGgppZqdqj9re2rWjV9J9566y379NNPI8O+a8j21KgppD6jCxfXX3+9nX766W6kSg3DHwZyAEgvOTT6RbrNDQCA6P8J5chh48ePP+zkG+lD4UX3oEqkOR4AIHHUZAEAAACAR4QsAMgCLrnkkphhq6MfunlsRlDfs+SWSUOnZ0dsEwDIHmguCABZgAZm2L17d5LvqY+LHulNfbriBzqIHoTDR3+izIZtAgDZAyELAAAAADyiuSAAINvT6HcahEOPRAeB0KiD4Wfq1KmT7bchAOD/IWQBAPB/Q8GvX7/eatasGQlQ0YFLTf0uuugiN9y47rWlIdZVPryJNAAAodyRfwEAkI3p3lrhDXjj/fHHH25wkZw5c7ob9hYvXty9rvIayAMAgGjUZAEAkIJ169a5m0IXLlzYpk+fHglYAAAkh5AFAEAyVq5caU2aNHFNBD/99FNqrQAACSFkAQCQjC5duliVKlVs3Lhxli9fPrYTACAhhCwAAJJx+eWXuz5YH374IdsIAJAwBr4AACAZDzzwgNWuXds6duxoQRDYNddcw7YCAKSKkAUAQAoeeughN6pgp06dXNBq37492wsAkCJCFgAACdRo5cqVywWtQ4cOWYcOHdhmAIBkEbIAAEhAnz59XI1W586dXY2WmhACAJAUQhYAAHEqVarkglS83r17uwcAAClhdEEAAMxsxIgR7j5YixcvTmh7rF271pV/4okn2H4AgBg5gqQu1QEAkI389ttvtnv3bvfvChUqWN68eVP9zIEDB2zNmjXu37qHVvny5Y/5cgIAMgdCFgAAAAB4RHNBAAAAAPCIkAUAAAAAHhGyAAAAAMAjQhYAAAAAeETIAgAAAACPCFkAAAAA4BEhCwAAAAA8ImQBAAAAgPnz/wHlV00XuSF5YgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"wet_bulb_potential_temperature\"].plot()" ] @@ -133,4 +738,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb index daa7142..cfc2cdd 100644 --- a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb @@ -13,18 +13,23 @@ "id": "941120d0", "metadata": {}, "source": [ - "Set-up the pystac client to access the Microsoft Planetary Computer catalog" + "This example notebook provides a walkthrough accessing the [Met Office UK Whole Atmosphere collection](https://planetarycomputer.microsoft.com/dataset/met-office-uk-deterministic-whole-atmosphere) on Microsoft Planetary Computer. This notebook outputs a plot of the number of lightning flashes per unit area on a map.\n", + "\n", + "First, import required libraries and set-up the pystac client to access the Planetary Computer STAC API." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], "source": [ + "import fsspec\n", + "import matplotlib.pyplot as plt\n", "from pystac_client import Client\n", "import planetary_computer\n", + "import xarray as xr\n", "\n", "catalog = Client.open(\n", " \"https://planetarycomputer.microsoft.com/api/stac/v1\",\n", @@ -42,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "8f95ecac", "metadata": {}, "outputs": [], @@ -74,17 +79,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'CAPE_surface': , 'cloud_amount_of_low_cloud': , 'cloud_amount_of_high_cloud': , 'cloud_amount_of_total_cloud': , 'cloud_amount_of_medium_cloud': , 'height_AGL_at_freezing_level': , 'cloud_amount_below_1000ft_ASL': , 'CAPE_most_unstable_below_500hPa': , 'lightning_flash_accumulation-PT01H': , 'height_AGL_at_wet_bulb_freezing_level': , 'height_AGL_at_cloud_base_where_cloud_cover_2p5_oktas': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/whole-atmosphere/20251205T1800Z/20251207T0700Z-PT0037H00M-lightning_flash_accumulation-PT01H.nc?st=2026-01-29T12%3A47%3A47Z&se=2026-01-30T13%3A32%3A48Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-30T12%3A47%3A46Z&ske=2026-02-06T12%3A47%3A46Z&sks=b&skv=2025-07-05&sig=O%2BqgFvGeEFrhTngqEiLPPzzJ38EYcED94X8MB3oqAns%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", ")\n", "\n", "items = search.item_collection()\n", - "asset_url = items.items[0].assets[asset_id].href" + "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "\n", + "asset_url = items.items[0].assets[asset_id].href\n", + "print(f\"URL for specific NetCDF - {asset_url}\")" ] }, { @@ -92,7 +109,7 @@ "id": "56d27e19", "metadata": {}, "source": [ - "Example usage: Plot NetCDF data on a map" + "Example usage: Open and inspect NetCDF data" ] }, { @@ -100,14 +117,600 @@ "execution_count": null, "id": "45613dda", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 4MB\n",
+       "Dimensions:                                    (projection_y_coordinate: 970,\n",
+       "                                                projection_x_coordinate: 1042,\n",
+       "                                                bnds: 2)\n",
+       "Coordinates:\n",
+       "  * projection_y_coordinate                    (projection_y_coordinate) float32 4kB ...\n",
+       "  * projection_x_coordinate                    (projection_x_coordinate) float32 4kB ...\n",
+       "    forecast_period                            timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time                    datetime64[ns] 8B ...\n",
+       "    time                                       datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    number_of_lightning_flashes_per_unit_area  (projection_y_coordinate, projection_x_coordinate) float32 4MB ...\n",
+       "    lambert_azimuthal_equal_area               int32 4B ...\n",
+       "    projection_y_coordinate_bnds               (projection_y_coordinate, bnds) float32 8kB ...\n",
+       "    projection_x_coordinate_bnds               (projection_x_coordinate, bnds) float32 8kB ...\n",
+       "    forecast_period_bnds                       (bnds) int32 8B ...\n",
+       "    time_bnds                                  (bnds) datetime64[ns] 16B ...\n",
+       "Attributes:\n",
+       "    history:                      2025-12-05T19:22:54Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT54H\n",
+       "    mosg__grid_domain:            uk_extended\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    uk_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        UKV Model Forecast on UK 2 km Standard Grid\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 4MB\n", + "Dimensions: (projection_y_coordinate: 970,\n", + " projection_x_coordinate: 1042,\n", + " bnds: 2)\n", + "Coordinates:\n", + " * projection_y_coordinate (projection_y_coordinate) float32 4kB ...\n", + " * projection_x_coordinate (projection_x_coordinate) float32 4kB ...\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " number_of_lightning_flashes_per_unit_area (projection_y_coordinate, projection_x_coordinate) float32 4MB ...\n", + " lambert_azimuthal_equal_area int32 4B ...\n", + " projection_y_coordinate_bnds (projection_y_coordinate, bnds) float32 8kB ...\n", + " projection_x_coordinate_bnds (projection_x_coordinate, bnds) float32 8kB ...\n", + " forecast_period_bnds (bnds) int32 8B ...\n", + " time_bnds (bnds) datetime64[ns] 16B ...\n", + "Attributes:\n", + " history: 2025-12-05T19:22:54Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT54H\n", + " mosg__grid_domain: uk_extended\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: uk_det\n", + " source: Met Office Unified Model\n", + " title: UKV Model Forecast on UK 2 km Standard Grid\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf" + ] + }, + { + "cell_type": "markdown", + "id": "67a6d9de", + "metadata": {}, + "source": [ + "Plot number of lightning flashes per unit area on a map" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d147566a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAHWCAYAAAC46iJxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgXZJREFUeJzt3QeYE9X3//GzS+9FuiBFFEXpSLOAggI2sIsFQcGGFURFBaQoIIpYUAQLNhR7RQRRRAQRUaSIiAqCShEQ6W03/+dzv7/JP9mabLK7yeb98hnZTCaTyWSSzJl77rlJPp/PZwAAAACQoJLzewMAAAAAID8RFAEAAABIaARFAAAAABIaQREAAACAhEZQBAAAACChERQBAAAASGgERQAAAAASGkERAAAAgIRGUAQAAAAgoREUIaEsWrTI2rVrZ6VKlbKkpCRbsmRJfm8SzGzt2rXu/ZgyZUrU9sf999/v1lkQdOjQwU1IHGPHjrV69epZoUKFrGnTpvm9OQUevw0ACIqQMA4ePGgXXXSRbdu2zR599FF7+eWXrXbt2laQTZ061caPH5/fm5EwNmzYYHfffbedeuqpVqZMGReUzZkzxwqyp59+2n2ujjjiCPd6e/XqleFyc+fOtXPPPddq1aplxYsXt2rVqlmXLl3s66+/Duv5nnvuOTv22GPdOo466ih74oknMlzur7/+sosvvtjKly9vZcuWtW7dutnvv/8e8vPs37/f7rrrLqtRo4aVKFHCWrdubbNmzcpw2fnz59tJJ51kJUuWdK/rlltusV27dllOzZw50+6880478cQT7YUXXrAHH3zQCrI9e/a4ixj59VlJxN8GAOkVzmAeUCD99ttv9scff9jkyZOtT58+lggUFC1fvtxuu+02i2U6Adm7d68VKVLE4tmqVatszJgx7mS9UaNGtmDBAivo9Hp37txprVq1ckFhZn755RdLTk6266+/3gUO//77r73yyit2yimn2Mcff+wCpOw888wz7vEXXHCB9e/f37766isXgOikWgGMRwGJAtP//vvP7rnnHndc6WS3ffv2rnX4sMMOy/a5FNy99dZb7rOj91OtmGeeeaZ98cUXLgDyaH0dO3Z0gdq4cePszz//tIcffthWr15tn3zyieXE559/7vaVAsCiRYtaQaf3b9iwYe7v/GgRTcTfBgDpERQhYWzevNn9qyvH0bJ7926XioecOXTokKWmproTP135j3ctWrSwrVu3WsWKFd0Jta4+F3Rffvmlv5WodOnSmS6nk820J5w33nijSxFTa2Z2QZGC5nvvvdfOOusst2+lb9++7vgZMWKEXXvttVahQgU3/6mnnnJBybfffmsnnHCCm9e1a1c7/vjj7ZFHHsm25UWPe/31110K2x133OHm9ezZ0z1eLThqGfIo6NLzqpVDLVJSp04dt21q8TnjjDMsJ99Vap2KVkDk8/ls3759bp2JQK9V+06BZX79NgCIP6TPISHoqq+uEotOVHUCF3hFUldmTz75ZBfg6IdRqTYrV67MsI/KTz/9ZJdddpk7EQq8Yqyr3jop1omHToovvfRSW79+fbptWbhwobvirMfr+Ro3bmyPPfaY//6lS5e67dXJopdmdPXVV7uT7UC6Oq+r2DoBK1asmFWpUsVOP/10+/777939en26Aq8roNpuTVo2VFr27LPPdid26tOgbWnYsKG988476Zbdvn272xalRmlb6tev71oQdMKatt+QrqLrJPjII490y2p/ZtanKJT3RebNm+dOfrWNWq9aFPKDUub03kdi0qRJ7jXoOFLri1pD0jpw4IANGTLEHW/lypVz+0f7Sa0YgSfCeg+1zzI6adTjrrvuOv88paEdd9xxLgVMx2bLli1dS2MorXw57bul56pcubI7fgJt2bLFfv75Z9eC4NFr02dAgVSgfv36uYsTOtY9Cpp0PHgBkRxzzDGuReeNN94Ievy6devccwXS49WXR4GWR8fWNddc41r/vM/1jh07XErdFVdc4Q+IvABKAWLa5wqF9qVS5vSavM+t97nQRQQFgN5nR++vgjKl+mX02f3000/d+6hjyftMhPJZFd3W95JaPPXa9T4pcP3uu+/8y2g7TzvtNPfdo3Xp+0HplGnpMZ07d7ZKlSq5balbt677ThN99rVuUWuR95r1fRsKBaNaXkHsfffdZ4cffrg7rvTeeN+32m4d75qv34HAlM3sfhsAJA5aipAQdPKnH0tdIVa6jU6Wqlat6u777LPP3FVkBSH6IdYVaZ0gKp9fAUbaQEI/nEqn0bp04ikPPPCADR482PVh0NXwf/75x61DqUE//PCD/wqkTqB0slK9enW79dZbXcCjk/yPPvrI3faWUd+H3r17u/tXrFjhTpT17zfffOM/AVUakU7ebrrpJncyohNGBQdaX/Pmzd1VdaUPKZ1HqUOS1ZX8jOhq+yWXXOKe66qrrnInQXr9M2bMcAGY6MRVJxXqw6H9rFYDXUkfNGiQS6dK26dJ69BJuU44dSKlICLtCVk478uyZcvc1XidWGk5nTgOHTrU//5mR9sfePKdGZ0key0RuUXpUtqHKgaiE1cdB+qHo32kk1iPTvieffZZ69Gjh2uRUICsx+rEU60cCmJ1nOhk/aGHHnJ9JQKDtQ8//NCtQ/eL0ob0ubjwwgvdcaj3R8G5Tih1ASCa9LwK6hT4vPTSSy69Uyf2gZ588kl3gqxAyDtB1edIdJIfSIGhWgR0v16PjiVtu3fSHUhBpoJ87S8FsF4Ao9Yu77PsPdfRRx8dFOh4j/dS5vR+6NjT8ZZ2m9RKoffA2+ZwqD+LPu96H/Uei44H0XfLiy++6N6nAQMGuPdn1KhR7jP/7rvvpkvl1PGh40nHSIMGDcL6rCoAVDCmz6CeV69TAbq+g7zXqwBIgbSO0cKFC7vjSkGr3gMFq14rjPf5VH87fRcqEPIurmi+1nPDDTfYeeedZ+eff76br4tF4VCwqP2ulj0FifpbF1W0/TpG9J2g48QL5PRa9H5m9dsAIMH4gATxxRdf6KzH9+abbwbNb9q0qa9KlSq+rVu3+uf9+OOPvuTkZF/Pnj3984YOHeoe36NHj6DHr1271leoUCHfAw88EDR/2bJlvsKFC/vnHzp0yFe3bl1f7dq1ff/++2/Qsqmpqf6/9+zZk27bX3vtNffcc+fO9c8rV66cr1+/flm+5rPOOss9X07ocXrOt99+2z/vv//+81WvXt3XrFkz/7wRI0b4SpUq5fvll1+CHn/33Xe7/bJu3Tp3e82aNW59ZcuW9W3evDloWe++F154Iez3pXv37r7ixYv7/vjjD/+8n376yT13KF9x3vua3RTuftRxpsfpuAvFgQMH3OvV696/f79//qRJk9x62rdv75+nYylwGdExVbVqVd/VV1/tn7dq1Sr32Keffjpo2XPPPddXp04d/3HXrVs333HHHeeLlI6Dq666KstlOnfu7N+nRYsW9V133XW+vXv3ZvieBO47Het6TzNSuXJl36WXXur+/ueff9xjhw8fnm65CRMmuPt+/vln/zzt17THifbFaaedlu7xK1ascMtOnDgx6D0O/Fx6LrroIl+1atV8OaF9qH0ZaMmSJe65+vTpEzT/jjvucPM///zzdJ/dGTNmBC0b6mdV69Ljb7nllnTblt13ld7fevXq+W+/++67bl2LFi3K9PV675ne95x+r+s5A7dH23nUUUe57Um7zfoePv3007P9bQCQWEifQ0LT1VFd9VUKReCVdF2lVEvI9OnT0z1GrSaBdMVTV0bVSqSr396kVh61KHkpTbpqvGbNGtcCkDZ3PTD9KDDvX1fsta42bdq4215qnGgdulL8999/W25R5S1dvfXoyrmurOu1bNy40c178803XeqWWlECX3+nTp0sJSXFVR0LpE7yXrpMpO+L1q8Uoe7du7ur3h51elerSSj0etQ6l9306quvWm5SipGuquv4CuxLon2g1J+0rVbeMjr21BLktVgEHiNq7VDVtMBt17IqAHD55Zf7jzsdS2pRVFni3DZ69GjXWqOWLR3XajXStgdSi59abgLTmNRSmFkfG6V36X5vOVErZEbLBS7jpV8FthJ594fy+OyeK/B5IuUd8yowEUgtRhKYPihKUUv7GQj1s/r222+7Y0OtK2ll9l2lVmmtSy1RauHUbfG+69QaripvuUUt2YHbo+8PtXSrpVOt6N5rVVqi0ij1WjNqoQaQuEifiyJ9yapj7uLFi91JndIZdLIWDv04qyOw0ifUF0Q52EpHUCoUok/7WJRakpZOrHXCnbaYgk42AumHV++bAqCMeBXVVOFI1Fk7KzppVeqQcuS9DsAe70RDlBalEwGl8Sg9RP2UdIKvdLNoUX+DtP1FdKItSoFR4KfXr3SlzAKdtK8h7f6L5H1RGpROPDPa93psRkFtWtpf0dxnOeW95rSvRcdPRtunNCp9V6g/TODJZtr9q2NCKZZav/r/6MRYy1955ZX+ZVS5TemKSifSe650J51MKlUx2gLH3FG6m1I9vUpvWdEJrwKojAQWEfD+TdvPxlsucJmsniuUx2f3XNEsbKD3T+lfen8C6TOowMM7frL6nIX6WdV3lS6IZNc/Tn1zFDipn1XaFFR9VymYV5CkCyH6TlMarwJd/S7q+MoomMypjL6XRd+RmdE25nZKLBJHNM4Bw6EU8rSfe9E544QJE3LteQsygqIo0klakyZNXC67lxcdLuXz6yqqOqOrg6tOkDUhdqQ90dHVRgUOuvquK/hphduPRy1OyvMfOHCgO4HU4/Uc6iwceGVTy+mqr754dczoy1gdptVypTz6vKJtUuuNqnJlxAuiPLFWAUvlm0MZU0bvbXYtXHlFRT0USOgHV8eJOrpr+9S/xAu+PSr4cfvtt7vWIvXd0WPVohQYcCrQVB8UXc1XfzG1FKiCm4o5eKWSc4NaftQfRa1HCm6zOjbUD0+tGTpx1+v1KFBSS4BO4kUn8jrZzqg8uDfPWzar51K/m+wer+UC56ddNrvnyYlQi1pktC/D/axmRceZWlxUwEKlyHVxRu+nLkQo+PG+q7S9CnjVF0l9jnRBQ7+RCug1L9zvx3C+l0Xfi5kNfhut5waidQ4YDrXs6zvRo/6Z+nwnQtXT3EJQFEU6Ec3qZFRXE9Xi89prr7kKQGox0EmslyKizrLqcKoD2zthCeWqOnLOG6BPJ4Rp6Qq8WuqyK7mtSlBqKdJ7ldVJhZYTvb9KV8mIxm6ZPXu2OxHVCWnaq55p6aRMV4U06WRRV91V9ME7DnNaFczz66+/utcWuB6NNyNeoQO9LgUVmb2m3HxflKKkk6GM9k9Gj82ILkCEcuKvbVLrWG7xXrNeizqCe9Sqo7RL/dh6dJKp1iMFwIHvTUbpTgoSVMZaQZFS5nR1P6MBfbU/VVRDkwIN/ajrWFIn/Nwsl65gSMeYWv2yCoq8E1ulGapV1KPbOgH27ldrii4oBVZJ8yjdVPvNK7KQ1XMp7VVFIQKLLejxgdui73AVGNBz6SKFR/tP6VuB86JxfOh16vhQEOvZtGmT+z0JZbDRUD+rWk7BS9oCHYEU4Og37YMPPghKXQ2sgBhIqZKadEypqqGORbWGq4hDpN9Tmb0G0fsXze8mILfOAcOV9iKdLi7puPeqKSJ89CnKQ0phUZqBfgiUwqBoXlf/vRM6/cjoB1tXa3WCrZNO/WDQUpR7FFToBEepSIFlgRW4qPUl8OQrMzp51FV6nVin7Zug214pbQUsel91Qpq2BLH3OK+lKe160p7E6upQYCqd6Oq5rkwHpvLoRDftcuFQf6XAqlY6SVTFMO0zpe2ITvx0XOskKi29zrT9RaL5vmh/qd/Ee++950ore3SBIaPtieU+RWq90Y/cxIkTg9LEVAEs7fGS0XGiE/bMBotVqpxKn6tVSY9V61GgtOXedcVfFQ21/mj1A0mbRil6XWqVUitDYOtPRiW5FSjqBD1tyWfdVqllBX4eVWfTVdTAwEhBsqqRpb2KmlFJbj1enzGlMXv0uVLlMvXR8ioBKj1MJ9xqfVNQF1hBTsFHNK/Yesd82u8CtdJI4OvPTKifVaW76b3P6GJBVt9V+q7RPkp7oSft95kXVHrfVXr/vG2IFqUU6wRRFz0yaglWhdCsqKUvbWqqXp/mBX6n6n7Ny2rgYiCUc8BI6DdD30NqpcqNiwwJI78rPRRU2rWquuNRZSxV9/nrr7+CluvYsaNv0KBB7m9VYSpWrJivdevWrpqRKuKoEtWpp56a59tfEGVWYWjWrFmuStwxxxzjGzt2rKtapWpWFSpU8P3+++/pKmKpUlJao0aNcve1a9fO99BDD7lqX3feeaerfqR1elQNqkiRIq461P333+975plnfLfffrvvjDPO8C9zyimn+EqWLOm79957fU899ZSrrtakSZOg6kyqNOZV+ho3bpyrUHbxxRe7ZR555BH/urQtmqfnmDp1qu+DDz4IeX9pG48++mhf+fLlXXWqRx991NeoUSNX/S2wqtXu3bt9zZs3d/tQlbH02h9++GF/BS1vf3kV5gL3R1bV50J9X1SRTtXnjjjiCN/o0aN9I0eOdFXYGjduHFL1uWhThS9Nqoam51c1OG9ednQ86DEnnnii7/HHH3fvm/a/KmsFVp97/vnn3XKqIqfH6P3RcqqallGVPFWqO+yww9xjunbtmu5+vX9nnnmmq5T47LPP+gYMGOC+i84555xst1nHlPf6VE1OlQm923pvAp9D26vnmDx5sm/w4MG+mjVruuMp7Wcyo+pzgdXjLrzwQrcOVSHU7bSVH3fs2OE78sgjXTU/fQZ07NaqVctXo0aNdJUPM6o+51WP0/E3cOBAt4/12dbtL7/8Mmi5xYsXu32l161jX59bHY+Bn2lP2iqC4VSf8+ZrHfqsa194t/UdEUjHgCpPphXqZ1WuvPJK//Hy2GOPuX14/vnn+5544gl3vyr46f3Wd8KTTz7pPnva5953lT7Tosfpe1Dfh9qPer4GDRq4KpSBn+OGDRu6an16Xaq2qeqdociqcpzu874bdEzpe1L/6jv27LPPznId3r71Xofo+ynt95T33ZVd1UUklpycA0Zi2rRpGa4f4SEoyqMPxEcffeTm6YcncNKPk37gpG/fvm4ZldEN/MFNW0IWOZPVj+dnn33mTkRLlCjhfqx1MqiyzoGyCopEpatPOukk/3urk3mVEQ58P2XevHmuHGyZMmXccjp590405M8///Sdd9557iRXZbd1cvb3338HBUU6ydXJmk5AvPXobwVRgXbt2uW77LLL3LrCLSvtnVh9+umnbht14qfXlNH+27lzp/tir1+/vjtRqlSpkjuJ1AmQSk3nJCgK9X0Rnai2aNHCPbcCCJVM9t6vvJZVWe9Q6D1UyWDt75YtW7oLJDqRDjyZVonhBx980L1H3gm5vmN0YpbZe3zjjTe6bVBwnJZOVnWiqMBJ69PJrY4vlWDPjnfymNEU+H7qxFmfDx0b+t5TgKv3M6Ny1pkFRaITW51U673WduqkO7Dksmf9+vUueNJxU7p0aXcSvHr16nTLZRYUqUy4yl3rRF375IQTTkhX4trz1VdfueNdJ+B6XfrcKzBL+xnR83ilw3MSFB08eNA3bNgwd3zo4ooCPX3u9u3bF1JQFOpn1Sv7rs+qPvNaTq9LAZJ+kwIDYn036HWrxPuYMWP8AbsXTHz//fduGAMFJtqPClT1Xnz33XdB2zV//nz/Zzic8tzZldP+4YcfXDDnHdvaN/rNnT17dpbrIChCXp8Drly5MtuhIe66664Mn08XYQIDfeRMkv6X361VBZGaLwMrj0ybNs3lUGsAzrSd8dXZU6lI6g+gAeQCm+uVb6/UAqUMeYNlAnlB6ZvKeVY6J+Kfii2oDLZKqXvpSsg7KkCggZt//PFH1+cJQMGVk3NApcCpnH1WDjvssHR9iVSBzutj2q1bt1x4NYmDQgt5pFmzZv7KSaoYlhGVv1VOt6r6eJ1EvU7toXSiBYCMqDy08s3VV4SAKH+oAIH6chEQAYknlHNA9eVUNcdwqR+f+mSG0q8QWSMoiiJ15lS1Lo8qRqkCkToHqyqZrhKoU7dKkeoDoo6eqjSmASl1MKvDrjrjq6OcOtOq0lC/fv1cC1E4pVKBrOi4CyzjmdEXc3bjkyA+6AdY4w+pWp2KKajkP/KHSkMjdLpqnl2RIRW6iLUS/0hckZ4D5oTOExUUaTwuVcJEhHKYdocMeHnJaSevA6bytYcMGeJyr5UPXr16ddd3ZOnSpf51qJOc8p+VA6/O4r169fJt3bqV/Y2oUU59VjnLXt+VrPolIL6+k9SPI7DfGhCvv6eZ9VkDCsI5YLjU5zdtX3TkHH2KgASjcWrUVy0zGuFd5WwBIL+olPfixYuzXOa4447zD6ALAJEiKAIAAACQ0Bi8FQAAAEBCo1dWFKij299//21lypRhJGEAAIAYpFFodu7caTVq1LDk5OSYrBSqIiPRoKJJxYsXj8q6EgVBURQoIKpVq1Y0VgUAAIBctH79eqtZs2bMBUR1a5e2jZszrw4bDo19pAp4BEahIyiKArUQyUl2phW2ItFYJQAAAKLokB20eTbdf94WS9RCpIBozeLaVrZMZK1YO3amWt0Wf7h1EhSFjqAoSiMX/29nFrHCSQRFAAAAMccXfN4WixQQRRoUIWcIigAAAIAYkOJLtRRf5OtA+AiKAAAAgBiQaj43RboOhI/2OQAAAAAJjZYiAAAAIAakuv8iXwfCR1AEAAAAxIAUn89Nka4D4SN9DgAAAEBCo6UIAAAAiAEUWsg/BEUAAABAjARFKVSfyxekzwEAAABIaLQUAQAAADGA9Ln8Q1AEAAAAxACqz+Uf0ucAAAAAJDRaigAAAIAYoGFXIx+8FTlBUAQAAADEgJQoVJ+L9PGJivQ5AAAAAAmNliIAAAAgBqT4/jdFug6Ej6AIAAAAiAH0Kco/pM8BAAAASGi0FAEAAAAxINWSLMWSIl4HwkdQBAAAAMSAVN//pkjXgfCRPgcAAAAgodFSBAAAAMSAlCikz0X6+ERFUAQAAADEAIKi/BN36XMTJkywOnXqWPHixa1169b27bffZrpshw4dLCkpKd101lln+Zfp1atXuvu7dOmSR68GAAAAQH6Lq5aiadOmWf/+/W3ixIkuIBo/frx17tzZVq1aZVWqVEm3/DvvvGMHDhzw3966das1adLELrrooqDlFAS98MIL/tvFihXL5VcCAAAABEv1JbkpEpE+PlHFVUvRuHHjrG/fvta7d29r2LChC45Klixpzz//fIbLV6xY0apVq+afZs2a5ZZPGxQpCApcrkKFCnn0igAAAIDg9LlIJxTgoEgtPosXL7ZOnTr55yUnJ7vbCxYsCGkdzz33nF166aVWqlSpoPlz5sxxLU0NGjSwG264wbUoZWX//v22Y8eOoAkAAABAfIqboGjLli2WkpJiVatWDZqv2xs3bsz28ep7tHz5cuvTp0+61LmXXnrJZs+ebWPGjLEvv/zSunbt6p4rM6NGjbJy5cr5p1q1akXwygAAAAC1FCVHZUIB71MUCbUSNWrUyFq1ahU0Xy1HHt3fuHFjO/LII13rUceOHTNc16BBg1zfJo9aigiMAAAAEAlfFPoUaR0IX9yEkpUqVbJChQrZpk2bgubrtvoBZWX37t32+uuv2zXXXJPt89SrV88916+//prpMuqDVLZs2aAJAAAAQHyKm6CoaNGi1qJFC5fm5klNTXW327Ztm+Vj33zzTdcP6Iorrsj2ef7880/Xp6h69epR2W4AAAAgFBRayD9xExSJUtYmT55sL774oq1cudIVRVArkKrRSc+ePV1qW0apc927d7fDDjssaP6uXbts4MCB9s0339jatWtdgNWtWzerX7++K/UNAAAA5JUUX3JUJhTwPkWXXHKJ/fPPPzZkyBBXXKFp06Y2Y8YMf/GFdevWuYp0gTSG0bx582zmzJnp1qd0vKVLl7oga/v27VajRg0744wzbMSIEYxVBAAAACSIJJ/P58vvjYh3KrSgKnQdrJsVTiqS35sDAACANA75Dtoce9/++++/mOsP7p1Lfry0npUqUyiide3emWJnNf49Jl9nLIurliIAAACgoIrG4KsM3pozJB0CAAAASGi0FAEAAAAxIBqFElLoGZMjBEUAAABADEi1JDdFug6Ej/Q5AAAAAAmNliIAAAAgBqRasqVE2GaRahSWzgmCIgAAACAG0Kco/5A+BwAAACCh0VIEAAAAxEj6nKbI1kH6XE4QFAEAAAAxIMWX5KZI14HwkT4HAAAAIKHRUgQAAADEgJQoVJ9LIX0uRwiKAAAAgBiQ6kt2U2TroE9RTpA+BwAAACCh0VIEAAAAxADS5/IPQREAAAAQA1KjUD1O60D4SJ8DAAAAkNBoKQIAAAAKzOCttHnkBEERAAAAEANSfMluinQdCB97DQAAAEBCIygCAAAAYkCqJUVlCseoUaPshBNOsDJlyliVKlWse/futmrVqiwfM2XKFEtKSgqaihcvbvGM9DkAAAAgQdPnvvzyS+vXr58LjA4dOmT33HOPnXHGGfbTTz9ZqVKlMn1c2bJlg4InBUbxjKAIAAAASFAzZsxI1wqkFqPFixfbKaeckunjFARVq1bNCgrS5wAAAIAYGrw10kl27NgRNO3fvz+kbfjvv//cvxUrVsxyuV27dlnt2rWtVq1a1q1bN1uxYoXFM4Ki3Ny5RYvm5uoBAABQgKT6kqIyiYKVcuXK+Sf1Hcr2+VNT7bbbbrMTTzzRjj/++EyXa9CggT3//PP2/vvv2yuvvOIe165dO/vzzz8tXpE+l0sKlSljqcfWMft2WW49BQAAAJCh9evXu34/nmLFimW7p/r162fLly+3efPmZblc27Zt3eRRQHTsscfaM888YyNGjIjLd4SgKJek7NxJQAQAAICwBl710t8iHbxVAVFgUJSdm266yT766CObO3eu1axZM6znLFKkiDVr1sx+/fVXi1ekzwEAAAAxINWXHJUpHD6fzwVE7777rn3++edWt27dsLc7JSXFli1bZtWrV7d4RUsRAAAAkKCUMjd16lTXP0hjFW3cuNHNVz+kEiVKuL979uxphx9+uL9f0vDhw61NmzZWv3592759u40dO9b++OMP69Onj8UrgiIAAAAgBqRYkpsiXUc4nn76afdvhw4dgua/8MIL1qtXL/f3unXrLDn5/7dA/fvvv9a3b18XQFWoUMFatGhh8+fPt4YNG1q8IigCAAAAYkBO0t8yWke46XPZmTNnTtDtRx991E0FCX2KAAAAACQ0WooAAACAGJCSg/S3jNaB8BEUAQAAAAmaPof/Ya8BAAAASGi0FAEAAAAxIMWX7KZI14HwERQBAAAAMcBnSZYaYZ8irQPhI5QEAAAAkNBoKQIAAABiAOlz+SfuWoomTJhgderUseLFi1vr1q3t22+/zXTZKVOmWFJSUtCkx6UdsGrIkCFWvXp1K1GihHXq1MlWr16dB68EAAAA+P9SfUlRmVDAg6Jp06ZZ//79bejQofb9999bkyZNrHPnzrZ58+ZMH1O2bFnbsGGDf/rjjz+C7n/ooYfs8ccft4kTJ9rChQutVKlSbp379u3Lg1cEAAAAIL/FVVA0btw469u3r/Xu3dsaNmzoApmSJUva888/n+lj1DpUrVo1/1S1atWgVqLx48fbfffdZ926dbPGjRvbSy+9ZH///be99957efSqAAAAAA28mhyVCeGLm7124MABW7x4sUtv8yQnJ7vbCxYsyPRxu3btstq1a1utWrVc4LNixQr/fWvWrLGNGzcGrbNcuXIuLS+rde7fv9927NgRNAEAAACRIH0u/8RNULRlyxZLSUkJaukR3VZgk5EGDRq4VqT333/fXnnlFUtNTbV27drZn3/+6e73HhfOOmXUqFEuePImBVyJ6rdH2lrhGtXzezMAAACAgh8U5UTbtm2tZ8+e1rRpU2vfvr298847VrlyZXvmmWciWu+gQYPsv//+80/r16+3RHXkgAV26O8N+b0ZAAAAcS/VkqMyoQCX5K5UqZIVKlTINm3aFDRft9VXKBRFihSxZs2a2a+//upue4/TOlR9LnCdCqQyU6xYMTcBAAAA0ZLiS3JTpOtA+OImlCxatKi1aNHCZs+e7Z+ndDjdVotQKJR+t2zZMn8AVLduXRcYBa5T/YNUhS7UdQIAAACIb3HTUiQqx33VVVdZy5YtrVWrVq5y3O7du101OlGq3OGHH+76/Mjw4cOtTZs2Vr9+fdu+fbuNHTvWleTu06ePvzLdbbfdZiNHjrSjjjrKBUmDBw+2GjVqWPfu3fP1tQIAACCxRGOcoXgZp+jQoUM2Z84c++233+yyyy6zMmXKuArQGk6ndOnSeb49cRUUXXLJJfbPP/+4wVZVCEEpbjNmzPAXSli3bp2rSOf5999/XQlvLVuhQgXX0jR//nxXzttz5513usDq2muvdYHTSSed5NaZdpBXAAAAIDf5fMmW6kuOeB2x7o8//rAuXbq4c3dVdT799NNdUDRmzBh3W8Pu5LUknwbrQUSUcqcqdB2smxVOKsLeBAAAiDGHfAdtjr3vimSpNSIWzyWv/fIiK1o6snPJA7sO2qT2b8bk6/QoI0tB0HPPPWeHHXaY/fjjj1avXj3XcqQGjdWrV1tei6uWIgAAAKCgSrEkN0W6jlj31Vdfuewt1QwIVKdOHfvrr7/yZZsIigAAAIAYkOqLvE+Q1hHrUlNTXQG0tDSWqFqQ8kPsJx0CAAAAKDDOOOMMVzDNo+Jnu3btsqFDh9qZZ56ZL9tESxEAAAAQA1KjUGgh0sfnhUceecQ6d+7sip/t27fPVZ9TPyKNS/raa69ZfiAoAgAAAGJAqiW5KdJ1xLqaNWu64gqvv/66LV261LUSXXPNNXb55ZdbiRIl8mWbCIoAAAAA5KnChQvbFVdcYbGCoAgAAACIASm+JDdFuo54sGrVKnviiSds5cqV7vaxxx5rN910kx1zzDH5sj2xn3QIAAAAJFCfokinWPf222/b8ccfb4sXL7YmTZq46fvvv7dGjRq5+/IDLUUAAAAA8sydd95pgwYNsuHDhwfNV/U53XfBBRdYXov9UBIAAABIlEILvginOCi0sGHDBuvZs2e6+epjpPtitqWoefPmYa1UtcY/+OADO/zww3O6XQAAAEBC8UWh+pzWEes6dOhgX331ldWvXz9o/rx58+zkk0+O3aBoyZIlNmDAACtdunS2y/p8Phs9erTt378/GtsHAAAAoAA599xz7a677nJ9itq0aePmffPNN/bmm2/asGHDXONK4LJ5IcmnKCYbycnJtnHjRqtSpUpIKy1TpoyrPV6vXj1LBDt27LBy5cpZB+tmhZOK5PfmAAAAII1DvoM2x963//77z8qWLRuT55IXfHaVFSlVNKJ1Hdx9wN7u9GJMvs7A2CLU7LOUlBSLmZaiNWvWWOXKlUNe6U8//WQ1atSIZLsAAACAhBKN6nHxUH0uNTXVYk1Ie6127douUgtVrVq1rFChQpFsFwAAAIAE1qhRI1u/fn3sluTet2+fLV261DZv3pwu0survD8AAACgIPEqyEW6joJi7dq1dvDgwdgMimbMmOFK6G3ZsiVf8/4AAACAAleSO8LqcfFQkjsWhZ10ePPNN9tFF13kaoirlShwIiACAAAAEG/CbinatGmT9e/f36pWrZo7WwQAAAAkINLn4qil6MILL7Q5c+bkztYAAAAACR4URTohD1qKnnzySZc+p1FoVRGiSJHgcXluueWWHGwGAAAAAMRJUPTaa6/ZzJkzrXjx4q7FKLBUt/4mKAIAAADCl8jpc9u3b7fy5csHzXvmmWfyrMtO2Olz9957rw0bNsyNkqsyeRrY1Zt+//333NlKAAAAoIBLlPS5MWPG2LRp0/y3L774YjvssMPs8MMPtx9//NE//7LLLrNSpUrFZlB04MABu+SSSyw5OfZHywUAAAAQWyZOnGi1atVyf8+aNctNn3zyiXXt2tUGDhyYL9sUdmRz1VVXBUV2AAAAACLnCxirKKeT1hHrNm7c6A+KPvroI9dSdMYZZ9idd95pixYtio8+RRqL6KGHHrJPP/3UGjdunK7Qwrhx46K5fQAAAEBCSJQ+RRUqVLD169e7wGjGjBk2cuRIN9/n8+XbuKdhB0XLli2zZs2aub+XL18edF9g0QUAAAAASOv88893/YWOOuoo27p1q0ubkx9++MHq169vcREUffHFF7mzJQAAAEACS5SWokcffdTq1KnjWouUgVa6dGk3f8OGDXbjjTfGR1AEAAAAIPoSJSgqUqSI3XHHHenm33777ZZfkkNt4tqxY0fIK7388stt8+bNkWwXYIWrV7PCVatYcsmS7A0AAIAC5OWXX7aTTjrJatSoYX/88YebN378eHv//fdjNyjSxv3zzz8uMMpu0vhFH374oe3atSv3tx4xqXCD+lbo2KMjXs/KB2ralq5HmqWkRmW7AAAAYlmijFP09NNPW//+/V1fIg3a6hVX0OCtCoxiNn1OlSCOPjryk1wUfIUqVrBtJ1R2NSXLroxgRUnJZr4kK7zXZ6n790VxCwEAAGKTz5fkpkjXEeueeOIJmzx5snXv3t1Gjx7tn9+yZcsM0+piJijKSXEFjUiLxJOy7V8r+8qCiNaRVKiQrbuvtflSDlkSjUQAAAAFypo1a/zVrAMVK1bMdu/eHbtBUfv27XN/S4CAoGhfjUN29LXfsk8AAEDC8AZgjXQdsa5u3bq2ZMkSq127dtB8jVl07LHH5ss2UX0OMaVQo2Nsb80ydtR1BEQAACCxJEr1uf79+1u/fv1s3759rpvOt99+a6+99pqNGjXKnn322dgttADklZRlP1vRTxaxwwEAAPKAApETTjjBypQpY1WqVHH9fFatWpXt495880075phjrHjx4taoUSObPn16yM/Zp08fGzNmjN133322Z88eN5Crii889thjdumll1p+ICgCAAAAYqjQQqRTOL788kvXavPNN9/YrFmz7ODBg3bGGWdk2bdn/vz51qNHD7vmmmvshx9+cIGUpuXLl4c1hM/q1atdxeqNGzfan3/+6daXX5J8arNCRFSKvFy5ctbBulnhpCLsTQAAgBhzyHfQ5tj7bviYsmXLWiyeS7Z85zYrXKpYROs6tHu/fXf+eFu/fn3Q61QRA03Z+eeff1yLkYKlU045JcNlLrnkEhc0ffTRR/55bdq0saZNm9rEiRMtHuWopejQoUP22Wef2TPPPGM7d+508/7+++88GZtowoQJVqdOHddU17p1a5eDmBmV+jv55JOtQoUKburUqVO65Xv16mVJSUlBU5cuXXL9dQAAAAC5pVatWi7Q8ialyYXiv//+c/9WrFgx02UWLFjgzqsDde7c2c0PxaZNm+zKK690A7cWLlzYChUqFDTFRaEFjTiroGHdunW2f/9+O/30010OovICdTs3o8Np06a5jll6DgVEGtxJb4DyHhXRpjVnzhzXtNeuXTsXRGkb1Ry4YsWKoJLhej0vvPCC/3YoUTQAAAAQq+MUZdRSlJ3U1FS77bbb7MQTT7Tjjz8+0+WU7la1atWgebqt+aFQo4RiicGDB1v16tVdo0R+CzsouvXWW93ASj/++KMddthh/vnnnXee9e3b13LTuHHj3HP07t3b3VZw9PHHH9vzzz9vd999d7rlX3311aDbqmbx9ttv2+zZs61nz55BB0m1atVyddsBAACA7AKa1CgFRQqIwk0T7Nevn+sXNG/ePMtNWv9XX33l0u3iNn1OL0CVIooWLRo0Xyltf/31l+WWAwcO2OLFi4Oa6pKTk93tUJvqVN1CncfSNgeqRUktTQ0aNLAbbrjBtm7dmuV61CKm3M/ACQAAAIhXN910k+sj9MUXX1jNmjWzXFaNCUqBC6TboTYyKLUv1soahB0UqVktJSUl3XxVjFAaXW7ZsmWLe95Imuruuusul7sYGFgpde6ll15yrUdKr1Onsq5du2b4Gj3KyQzM0dQbCwAAAERCYYJihYimcJ/T53MB0bvvvmuff/65G1g1O23btnXnzoFUuU7zQ6EuMMryWrt2rcWKsNPn1CdHL2TSpEnutnIAVWBh6NChduaZZ1qsGj16tL3++uuuVUj9izyBtdBVY71x48Z25JFHuuU6duyY4boGDRrk+jZ51FJEYAQAAIBIpFqS+y/SdYSbMjd16lR7//33XQOH19igC/8lSpRwf6vbifrje8Ua1J2mffv29sgjj9hZZ53lzrG/++47f3yQERU9C+w7pOp1OucuWbKkFSkSXL1527ZtFvNBkV68ihs0bNjQjUKrwZZUY7xSpUpuJNrcovWrGkVOmuoefvhhFxSpYp6CnqzUq1fPPdevv/6aaVAUaklDAAAAIJZp0FTp0KGDBVIRMhVEEBVFULcVj4qYKZBSl5p77rnHjjrqKHvvvfeyLM6gRpVYFnZQpBxDFVlQJTj9q1YiDbSkAZi8aDI3qA9TixYtXFOdBofyUvl0W01+mXnooYfsgQcesE8//dQViMiO0gDVp0iVMAAAAIB4rD4X+vLZJ9wpgyqtiy66yE2huuqqq6xABUVz58510aGCIE2BYxfpvswGeYoGpaxphyq4adWqlYs41fTmVaNL27SnPkJDhgxxkawKQXjNgaVLl3aTArphw4bZBRdc4FqbfvvtN7vzzjutfv36rjUMAAAAyCuqPJcUYVAUafW6vPD999+7lDl1XRGl7qllSplo999/f7qCbjEZFJ166qm2YcOGdOMCaaAn3ZdVgYJIafRcjbKrQEcBjsr4zZgxw198IW3TnpoDVbXuwgsvDFqP+j9physdb+nSpfbiiy/a9u3bXREG9ZkaMWIE6XEAAABALrjuuutcoQUFRb///rs7xz///PPtzTffdNWiM0q10zl7uBRkaXDYXAmK1MSW0QBLSjkrVaqU5TalymWWLpe2aS+7ihZK91NaHQAAAJDfvApyka4j1v3yyy/+MYoUCKlogzK7vv76a1cELaOgSMsrBgm1lLcaSvQ8qhcQ1aBI0ZtoY9TpKrDQgFqHFL0prQ4AAABAfPQpyg8+n8/VBhAVQjv77LPd36rmrGF4MrNw4UKrXLlySOvPquhDREGRyvJ5T6JyfYFFFZT316ZNG+vbt29YTw4AAAAgsbRs2dJGjhzpxg7VGKFeBbw1a9akG5PUo9Yk9fsvX758SM+hOgfhFIELOShS5ydRwYI77rgjT1LlAAAAgESRKC1F48ePdwXbVMb73nvvdcGOvPXWW5lmnn3xxRdhPcf06dPDWj7sPkUqUgAAAAAguhKl+lzjxo1t2bJl6eaPHTvWFULLD2EHRV4U98Ybb7hqb6rulrbEHgAAAACEo3jx4tkuoyrYGqe0YsWKLv0usHy3hup55JFHXKXqcP3/+tUhevzxx924QMr3++GHH9x4QYcddpgrp9e1a9ewNwAAAADA/68+F+kU61JSUuzhhx92cYTGClWAEzhlZtGiRa7Mdr9+/dyQO8cdd5ytWLHCf783BmlOhB0UPfXUUzZp0iR74oknXGSmwU5nzZplt9xyixurCAAAAED4/hfUJEU4xf6eHzZsmI0bN86NT6T4oX///q7StcpoayzRzNxzzz123nnn2b///mubNm2y008/3RVgUENNpMIOipQy53WAUkWHnTt3ur+vvPJKe+211yLeIAAAAAAF16uvvmqTJ0+2AQMGuMFVe/ToYc8++6xLe/vmm28yfdzixYvdoK8KnlQNW401KgDXsWNH14qUp0GRmri2bdvm/j7iiCP8G64SeqEOpgQAAAAgWOStRJFXr8sLGzdutEaNGrm/S5cu7c8203hFH3/8cZaP3bdvX9BtBUlqQTrjjDNs/vz5eRcUnXbaafbBBx+4v9W36Pbbb3dNV2r+UnMWAAAAgPD5ojTFupo1a7qCCXLkkUfazJkz3d9q7SlWrFimj9OArBkFPmotGjRokGtxyrPqc+pP5I1Aq05OKrKgjTv33HPtuuuuy/GGAAAAACj4zjvvPFdBrnXr1nbzzTfbFVdcYc8995zrpqMGl8z07NnTDfZ6/fXXp7tPdQ6UtTZx4sQcbVOSj5y3iO3YscPKlStnHaybFU4qEvkKAQAAEFWHfAdtjr3vUrXKli0bk+eS9V66xwqVzL4sdVZS9uyz33s+GJOvMzMLFixw01FHHWXnnHOOxc04Rdu3b7dvv/3WNm/e7G81CozgAAAAAIQpGvlv8ZA/l0bbtm3dlBOjR492LUfly5e3PA2KPvzwQ7v88stdHXBFn0lJ/78zl/4mKAIAAAAQyKtJEAp1ywnVgw8+aBdffHHeB0UqnXf11Ve7DShZsmRETw4AAADg/0SjelyMVp/r3r17SMupkUWDu4YqWj2Bwg6K/vrrLzdQKwERAAAAEO3BWyNfRyxKTdPlJtaEXZK7c+fO9t133+XO1gAAAAAocCpWrGhbt251fyvrbOfOnVFZ708//WS1a9fO+5ais846ywYOHOg2QIMuFSlSJMc5gAAAAAD+JxqDr8bq4K0HDhxwFfE0nM+LL75oY8aMsTJlykS83goVKtju3buD5uWk6l7YQVHfvn3dv8OHD484BxAAAADA/1FAU0D7FLVt29b1K2rRooXrB6TuOCVKlMhw2eeffz7Lda1Zs8ZuuukmmzNnju3bt88/X+vNaTxSuKDlAwIAAACILa+88oo9+uij9ttvv7nARa1GgQFNODTYqwIgBU9Vq1YNqoadp+MUAQAAAIiuglxooWrVqm5MIalbt669/PLLLpUuJ3788UdbvHixNWjQIGrbF1JQ9Pjjj9u1115rxYsXd39nRU1hAAAAAMKUIIO3rlmzJqTlVL9g+vTpVqtWraD5J5xwgq1fvz7vgyI1dWnAVgVF+jszaroiKAIAAAAQqbVr19rBgwfTzX/22Wft+uuvd0MFHX/88ekKvzVu3Dh3gqLAaC7UyA4AAABA6Apy9blo+ueff1zfpN69ewc1zuRpoQUAAAAAuSQO0t/ym8Y5atasmb322mt5W2ihf//+Ia9w3LhxkWwPAAAAAGTqjz/+sA8++MDq169v0RJSUPTDDz8E3f7+++/t0KFD/s5Nv/zyixUqVMjVHQcAAAAQPtLnQnPaaae5CnR5HhR98cUXQS1BGn1WI9FqBFn5999/XU7fySefHLUNAwAAAIC0zjnnHLv99ttt2bJlrkJd2kIL5557roUryaceSWE4/PDDbebMmXbccccFzV++fLmdccYZ9vfff1ui2bFjh5UrV846WDcrnBT8pgAAACD/HfIdtDn2vhs0tGzZshaL55K1Jg615BLFI1pX6t59tv76YTH5OsM1depU69atm5UqVSpofnJycqaPybNCC3rTVPEhLc3buXNn2BsAAAAAQFQwINKiAbFffe7xTMY9VUCjIYCUFnfKKafYZZddluFyqampUd+msIOi8847z6XKPfLII9aqVSs3b+HChTZw4EA7//zzo76BAAAAAAqORx991DWo7NmzJ6g7TsmSJa106dK2efNmq1evnuvCk3bg1tySedtTJiZOnGhdu3Z1kVvt2rXdpL+7dOliTz31VO5sJQAAAFDQ+aI0xbgHH3zQTjjhBFu9erVt3brVTSrc1rp1a3vsscds3bp1Vq1aNddvKLB1ad++fWHFLOFksYXVp0j5eV9//bXr0FS0aFE3aJIceeSR6XL9Egl9igAAAGJbXPQpeur+6PQpuvH+mHydHsUOb7/9tjVt2tTSVry+4IIL7Pfff7f58+e7vzds2ODuU6XrjRs3WuXKlS0Ueu1LlixxLU5RT5/TxqiYwsqVK61u3brWuHHjcB4OAAAAIMFt2LDBDe+TluYp8JEaNWoEtfSoHadjx45WuHBo4cvevXtzt0/R8ccf76I3BUUAAAAAosSX9L8p0nXEuFNPPdWuu+46e/bZZ61Zs2b+VqIbbrjBjUEkKrcdGG8MHTo0rOdQ1bqKFSvmXlA0cuRIu+OOO2zEiBFusNa0aXOx2kwHAAAAxDJ1aglvsJyM1xHrnnvuObvyyitdLOGNMaRWIrUE6T5RwQUVdstpUBSusIOiM8880z8oksrmBTZp5bQuOAAAAIDEUK1aNZs1a5b9/PPPrsCCNGjQwE2BrUl5KeygSKXxAAAAAERZNKrHxUFLkeeYY45xUywIOyhq37597mwJAAAAkMgSpE9RSkqKTZkyxWbPnu3GJEo7GOvnn3+e59sU9jhFsn37dpfj16dPHzdpACaV/csLEyZMsDp16rjRblXL/Ntvv81y+TfffNNFoFpepcSnT58edL/S/oYMGWLVq1e3EiVKWKdOnVzNdAAAAADRd+utt7pJwZGKuDVp0iRoiouWou+++846d+7sAohWrVq5eePGjbMHHnjAZs6cac2bN7fcMm3aNOvfv78bjEkB0fjx4922rFq1yqpUqZJuedU379Gjh40aNcrOPvtsmzp1qnXv3t2+//579wbIQw895AaDevHFF12Fi8GDB7t1/vTTTy6QAgAAAPJCku9/U6TriHWvv/66vfHGG/5aBbEgrMFb5eSTT7b69evb5MmT/XXCVS1CLUYq1T137tzc2lYXCGn02yeffNLdVlNbrVq17Oabb7a777473fKXXHKJ7d692z766CP/vDZt2riBohRY6aWrBvqAAQNcRT1Ri1fVqlVdk96ll14a0nYxeCsAAEBsi4vBW8cPj87grbcNicnX6dH595w5c+zoo4+2nPrzzz/tgw8+sHXr1tmBAweC7lODTZ60FAUGRG4lhQvbnXfeaS1btrTcohe7ePFiGzRokH9ecnKyS3dbsGBBho/RfLUsBVIr0Hvvvef+XrNmjRsgSuvw6IBU8KXHZhYU7d+/302BBzIAAACA7KlB4rHHHnMNHYHVrEOlvkiqhF2vXj1XwU4ZYGvXrnUNHjnNWgs7KFLEqYgsbaWI9evXW5kyZSy3bNmyxeUdqhUnkG5rZ2REAU9Gy3sj5Xr/ZrVMRpSON2zYsBy/FgAAACBRCy3MmzfPVbT+5JNP7LjjjvOPVeR55513sny8GkmU5aXzccUfb7/9tutKc/nll1uXLl3yptCCUtKuueYa179HgZAm5QUqfU79dxKB3gg1SXqT9gEAAAAQlZLckU4xrnz58nbeeee5qtaVKlVymVqBU3ZWrlxpPXv29Ges7d271w32Onz4cBszZkzetBQ9/PDDrplLG6K+RKLo7oYbbrDRo0dbbtEOK1SokG3atClovm5rAKiMaH5Wy3v/ap6qzwUuo35HmSlWrJibAAAAAITnhRdesEiUKlXK349I5/C//faba3HyssvypKWoaNGiLgfw33//tSVLlrhp27Ztrix3bgYKet4WLVq4HEKPCi3odtu2bTN8jOYHLi8aPddbXtXmFBgFLqP+QQsXLsx0nQAAAECuSJCWokipcJpS8EQV7NRHSZWwr776andfnrQUeUqWLGkVKlTw/50XVDThqquucgUdVA5cJblVXa53797ufrVeHX744a7Pj6j+uZrlNKbSWWed5dL8VChi0qRJ7n61eN122202cuRIO+qoo/wluVURQ6W7AQAAgDwTjaAmRoOi5s2bu4YIxQ/NmjXLssCChs/JiqrL7dq1y/2tfkX6W117dD6fk8pzOQqK1DqjIEKBhrcx6uCkCO3ee+91FeFyi/oz/fPPP26wVRVCUIrbjBkz/IUSVAAi8PnbtWvnxia677777J577nE7SpXnvDGKRFXzFFhde+21blDak046ya2TMYoAAACA6OjWrZs/qyzSxgdVnQtMpdNQO3k+TpGKDDz33HMuKjvxxBPdPDVf3X///da3b1/XdJVoGKcIAAAgtsXFOEVjR0ZnnKKB98Xk64wmNWa89dZbrj/RwIEDrWLFiq6FSY0lyhzL9ZaiF1980Z599llXG9zTuHFj9+Q33nhjQgZFAAAAQKSSfP+bIl1HOObOnWtjx45144Fu2LDB3n333SxbcjTo6qmnnppuvh6bWfGzzKhYwubNm10mWqAjjjgiy8ctXbrUjTOqQFLjE6lhRkGRSnkrc+yll16ycIWd66aiCmnHKBLN030AAAAA4oO6kTRp0sQmTJgQ1uNWrVrlAiFv0jhBofrll1/s5JNPthIlSljt2rVdv35NderUcf+GUmegV69etnr16qAuLyq6oCAvJ8JuKdJO0+izjz/+eNB8zdN9AAAAAOKj0ELXrl3dFC4FQRpvKCdUJE3jC3300UeupHZWRRcysmjRInvmmWfSzVfmmuoO5ElQ9NBDD7lKbp999pm/bPWCBQvcAKbTp0/P0UYAAAAAiG4/pdwcZ7Np06a2f/9+V8BMtQW8WgOh0JA+StfLKPssFHodaV+f1wJVuXLlHK0z7PQ5lbhWc5lGoVUHJ03nn3++m6dmMAAAAAD5q1atWq7PjTd5Q9ZEqnr16q7a29tvv+0mPU+HDh2yLaMdqGHDhjkeZFVU22D48OF28OBBd1stTepLdNddd9kFF1yQd+MUqWmKggoAAABA9CiJLOJCC//3r7K4AqvPRauVqEGDBm4KHAJHFeAeffRRe/nll0Nax5gxY9ywOA8++KA1atTIihQpEnR/dlXzNDTQhRde6FL49u7d6xptlDanLLacxihhB0UvvPCClS5d2i666KKg+W+++abt2bPHDa4KAAAAIEy+pP9Nkfi/xyuwyKuS3K1atXJD9IRKleOkY8eOQfM1UpBafVJSUrJ8vFq+Zs2aZV9//bX9+OOPbuxUDQ7rrTdPgiI1vWXUsUmRmgZAJSgCAAAAEseSJUtcWl2ovvjiixw/l1LmVLVOz6l+TOH0ZYpqUKR8vYxK5amcnu4DAAAAEB/V59TK8uuvv/pvr1mzxgUcGvdH4wUNGjTI/vrrL//YP+PHj3exwHHHHWf79u1z45d+/vnnNnPmzJCfU49XX6S0VefUUqS0v6wo1U7blV1rUq4XWlCLkAZMSktNV4cddli0tgsAAABIzKAo0ikM3333nTVr1sxN3hhA+nvIkCHutsYgCmz40ICrAwYMcH2B1JdHMYCqUqdNhcsuKPrnn3/SzdeYp6GMU3TvvffaPffcE9UxUsNuKerRo4fdcsstVqZMGTvllFPcvC+//NJuvfVWu/TSS6O2YQAAAABylyrH+XyZR1JTpkwJuq0CCZoi4fUdyqjVKnAw1sxofFS1btWoUcNlq5UqVSro/nAq4eU4KBoxYoStXbvWRYMadElSU1OtZ8+eroIEAAAAgPCp8lzE1eciTb/LRWqFEgVEgwcPtpIlS/rvUzrcwoUL3fhH2enevXvUty3soKho0aI2bdo0GzlypMs3VEcnNZ8pSgMAAAAQP32K8tIPP/zgbylatmyZiys8+rtJkyZ2xx13ZLueoUOHRn3bcjROkRx11FFuyoxKACpoqlevXk6fAgAAAEAB8cX/VZ3r3bu3PfbYY3lWMjxXg6LsZJWbCAAAACCxWooCxz2NhFLtNFjsG2+84YpAqPhDoJwUYAi7+hwAAACA3OtTFOkU63bv3u36FLVr187q16/vMssCp+wMGzbMxo0bZ5dccon9999/rq/S+eefb8nJyXb//ffHVksRAAAAAKTVp08fV736yiuvdIO+ZlSJLiuvvvqqTZ482c466ywXBKk69pFHHmmNGze2b775xlXKDhdBEQAAABALfEn/myJdR4z75JNP7OOPP7YTTzwxR4/fuHGjK/QmpUuXdq1FcvbZZ7sWqJzItfS5cCM+AAAAIKHlw+Ct+aFChQpWsWLFHD++Zs2ablBZUQvRzJkz3d+LFi2yYsWKxVZQRKEFAAAAABmNezpkyBDbs2eP5cR5551ns2fPdn/ffPPNrnVIVbE1burVV1+do3UWzkkpvVNPPTWkZrHDDz88RxsFAAAAJJqCPHhrs2bNgjLJfv31V6tatarVqVPHihQpErTs999/n+W6Ro8e7f9bxRY0Xur8+fNdYHTOOefkTVDUpUsX12Sl+uJXXXWV1apVK8PlTjrppBxtEAAAAJCQCnBJ7u7du+fautu0aeOmtFSI4dlnn3XFHKIeFP3111/28ssv24svvujK4Z122ml2zTXXuBcaOCotAAAAAMjQoUMtr82dO9f27t2bO32KKlWqZLfffrstWbLEFi5caEcffbTdeOONVqNGDVf+7scff8zJNgMAAACJLRpjFMVoS1Gsi6jQQvPmzW3QoEF200032a5du+z555+3Fi1a2Mknn2wrVqyI3lYCAAAABV2CVZ+rmGY67LDDXE2C9u3b2wsvvBD7QdHBgwftrbfesjPPPNN1bPr000/tySeftE2bNrlOU5p30UUXRX9rAQAAAMS1IUOGWHJysuvzo+44mvS35vXr189lot1www1ugNa8EnafIpW9e+2111zJbY1C+9BDD9nxxx/vv79UqVL28MMPu3Q6AAAAACEqwIUWAs2bN89Gjhxp119/fdD8Z555xo059Pbbb1vjxo3t8ccft759+1pMthT99NNP9sQTT9jff/9t48ePDwqIAvsdqXQ3AAAAgNBE2p8oGiW984KyzDp16pRufseOHd19ooy033//3fJK2EGRBkrq0aNHlqPFFi5c2LUgeSPNAgAAAICo/9CHH35oaWme7pPdu3dbmTJlLLOqcocOHUo3X/N0n+eee+7xry/q6XO5UQIPAAAAQGIYPHiw6zOkzLJWrVq5eYsWLbLp06fbxIkT3e1Zs2a5ggsZOfXUU13jS5UqVYLm//fff+6+lJQUd1sF4UKVa0ERAAAAgDAkSJ+ivn37WsOGDV2htnfeecfNa9CggX355ZfWrl07d3vAgAGZPl61DZKSktLN37p1q6tvkBMERQAAAADy1IknnuimcJx//vnuXwVEvXr1CurOo9ahpUuX+oOqcBEUAQAAADEgGoUSYrXQwo4dO6xs2bL+v7PiLZdWuXLl/C1F6m9UokQJ/31Fixa1Nm3a5LhaHUERAAAAECtiNKiJxoCtXj+g8uXLZ5j+5qXFeX2C0vIGdK1Tp47dcccdOU6VywhBEQAAAIBc9fnnn/srwUU6dM/QoUMt2nItKAqnBB4AAACQ8ApwoYX2AZXkMqsql5XmzZu7oYHU4tSsWbMMW5o833//fd4ERatXr3YR3ubNmy01NTXoviFDhoRdAg8AAABIdAW5T9HSpUtDXrZx48bp5nXr1s1fWKF79+4WbWEHRZMnT3Z1xStVqmTVqlULitL0txcUAQAAAIA0bdrUxQrqN5SVzPoUBabMxUT63MiRI+2BBx6wu+66K+obAwAAACSsApw+t2bNmqiv88CBAxlmrh1xxBFhrys53Af8+++/dtFFF1le27Ztm11++eWuRJ8qVlxzzTW2a9euLJe/+eab3UBQKtennXPLLbe4kW7TRqNpp9dffz0PXhEAAACQPn0u0ikW1a5dO+TJc9ZZZ7mKdWn98ssvdvLJJ7tzfC1ft25dN6kqnf7Nk5YiBUQzZ86066+/3vKSAiLtlFmzZtnBgwetd+/edu2119rUqVMzXP7vv/9208MPP+xGzP3jjz/cNmveW2+9la68X5cuXfy3FXQBAAAAyD9z5861vXv3ppuvOKBw4cL20UcfWfXq1bMsupBrQVH9+vVt8ODB9s0331ijRo2sSJEiQferNSbaVq5caTNmzLBFixZZy5Yt3bwnnnjCzjzzTBf01KhRI91jjj/+eHv77bf9t4888kiX9nfFFVfYoUOH3I4MDILUPypU+/fvd5MnuwGoAAAAgEROn4umJUuW2OLFi+2YY46J2jrDDoomTZpkpUuXti+//NJNgRSl5UZQtGDBAhe4eAGRdOrUyZKTk23hwoV23nnnhbQepc4p/S4wIJJ+/fpZnz59rF69eq41SdFnVhHnqFGjbNiwYRG8IgAAACANgqKQKAtsy5YtFk2FY6GTVHY2btzoRr8NpMBG4yDpvlBox40YMcKl3AUaPny4nXbaaVayZEmXFnjjjTe6vkpZBXcqN96/f/+glqJatWqF/boAAAAAhGfMmDF255132oMPPphh5poaQfJ08FavpF5O8/juvvtu96KyS52LlIIWddRSVHn//fcH3adUQI8Ggtq9e7eNHTs2y6BINdK9OukAAABANBTkcYqiSRlj0rFjx3SxSWYlvXMlKHrppZdc4KBBXOXoo4+2gQMH2pVXXhnWegYMGGC9evXKchmltKm/j8rtBVK/IFWYy64v0M6dO10RhTJlyti7776bLpJMq3Xr1q5FSX2GCHwAAACQZ0ifC8kXX3xh0RZ2UDRu3DjXunLTTTfZiSee6ObNmzfP9cVRitrtt98e8roqV67spuy0bdvWtm/f7jpUtWjRws37/PPPXU1yBTFZtRB17tzZBTcffPCBFS9ePKSOWxUqVCAgAgAAAKKkefPmNnv2bHeere4rd9xxh+u+kpV77rnHdZdJq3379hZtSb7shpVNQ7W/VWSgZ8+eQfNffPFFl5qWW32Ounbtaps2bbKJEyf6S3Kr8IJXkvuvv/5yTWhqxWrVqpULiM444wzbs2ePayEqVaqUf10KxAoVKmQffvihW2ebNm1cwKRy33qDNIVTSEHPVa5cOetg3axwUtYtUbGsUJkytvfEY2xL4yJ2xNQ/7NCff+X3JgEAAETFId9Bm2Pv+wtvxRLvXLLBrQ9aoWLZX8TPSsr+fbbqsXti7nWWKFHCZZnVrFnTnYdrqJ20NQPCKdWdlVNOOSX3W4r0Atq1a5duvuZlNLhStLz66quudUqBj6rOXXDBBfb444/771egtGrVKhcEyffff+8q03llxAMpcNPgTkqlmzBhgmvdUmyo5dQS1rdvX0tEvkOHrOTiNVbz8x126MCB/N4cAACAhFKQ+xQ1bdrUNWqcdNJJ7rxbw+qoonVGhgwZkuW6OnTokG5eYI2DPOlTpMDhjTfecM1ZgaZNm2ZHHXWU5RY1nWU2UKsoyAls9NLOyq4RTH2NAgdtTXSpe/e6CQAAAIimKVOm2NChQ92AqwpgPvnkk3TD5Ijuyy4o+vfff4Nuq3Hkhx9+cF18NC5pToQdFCmt7JJLLnHNVl6foq+//trlCCpYAgAAAJADBbjQQoMGDez11193fyvrS7FDTtPnlGqY1umnn25FixZ1w+aoDkGuB0VKW1Na2qOPPmrvvfeem3fsscfat99+60paAwAAAAhfQU6fC6RiabmhatWqrjtNTuSoJLcqwL3yyis5ekIAAAAAie23336z8ePH+8ck1Xiit956qx155JHZPnbp0qVBt9VlRrUNRo8e7fou5VpQpIoYXvUK/Z2VWKpyAQAAAMSNApw+F+jTTz+1c8891wUwgd1xjjvuOFcdWqlwWdHj1Pcobf0AVZR+/vnnLdeCItUT98rmlS9fPqi6QzRGkAUAAAASXoIERXfffber/qyWnbTz77rrrmyDorRDAKmPkobcCWVM0oiCIg2U6g2clBsjyAIAAABIDCtXrsywQNvVV1/tUuqyU7t27ZCep1GjRjZ9+nSrVatWdIKiwFFjNXirVpy2tUgtRevXrw9pAwEAAAAE09l1+nys8ET6+LygVp0lS5akG85H83JakS4ja9eudeW6c6XQgoKijEag3bZtm7uP9DkAAAAgBxIkfa5v37527bXX2u+//27t2rXz9ykaM2aMK6mdH8IOiry+Q2nt2rUrojw+AAAAAAXf4MGDrUyZMvbII4/YoEGD3LwaNWrY/fffb7fccktsB0Ve1KaASC+kZMmS/vvUOqSxi3JaAg8AAABIdIkyTlFSUpIrtKBp586dbp6CpLTUetSyZUsrVqxY7ARFP/zwg7+laNmyZW7EWI/+btKkid1xxx25s5WIvnZNbd0ZJa3eC+vt0B/0BQMAAMh3CZI+FyijYMjTtWtX18+oXr16FjNBkVd1rnfv3vbYY48xHlG8m7/Ejphvdii/twMAAADIQNpxiHJTcrgPUJm8Q4fSn0qr0EJ2A7sCAAAACKG1KKdTAXfw4EHr2LGjrV69Ottln3nmGatatWruBEWXXnqpvf766+nmq9a47gMAAACQ8z5FkU4FWZEiRWzp0qUhLXvZZZdZqVKlcicoUkGFU089Nd38Dh06uPsAAAAAILdcccUV9txzz0V1nWEHRfv3788wfU5NWXv37o3WdgEAAACJJdLUuRyk0M2dO9fOOeccVxJbVeHee++9bB8zZ84ca968uasKV79+fZsyZYrlhoyGARLFIk8//bSrTHfddde5KtmBU54ERa1atbJJkyalmz9x4kRr0aJFjjYCAAAASHT5kT63e/duV0V6woQJIS2/Zs0aO+uss1zmmCrD3XbbbdanTx/79NNPQy6esG7dOtu3b19Iy2Zk+fLlLihT5bpffvnFVcn2Jm1TngzeOnLkSOvUqZP9+OOPrpOTzJ492xYtWmQzZ87M0UYAAAAAyHsqe921a9eQl1dDSN26dd3Aq3LsscfavHnz7NFHH7XOnTuHFOiodWnFihV21FFHZbmsN4ZRZlWxoynslqITTzzRFixYYDVr1nTFFT788EP3wtTh6eSTT476BgIAAAAJIYrpc6oKHTipC0w0LFiwwDWQBFIwpPmhSE5OdsHQ1q1bLZaE3VIkTZs2talTp0Z/awAAAIAEFY3qcd7ja9WqFTR/6NChdv/990e2cjPbuHFjujLXuq3AS/UFSpQoke06Ro8ebQMHDnT9go4//niL26Dot99+sxdeeMF+//13N25RlSpV7JNPPrEjjjjCjjvuuOhvJQAAAICQrV+/3sqWLeu/raIIsaJnz562Z88e15epaNGi6QIpjX8a80HRl19+6fIOlUanahXqY6SgSH2MVBrvrbfeyp0tBQAAAAqyaAzA+n+PV0AUGBRFS7Vq1WzTpk1B83RbzxVKK5GoUSXWhB0U3X333S4QUrk7VXzwnHbaafbkk09Ge/sAAACAxBDFoCi3tG3b1qZPnx40b9asWW5+qK666iqLNWEXWli2bJmdd9556eartWjLli3R2i4AAAAAuWzXrl2ujLVXylolt/W3ymbLoEGDXLqb5/rrr3ddaO688077+eef7amnnnLF126//fawu+Pcd9991qNHD9u8ebObp+44qkoXF0FR+fLlbcOGDenmqy744YcfHq3tAgAAABJKfoxT9N1331mzZs3cJMoG099Dhgxxt3Xe7wVIonLcH3/8sWsdUp8gleZ+9tlnQyrHHdgdp1GjRrZw4UJ75513XGAm6o6jghBxkT536aWX2l133WVvvvmmG2U2NTXVvv76a7vjjjuCokgAAAAAsZ0+16FDh0wHSZUpU6Zk+Bg1iORULHbHCbul6MEHH7RjjjnGlflTVNewYUM75ZRTrF27dq4JDAAAAADiqTtO2C1FKps3efJkGzx4sC1fvtwFRmpiy25EWgAAAACZS/L53BSJSB+fF7zuOErFi5XuODkap0g0JpEmAAAAAIlRfS4aYrE7TkhBkfL9RowYYaVKlXJ/Z6V06dJuANcLL7zQChUqFK3tBAAAAFAAPPjgg9avXz/XHSclJcV1x9G/l112Wb51xwkpKFJT1sGDB/1/Z2X//v322GOPufrlL774YnS2EgAAACjgclI9LqN1xLqiMdgdJ6Sg6Isvvsjw76xK+3Xs2DGyLQMAAAASSYKkz3nUFUetRaI0uvwUdvW5QCrfl1EJv8aNG9tLL70UyaoBAAAAFFDPPfecHX/88Va8eHE36W+NdxRXQZECHg24VKJECTcpCHr55ZeDmsS6desWze0EAAAACrT8GLw1PwwZMsRuvfVWO+ecc1yxBU36+/bbb/cPGhvz1efGjRvn8v9uuukmO/HEE928efPm2fXXX+/qiuvFAAAAAAhTgqTPPf30065PUY8ePfzzzj33XNfQcvPNN9vw4cNjPyh64okn3AsJLJenF6GKc/fffz9BEQAAAIBMqYBby5Yt081v0aKFHTp0yOIifU4DLbVr1y7dfM3TfQAAAADClyjpc1deeaVrZElr0qRJdvnll+fLNoXdUlS/fn1744037J577gmaP23atHwtowcAAADEtQKcPtc/YKxTVZpTUYWZM2damzZt3LyFCxfaunXrYnvw1kDDhg2zSy65xObOnevvU6QRaGfPnu2Cpdyybds2l2P44YcfWnJysl1wwQVuPCQNFpuZDh062Jdffhk077rrrrOJEyf6b2vn33DDDa7UuNZ11VVX2ahRo6xw4bB3DQAAAIAMpB3rVKly8ttvv7l/K1Wq5KYVK1ZYfgj7zF/ByLfffusKLrz33ntu3rHHHuvmadCl3KKmNKXnzZo1y+Uh9u7d26699lqbOnVqlo/r27dvUGetkiVL+v/WyLlnnXWWVatWzebPn+/Wr+i0SJEibqRdAAAAIC/FQ/pbToQy1ml+CisoUjCilhZVn3vllVcsr6xcudJmzJhhixYt8nfKUsGHM8880x5++GGrUaNGpo9VEKSgJyNqsvvpp5/ss88+s6pVq1rTpk1txIgRdtddd7miESotDgAAAOQJjf+ZwRigYa8DuVtoQS0ob7/9tuW1BQsWWPny5YOqVHTq1Mml0Sn/MCuvvvqqa4rTgFCDBg2yPXv2BK1X4y0pIPJ07tzZduzYkWXT3f79+90ygRMAAACA7O3bt8/Gjh3rGjh0ft+8efOgKS7S57p37+7S5vJyPKKNGzdalSpVguapz0/FihXdfZm57LLLrHbt2q4laenSpa4FaNWqVfbOO+/41xsYEIl3O6v1qs+R+lYBAAAA0RKN6nHxkH53zTXXuIytCy+80Fq1auUKL+S3sIMiVZhTHx0VV1AHqVKlSgXdf8stt4S8rrvvvtvGjBmTbepcTqnPkUctQtWrV7eOHTu6Dl1HHnlkjterFqfAChpqKapVq1aO1wcAAAAU5OpzgT766CObPn26v2hbLAg7KHruuedcKtvixYvdFEhRXjhB0YABA6xXr15ZLlOvXj3XJ2jz5s1B8zWwkyrSZdZfKCOtW7d2//76668uKNJjVSAi0KZNm9y/Wa23WLFibgIAAAAQnsMPP9zKlCljsSTsoGjNmjVRe/LKlSu7KTtt27a17du3uyDMK9/3+eefW2pqqj/QCcWSJUvcv2ox8tb7wAMPuIDLS89TdbuyZctaw4YNc/iqAAAAgPAlpf5vikSkj88LjzzyiOvWomFy1NUl7gotpOXz+dyU21Tyu0uXLq68tlp2lLp300032aWXXuqvPPfXX3/ZMccc42/5UYqcKskpkFq7dq198MEHrtz2KaecYo0bN3bLnHHGGS740ai6P/74o3366ad23333Wb9+/WgJAgAAQP6kz0U6xbiWLVu6YgvKCFOLkeoEBE75IUcjlCqF7tFHH7XVq1f7+xnddttt1qdPH8stqiKnQEh9grzBWx9//PGgcuEqouBVl1M5bZXaHj9+vO3evdv1+dFjFPR4ChUq5HIaNXirWo3UP0qDtwaOawQAAAAgenr06OEaNDQuqIqcxWWhhSFDhriBW2+++WYXSHilrVWNbt26dbkWUChqzGqg1jp16gS1WikI+vLLL7Ndr5rs1NELAAAAyE+JUn1u/vz5Ln5o0qSJxYqwg6Knn37aJk+e7CI8z7nnnutS0hQo0coCAAAA5ECCDN56zDHH2N69ey2WhN2nSGlqgYOoelQAQRXhAAAAACAzo0ePdlWo58yZY1u3bnXD2wROcdFSpKIEai1SCl2gSZMm2eWXXx7NbQMAAAASRqKkz3Xp0sX9q1oBgdQVRv2LUlJS4qfQgkahbdOmjbu9cOFC159I1d0CBzVNGzgBAAAASOzBW7/44guLNWEHRcuXL7fmzZv7y15LpUqV3KT7PLFQRQIAAABAbGnfvr3FfVAUi5EdAAAAEO8SJX1u7ty5Wd6vcUXjIn0OAAAAQJQlSPW5Dh06pJsXmGWWH32Kwq4+BwAAAAA59e+//wZNmzdvthkzZtgJJ5zg6hbkB1qKAAAAgBiQKOlz5cqVSzfv9NNPt6JFi7qibYsXL87zbSIoAgAAAGJBglSfy0zVqlVt1apVlh8IigAAAADkmaVLl6Ybn2jDhg1uUNemTZtafiAoAgAAAGJAoqTPNW3a1BVWUDAUSGOgPv/88/myTQRFAAAAQCxI9f1vinQdMW7NmjVBt5OTk61y5cpWvHjxfNsmgiIAAAAAeaZ27do2e/ZsN6nyXGpqatD9+dFaRFAEAAAAxIIEKbQwbNgwGz58uLVs2dKqV68eNEZRfiEoAgAAAGKAQoOI+xRZ7Js4caJNmTLFrrzySosVDN4KAAAAIM8cOHDA2rVrZ7GEoAgAAACIBarGFo0pxvXp08emTp1qsYT0OQAAACAGJEpJ7n379tmkSZPss88+s8aNG1uRIkWC7h83blyebxNBEQAAAIA8HbzVG6R1+fLlQfflV9EFgiIAAAAgFiRI9bkvvvjCYg1BEQAAABADknw+N0W6DoSPQgsAAAAAEhotRQAAAEAsSP2/KdJ1IGwERQAAAEAMIH0u/5A+BwAAACCh0VIEAAAAxIIEqT4XiwiKAAAAgFigynGRVo+j+lyOkD4HAAAAIKHRUgQAAADEgCTf/6ZI14HwERQBAAAAsYD0uXxD+hwAAACQwCZMmGB16tSx4sWLW+vWre3bb7/NdNkpU6ZYUlJS0KTHxTuCIgAAACAGJKVGZwrHtGnTrH///jZ06FD7/vvvrUmTJta5c2fbvHlzpo8pW7asbdiwwT/98ccfFu8IigAAAIBYSp+LdArDuHHjrG/fvta7d29r2LChTZw40UqWLGnPP/98po9R61C1atX8U9WqVS3eERQBAAAABcyOHTuCpv3796db5sCBA7Z48WLr1KmTf15ycrK7vWDBgkzXvWvXLqtdu7bVqlXLunXrZitWrLB4R1AEAAAAxNLgrZFOZi5gKVeunH8aNWpUuqfbsmWLpaSkpGvp0e2NGzdmuIkNGjRwrUjvv/++vfLKK5aammrt2rWzP//80+IZ1ecAAACAGJDk87kp0nXI+vXrXd8fT7FixSwa2rZt6yaPAqJjjz3WnnnmGRsxYoTFK4IiAAAAoIBRQBQYFGWkUqVKVqhQIdu0aVPQfN1WX6FQFClSxJo1a2a//vqrxTPS5wAAAIAELLRQtGhRa9Gihc2ePds/T+lwuh3YGpQVpd8tW7bMqlevbvEsboKibdu22eWXX+4i3vLly9s111zjOnllZu3atelqqHvTm2++6V8uo/tff/31PHpVAAAAwP9RPJMa4RRm9p3KcU+ePNlefPFFW7lypd1www22e/duV41OevbsaYMGDfIvP3z4cJs5c6b9/vvvroT3FVdc4Upy9+nTJ67fxrhJn1NApDros2bNsoMHD7o36tprr7WpU6dmuLw6l2n5QJMmTbKxY8da165dg+a/8MIL1qVLF/9tBV0AAABAQXfJJZfYP//8Y0OGDHHFFZo2bWozZszwF19Yt26dq0jn+ffff10Jby1boUIF19I0f/58V847niX5fBH25soDilq1oxctWmQtW7Z08/RmnXnmma7SRY0aNUJaj/Idmzdvbs8995x/nlqG3n33XevevXuOt09lDlXVo4N1s8JJRXK8HgAAAOSOQ76DNsfet//++y/bvjZ5zTuXPK3Z3Va4UPGI1nUoZZ99/sPomHydsSwu0udUJ12tN15AJKqfrqh14cKFIa1DNdiXLFni0u7S6tevn+to1qpVK1diMLs4UXXe09Z+BwAAACLiSmpH2qeI96DAps+pea5KlSpB8woXLmwVK1bMtIZ6WmodUrlAlQ0MpLzI0047zY3cq/zIG2+80fVVuuWWWzJdl+q8Dxs2LIevBgAAAEAsydeWorvvvjvTYgje9PPPP0f8PHv37nV9jzJqJRo8eLCdeOKJLrXurrvusjvvvNP1O8qKOpupSdKbVAceAAAAiKfqc4iRlqIBAwZYr169slymXr16rk765s2bg+YfOnTIVaQLpYb6W2+9ZXv27HHVM7LTunVrN/CUUuQyG+RK86M1ABYAAADgqHpcUhTWgfgKiipXruym7KhO+vbt212/IFW4kM8//9zVUVcQE0rq3LnnnhvSc6nfkSppEPQAAAAAiSEu+hSpL5BKZqv838SJE11J7ptuuskuvfRSf+W5v/76yzp27GgvvfSSK5jg0ei6c+fOtenTp6db74cffuhG7G3Tpo0VL17clft+8MEH7Y477sjT1wcAAAAk+XxuikSkj09UcREUyauvvuoCIQU+qjp3wQUX2OOPP+6/X4HSqlWrXJpcIFWTq1mzpp1xxhnp1lmkSBGbMGGC3X777a7iXP369W3cuHEu+AIAAADyVDT6BBEUFdxximId4xQBAADEtngYp6jjcQOtcKHI+q0fStlvs1eMjcnXGcvipqUIAAAAKNBoKco3BEUAAABALCAoSsxxigAAAAAgv9FSBAAAAMQCxinKNwRFAAAAQAygJHf+IX0OAAAAQEKjpQgAAACIBRRayDcERQAAAEAsSPUphy7ydSBspM8BAAAASGi0FAEAAACxgPS5fENQBAAAAMQE3/8Co0jXgbCRPgcAAAAgodFSBAAAAMQC0ufyDUERAAAAEAtc5Tiqz+UH0ucAAAAAJDRaigAAAIBY4Ev93xTpOhA2giIAAAAgFtCnKN+QPgcAAAAgodFSBAAAAMQCCi3kG1qKAAAAACQ0WooAAACAWECfonxDUAQAAADEAjdMUYTjFEX48ERF+hwAAACAhEZLEQAAABALSJ/LNwRFAAAAQCxI1cCrqVFYB8JF+hwAAACAhEZLEQAAABALSJ/LNwRFAAAAQCwgKMo3pM8BAAAASGi0FAEAAACxINUNVBSFdSBcBEUAAABADPD5Ut0U6ToQPtLnAAAAACQ0WooAAACAWCm0EGn6m9aBsBEUAQAAALHABTQERfmB9DkAAAAACY2WIgAAACAWpKaaJUVYKIFCCzlCUAQAAADEAtLn8g3pcwAAAAASWtwERQ888IC1a9fOSpYsaeXLlw/pMT6fz4YMGWLVq1e3EiVKWKdOnWz16tVBy2zbts0uv/xyK1u2rFvvNddcY7t27cqlVwEAAABkzJeaGpUJBTgoOnDggF100UV2ww03hPyYhx56yB5//HGbOHGiLVy40EqVKmWdO3e2ffv2+ZdRQLRixQqbNWuWffTRRzZ37ly79tprc+lVAAAAAFmkz0VjQsHtUzRs2DD375QpU0JuJRo/frzdd9991q1bNzfvpZdesqpVq9p7771nl156qa1cudJmzJhhixYtspYtW7plnnjiCTvzzDPt4Ycftho1auTiKwIAAAAQC+KmpShca9assY0bN7qUOU+5cuWsdevWtmDBAndb/yplzguIRMsnJye7lqXM7N+/33bs2BE0AQAAABHRwK3RmBC2AhsUKSAStQwF0m3vPv1bpUqVoPsLFy5sFStW9C+TkVGjRrkAy5tq1aqVK68BAAAACcSlv6VGOBEUxV1QdPfdd1tSUlKW088//2yxZtCgQfbff//5p/Xr1+f3JgEAAACIxz5FAwYMsF69emW5TL169XK07mrVqrl/N23a5KrPeXS7adOm/mU2b94c9LhDhw65inTe4zNSrFgxNwEAAADR4kv1mS8pspYe9atHnAVFlStXdlNuqFu3rgtsZs+e7Q+C1PdHfYW8CnZt27a17du32+LFi61FixZu3ueff26pqamu7xEAAACQZ5T+ZqlRWAcKbJ+idevW2ZIlS9y/KSkp7m9NgWMKHXPMMfbuu++6v5V6d9ttt9nIkSPtgw8+sGXLllnPnj1dRbnu3bu7ZY499ljr0qWL9e3b17799lv7+uuv7aabbnKV6ag8BwAAgEQwYcIEq1OnjhUvXtw1DOi8OCtvvvmmO+/W8o0aNbLp06dbvIuboEiDsDZr1syGDh3qAiH9rem7777zL7Nq1SrXx8dz55132s033+zGHTrhhBPc41SCW2+g59VXX3VvaseOHV0p7pNOOskmTZqU568PAAAAic2lz0VhCse0adOsf//+7hz7+++/tyZNmrhxPdN2MfHMnz/fevToYddcc4398MMPrrFB0/Llyy2eJflIPIyY0vJUha6DdbPCSUWi8b4AAAAgig75Dtoce99dQC9btmyBPZcM93WqZeiEE06wJ5980t1WNxJVVlbDgoqipXXJJZfY7t277aOPPvLPa9OmjeuuMnHiRItXcTN4ayzz4spDdtCMvm0AAAAxx52nxXghgmicS3qvM+04mhkVCjtw4IDrWz9o0CD/PI3XqXE7vXE909J8tSwFUsvSe++9Z/GMoCgKdu7c6f6dZ/GfTwkAAFDQz9vUKhNLihYt6gqEzdsYnXPJ0qVLpxtHU+lx999/f9C8LVu2uL76VTMY1zOzYXE0lmdW44DGK4KiKFBRBo1VVKZMGVfgIZ7oKoI+NNr+WGtKjiXsJ/YVxxSfv1jH9xT7iWMqa2ohUkAUi8W01N99zZo1ruUmWq817Tkpw8lkjaAoCtTMWLNmTYtnCogIithPHFN89mIZ31PsJ44nPnuRirUWorSBUWAxsLxQqVIlK1SokBvHM5BuZzZmp+aHs3y8iJvqcwAAAACim7ansTpnz57tn6dCC7qt8TwzovmBy8usWbMyXT5e0FIEAAAAJCgVTbjqqqusZcuW1qpVKxs/fryrLte7d293v8b5PPzww23UqFHu9q233mrt27e3Rx55xM466yx7/fXX3RA58T6kDUFRglN+qTrekWfKfuKY4rMXq/ieYj9xPPHZQ+5Rie1//vnHjQmqYgkqra1xPb1iCuvWrXNdRTzt2rWzqVOn2n333Wf33HOPHXXUUa7y3PHHHx/XbxPjFAEAAABIaPQpAgAAAJDQCIoAAAAAJDSCIgAAAAAJjaAIAAAAQEIjKCrgHnjgAVclpGTJkla+fPmQR0FWBZLq1atbiRIlrFOnTrZ69eqgZbZt22aXX365G0xR673mmmts165dFs/CfU1r1651o0VnNL355pv+5TK6X+Ur41VO3vsOHTqk2wfXX3990DKqbqPSnjpWq1SpYgMHDrRDhw5ZPAt3X2n5m2++2Ro0aOA+e0cccYTdcsst9t9//wUtF+/H1IQJE6xOnTpukMLWrVvbt99+m+Xy+jwdc8wxbvlGjRrZ9OnTw/7Oilfh7KvJkyfbySefbBUqVHCT9kPa5Xv16pXu2OnSpYsl0n6aMmVKun2QdsDMgnpMhbOfMvre1qTv6YJ+PCFB+VCgDRkyxDdu3Dhf//79feXKlQvpMaNHj3bLvvfee74ff/zRd+655/rq1q3r27t3r3+ZLl26+Jo0aeL75ptvfF999ZWvfv36vh49evjiWbiv6dChQ74NGzYETcOGDfOVLl3at3PnTv9y+pi98MILQcsF7st4k5P3vn379r6+ffsG7YP//vsvaF8ef/zxvk6dOvl++OEH3/Tp032VKlXyDRo0yBfPwt1Xy5Yt851//vm+Dz74wPfrr7/6Zs+e7TvqqKN8F1xwQdBy8XxMvf76676iRYv6nn/+ed+KFSvccVG+fHnfpk2bMlz+66+/9hUqVMj30EMP+X766Sfffffd5ytSpIjbV+F8Z8WjcPfVZZdd5pswYYL7DK1cudLXq1cvt1/+/PNP/zJXXXWVOy4Dj51t27b5Emk/6bNTtmzZoH2wcePGoGUK4jEV7n7aunVr0D5avny5+yxq/xXk4wmJi6AoQehLLJSgKDU11VetWjXf2LFj/fO2b9/uK1asmO+1115zt3ViopOyRYsW+Zf55JNPfElJSb6//vrLF4+i9ZqaNm3qu/rqq4Pmab3vvvuuryDI6X5SUHTrrbdmer+CoOTk5KATk6efftqduOzfv9+XyMfUG2+84U5kDh486J8Xz8dUq1atfP369fPfTklJ8dWoUcM3atSoDJe/+OKLfWeddVbQvNatW/uuu+66kL+z4lW4+yotXWwoU6aM78UXXww6ie3WrZuvIAl3P2X3e1hQj6lIj6dHH33UHU+7du0q0McTEhfpcwiyZs0aN3CXUgU85cqVc83sCxYscLf1r1KBNPKxR8trYK+FCxfG5R6NxmtavHixLVmyxKVIpdWvXz+rVKmSGyn6+eefd6kZibafXn31VbcPNLjboEGDbM+ePUHrVVqUN1CcdO7c2Xbs2GErVqyweBStz4lS55R+V7hw4bg/pg4cOOA+J4HfL9ofuu19v6Sl+YHLe8eGt3wo31nxKCf7Ki19xg4ePGgVK1YMmj9nzhyXoqo0zRtuuMG2bt1qibaflMZau3Ztq1WrlnXr1i3oe6YgHlPROJ6ee+45u/TSS61UqVIF9nhCYgv+lUXC0w+BBJ6cere9+/SvvgCDDqTChd0Pr7dMvInGa9IPxrHHHuv6cAUaPny4nXbaaa6vzMyZM+3GG290P8jqK5Io++myyy5zJyA1atSwpUuX2l133WWrVq2yd955x7/ejI45775EPaa2bNliI0aMsGuvvbZAHFN6PSkpKRm+1z///HOGj8ns2Aj8PvLmZbZMPMrJvkpLnzN95gJPhNXf4/zzz7e6devab7/95kaj79q1qzsxLlSokCXCftLJuy4kNG7c2F10ePjhh933tgKjmjVrFshjKtLjSX2Pli9f7n7nAhW04wmJjaAoDt199902ZsyYLJdZuXKl65ic6ELdV5Hau3evTZ061QYPHpzuvsB5zZo1s927d9vYsWNj6gQ2t/dT4Em9WoTUebljx47uR/TII4+0eJJXx5RaydShuWHDhnb//ffH3TGF/DV69GhXfENX8QOLCOhKf+BnUYGBPoNaTp/JRNC2bVs3eRQQ6YLWM8884y5CID0FQzpe1DIdiOMJBQlBURwaMGCAq/iSlXr16uVo3dWqVXP/btq0yZ24enS7adOm/mU2b94c9DhVCVPlLO/x8bavIn1Nb731lktV6dmzZ7bLKgVDP7z79++3YsWKWSLtp8B9IL/++qs7IdNj01ZB0jEniXhM7dy5012BLVOmjL377rtWpEiRuDumMqJ0P1099t5bj25ntk80P6vlQ/nOikc52VcetXwoKPrss89c0JPdsarn0mcxHoOiSPaTR58vXVzQPiiox1Qk+0kXXRRgq4U6O/F+PCHB5XenJsRmoYWHH37YP09VwjIqtPDdd9/5l/n0008LRKGFnL4mFRJIWyEsMyNHjvRVqFDBF4+i9d7PmzfPrUdVnQILLQRWQXrmmWdcoYV9+/b5Emlf6fPWpk0bd0zt3r27wB1T6ux90003BXX2Pvzww7MstHD22WcHzWvbtm26QgtZfWfFq3D3lYwZM8Z9bhYsWBDSc6xfv94dk++//74vkfZT2oIUDRo08N1+++0F+pjK6X7S+YNe+5YtWxLieELiIigq4P744w9XntUrFa2/NQWWjNaPwTvvvBNUilRlOvWltnTpUldZJqOS3M2aNfMtXLjQneCqbHBBKMmd1WtSWVvtK90faPXq1e5HQJXF0lJp5cmTJ7vywVruqaee8pUsWdKVSk+U/aTS0sOHD3fBwZo1a9xxVa9ePd8pp5ySriT3GWec4VuyZIlvxowZvsqVKxeIktzh7CudeKmyWqNGjdx+Cyxzq31UEI4plQXWCdaUKVNc4Hjttde67xuv8uCVV17pu/vuu4NKchcuXNidoKrM9NChQzMsyZ3dd1Y8CndfaT+oUuFbb70VdOx43/f694477nABkz6Ln332ma958+buuIzXiw852U/6PdQFit9++823ePFi36WXXuorXry4K1NdkI+pcPeT56STTvJdcskl6eYX1OMJiYugqIBTuUxdrU47ffHFF+nGPPHoKtngwYN9VatWdV+gHTt29K1atSrd+AU6uVOgpauSvXv3Dgq04lF2r0lf+mn3nejEvVatWu6qW1oKlFSmW+ssVaqUG7Nm4sSJGS5bUPfTunXrXABUsWJFdzxprJ6BAwcGjVMka9eu9XXt2tVXokQJN0bRgAEDgspQJ8K+0r8ZfV41admCckw98cQTviOOOMKdwOvqtcZx8qiFTN9bacuSH3300W754447zvfxxx8H3R/Kd1a8Cmdf1a5dO8NjR4Gk7Nmzx1140AUHBZZaXmPVpB2jp6Dvp9tuu82/rI6ZM8880/f9998nxDEV7mfv559/dsfQzJkz062rIB9PSExJ+l9+p/ABAAAAQH5hnCIAAAAACY2gCAAAAEBCIygCAAAAkNAIigAAAAAkNIIiAAAAAAmNoAgAAABAQiMoAgAAAJDQCIoAAACQ7+bOnWvnnHOO1ahRw5KSkuy9994Lex0afvPhhx+2o48+2ooVK2aHH364PfDAA7myvShYCIoAJJwOHTrYbbfdlqvPMWfOHPejvn379lx9nkR4f+rUqWPjx4+3WOS9z5q6d+8e0brWrl3rX1fTpk2jto1AvNi9e7c1adLEJkyYkON13Hrrrfbss8+6wOjnn3+2Dz74wFq1ahXV7UTBVDi/NwAA8to777xjRYoUiepJvE5iA0/c27VrZxs2bLBy5cpF7XkS1aJFi6xUqVJRXWevXr1cwJqTK9EZWbVqlVWpUiWiddSqVcsdMzqZ++yzz6KyXUA86dq1q5sys3//frv33nvttddec5/f448/3saMGeO+g2XlypX29NNP2/Lly61BgwZuXt26dfNs+xHfaCkCUGAcOHAgpOUqVqxoZcqUydVtKVq0qFWrVs1d9UfGKS6HDh0KaddUrlzZSpYsGdO7UQFR+fLlI1pHoUKF3DFTunTpqG0XUJDcdNNNtmDBAnv99ddt6dKldtFFF1mXLl1s9erV7v4PP/zQ6tWrZx999JELhtTK3KdPH9u2bVt+bzriAEERgJikK3/6AdSk1pZKlSrZ4MGD3cm0Rz94I0aMsJ49e1rZsmXt2muvdfPffvttO+6441w+uZZ55JFHskzP0tXHO+64w+Weq0WidevWLi0q0Ndff+0ep5PzChUqWOfOne3ff/91LQ5ffvmlPfbYY/7UJ6VBZZQ+l912ad6DDz5oV199tQvajjjiCJs0aVJI++ull15yJ9PeyYHceOONdswxx9iePXuyfbz2wV133eVaK7R99evXt+eee85/v16jUlB0X/Xq1e3uu+8OCmr0+FtuucUFB8WLF7eTTjrJtfB4vP3xySefWIsWLdx65s2b59Jl9P5p27XetPvE2y+BrXBaj9JjzjvvPPd+HHXUUS5FxpOSkmLXXHONOykqUaKEu2Ks98dz//3324svvmjvv/++/z3z3u/169fbxRdf7AIcBc/dunVz72e4dKzcfPPN7jjT8VK1alWbPHmye729e/d276/2sfYHgOytW7fOXnjhBXvzzTft5JNPtiOPPNJ9b+u7RvPl999/tz/++MMto+/EKVOm2OLFi+3CCy9kFyN7PgCIQe3bt/eVLl3ad+utt/p+/vln3yuvvOIrWbKkb9KkSf5lateu7Stbtqzv4Ycf9v36669u+u6773zJycm+4cOH+1atWuV74YUXfCVKlHD/Bq5b6/X06dPH165dO9/cuXPdOsaOHesrVqyY75dffnH3//DDD+72DTfc4FuyZIlv+fLlvieeeML3zz//+LZv3+5r27atr2/fvr4NGza46dChQ74vvvhC0Zvv33//desIZbv0eipWrOibMGGCb/Xq1b5Ro0a5x+j1h+Kiiy7ynXDCCb6DBw/6PvroI1+RIkXc84bi4osv9tWqVcv3zjvv+H777TffZ5995nv99dfdfX/++afb9zfeeKNv5cqVvnfffddXqVIl39ChQ/2Pv+WWW3w1atTwTZ8+3bdixQrfVVdd5atQoYJv69at7n5vfzRu3Ng3c+ZMt591n/bpEUcc4Z5v6dKlvrPPPttXpkyZoPdH++XRRx/139Z6atas6Zs6darbT3puHSvecx04cMA3ZMgQ36JFi3y///67/9iZNm2au3/nzp3u9Xbp0sX/nu3fv9897thjj/VdffXVblt++ukn32WXXeZr0KCBuz8jad/nwGNMr2PEiBHuONK/hQoV8nXt2tUdw5qn137YYYf5du/eHfRY7dcmTZqE9L4BBZU+V/qu8eg7TfNKlSoVNBUuXNh9nkXfw1pG37GexYsXu3mhfo8icREUAYhJOqnUCWpqaqp/3l133eXmBZ4sd+/ePehxOok9/fTTg+YNHDjQ17Bhw6B1eyfdf/zxhztZ/euvv4Ie07FjR9+gQYPc3z169PCdeOKJWW5r4El8RifLoWyXXs8VV1zhv63XXqVKFd/TTz/tC8W2bdtcsKCT7apVq/oeeOCBkB6nEwht66xZszK8/5577nGBQeB7ocBNgUhKSopv165dLgB79dVX/fcrwFCQ9NBDDwXtj/fee8+/jIKTokWL+t544w3/PAU2ChazC4ruu+8+/209v+Z98sknmb7Gfv36+S644AL/bQVt3bp1C1rm5ZdfTvc6FQxpez799NOwg6KTTjrJf1uBsk7grrzySv88BWN67IIFC4IeS1AEpA+KdJFG39UKbnQxJHDSZ0l0MURBUqA9e/a4deliDJAV0ucAxKw2bdoE9clp27atSw9TepSnZcuWQY9RR9sTTzwxaJ5up32cZ9myZW6+yrcqhcublC7222+/uWWWLFliHTt2jOi1hLpdjRs39v+t164+Jps3bw7pOZSmpZQ3dTRWaolS3EKh16f+LO3bt89027XvA98LbfuuXbvszz//dPvp4MGDQa9PhSyUbqfHBgp8v/Q49QNTuqJHKWteB+msBO4npTwqfTJwP6l6ldL01B9J76fSEJV+k5Uff/zRfv31V5fa5h0H2p59+/b5j4VwBG6j9u9hhx1mjRo18s9TSp2E+v4CiaxZs2buu1KfF6WeBk76nhR9BymtN/Dz+ssvv7h/a9eunW/bjvhA9TkAcS3SqmQ6sdcJq/LO9W8gr8O7+qXklbRV8RSIpKamhjXOh16Hqpip/0ooBSXy8vVFq4pcVvtJnbDV10D9kxTMaR+MHTvWFi5cmO2xoEDq1VdfTXefgqtobGPgPC/IDOf9BQoyfQZ1YcKzZs0ad9FGFyd04eryyy93fRD12VaQ9M8//9js2bPdBYizzjrLOnXqZM2bN3f9MtUPUZ+tfv362emnn+4eD2SFliIAMSvtSew333zjOtWnDV4CHXvssa4oQiDd1g9iRo8L5eqjfnD1w5tVpbmMWqEi2a6cmD9/vitPqwpMCuhUpCIUar3QyYNaxzLbdlV8CixyoW1XsFGzZk3XKqV9EPj61HKkQgsNGzbM9Hn1OAUJge+zild4V3ZzStuhkugqNKH3V+9l2paejN4znUyp5U7FItIeC5RWB3Lfd9995z6zmqR///7u7yFDhrjbKqigoGjAgAGuRVljg+l7RkVpJDk52X3/qTDPKaec4gIlfX/pQgmQHYIiADFL6U76UdQYMBqX4oknnnAD82VFP5YKYFSVTifXqjL25JNPupaDjARefdT4Rboy+e2339qoUaPs448/dssMGjTI/fDqJFtlYDUgoFLUtmzZ4q+OphN7VSnTvIyu/Ie7XeHauXOnXXnlla4CnMb5UGvHtGnT7K233sr2sdr+q666yl1d1bg92geqxvbGG2+4+/W6VZVN1dT02lW1bejQoe690UmIWn9uuOEGGzhwoM2YMcN++ukn69u3r6t6pypwmVHgpvv1uM8//9yNLaJqflpnJBQ46+Tq008/dftaVQsDK+F5r1nvpY4tvWcK4nQc6GRKFee++uor/37QPlWaIIDcpaqN/9ffPWhSFTnRRZRhw4a5z6ZSb//++2/3vR2YllqjRg1X6VPfiRs3bnSBlFqagOwQFAGIWQpU9u7d6/qmKAVCAZFXdjszutqvk3ldGdTAfrrCOHz4cHeynZnsrj4qcJo5c6brc6JtUUqWAoPChf+XgazARq09ahVRmlVGfVdysl3h0L5RcKKS3qKTBP193XXX2V9//ZXt4xXkqWytV8ZbQY3S70SlyqdPn+6CRY02f/3117tg5r777vM/fvTo0XbBBRe4wEyvVSkwCkrUzykrSmtTed1zzjnHpb6ovK5S2CKh13z++efbJZdc4vorbd261b2uQHp9eq/Vx0nvmVqXVN5b6Yd63/V4XWHW61SfIvVZAgAUXEmqtpDfGwEAGV0xbNq0adD4NNGioEaFE0aOHMmOR0TUknTqqae6tL9IB28NHEdJLXbqSwEAyBu0FAFIGBpgVGlVK1ascIOoAtGivlU9evSIaB1qYVRKodfaBwDIO1SfA5AwPvnkE5cmd+6558bdCOc6Uc7sZFnpZ3ptmVH/GPUzyqriE3JG6XkqzhBYrTCn1BfCax0qVqwYbwkA5CHS5wAgDmzbts1NmZXUVr+fzKhfVlb9ilRdDQCAREZQBAAAACCh0acIAAAAQEIjKAIAAACQ0AiKAAAAACQ0giIAAAAACY2gCAAAAEBCIygCAAAAkNAIigAAAABYIvt//jQ96H5c8aUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "import fsspec\n", - "import xarray as xr\n", - "import matplotlib.pyplot as plt\n", - "\n", - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open())\n", - "\n", "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"number_of_lightning_flashes_per_unit_area\"].plot()" ] @@ -134,4 +737,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} From d35ee34ad4130a26649195a8043e49d4eaa45911 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:09:16 -0700 Subject: [PATCH 04/12] fix: re-run --- ...t-office-global-deterministic-height.ipynb | 590 +----------------- 1 file changed, 34 insertions(+), 556 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-height.ipynb b/datasets/met-office/met-office-global-deterministic-height.ipynb index 8c7311a..982832a 100644 --- a/datasets/met-office/met-office-global-deterministic-height.ipynb +++ b/datasets/met-office/met-office-global-deterministic-height.ipynb @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "2132d393", "metadata": {}, "outputs": [], @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'cloud_amount_on_height_levels': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/height/20260114T1200Z/20260120T1200Z-PT0144H00M-cloud_amount_on_height_levels.nc?st=2026-01-29T11%3A03%3A24Z&se=2026-01-30T11%3A48%3A24Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T19%3A29%3A35Z&ske=2026-02-05T19%3A29%3A35Z&sks=b&skv=2025-07-05&sig=52KmEAOjBs2tXb9d55MvK6174sucyd%2BsiVfwjKmY05M%3D\n" + "Item Dictionary - {'cloud_amount_on_height_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/height/20260114T1200Z/20260120T1200Z-PT0144H00M-cloud_amount_on_height_levels.nc?st=2026-01-29T16%3A05%3A56Z&se=2026-01-30T16%3A50%3A56Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T19%3A49%3A47Z&ske=2026-02-05T19%3A49%3A47Z&sks=b&skv=2025-07-05&sig=fomnJaOUsWICI2xJ2wbDn7DPXAP067fiyV%2BD6Jbia1g%3D\n" ] } ], @@ -114,560 +114,38 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "fbc72d2a", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
<xarray.Dataset> Size: 649MB\n",
-       "Dimensions:                                    (height: 33, latitude: 1920,\n",
-       "                                                longitude: 2560, bnds: 2)\n",
-       "Coordinates:\n",
-       "  * height                                     (height) float32 132B 5.0 ... ...\n",
-       "  * latitude                                   (latitude) float32 8kB -89.95 ...\n",
-       "  * longitude                                  (longitude) float32 10kB -179....\n",
-       "    forecast_period                            timedelta64[ns] 8B ...\n",
-       "    forecast_reference_time                    datetime64[ns] 8B ...\n",
-       "    time                                       datetime64[ns] 8B ...\n",
-       "Dimensions without coordinates: bnds\n",
-       "Data variables:\n",
-       "    cloud_volume_fraction_in_atmosphere_layer  (height, latitude, longitude) float32 649MB ...\n",
-       "    latitude_longitude                         int32 4B ...\n",
-       "    latitude_bnds                              (latitude, bnds) float32 15kB ...\n",
-       "    longitude_bnds                             (longitude, bnds) float32 20kB ...\n",
-       "Attributes:\n",
-       "    history:                      2026-01-14T15:53:04Z: StaGE Decoupler\n",
-       "    institution:                  Met Office\n",
-       "    mosg__forecast_run_duration:  PT168H\n",
-       "    mosg__grid_domain:            global\n",
-       "    mosg__grid_type:              standard\n",
-       "    mosg__grid_version:           1.7.0\n",
-       "    mosg__model_configuration:    gl_det\n",
-       "    source:                       Met Office Unified Model\n",
-       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
-       "    um_version:                   13.1\n",
-       "    Conventions:                  CF-1.7, UKMO-1.0
" - ], - "text/plain": [ - " Size: 649MB\n", - "Dimensions: (height: 33, latitude: 1920,\n", - " longitude: 2560, bnds: 2)\n", - "Coordinates:\n", - " * height (height) float32 132B 5.0 ... ...\n", - " * latitude (latitude) float32 8kB -89.95 ...\n", - " * longitude (longitude) float32 10kB -179....\n", - " forecast_period timedelta64[ns] 8B ...\n", - " forecast_reference_time datetime64[ns] 8B ...\n", - " time datetime64[ns] 8B ...\n", - "Dimensions without coordinates: bnds\n", - "Data variables:\n", - " cloud_volume_fraction_in_atmosphere_layer (height, latitude, longitude) float32 649MB ...\n", - " latitude_longitude int32 4B ...\n", - " latitude_bnds (latitude, bnds) float32 15kB ...\n", - " longitude_bnds (longitude, bnds) float32 20kB ...\n", - "Attributes:\n", - " history: 2026-01-14T15:53:04Z: StaGE Decoupler\n", - " institution: Met Office\n", - " mosg__forecast_run_duration: PT168H\n", - " mosg__grid_domain: global\n", - " mosg__grid_type: standard\n", - " mosg__grid_version: 1.7.0\n", - " mosg__model_configuration: gl_det\n", - " source: Met Office Unified Model\n", - " title: Global Model Forecast on Global 10 km Stand...\n", - " um_version: 13.1\n", - " Conventions: CF-1.7, UKMO-1.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" + "ename": "ImportError", + "evalue": "HTTPFileSystem requires \"requests\" and \"aiohttp\" to be installed", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/registry.py:264\u001b[39m, in \u001b[36mget_filesystem_class\u001b[39m\u001b[34m(protocol)\u001b[39m\n\u001b[32m 263\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m264\u001b[39m register_implementation(protocol, \u001b[43m_import_class\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbit\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mclass\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[32m 265\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/registry.py:299\u001b[39m, in \u001b[36m_import_class\u001b[39m\u001b[34m(fqp)\u001b[39m\n\u001b[32m 298\u001b[39m is_s3 = mod == \u001b[33m\"\u001b[39m\u001b[33ms3fs\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m--> \u001b[39m\u001b[32m299\u001b[39m mod = \u001b[43mimportlib\u001b[49m\u001b[43m.\u001b[49m\u001b[43mimport_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmod\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 300\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m is_s3 \u001b[38;5;129;01mand\u001b[39;00m mod.__version__.split(\u001b[33m\"\u001b[39m\u001b[33m.\u001b[39m\u001b[33m\"\u001b[39m) < [\u001b[33m\"\u001b[39m\u001b[33m0\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33m5\u001b[39m\u001b[33m\"\u001b[39m]:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/uv/python/cpython-3.13.2-macos-aarch64-none/lib/python3.13/importlib/__init__.py:88\u001b[39m, in \u001b[36mimport_module\u001b[39m\u001b[34m(name, package)\u001b[39m\n\u001b[32m 87\u001b[39m level += \u001b[32m1\u001b[39m\n\u001b[32m---> \u001b[39m\u001b[32m88\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_bootstrap\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_gcd_import\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m[\u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m:1387\u001b[39m, in \u001b[36m_gcd_import\u001b[39m\u001b[34m(name, package, level)\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m:1360\u001b[39m, in \u001b[36m_find_and_load\u001b[39m\u001b[34m(name, import_)\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m:1331\u001b[39m, in \u001b[36m_find_and_load_unlocked\u001b[39m\u001b[34m(name, import_)\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m:935\u001b[39m, in \u001b[36m_load_unlocked\u001b[39m\u001b[34m(spec)\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m:1026\u001b[39m, in \u001b[36mexec_module\u001b[39m\u001b[34m(self, module)\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m:488\u001b[39m, in \u001b[36m_call_with_frames_removed\u001b[39m\u001b[34m(f, *args, **kwds)\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/implementations/http.py:9\u001b[39m\n\u001b[32m 7\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01murllib\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mparse\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m urlparse\n\u001b[32m----> \u001b[39m\u001b[32m9\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01maiohttp\u001b[39;00m\n\u001b[32m 10\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01myarl\u001b[39;00m\n", + "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'aiohttp'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[31mImportError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[4]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m example_netcdf = xr.open_dataset(\u001b[43mfsspec\u001b[49m\u001b[43m.\u001b[49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43masset_url\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m.open(), decode_timedelta=\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[32m 2\u001b[39m example_netcdf\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:508\u001b[39m, in \u001b[36mopen\u001b[39m\u001b[34m(urlpath, mode, compression, encoding, errors, protocol, newline, expand, **kwargs)\u001b[39m\n\u001b[32m 450\u001b[39m \u001b[38;5;250m\u001b[39m\u001b[33;03m\"\"\"Given a path or paths, return one ``OpenFile`` object.\u001b[39;00m\n\u001b[32m 451\u001b[39m \n\u001b[32m 452\u001b[39m \u001b[33;03mParameters\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 505\u001b[39m \u001b[33;03m https://filesystem-spec.readthedocs.io/en/latest/api.html#other-known-implementations\u001b[39;00m\n\u001b[32m 506\u001b[39m \u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 507\u001b[39m expand = DEFAULT_EXPAND \u001b[38;5;28;01mif\u001b[39;00m expand \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m expand\n\u001b[32m--> \u001b[39m\u001b[32m508\u001b[39m out = \u001b[43mopen_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 509\u001b[39m \u001b[43m \u001b[49m\u001b[43murlpath\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[43murlpath\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 510\u001b[39m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 511\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 512\u001b[39m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m=\u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 513\u001b[39m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m=\u001b[49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 514\u001b[39m \u001b[43m \u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m=\u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 515\u001b[39m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[43m=\u001b[49m\u001b[43mnewline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 516\u001b[39m \u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m=\u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 517\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 518\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 519\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m out:\n\u001b[32m 520\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(urlpath)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:295\u001b[39m, in \u001b[36mopen_files\u001b[39m\u001b[34m(urlpath, mode, compression, encoding, errors, name_function, num, protocol, newline, auto_mkdir, expand, **kwargs)\u001b[39m\n\u001b[32m 216\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mopen_files\u001b[39m(\n\u001b[32m 217\u001b[39m urlpath,\n\u001b[32m 218\u001b[39m mode=\u001b[33m\"\u001b[39m\u001b[33mrb\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m (...)\u001b[39m\u001b[32m 228\u001b[39m **kwargs,\n\u001b[32m 229\u001b[39m ):\n\u001b[32m 230\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Given a path or paths, return a list of ``OpenFile`` objects.\u001b[39;00m\n\u001b[32m 231\u001b[39m \n\u001b[32m 232\u001b[39m \u001b[33;03m For writing, a str path must contain the \"*\" character, which will be filled\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 293\u001b[39m \u001b[33;03m https://filesystem-spec.readthedocs.io/en/latest/api.html#other-known-implementations\u001b[39;00m\n\u001b[32m 294\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m295\u001b[39m fs, fs_token, paths = \u001b[43mget_fs_token_paths\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 296\u001b[39m \u001b[43m \u001b[49m\u001b[43murlpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 297\u001b[39m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 298\u001b[39m \u001b[43m \u001b[49m\u001b[43mnum\u001b[49m\u001b[43m=\u001b[49m\u001b[43mnum\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 299\u001b[39m \u001b[43m \u001b[49m\u001b[43mname_function\u001b[49m\u001b[43m=\u001b[49m\u001b[43mname_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 300\u001b[39m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[43m=\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 301\u001b[39m \u001b[43m \u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m=\u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 302\u001b[39m \u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m=\u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 303\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 304\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m fs.protocol == \u001b[33m\"\u001b[39m\u001b[33mfile\u001b[39m\u001b[33m\"\u001b[39m:\n\u001b[32m 305\u001b[39m fs.auto_mkdir = auto_mkdir\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:672\u001b[39m, in \u001b[36mget_fs_token_paths\u001b[39m\u001b[34m(urlpath, mode, num, name_function, storage_options, protocol, expand)\u001b[39m\n\u001b[32m 670\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m protocol:\n\u001b[32m 671\u001b[39m storage_options[\u001b[33m\"\u001b[39m\u001b[33mprotocol\u001b[39m\u001b[33m\"\u001b[39m] = protocol\n\u001b[32m--> \u001b[39m\u001b[32m672\u001b[39m chain = \u001b[43m_un_chain\u001b[49m\u001b[43m(\u001b[49m\u001b[43murlpath0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 673\u001b[39m inkwargs = {}\n\u001b[32m 674\u001b[39m \u001b[38;5;66;03m# Reverse iterate the chain, creating a nested target_* structure\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:358\u001b[39m, in \u001b[36m_un_chain\u001b[39m\u001b[34m(path, kwargs)\u001b[39m\n\u001b[32m 356\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m bit \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mreversed\u001b[39m(bits):\n\u001b[32m 357\u001b[39m protocol = kwargs.pop(\u001b[33m\"\u001b[39m\u001b[33mprotocol\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;129;01mor\u001b[39;00m split_protocol(bit)[\u001b[32m0\u001b[39m] \u001b[38;5;129;01mor\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mfile\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m--> \u001b[39m\u001b[32m358\u001b[39m \u001b[38;5;28mcls\u001b[39m = \u001b[43mget_filesystem_class\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 359\u001b[39m extra_kwargs = \u001b[38;5;28mcls\u001b[39m._get_kwargs_from_urls(bit)\n\u001b[32m 360\u001b[39m kws = kwargs.pop(protocol, {})\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/registry.py:266\u001b[39m, in \u001b[36mget_filesystem_class\u001b[39m\u001b[34m(protocol)\u001b[39m\n\u001b[32m 264\u001b[39m register_implementation(protocol, _import_class(bit[\u001b[33m\"\u001b[39m\u001b[33mclass\u001b[39m\u001b[33m\"\u001b[39m]))\n\u001b[32m 265\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m--> \u001b[39m\u001b[32m266\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(bit.get(\u001b[33m\"\u001b[39m\u001b[33merr\u001b[39m\u001b[33m\"\u001b[39m)) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01me\u001b[39;00m\n\u001b[32m 267\u001b[39m \u001b[38;5;28mcls\u001b[39m = registry[protocol]\n\u001b[32m 268\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mcls\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mprotocol\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;129;01min\u001b[39;00m (\u001b[33m\"\u001b[39m\u001b[33mabstract\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m):\n", + "\u001b[31mImportError\u001b[39m: HTTPFileSystem requires \"requests\" and \"aiohttp\" to be installed" + ] } ], "source": [ @@ -685,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "f07cb1e2", "metadata": {}, "outputs": [ @@ -724,7 +202,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -738,7 +216,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From f6413131488596c1c7367e498c2c4d74b61157d1 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:10:59 -0700 Subject: [PATCH 05/12] fix: headers --- ...t-office-global-deterministic-height.ipynb | 660 +++++++++++++++++- 1 file changed, 624 insertions(+), 36 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-height.ipynb b/datasets/met-office/met-office-global-deterministic-height.ipynb index 982832a..385c1cb 100644 --- a/datasets/met-office/met-office-global-deterministic-height.ipynb +++ b/datasets/met-office/met-office-global-deterministic-height.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing Global Height data from Microsoft Planetary Computer" + "## Accessing Global Height data from Microsoft Planetary Computer" ] }, { @@ -62,10 +62,10 @@ " \"args\": [\n", " {\"property\": \"forecast:reference_datetime\"},\n", " \"2026-01-14T12:00:00Z\",\n", - " ]\n", + " ],\n", " },\n", " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0144H00M\"]},\n", - " ]\n", + " ],\n", "}" ] }, @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'cloud_amount_on_height_levels': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/height/20260114T1200Z/20260120T1200Z-PT0144H00M-cloud_amount_on_height_levels.nc?st=2026-01-29T16%3A05%3A56Z&se=2026-01-30T16%3A50%3A56Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T19%3A49%3A47Z&ske=2026-02-05T19%3A49%3A47Z&sks=b&skv=2025-07-05&sig=fomnJaOUsWICI2xJ2wbDn7DPXAP067fiyV%2BD6Jbia1g%3D\n" + "Item Dictionary - {'cloud_amount_on_height_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/height/20260114T1200Z/20260120T1200Z-PT0144H00M-cloud_amount_on_height_levels.nc?st=2026-01-29T16%3A07%3A16Z&se=2026-01-30T16%3A52%3A16Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T00%3A07%3A36Z&ske=2026-02-05T00%3A07%3A36Z&sks=b&skv=2025-07-05&sig=00t7SS91ZNhlTMZWo3elybx%2BozXBNFwnLW4EJ4lYhsQ%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -119,37 +119,625 @@ "metadata": {}, "outputs": [ { - "ename": "ImportError", - "evalue": "HTTPFileSystem requires \"requests\" and \"aiohttp\" to be installed", - "output_type": "error", - "traceback": [ - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/registry.py:264\u001b[39m, in \u001b[36mget_filesystem_class\u001b[39m\u001b[34m(protocol)\u001b[39m\n\u001b[32m 263\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m264\u001b[39m register_implementation(protocol, \u001b[43m_import_class\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbit\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mclass\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[32m 265\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/registry.py:299\u001b[39m, in \u001b[36m_import_class\u001b[39m\u001b[34m(fqp)\u001b[39m\n\u001b[32m 298\u001b[39m is_s3 = mod == \u001b[33m\"\u001b[39m\u001b[33ms3fs\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m--> \u001b[39m\u001b[32m299\u001b[39m mod = \u001b[43mimportlib\u001b[49m\u001b[43m.\u001b[49m\u001b[43mimport_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmod\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 300\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m is_s3 \u001b[38;5;129;01mand\u001b[39;00m mod.__version__.split(\u001b[33m\"\u001b[39m\u001b[33m.\u001b[39m\u001b[33m\"\u001b[39m) < [\u001b[33m\"\u001b[39m\u001b[33m0\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33m5\u001b[39m\u001b[33m\"\u001b[39m]:\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/uv/python/cpython-3.13.2-macos-aarch64-none/lib/python3.13/importlib/__init__.py:88\u001b[39m, in \u001b[36mimport_module\u001b[39m\u001b[34m(name, package)\u001b[39m\n\u001b[32m 87\u001b[39m level += \u001b[32m1\u001b[39m\n\u001b[32m---> \u001b[39m\u001b[32m88\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_bootstrap\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_gcd_import\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m[\u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m:1387\u001b[39m, in \u001b[36m_gcd_import\u001b[39m\u001b[34m(name, package, level)\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m:1360\u001b[39m, in \u001b[36m_find_and_load\u001b[39m\u001b[34m(name, import_)\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m:1331\u001b[39m, in \u001b[36m_find_and_load_unlocked\u001b[39m\u001b[34m(name, import_)\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m:935\u001b[39m, in \u001b[36m_load_unlocked\u001b[39m\u001b[34m(spec)\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m:1026\u001b[39m, in \u001b[36mexec_module\u001b[39m\u001b[34m(self, module)\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m:488\u001b[39m, in \u001b[36m_call_with_frames_removed\u001b[39m\u001b[34m(f, *args, **kwds)\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/implementations/http.py:9\u001b[39m\n\u001b[32m 7\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01murllib\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mparse\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m urlparse\n\u001b[32m----> \u001b[39m\u001b[32m9\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01maiohttp\u001b[39;00m\n\u001b[32m 10\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01myarl\u001b[39;00m\n", - "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'aiohttp'", - "\nThe above exception was the direct cause of the following exception:\n", - "\u001b[31mImportError\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[4]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m example_netcdf = xr.open_dataset(\u001b[43mfsspec\u001b[49m\u001b[43m.\u001b[49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43masset_url\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m.open(), decode_timedelta=\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[32m 2\u001b[39m example_netcdf\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:508\u001b[39m, in \u001b[36mopen\u001b[39m\u001b[34m(urlpath, mode, compression, encoding, errors, protocol, newline, expand, **kwargs)\u001b[39m\n\u001b[32m 450\u001b[39m \u001b[38;5;250m\u001b[39m\u001b[33;03m\"\"\"Given a path or paths, return one ``OpenFile`` object.\u001b[39;00m\n\u001b[32m 451\u001b[39m \n\u001b[32m 452\u001b[39m \u001b[33;03mParameters\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 505\u001b[39m \u001b[33;03m https://filesystem-spec.readthedocs.io/en/latest/api.html#other-known-implementations\u001b[39;00m\n\u001b[32m 506\u001b[39m \u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 507\u001b[39m expand = DEFAULT_EXPAND \u001b[38;5;28;01mif\u001b[39;00m expand \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m expand\n\u001b[32m--> \u001b[39m\u001b[32m508\u001b[39m out = \u001b[43mopen_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 509\u001b[39m \u001b[43m \u001b[49m\u001b[43murlpath\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[43murlpath\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 510\u001b[39m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 511\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 512\u001b[39m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m=\u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 513\u001b[39m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m=\u001b[49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 514\u001b[39m \u001b[43m \u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m=\u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 515\u001b[39m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[43m=\u001b[49m\u001b[43mnewline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 516\u001b[39m \u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m=\u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 517\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 518\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 519\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m out:\n\u001b[32m 520\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(urlpath)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:295\u001b[39m, in \u001b[36mopen_files\u001b[39m\u001b[34m(urlpath, mode, compression, encoding, errors, name_function, num, protocol, newline, auto_mkdir, expand, **kwargs)\u001b[39m\n\u001b[32m 216\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mopen_files\u001b[39m(\n\u001b[32m 217\u001b[39m urlpath,\n\u001b[32m 218\u001b[39m mode=\u001b[33m\"\u001b[39m\u001b[33mrb\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m (...)\u001b[39m\u001b[32m 228\u001b[39m **kwargs,\n\u001b[32m 229\u001b[39m ):\n\u001b[32m 230\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Given a path or paths, return a list of ``OpenFile`` objects.\u001b[39;00m\n\u001b[32m 231\u001b[39m \n\u001b[32m 232\u001b[39m \u001b[33;03m For writing, a str path must contain the \"*\" character, which will be filled\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 293\u001b[39m \u001b[33;03m https://filesystem-spec.readthedocs.io/en/latest/api.html#other-known-implementations\u001b[39;00m\n\u001b[32m 294\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m295\u001b[39m fs, fs_token, paths = \u001b[43mget_fs_token_paths\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 296\u001b[39m \u001b[43m \u001b[49m\u001b[43murlpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 297\u001b[39m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 298\u001b[39m \u001b[43m \u001b[49m\u001b[43mnum\u001b[49m\u001b[43m=\u001b[49m\u001b[43mnum\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 299\u001b[39m \u001b[43m \u001b[49m\u001b[43mname_function\u001b[49m\u001b[43m=\u001b[49m\u001b[43mname_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 300\u001b[39m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[43m=\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 301\u001b[39m \u001b[43m \u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m=\u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 302\u001b[39m \u001b[43m \u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m=\u001b[49m\u001b[43mexpand\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 303\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 304\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m fs.protocol == \u001b[33m\"\u001b[39m\u001b[33mfile\u001b[39m\u001b[33m\"\u001b[39m:\n\u001b[32m 305\u001b[39m fs.auto_mkdir = auto_mkdir\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:672\u001b[39m, in \u001b[36mget_fs_token_paths\u001b[39m\u001b[34m(urlpath, mode, num, name_function, storage_options, protocol, expand)\u001b[39m\n\u001b[32m 670\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m protocol:\n\u001b[32m 671\u001b[39m storage_options[\u001b[33m\"\u001b[39m\u001b[33mprotocol\u001b[39m\u001b[33m\"\u001b[39m] = protocol\n\u001b[32m--> \u001b[39m\u001b[32m672\u001b[39m chain = \u001b[43m_un_chain\u001b[49m\u001b[43m(\u001b[49m\u001b[43murlpath0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 673\u001b[39m inkwargs = {}\n\u001b[32m 674\u001b[39m \u001b[38;5;66;03m# Reverse iterate the chain, creating a nested target_* structure\u001b[39;00m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/core.py:358\u001b[39m, in \u001b[36m_un_chain\u001b[39m\u001b[34m(path, kwargs)\u001b[39m\n\u001b[32m 356\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m bit \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mreversed\u001b[39m(bits):\n\u001b[32m 357\u001b[39m protocol = kwargs.pop(\u001b[33m\"\u001b[39m\u001b[33mprotocol\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;129;01mor\u001b[39;00m split_protocol(bit)[\u001b[32m0\u001b[39m] \u001b[38;5;129;01mor\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mfile\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m--> \u001b[39m\u001b[32m358\u001b[39m \u001b[38;5;28mcls\u001b[39m = \u001b[43mget_filesystem_class\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprotocol\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 359\u001b[39m extra_kwargs = \u001b[38;5;28mcls\u001b[39m._get_kwargs_from_urls(bit)\n\u001b[32m 360\u001b[39m kws = kwargs.pop(protocol, {})\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Code/microsoft/PlanetaryComputerExamples/.venv/lib/python3.13/site-packages/fsspec/registry.py:266\u001b[39m, in \u001b[36mget_filesystem_class\u001b[39m\u001b[34m(protocol)\u001b[39m\n\u001b[32m 264\u001b[39m register_implementation(protocol, _import_class(bit[\u001b[33m\"\u001b[39m\u001b[33mclass\u001b[39m\u001b[33m\"\u001b[39m]))\n\u001b[32m 265\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m--> \u001b[39m\u001b[32m266\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(bit.get(\u001b[33m\"\u001b[39m\u001b[33merr\u001b[39m\u001b[33m\"\u001b[39m)) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01me\u001b[39;00m\n\u001b[32m 267\u001b[39m \u001b[38;5;28mcls\u001b[39m = registry[protocol]\n\u001b[32m 268\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mcls\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mprotocol\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;129;01min\u001b[39;00m (\u001b[33m\"\u001b[39m\u001b[33mabstract\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m):\n", - "\u001b[31mImportError\u001b[39m: HTTPFileSystem requires \"requests\" and \"aiohttp\" to be installed" - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 649MB\n",
+       "Dimensions:                                    (height: 33, latitude: 1920,\n",
+       "                                                longitude: 2560, bnds: 2)\n",
+       "Coordinates:\n",
+       "  * height                                     (height) float32 132B 5.0 ... ...\n",
+       "  * latitude                                   (latitude) float32 8kB -89.95 ...\n",
+       "  * longitude                                  (longitude) float32 10kB -179....\n",
+       "    forecast_period                            timedelta64[ns] 8B ...\n",
+       "    forecast_reference_time                    datetime64[ns] 8B ...\n",
+       "    time                                       datetime64[ns] 8B ...\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    cloud_volume_fraction_in_atmosphere_layer  (height, latitude, longitude) float32 649MB ...\n",
+       "    latitude_longitude                         int32 4B ...\n",
+       "    latitude_bnds                              (latitude, bnds) float32 15kB ...\n",
+       "    longitude_bnds                             (longitude, bnds) float32 20kB ...\n",
+       "Attributes:\n",
+       "    history:                      2026-01-14T15:53:04Z: StaGE Decoupler\n",
+       "    institution:                  Met Office\n",
+       "    mosg__forecast_run_duration:  PT168H\n",
+       "    mosg__grid_domain:            global\n",
+       "    mosg__grid_type:              standard\n",
+       "    mosg__grid_version:           1.7.0\n",
+       "    mosg__model_configuration:    gl_det\n",
+       "    source:                       Met Office Unified Model\n",
+       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
+       "    um_version:                   13.1\n",
+       "    Conventions:                  CF-1.7, UKMO-1.0
" + ], + "text/plain": [ + " Size: 649MB\n", + "Dimensions: (height: 33, latitude: 1920,\n", + " longitude: 2560, bnds: 2)\n", + "Coordinates:\n", + " * height (height) float32 132B 5.0 ... ...\n", + " * latitude (latitude) float32 8kB -89.95 ...\n", + " * longitude (longitude) float32 10kB -179....\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " cloud_volume_fraction_in_atmosphere_layer (height, latitude, longitude) float32 649MB ...\n", + " latitude_longitude int32 4B ...\n", + " latitude_bnds (latitude, bnds) float32 15kB ...\n", + " longitude_bnds (longitude, bnds) float32 20kB ...\n", + "Attributes:\n", + " history: 2026-01-14T15:53:04Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT168H\n", + " mosg__grid_domain: global\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: gl_det\n", + " source: Met Office Unified Model\n", + " title: Global Model Forecast on Global 10 km Stand...\n", + " um_version: 13.1\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -163,7 +751,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "f07cb1e2", "metadata": {}, "outputs": [ @@ -179,7 +767,7 @@ " )" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, From 1c42e8ab1ca9ea0c941ad03ce5d9b676fd531dc3 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:14:08 -0700 Subject: [PATCH 06/12] fix: another notebook lint --- ...ce-global-deterministic-near-surface.ipynb | 146 +++++++++++++----- 1 file changed, 106 insertions(+), 40 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb index 0694263..983b1cb 100644 --- a/datasets/met-office/met-office-global-deterministic-near-surface.ipynb +++ b/datasets/met-office/met-office-global-deterministic-near-surface.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing Global Surface data from Microsoft Planetary Computer" + "## Accessing Global Surface data from Microsoft Planetary Computer" ] }, { @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "edb71afa", "metadata": {}, "outputs": [ @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'rainfall_rate': , 'snowfall_rate': , 'wind_gust_at_10m': , 'wind_speed_at_10m': , 'precipitation_rate': , 'wind_direction_at_10m': , 'temperature_at_surface': , 'pressure_at_mean_sea_level': , 'visibility_at_screen_level': , 'wind_gust_at_10m_max-PT06H': , 'rainfall_accumulation-PT06H': , 'snow_depth_water_equivalent': , 'temperature_at_screen_level': , 'fog_fraction_at_screen_level': , 'rainfall_rate_from_convection': , 'snowfall_rate_from_convection': , 'precipitation_accumulation-PT06H': , 'relative_humidity_at_screen_level': , 'temperature_at_screen_level_max-PT06H': , 'temperature_at_screen_level_min-PT06H': , 'latent_heat_flux_at_surface_mean-PT06H': , 'rainfall_rate_from_convection_max-PT06H': , 'snowfall_rate_from_convection_max-PT06H': , 'snowfall_rate_from_convection_mean-PT06H': , 'temperature_of_dew_point_at_screen_level': , 'radiation_flux_in_shortwave_direct_downward_at_surface': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/near-surface/20260121T0000Z/20260128T0000Z-PT0168H00M-temperature_at_surface.nc?st=2026-01-29T11%3A25%3A59Z&se=2026-01-30T12%3A10%3A59Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-26T15%3A17%3A02Z&ske=2026-02-02T15%3A17%3A02Z&sks=b&skv=2025-07-05&sig=WyKfmaAfc65bmPQ30TX4t%2BeYg8FHHBPNdRG9yHYDuIA%3D\n" + "Item Dictionary - {'rainfall_rate': , 'snowfall_rate': , 'wind_gust_at_10m': , 'wind_speed_at_10m': , 'precipitation_rate': , 'wind_direction_at_10m': , 'temperature_at_surface': , 'pressure_at_mean_sea_level': , 'visibility_at_screen_level': , 'wind_gust_at_10m_max-PT06H': , 'rainfall_accumulation-PT06H': , 'snow_depth_water_equivalent': , 'temperature_at_screen_level': , 'fog_fraction_at_screen_level': , 'rainfall_rate_from_convection': , 'snowfall_rate_from_convection': , 'precipitation_accumulation-PT06H': , 'relative_humidity_at_screen_level': , 'temperature_at_screen_level_max-PT06H': , 'temperature_at_screen_level_min-PT06H': , 'latent_heat_flux_at_surface_mean-PT06H': , 'rainfall_rate_from_convection_max-PT06H': , 'snowfall_rate_from_convection_max-PT06H': , 'snowfall_rate_from_convection_mean-PT06H': , 'temperature_of_dew_point_at_screen_level': , 'radiation_flux_in_shortwave_direct_downward_at_surface': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/near-surface/20260121T0000Z/20260128T0000Z-PT0168H00M-temperature_at_surface.nc?st=2026-01-29T16%3A11%3A21Z&se=2026-01-30T16%3A56%3A21Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T20%3A56%3A26Z&ske=2026-02-05T20%3A56%3A26Z&sks=b&skv=2025-07-05&sig=wXY62K/sG/Rcovv9qimQjYQ/3ZeX0I2UCQjg0UsJgx8%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "id": "fbc72d2a", "metadata": {}, "outputs": [ @@ -216,6 +216,7 @@ " min-width: 300px;\n", " max-width: 700px;\n", " line-height: 1.6;\n", + " padding-bottom: 4px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", @@ -226,8 +227,11 @@ ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", - " margin-bottom: 4px;\n", + "}\n", + "\n", + ".xr-header {\n", " border-bottom: solid 1px var(--xr-border-color);\n", + " margin-bottom: 4px;\n", "}\n", "\n", ".xr-header > div,\n", @@ -238,20 +242,15 @@ "}\n", "\n", ".xr-obj-type,\n", - ".xr-obj-name,\n", - ".xr-group-name {\n", + ".xr-obj-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", - ".xr-group-name::before {\n", - " content: \"📁\";\n", - " padding-right: 0.3em;\n", - "}\n", - "\n", - ".xr-group-name,\n", - ".xr-obj-type {\n", + ".xr-obj-type,\n", + ".xr-group-box-contents > label {\n", " color: var(--xr-font-color2);\n", + " display: block;\n", "}\n", "\n", ".xr-sections {\n", @@ -266,28 +265,39 @@ " display: contents;\n", "}\n", "\n", - ".xr-section-item input {\n", - " display: inline-block;\n", + ".xr-section-item > input,\n", + ".xr-group-box-contents > input,\n", + ".xr-array-wrap > input {\n", + " display: block;\n", " opacity: 0;\n", " height: 0;\n", " margin: 0;\n", "}\n", "\n", - ".xr-section-item input + label {\n", + ".xr-section-item > input + label,\n", + ".xr-var-item > input + label {\n", " color: var(--xr-disabled-color);\n", - " border: 2px solid transparent !important;\n", "}\n", "\n", - ".xr-section-item input:enabled + label {\n", + ".xr-section-item > input:enabled + label,\n", + ".xr-var-item > input:enabled + label,\n", + ".xr-array-wrap > input:enabled + label,\n", + ".xr-group-box-contents > input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", - ".xr-section-item input:focus + label {\n", - " border: 2px solid var(--xr-font-color0) !important;\n", + ".xr-section-item > input:focus-visible + label,\n", + ".xr-var-item > input:focus-visible + label,\n", + ".xr-array-wrap > input:focus-visible + label,\n", + ".xr-group-box-contents > input:focus-visible + label {\n", + " outline: auto;\n", "}\n", "\n", - ".xr-section-item input:enabled + label:hover {\n", + ".xr-section-item > input:enabled + label:hover,\n", + ".xr-var-item > input:enabled + label:hover,\n", + ".xr-array-wrap > input:enabled + label:hover,\n", + ".xr-group-box-contents > input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", @@ -295,11 +305,25 @@ " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", + " white-space: nowrap;\n", + "}\n", + "\n", + ".xr-section-summary > em {\n", + " font-weight: normal;\n", + "}\n", + "\n", + ".xr-span-grid {\n", + " grid-column-end: -1;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", - " padding-left: 0.5em;\n", + " padding-left: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label > span {\n", + " display: inline-block;\n", + " padding-left: 0.6em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", @@ -327,7 +351,8 @@ "}\n", "\n", ".xr-section-summary,\n", - ".xr-section-inline-details {\n", + ".xr-section-inline-details,\n", + ".xr-group-box-contents > label {\n", " padding-top: 4px;\n", "}\n", "\n", @@ -336,20 +361,29 @@ "}\n", "\n", ".xr-section-details {\n", - " display: none;\n", " grid-column: 1 / -1;\n", " margin-top: 4px;\n", " margin-bottom: 5px;\n", "}\n", "\n", + ".xr-section-summary-in ~ .xr-section-details {\n", + " display: none;\n", + "}\n", + "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", + ".xr-children {\n", + " display: inline-grid;\n", + " grid-template-columns: 100%;\n", + " grid-column: 1 / -1;\n", + " padding-top: 4px;\n", + "}\n", + "\n", ".xr-group-box {\n", " display: inline-grid;\n", - " grid-template-columns: 0px 20px auto;\n", - " width: 100%;\n", + " grid-template-columns: 0px 30px auto;\n", "}\n", "\n", ".xr-group-box-vline {\n", @@ -363,13 +397,43 @@ " grid-column-start: 2;\n", " grid-row-start: 1;\n", " height: 1em;\n", - " width: 20px;\n", + " width: 26px;\n", " border-bottom: 0.2em solid;\n", " border-color: var(--xr-border-color);\n", "}\n", "\n", ".xr-group-box-contents {\n", " grid-column-start: 3;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-group-box-contents > label::before {\n", + " content: \"📂\";\n", + " padding-right: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label::before {\n", + " content: \"📁\";\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label {\n", + " padding-bottom: 0px;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked ~ .xr-sections {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-contents > input + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-ellipsis {\n", + " font-size: 1.4em;\n", + " font-weight: 900;\n", + " color: var(--xr-font-color2);\n", + " letter-spacing: 0.15em;\n", + " cursor: default;\n", "}\n", "\n", ".xr-array-wrap {\n", @@ -624,9 +688,9 @@ " source: Met Office Unified Model\n", " title: Global Model Forecast on Global 10 km Stand...\n", " um_version: 13.1\n", - " Conventions: CF-1.7, UKMO-1.0" + " Conventions: CF-1.7, UKMO-1.0" ], "text/plain": [ " Size: 20MB\n", @@ -657,13 +721,15 @@ " Conventions: CF-1.7, UKMO-1.0" ] }, - "execution_count": 8, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -677,17 +743,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "id": "aaf25841", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 9, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -710,7 +776,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -724,7 +790,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From d4ad5e6e8c8786a94a8964df2a710f409d1c164d Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:20:04 -0700 Subject: [PATCH 07/12] fix: formatting --- ...office-global-deterministic-pressure.ipynb | 154 +++++++++++++----- 1 file changed, 110 insertions(+), 44 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-pressure.ipynb b/datasets/met-office/met-office-global-deterministic-pressure.ipynb index 23546c4..1783d7d 100644 --- a/datasets/met-office/met-office-global-deterministic-pressure.ipynb +++ b/datasets/met-office/met-office-global-deterministic-pressure.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing Global Pressure data from Microsoft Planetary Computer" + "## Accessing Global Pressure data from Microsoft Planetary Computer" ] }, { @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "2132d393", "metadata": {}, "outputs": [], @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "id": "edb71afa", "metadata": {}, "outputs": [ @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'height_ASL_on_pressure_levels': , 'wind_speed_on_pressure_levels': , 'temperature_on_pressure_levels': , 'wind_direction_on_pressure_levels': , 'relative_humidity_on_pressure_levels': , 'wind_vertical_velocity_on_pressure_levels': , 'wet_bulb_potential_temperature_on_pressure_levels': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/pressure/20260121T0600Z/20260124T0000Z-PT0066H00M-wind_speed_on_pressure_levels.nc?st=2026-01-29T11%3A32%3A54Z&se=2026-01-30T12%3A17%3A54Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-27T04%3A16%3A51Z&ske=2026-02-03T04%3A16%3A51Z&sks=b&skv=2025-07-05&sig=obHImcmdGvzHw30Ac%2Bwxy8KNfeQtxvb62opmXH1kgdU%3D\n" + "Item Dictionary - {'height_ASL_on_pressure_levels': , 'wind_speed_on_pressure_levels': , 'temperature_on_pressure_levels': , 'wind_direction_on_pressure_levels': , 'relative_humidity_on_pressure_levels': , 'wind_vertical_velocity_on_pressure_levels': , 'wet_bulb_potential_temperature_on_pressure_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/pressure/20260121T0600Z/20260124T0000Z-PT0066H00M-wind_speed_on_pressure_levels.nc?st=2026-01-29T16%3A14%3A36Z&se=2026-01-30T16%3A59%3A36Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-30T15%3A19%3A34Z&ske=2026-02-06T15%3A19%3A34Z&sks=b&skv=2025-07-05&sig=K%2BE8TcdCd4P%2BPKDv8hvV5VkxkhrB/e4ofeJtoJBtjLI%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "fbc72d2a", "metadata": {}, "outputs": [ @@ -216,6 +216,7 @@ " min-width: 300px;\n", " max-width: 700px;\n", " line-height: 1.6;\n", + " padding-bottom: 4px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", @@ -226,8 +227,11 @@ ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", - " margin-bottom: 4px;\n", + "}\n", + "\n", + ".xr-header {\n", " border-bottom: solid 1px var(--xr-border-color);\n", + " margin-bottom: 4px;\n", "}\n", "\n", ".xr-header > div,\n", @@ -238,20 +242,15 @@ "}\n", "\n", ".xr-obj-type,\n", - ".xr-obj-name,\n", - ".xr-group-name {\n", + ".xr-obj-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", - ".xr-group-name::before {\n", - " content: \"📁\";\n", - " padding-right: 0.3em;\n", - "}\n", - "\n", - ".xr-group-name,\n", - ".xr-obj-type {\n", + ".xr-obj-type,\n", + ".xr-group-box-contents > label {\n", " color: var(--xr-font-color2);\n", + " display: block;\n", "}\n", "\n", ".xr-sections {\n", @@ -266,28 +265,39 @@ " display: contents;\n", "}\n", "\n", - ".xr-section-item input {\n", - " display: inline-block;\n", + ".xr-section-item > input,\n", + ".xr-group-box-contents > input,\n", + ".xr-array-wrap > input {\n", + " display: block;\n", " opacity: 0;\n", " height: 0;\n", " margin: 0;\n", "}\n", "\n", - ".xr-section-item input + label {\n", + ".xr-section-item > input + label,\n", + ".xr-var-item > input + label {\n", " color: var(--xr-disabled-color);\n", - " border: 2px solid transparent !important;\n", "}\n", "\n", - ".xr-section-item input:enabled + label {\n", + ".xr-section-item > input:enabled + label,\n", + ".xr-var-item > input:enabled + label,\n", + ".xr-array-wrap > input:enabled + label,\n", + ".xr-group-box-contents > input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", - ".xr-section-item input:focus + label {\n", - " border: 2px solid var(--xr-font-color0) !important;\n", + ".xr-section-item > input:focus-visible + label,\n", + ".xr-var-item > input:focus-visible + label,\n", + ".xr-array-wrap > input:focus-visible + label,\n", + ".xr-group-box-contents > input:focus-visible + label {\n", + " outline: auto;\n", "}\n", "\n", - ".xr-section-item input:enabled + label:hover {\n", + ".xr-section-item > input:enabled + label:hover,\n", + ".xr-var-item > input:enabled + label:hover,\n", + ".xr-array-wrap > input:enabled + label:hover,\n", + ".xr-group-box-contents > input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", @@ -295,11 +305,25 @@ " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", + " white-space: nowrap;\n", + "}\n", + "\n", + ".xr-section-summary > em {\n", + " font-weight: normal;\n", + "}\n", + "\n", + ".xr-span-grid {\n", + " grid-column-end: -1;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", - " padding-left: 0.5em;\n", + " padding-left: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label > span {\n", + " display: inline-block;\n", + " padding-left: 0.6em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", @@ -327,7 +351,8 @@ "}\n", "\n", ".xr-section-summary,\n", - ".xr-section-inline-details {\n", + ".xr-section-inline-details,\n", + ".xr-group-box-contents > label {\n", " padding-top: 4px;\n", "}\n", "\n", @@ -336,20 +361,29 @@ "}\n", "\n", ".xr-section-details {\n", - " display: none;\n", " grid-column: 1 / -1;\n", " margin-top: 4px;\n", " margin-bottom: 5px;\n", "}\n", "\n", + ".xr-section-summary-in ~ .xr-section-details {\n", + " display: none;\n", + "}\n", + "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", + ".xr-children {\n", + " display: inline-grid;\n", + " grid-template-columns: 100%;\n", + " grid-column: 1 / -1;\n", + " padding-top: 4px;\n", + "}\n", + "\n", ".xr-group-box {\n", " display: inline-grid;\n", - " grid-template-columns: 0px 20px auto;\n", - " width: 100%;\n", + " grid-template-columns: 0px 30px auto;\n", "}\n", "\n", ".xr-group-box-vline {\n", @@ -363,13 +397,43 @@ " grid-column-start: 2;\n", " grid-row-start: 1;\n", " height: 1em;\n", - " width: 20px;\n", + " width: 26px;\n", " border-bottom: 0.2em solid;\n", " border-color: var(--xr-border-color);\n", "}\n", "\n", ".xr-group-box-contents {\n", " grid-column-start: 3;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-group-box-contents > label::before {\n", + " content: \"📂\";\n", + " padding-right: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label::before {\n", + " content: \"📁\";\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label {\n", + " padding-bottom: 0px;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked ~ .xr-sections {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-contents > input + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-ellipsis {\n", + " font-size: 1.4em;\n", + " font-weight: 900;\n", + " color: var(--xr-font-color2);\n", + " letter-spacing: 0.15em;\n", + " cursor: default;\n", "}\n", "\n", ".xr-array-wrap {\n", @@ -606,10 +670,10 @@ " * pressure (pressure) float32 132B 1e+05 9.75e+04 ... 1e+03\n", " * latitude (latitude) float32 8kB -89.95 -89.86 ... 89.95\n", " * longitude (longitude) float32 10kB -179.9 -179.8 ... 179.9\n", + " flag (pressure, latitude, longitude) int8 162MB ...\n", " forecast_period timedelta64[ns] 8B ...\n", " forecast_reference_time datetime64[ns] 8B ...\n", " time datetime64[ns] 8B ...\n", - " flag (pressure, latitude, longitude) int8 162MB ...\n", "Dimensions without coordinates: bnds\n", "Data variables:\n", " wind_speed (pressure, latitude, longitude) float32 649MB ...\n", @@ -627,13 +691,13 @@ " source: Met Office Unified Model\n", " title: Global Model Forecast on Global 10 km Stand...\n", " um_version: 13.1\n", - " Conventions: CF-1.7, UKMO-1.0
    • wind_speed
      (pressure, latitude, longitude)
      float32
      ...
      least_significant_digit :
      1
      standard_name :
      wind_speed
      units :
      m s-1
      ancillary_variables :
      flag
      grid_mapping :
      latitude_longitude
      [162201600 values with dtype=float32]
    • latitude_longitude
      ()
      int32
      ...
      grid_mapping_name :
      latitude_longitude
      longitude_of_prime_meridian :
      0.0
      earth_radius :
      6371229.0
      [1 values with dtype=int32]
    • latitude_bnds
      (latitude, bnds)
      float32
      ...
      [3840 values with dtype=float32]
    • longitude_bnds
      (longitude, bnds)
      float32
      ...
      [5120 values with dtype=float32]
  • history :
    2026-01-21T09:33:07Z: StaGE Decoupler
    institution :
    Met Office
    mosg__forecast_run_duration :
    PT67H
    mosg__grid_domain :
    global
    mosg__grid_type :
    standard
    mosg__grid_version :
    1.7.0
    mosg__model_configuration :
    gl_det
    source :
    Met Office Unified Model
    title :
    Global Model Forecast on Global 10 km Standard Grid
    um_version :
    13.1
    Conventions :
    CF-1.7, UKMO-1.0
  • " ], "text/plain": [ " Size: 811MB\n", @@ -643,10 +707,10 @@ " * pressure (pressure) float32 132B 1e+05 9.75e+04 ... 1e+03\n", " * latitude (latitude) float32 8kB -89.95 -89.86 ... 89.95\n", " * longitude (longitude) float32 10kB -179.9 -179.8 ... 179.9\n", + " flag (pressure, latitude, longitude) int8 162MB ...\n", " forecast_period timedelta64[ns] 8B ...\n", " forecast_reference_time datetime64[ns] 8B ...\n", " time datetime64[ns] 8B ...\n", - " flag (pressure, latitude, longitude) int8 162MB ...\n", "Dimensions without coordinates: bnds\n", "Data variables:\n", " wind_speed (pressure, latitude, longitude) float32 649MB ...\n", @@ -667,13 +731,15 @@ " Conventions: CF-1.7, UKMO-1.0" ] }, - "execution_count": 8, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -687,7 +753,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "id": "ae845190", "metadata": {}, "outputs": [ @@ -703,7 +769,7 @@ " )" ] }, - "execution_count": 9, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -726,7 +792,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -740,7 +806,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From b320216e428e4854b560e3e0f0f606db3e7da4e1 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:22:16 -0700 Subject: [PATCH 08/12] fix: formatting --- ...lobal-deterministic-whole-atmosphere.ipynb | 566 +----------------- 1 file changed, 11 insertions(+), 555 deletions(-) diff --git a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb index 45a1b9f..7a02b17 100644 --- a/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb +++ b/datasets/met-office/met-office-global-deterministic-whole-atmosphere.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing Global Whole Atmosphere data from Microsoft Planetary Computer" + "## Accessing Global Whole Atmosphere data from Microsoft Planetary Computer" ] }, { @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'CIN_surface': , 'CAPE_surface': , 'pressure_at_tropopause': , 'cloud_amount_of_low_cloud': , 'temperature_at_tropopause': , 'cloud_amount_of_high_cloud': , 'CIN_mixed_layer_lowest_500m': , 'cloud_amount_of_total_cloud': , 'CAPE_mixed_layer_lowest_500m': , 'cloud_amount_of_medium_cloud': , 'cloud_amount_below_1000ft_ASL': , 'CIN_most_unstable_below_500hPa': , 'CAPE_most_unstable_below_500hPa': , 'cloud_amount_of_total_convective_cloud': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/whole-atmosphere/20251212T1200Z/20251214T1800Z-PT0054H00M-CAPE_most_unstable_below_500hPa.nc?st=2026-01-29T11%3A42%3A33Z&se=2026-01-30T12%3A27%3A33Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T00%3A07%3A36Z&ske=2026-02-05T00%3A07%3A36Z&sks=b&skv=2025-07-05&sig=Ag2wDijrJCP%2B30dbcH6Y7QHb8Gsf0/zCMaBRaH77zWo%3D\n" + "Item Dictionary - {'CIN_surface': , 'CAPE_surface': , 'pressure_at_tropopause': , 'cloud_amount_of_low_cloud': , 'temperature_at_tropopause': , 'cloud_amount_of_high_cloud': , 'CIN_mixed_layer_lowest_500m': , 'cloud_amount_of_total_cloud': , 'CAPE_mixed_layer_lowest_500m': , 'cloud_amount_of_medium_cloud': , 'cloud_amount_below_1000ft_ASL': , 'CIN_most_unstable_below_500hPa': , 'CAPE_most_unstable_below_500hPa': , 'cloud_amount_of_total_convective_cloud': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/global/whole-atmosphere/20251212T1200Z/20251214T1800Z-PT0054H00M-CAPE_most_unstable_below_500hPa.nc?st=2026-01-29T16%3A20%3A54Z&se=2026-01-30T17%3A05%3A54Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T00%3A07%3A36Z&ske=2026-02-05T00%3A07%3A36Z&sks=b&skv=2025-07-05&sig=BD/WN/Lo2cDbNzJhfL%2B728q%2BL6PUuEizk49wMca%2BIz4%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -117,555 +117,11 @@ "execution_count": null, "id": "fbc72d2a", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
    <xarray.Dataset> Size: 20MB\n",
    -       "Dimensions:                                           (latitude: 1920,\n",
    -       "                                                       longitude: 2560, bnds: 2)\n",
    -       "Coordinates:\n",
    -       "  * latitude                                          (latitude) float32 8kB ...\n",
    -       "  * longitude                                         (longitude) float32 10kB ...\n",
    -       "    forecast_period                                   timedelta64[ns] 8B ...\n",
    -       "    forecast_reference_time                           datetime64[ns] 8B ...\n",
    -       "    time                                              datetime64[ns] 8B ...\n",
    -       "Dimensions without coordinates: bnds\n",
    -       "Data variables:\n",
    -       "    atmosphere_convective_available_potential_energy  (latitude, longitude) float32 20MB ...\n",
    -       "    latitude_longitude                                int32 4B ...\n",
    -       "    latitude_bnds                                     (latitude, bnds) float32 15kB ...\n",
    -       "    longitude_bnds                                    (longitude, bnds) float32 20kB ...\n",
    -       "Attributes:\n",
    -       "    history:                      2025-12-12T15:24:20Z: StaGE Decoupler\n",
    -       "    institution:                  Met Office\n",
    -       "    mosg__forecast_run_duration:  PT168H\n",
    -       "    mosg__grid_domain:            global\n",
    -       "    mosg__grid_type:              standard\n",
    -       "    mosg__grid_version:           1.7.0\n",
    -       "    mosg__model_configuration:    gl_det\n",
    -       "    source:                       Met Office Unified Model\n",
    -       "    title:                        Global Model Forecast on Global 10 km Stand...\n",
    -       "    um_version:                   13.1\n",
    -       "    Conventions:                  CF-1.7, UKMO-1.0
    " - ], - "text/plain": [ - " Size: 20MB\n", - "Dimensions: (latitude: 1920,\n", - " longitude: 2560, bnds: 2)\n", - "Coordinates:\n", - " * latitude (latitude) float32 8kB ...\n", - " * longitude (longitude) float32 10kB ...\n", - " forecast_period timedelta64[ns] 8B ...\n", - " forecast_reference_time datetime64[ns] 8B ...\n", - " time datetime64[ns] 8B ...\n", - "Dimensions without coordinates: bnds\n", - "Data variables:\n", - " atmosphere_convective_available_potential_energy (latitude, longitude) float32 20MB ...\n", - " latitude_longitude int32 4B ...\n", - " latitude_bnds (latitude, bnds) float32 15kB ...\n", - " longitude_bnds (longitude, bnds) float32 20kB ...\n", - "Attributes:\n", - " history: 2025-12-12T15:24:20Z: StaGE Decoupler\n", - " institution: Met Office\n", - " mosg__forecast_run_duration: PT168H\n", - " mosg__grid_domain: global\n", - " mosg__grid_type: standard\n", - " mosg__grid_version: 1.7.0\n", - " mosg__model_configuration: gl_det\n", - " source: Met Office Unified Model\n", - " title: Global Model Forecast on Global 10 km Stand...\n", - " um_version: 13.1\n", - " Conventions: CF-1.7, UKMO-1.0" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -679,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "865dd115", "metadata": {}, "outputs": [ @@ -712,7 +168,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -726,7 +182,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From 9d9b8c576418a4aeea0750eb4bdef95fc2c4fcc7 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:45:14 -0700 Subject: [PATCH 09/12] fix: formatting --- .../met-office-uk-deterministic-height.ipynb | 144 +++++++++++++----- 1 file changed, 105 insertions(+), 39 deletions(-) diff --git a/datasets/met-office/met-office-uk-deterministic-height.ipynb b/datasets/met-office/met-office-uk-deterministic-height.ipynb index ac2499a..9b3f449 100644 --- a/datasets/met-office/met-office-uk-deterministic-height.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-height.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing UK Model Height data from Microsoft Planetary Computer" + "## Accessing UK Model Height data from Microsoft Planetary Computer" ] }, { @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'wind_speed_on_height_levels': , 'temperature_on_height_levels': , 'cloud_amount_on_height_levels': , 'wind_direction_on_height_levels': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/height/20260121T1500Z/20260124T1500Z-PT0072H00M-wind_speed_on_height_levels.nc?st=2026-01-29T11%3A53%3A13Z&se=2026-01-30T12%3A38%3A13Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T00%3A07%3A36Z&ske=2026-02-05T00%3A07%3A36Z&sks=b&skv=2025-07-05&sig=UDjvEJ0T7t0fq/T3NZsIgW5R40a/5%2B6i8/vRpxciWgg%3D\n" + "Item Dictionary - {'wind_speed_on_height_levels': , 'temperature_on_height_levels': , 'cloud_amount_on_height_levels': , 'wind_direction_on_height_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/height/20260121T1500Z/20260124T1500Z-PT0072H00M-wind_speed_on_height_levels.nc?st=2026-01-29T16%3A22%3A45Z&se=2026-01-30T17%3A07%3A45Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-26T19%3A24%3A16Z&ske=2026-02-02T19%3A24%3A16Z&sks=b&skv=2025-07-05&sig=SD9AzrNUI3xp7QDFKjNYgRSlK2lgWkz8wNW5C/Z%2B9R0%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "45613dda", "metadata": {}, "outputs": [ @@ -216,6 +216,7 @@ " min-width: 300px;\n", " max-width: 700px;\n", " line-height: 1.6;\n", + " padding-bottom: 4px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", @@ -226,8 +227,11 @@ ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", - " margin-bottom: 4px;\n", + "}\n", + "\n", + ".xr-header {\n", " border-bottom: solid 1px var(--xr-border-color);\n", + " margin-bottom: 4px;\n", "}\n", "\n", ".xr-header > div,\n", @@ -238,20 +242,15 @@ "}\n", "\n", ".xr-obj-type,\n", - ".xr-obj-name,\n", - ".xr-group-name {\n", + ".xr-obj-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", - ".xr-group-name::before {\n", - " content: \"📁\";\n", - " padding-right: 0.3em;\n", - "}\n", - "\n", - ".xr-group-name,\n", - ".xr-obj-type {\n", + ".xr-obj-type,\n", + ".xr-group-box-contents > label {\n", " color: var(--xr-font-color2);\n", + " display: block;\n", "}\n", "\n", ".xr-sections {\n", @@ -266,28 +265,39 @@ " display: contents;\n", "}\n", "\n", - ".xr-section-item input {\n", - " display: inline-block;\n", + ".xr-section-item > input,\n", + ".xr-group-box-contents > input,\n", + ".xr-array-wrap > input {\n", + " display: block;\n", " opacity: 0;\n", " height: 0;\n", " margin: 0;\n", "}\n", "\n", - ".xr-section-item input + label {\n", + ".xr-section-item > input + label,\n", + ".xr-var-item > input + label {\n", " color: var(--xr-disabled-color);\n", - " border: 2px solid transparent !important;\n", "}\n", "\n", - ".xr-section-item input:enabled + label {\n", + ".xr-section-item > input:enabled + label,\n", + ".xr-var-item > input:enabled + label,\n", + ".xr-array-wrap > input:enabled + label,\n", + ".xr-group-box-contents > input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", - ".xr-section-item input:focus + label {\n", - " border: 2px solid var(--xr-font-color0) !important;\n", + ".xr-section-item > input:focus-visible + label,\n", + ".xr-var-item > input:focus-visible + label,\n", + ".xr-array-wrap > input:focus-visible + label,\n", + ".xr-group-box-contents > input:focus-visible + label {\n", + " outline: auto;\n", "}\n", "\n", - ".xr-section-item input:enabled + label:hover {\n", + ".xr-section-item > input:enabled + label:hover,\n", + ".xr-var-item > input:enabled + label:hover,\n", + ".xr-array-wrap > input:enabled + label:hover,\n", + ".xr-group-box-contents > input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", @@ -295,11 +305,25 @@ " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", + " white-space: nowrap;\n", + "}\n", + "\n", + ".xr-section-summary > em {\n", + " font-weight: normal;\n", + "}\n", + "\n", + ".xr-span-grid {\n", + " grid-column-end: -1;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", - " padding-left: 0.5em;\n", + " padding-left: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label > span {\n", + " display: inline-block;\n", + " padding-left: 0.6em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", @@ -327,7 +351,8 @@ "}\n", "\n", ".xr-section-summary,\n", - ".xr-section-inline-details {\n", + ".xr-section-inline-details,\n", + ".xr-group-box-contents > label {\n", " padding-top: 4px;\n", "}\n", "\n", @@ -336,20 +361,29 @@ "}\n", "\n", ".xr-section-details {\n", - " display: none;\n", " grid-column: 1 / -1;\n", " margin-top: 4px;\n", " margin-bottom: 5px;\n", "}\n", "\n", + ".xr-section-summary-in ~ .xr-section-details {\n", + " display: none;\n", + "}\n", + "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", + ".xr-children {\n", + " display: inline-grid;\n", + " grid-template-columns: 100%;\n", + " grid-column: 1 / -1;\n", + " padding-top: 4px;\n", + "}\n", + "\n", ".xr-group-box {\n", " display: inline-grid;\n", - " grid-template-columns: 0px 20px auto;\n", - " width: 100%;\n", + " grid-template-columns: 0px 30px auto;\n", "}\n", "\n", ".xr-group-box-vline {\n", @@ -363,13 +397,43 @@ " grid-column-start: 2;\n", " grid-row-start: 1;\n", " height: 1em;\n", - " width: 20px;\n", + " width: 26px;\n", " border-bottom: 0.2em solid;\n", " border-color: var(--xr-border-color);\n", "}\n", "\n", ".xr-group-box-contents {\n", " grid-column-start: 3;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-group-box-contents > label::before {\n", + " content: \"📂\";\n", + " padding-right: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label::before {\n", + " content: \"📁\";\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label {\n", + " padding-bottom: 0px;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked ~ .xr-sections {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-contents > input + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-ellipsis {\n", + " font-size: 1.4em;\n", + " font-weight: 900;\n", + " color: var(--xr-font-color2);\n", + " letter-spacing: 0.15em;\n", + " cursor: default;\n", "}\n", "\n", ".xr-array-wrap {\n", @@ -626,7 +690,7 @@ " source: Met Office Unified Model\n", " title: UKV Model Forecast on UK 2 km Standard Grid\n", " um_version: 13.8\n", - " Conventions: CF-1.7, UKMO-1.0
    • wind_speed
      (height, projection_y_coordinate, projection_x_coordinate)
      float32
      ...
      least_significant_digit :
      1
      standard_name :
      wind_speed
      units :
      m s-1
      grid_mapping :
      lambert_azimuthal_equal_area
      [56601440 values with dtype=float32]
    • lambert_azimuthal_equal_area
      ()
      int32
      ...
      grid_mapping_name :
      lambert_azimuthal_equal_area
      longitude_of_prime_meridian :
      0.0
      semi_major_axis :
      6378137.0
      semi_minor_axis :
      6356752.314140356
      longitude_of_projection_origin :
      -2.5
      latitude_of_projection_origin :
      54.9
      false_easting :
      0.0
      false_northing :
      0.0
      [1 values with dtype=int32]
    • projection_y_coordinate_bnds
      (projection_y_coordinate, bnds)
      float32
      ...
      [1940 values with dtype=float32]
    • projection_x_coordinate_bnds
      (projection_x_coordinate, bnds)
      float32
      ...
      [2084 values with dtype=float32]
  • history :
    2026-01-21T16:41:13Z: StaGE Decoupler
    institution :
    Met Office
    mosg__forecast_run_duration :
    PT120H
    mosg__grid_domain :
    uk_extended
    mosg__grid_type :
    standard
    mosg__grid_version :
    1.7.0
    mosg__model_configuration :
    uk_det
    source :
    Met Office Unified Model
    title :
    UKV Model Forecast on UK 2 km Standard Grid
    um_version :
    13.8
    Conventions :
    CF-1.7, UKMO-1.0
  • " ], "text/plain": [ " Size: 226MB\n", @@ -670,13 +734,15 @@ " Conventions: CF-1.7, UKMO-1.0" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -690,7 +756,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "dbb70cea", "metadata": {}, "outputs": [ @@ -704,7 +770,7 @@ " )" ] }, - "execution_count": 8, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -727,7 +793,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -741,7 +807,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From 7ce1a9af45703dae7590616555160a6625d07001 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:51:57 -0700 Subject: [PATCH 10/12] fix: formatting --- ...met-office-uk-deterministic-pressure.ipynb | 148 +++++++++++++----- 1 file changed, 107 insertions(+), 41 deletions(-) diff --git a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb index 02dd493..fbfe362 100644 --- a/datasets/met-office/met-office-uk-deterministic-pressure.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-pressure.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing UK Model Pressure Level data from Microsoft Planetary Computer" + "## Accessing UK Model Pressure Level data from Microsoft Planetary Computer" ] }, { @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "id": "8f95ecac", "metadata": {}, "outputs": [], @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "id": "edb71afa", "metadata": {}, "outputs": [ @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'height_ASL_on_pressure_levels': , 'wind_speed_on_pressure_levels': , 'temperature_on_pressure_levels': , 'wind_direction_on_pressure_levels': , 'relative_humidity_on_pressure_levels': , 'wet_bulb_potential_temperature_on_pressure_levels': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/pressure/20260114T1200Z/20260116T1600Z-PT0052H00M-wet_bulb_potential_temperature_on_pressure_levels.nc?st=2026-01-29T12%3A36%3A49Z&se=2026-01-30T13%3A21%3A49Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T22%3A08%3A23Z&ske=2026-02-05T22%3A08%3A23Z&sks=b&skv=2025-07-05&sig=lPjOidbCqI9EkofjQK65t4kb3yg31NzpiJO/eOXh8yM%3D\n" + "Item Dictionary - {'height_ASL_on_pressure_levels': , 'wind_speed_on_pressure_levels': , 'temperature_on_pressure_levels': , 'wind_direction_on_pressure_levels': , 'relative_humidity_on_pressure_levels': , 'wet_bulb_potential_temperature_on_pressure_levels': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/pressure/20260114T1200Z/20260116T1600Z-PT0052H00M-wet_bulb_potential_temperature_on_pressure_levels.nc?st=2026-01-29T16%3A51%3A36Z&se=2026-01-30T17%3A36%3A36Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-29T19%3A49%3A47Z&ske=2026-02-05T19%3A49%3A47Z&sks=b&skv=2025-07-05&sig=y9492u0dGZLGF2OLonmcySM2GQHkhZs0gtQx2sLCNHQ%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "45613dda", "metadata": {}, "outputs": [ @@ -216,6 +216,7 @@ " min-width: 300px;\n", " max-width: 700px;\n", " line-height: 1.6;\n", + " padding-bottom: 4px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", @@ -226,8 +227,11 @@ ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", - " margin-bottom: 4px;\n", + "}\n", + "\n", + ".xr-header {\n", " border-bottom: solid 1px var(--xr-border-color);\n", + " margin-bottom: 4px;\n", "}\n", "\n", ".xr-header > div,\n", @@ -238,20 +242,15 @@ "}\n", "\n", ".xr-obj-type,\n", - ".xr-obj-name,\n", - ".xr-group-name {\n", + ".xr-obj-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", - ".xr-group-name::before {\n", - " content: \"📁\";\n", - " padding-right: 0.3em;\n", - "}\n", - "\n", - ".xr-group-name,\n", - ".xr-obj-type {\n", + ".xr-obj-type,\n", + ".xr-group-box-contents > label {\n", " color: var(--xr-font-color2);\n", + " display: block;\n", "}\n", "\n", ".xr-sections {\n", @@ -266,28 +265,39 @@ " display: contents;\n", "}\n", "\n", - ".xr-section-item input {\n", - " display: inline-block;\n", + ".xr-section-item > input,\n", + ".xr-group-box-contents > input,\n", + ".xr-array-wrap > input {\n", + " display: block;\n", " opacity: 0;\n", " height: 0;\n", " margin: 0;\n", "}\n", "\n", - ".xr-section-item input + label {\n", + ".xr-section-item > input + label,\n", + ".xr-var-item > input + label {\n", " color: var(--xr-disabled-color);\n", - " border: 2px solid transparent !important;\n", "}\n", "\n", - ".xr-section-item input:enabled + label {\n", + ".xr-section-item > input:enabled + label,\n", + ".xr-var-item > input:enabled + label,\n", + ".xr-array-wrap > input:enabled + label,\n", + ".xr-group-box-contents > input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", - ".xr-section-item input:focus + label {\n", - " border: 2px solid var(--xr-font-color0) !important;\n", + ".xr-section-item > input:focus-visible + label,\n", + ".xr-var-item > input:focus-visible + label,\n", + ".xr-array-wrap > input:focus-visible + label,\n", + ".xr-group-box-contents > input:focus-visible + label {\n", + " outline: auto;\n", "}\n", "\n", - ".xr-section-item input:enabled + label:hover {\n", + ".xr-section-item > input:enabled + label:hover,\n", + ".xr-var-item > input:enabled + label:hover,\n", + ".xr-array-wrap > input:enabled + label:hover,\n", + ".xr-group-box-contents > input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", @@ -295,11 +305,25 @@ " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", + " white-space: nowrap;\n", + "}\n", + "\n", + ".xr-section-summary > em {\n", + " font-weight: normal;\n", + "}\n", + "\n", + ".xr-span-grid {\n", + " grid-column-end: -1;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", - " padding-left: 0.5em;\n", + " padding-left: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label > span {\n", + " display: inline-block;\n", + " padding-left: 0.6em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", @@ -327,7 +351,8 @@ "}\n", "\n", ".xr-section-summary,\n", - ".xr-section-inline-details {\n", + ".xr-section-inline-details,\n", + ".xr-group-box-contents > label {\n", " padding-top: 4px;\n", "}\n", "\n", @@ -336,20 +361,29 @@ "}\n", "\n", ".xr-section-details {\n", - " display: none;\n", " grid-column: 1 / -1;\n", " margin-top: 4px;\n", " margin-bottom: 5px;\n", "}\n", "\n", + ".xr-section-summary-in ~ .xr-section-details {\n", + " display: none;\n", + "}\n", + "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", + ".xr-children {\n", + " display: inline-grid;\n", + " grid-template-columns: 100%;\n", + " grid-column: 1 / -1;\n", + " padding-top: 4px;\n", + "}\n", + "\n", ".xr-group-box {\n", " display: inline-grid;\n", - " grid-template-columns: 0px 20px auto;\n", - " width: 100%;\n", + " grid-template-columns: 0px 30px auto;\n", "}\n", "\n", ".xr-group-box-vline {\n", @@ -363,13 +397,43 @@ " grid-column-start: 2;\n", " grid-row-start: 1;\n", " height: 1em;\n", - " width: 20px;\n", + " width: 26px;\n", " border-bottom: 0.2em solid;\n", " border-color: var(--xr-border-color);\n", "}\n", "\n", ".xr-group-box-contents {\n", " grid-column-start: 3;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-group-box-contents > label::before {\n", + " content: \"📂\";\n", + " padding-right: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label::before {\n", + " content: \"📁\";\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label {\n", + " padding-bottom: 0px;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked ~ .xr-sections {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-contents > input + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-ellipsis {\n", + " font-size: 1.4em;\n", + " font-weight: 900;\n", + " color: var(--xr-font-color2);\n", + " letter-spacing: 0.15em;\n", + " cursor: default;\n", "}\n", "\n", ".xr-array-wrap {\n", @@ -626,9 +690,9 @@ " source: Met Office Unified Model\n", " title: UKV Model Forecast on UK 2 km Standard Grid\n", " um_version: 13.1\n", - " Conventions: CF-1.7, UKMO-1.0" + " Conventions: CF-1.7, UKMO-1.0" ], "text/plain": [ " Size: 12MB\n", @@ -661,13 +725,15 @@ " Conventions: CF-1.7, UKMO-1.0" ] }, - "execution_count": 13, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -681,7 +747,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 5, "id": "a10e4591", "metadata": {}, "outputs": [ @@ -696,7 +762,7 @@ " )" ] }, - "execution_count": 14, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -719,7 +785,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -733,7 +799,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From 6deffef67aea04551df39dbb422ad0b520393ec8 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:53:59 -0700 Subject: [PATCH 11/12] fix: formatting --- ...ce-uk-deterministic-whole-atmosphere.ipynb | 144 +++++++++++++----- 1 file changed, 105 insertions(+), 39 deletions(-) diff --git a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb index cfc2cdd..a2dcf5c 100644 --- a/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-whole-atmosphere.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing UK Model Whole Atmosphere data from Microsoft Planetary Computer" + "## Accessing UK Model Whole Atmosphere data from Microsoft Planetary Computer" ] }, { @@ -87,8 +87,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Item Dictionary - {'CAPE_surface': , 'cloud_amount_of_low_cloud': , 'cloud_amount_of_high_cloud': , 'cloud_amount_of_total_cloud': , 'cloud_amount_of_medium_cloud': , 'height_AGL_at_freezing_level': , 'cloud_amount_below_1000ft_ASL': , 'CAPE_most_unstable_below_500hPa': , 'lightning_flash_accumulation-PT01H': , 'height_AGL_at_wet_bulb_freezing_level': , 'height_AGL_at_cloud_base_where_cloud_cover_2p5_oktas': }\n", - "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/whole-atmosphere/20251205T1800Z/20251207T0700Z-PT0037H00M-lightning_flash_accumulation-PT01H.nc?st=2026-01-29T12%3A47%3A47Z&se=2026-01-30T13%3A32%3A48Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-30T12%3A47%3A46Z&ske=2026-02-06T12%3A47%3A46Z&sks=b&skv=2025-07-05&sig=O%2BqgFvGeEFrhTngqEiLPPzzJ38EYcED94X8MB3oqAns%3D\n" + "Item Dictionary - {'CAPE_surface': , 'cloud_amount_of_low_cloud': , 'cloud_amount_of_high_cloud': , 'cloud_amount_of_total_cloud': , 'cloud_amount_of_medium_cloud': , 'height_AGL_at_freezing_level': , 'cloud_amount_below_1000ft_ASL': , 'CAPE_most_unstable_below_500hPa': , 'lightning_flash_accumulation-PT01H': , 'height_AGL_at_wet_bulb_freezing_level': , 'height_AGL_at_cloud_base_where_cloud_cover_2p5_oktas': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/whole-atmosphere/20251205T1800Z/20251207T0700Z-PT0037H00M-lightning_flash_accumulation-PT01H.nc?st=2026-01-29T16%3A53%3A36Z&se=2026-01-30T17%3A38%3A36Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-30T16%3A06%3A31Z&ske=2026-02-06T16%3A06%3A31Z&sks=b&skv=2025-07-05&sig=ZiaL74sBlb7d72h0R1yav5zU57TtdkMLQ5MAruR4I38%3D\n" ] } ], @@ -98,7 +98,7 @@ ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "45613dda", "metadata": {}, "outputs": [ @@ -216,6 +216,7 @@ " min-width: 300px;\n", " max-width: 700px;\n", " line-height: 1.6;\n", + " padding-bottom: 4px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", @@ -226,8 +227,11 @@ ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", - " margin-bottom: 4px;\n", + "}\n", + "\n", + ".xr-header {\n", " border-bottom: solid 1px var(--xr-border-color);\n", + " margin-bottom: 4px;\n", "}\n", "\n", ".xr-header > div,\n", @@ -238,20 +242,15 @@ "}\n", "\n", ".xr-obj-type,\n", - ".xr-obj-name,\n", - ".xr-group-name {\n", + ".xr-obj-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", - ".xr-group-name::before {\n", - " content: \"📁\";\n", - " padding-right: 0.3em;\n", - "}\n", - "\n", - ".xr-group-name,\n", - ".xr-obj-type {\n", + ".xr-obj-type,\n", + ".xr-group-box-contents > label {\n", " color: var(--xr-font-color2);\n", + " display: block;\n", "}\n", "\n", ".xr-sections {\n", @@ -266,28 +265,39 @@ " display: contents;\n", "}\n", "\n", - ".xr-section-item input {\n", - " display: inline-block;\n", + ".xr-section-item > input,\n", + ".xr-group-box-contents > input,\n", + ".xr-array-wrap > input {\n", + " display: block;\n", " opacity: 0;\n", " height: 0;\n", " margin: 0;\n", "}\n", "\n", - ".xr-section-item input + label {\n", + ".xr-section-item > input + label,\n", + ".xr-var-item > input + label {\n", " color: var(--xr-disabled-color);\n", - " border: 2px solid transparent !important;\n", "}\n", "\n", - ".xr-section-item input:enabled + label {\n", + ".xr-section-item > input:enabled + label,\n", + ".xr-var-item > input:enabled + label,\n", + ".xr-array-wrap > input:enabled + label,\n", + ".xr-group-box-contents > input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", - ".xr-section-item input:focus + label {\n", - " border: 2px solid var(--xr-font-color0) !important;\n", + ".xr-section-item > input:focus-visible + label,\n", + ".xr-var-item > input:focus-visible + label,\n", + ".xr-array-wrap > input:focus-visible + label,\n", + ".xr-group-box-contents > input:focus-visible + label {\n", + " outline: auto;\n", "}\n", "\n", - ".xr-section-item input:enabled + label:hover {\n", + ".xr-section-item > input:enabled + label:hover,\n", + ".xr-var-item > input:enabled + label:hover,\n", + ".xr-array-wrap > input:enabled + label:hover,\n", + ".xr-group-box-contents > input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", @@ -295,11 +305,25 @@ " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", + " white-space: nowrap;\n", + "}\n", + "\n", + ".xr-section-summary > em {\n", + " font-weight: normal;\n", + "}\n", + "\n", + ".xr-span-grid {\n", + " grid-column-end: -1;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", - " padding-left: 0.5em;\n", + " padding-left: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label > span {\n", + " display: inline-block;\n", + " padding-left: 0.6em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", @@ -327,7 +351,8 @@ "}\n", "\n", ".xr-section-summary,\n", - ".xr-section-inline-details {\n", + ".xr-section-inline-details,\n", + ".xr-group-box-contents > label {\n", " padding-top: 4px;\n", "}\n", "\n", @@ -336,20 +361,29 @@ "}\n", "\n", ".xr-section-details {\n", - " display: none;\n", " grid-column: 1 / -1;\n", " margin-top: 4px;\n", " margin-bottom: 5px;\n", "}\n", "\n", + ".xr-section-summary-in ~ .xr-section-details {\n", + " display: none;\n", + "}\n", + "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", + ".xr-children {\n", + " display: inline-grid;\n", + " grid-template-columns: 100%;\n", + " grid-column: 1 / -1;\n", + " padding-top: 4px;\n", + "}\n", + "\n", ".xr-group-box {\n", " display: inline-grid;\n", - " grid-template-columns: 0px 20px auto;\n", - " width: 100%;\n", + " grid-template-columns: 0px 30px auto;\n", "}\n", "\n", ".xr-group-box-vline {\n", @@ -363,13 +397,43 @@ " grid-column-start: 2;\n", " grid-row-start: 1;\n", " height: 1em;\n", - " width: 20px;\n", + " width: 26px;\n", " border-bottom: 0.2em solid;\n", " border-color: var(--xr-border-color);\n", "}\n", "\n", ".xr-group-box-contents {\n", " grid-column-start: 3;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-group-box-contents > label::before {\n", + " content: \"📂\";\n", + " padding-right: 0.3em;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label::before {\n", + " content: \"📁\";\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked + label {\n", + " padding-bottom: 0px;\n", + "}\n", + "\n", + ".xr-group-box-contents > input:checked ~ .xr-sections {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-contents > input + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-group-box-ellipsis {\n", + " font-size: 1.4em;\n", + " font-weight: 900;\n", + " color: var(--xr-font-color2);\n", + " letter-spacing: 0.15em;\n", + " cursor: default;\n", "}\n", "\n", ".xr-array-wrap {\n", @@ -628,9 +692,9 @@ " source: Met Office Unified Model\n", " title: UKV Model Forecast on UK 2 km Standard Grid\n", " um_version: 13.1\n", - " Conventions: CF-1.7, UKMO-1.0" + " Conventions: CF-1.7, UKMO-1.0" ], "text/plain": [ " Size: 4MB\n", @@ -665,13 +729,15 @@ " Conventions: CF-1.7, UKMO-1.0" ] }, - "execution_count": 6, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -685,17 +751,17 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "id": "d147566a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, @@ -718,7 +784,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -732,7 +798,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4, From eb709de4c921b71414856692f58eaee79fc3e3c4 Mon Sep 17 00:00:00 2001 From: Pete Gadomski Date: Fri, 30 Jan 2026 09:56:47 -0700 Subject: [PATCH 12/12] fix: formatting --- ...office-uk-deterministic-near-surface.ipynb | 686 +++++++++++++++++- 1 file changed, 657 insertions(+), 29 deletions(-) diff --git a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb index fa96a67..e22325e 100644 --- a/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb +++ b/datasets/met-office/met-office-uk-deterministic-near-surface.ipynb @@ -5,7 +5,7 @@ "id": "fbf471b1", "metadata": {}, "source": [ - "# Accessing UK Model Surface data from Microsoft Planetary Computer" + "## Accessing UK Model Surface data from Microsoft Planetary Computer" ] }, { @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "id": "4bafd899", "metadata": {}, "outputs": [], @@ -47,27 +47,13 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "8f95ecac", "metadata": {}, "outputs": [], "source": [ "collections = [\"met-office-uk-deterministic-near-surface\"]\n", - "asset_id = \"temperature_at_surface\"\n", - "forecast_extension_filters = {\n", - " \"op\": \"and\",\n", - " \"args\": [\n", - " {\n", - " \"op\": \"=\",\n", - " \"args\": [\n", - " {\"property\": \"forecast:reference_datetime\"},\n", - " \"2026-01-30T09:00:00Z\",\n", - " ],\n", - " },\n", - " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:horizon\"}, \"PT0054H00M\"]},\n", - " {\"op\": \"=\", \"args\": [{\"property\": \"forecast:variable\"}, \"surface_temperature\"]},\n", - " ],\n", - "}" + "asset_id = \"temperature_at_surface\"" ] }, { @@ -80,17 +66,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "edb71afa", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Item Dictionary - {'landsea_mask': , 'rainfall_rate': , 'snowfall_rate': , 'hail_fall_rate': , 'wind_gust_at_10m': , 'wind_speed_at_10m': , 'precipitation_rate': , 'height_of_orography': , 'pressure_at_surface': , 'wind_direction_at_10m': , 'temperature_at_surface': , 'pressure_at_mean_sea_level': , 'visibility_at_screen_level': , 'snow_depth_water_equivalent': , 'temperature_at_screen_level': , 'fog_fraction_at_screen_level': , 'sensible_heat_flux_at_surface': , 'relative_humidity_at_screen_level': , 'radiation_flux_in_uv_downward_at_surface': , 'temperature_of_dew_point_at_screen_level': , 'radiation_flux_in_longwave_downward_at_surface': , 'radiation_flux_in_shortwave_total_downward_at_surface': , 'radiation_flux_in_shortwave_direct_downward_at_surface': , 'radiation_flux_in_shortwave_diffuse_downward_at_surface': }\n", + "URL for specific NetCDF - https://ukmoeuwest.blob.core.windows.net/deterministic/uk/near-surface/20260130T0900Z/20260130T0900Z-PT0000H00M-temperature_at_surface.nc?st=2026-01-29T16%3A56%3A22Z&se=2026-01-30T17%3A41%3A22Z&sp=rl&sv=2025-07-05&sr=c&skoid=9c8ff44a-6a2c-4dfb-b298-1c9212f64d9a&sktid=72f988bf-86f1-41af-91ab-2d7cd011db47&skt=2026-01-26T15%3A17%3A02Z&ske=2026-02-02T15%3A17%3A02Z&sks=b&skv=2025-07-05&sig=FHZfgpenWLNjVKPP0B46uKkipUrGHQzPMRmCxWQsBis%3D\n" + ] + } + ], "source": [ "search = catalog.search(\n", - " collections=collections, filter_lang=\"cql2-json\", filter=forecast_extension_filters\n", + " collections=collections, max_items=1, datetime=\"2026-01-30T09:00:00Z\"\n", ")\n", "\n", "items = search.item_collection()\n", - "print (f\"Item Dictionary - {items.items[0].assets}\")\n", + "print(f\"Item Dictionary - {items.items[0].assets}\")\n", "\n", "asset_url = items.items[0].assets[asset_id].href\n", "print(f\"URL for specific NetCDF - {asset_url}\")" @@ -106,12 +101,624 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "45613dda", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 4MB\n",
    +       "Dimensions:                       (projection_y_coordinate: 970,\n",
    +       "                                   projection_x_coordinate: 1042, bnds: 2)\n",
    +       "Coordinates:\n",
    +       "  * projection_y_coordinate       (projection_y_coordinate) float32 4kB -1.03...\n",
    +       "  * projection_x_coordinate       (projection_x_coordinate) float32 4kB -1.15...\n",
    +       "    forecast_period               timedelta64[ns] 8B ...\n",
    +       "    forecast_reference_time       datetime64[ns] 8B ...\n",
    +       "    time                          datetime64[ns] 8B ...\n",
    +       "Dimensions without coordinates: bnds\n",
    +       "Data variables:\n",
    +       "    surface_temperature           (projection_y_coordinate, projection_x_coordinate) float32 4MB ...\n",
    +       "    lambert_azimuthal_equal_area  int32 4B ...\n",
    +       "    projection_y_coordinate_bnds  (projection_y_coordinate, bnds) float32 8kB ...\n",
    +       "    projection_x_coordinate_bnds  (projection_x_coordinate, bnds) float32 8kB ...\n",
    +       "Attributes:\n",
    +       "    history:                      2026-01-30T10:03:52Z: StaGE Decoupler\n",
    +       "    institution:                  Met Office\n",
    +       "    mosg__forecast_run_duration:  PT54H\n",
    +       "    mosg__grid_domain:            uk_extended\n",
    +       "    mosg__grid_type:              standard\n",
    +       "    mosg__grid_version:           1.7.0\n",
    +       "    mosg__model_configuration:    uk_det\n",
    +       "    source:                       Met Office Unified Model\n",
    +       "    title:                        UKV Model Forecast on UK 2 km Standard Grid\n",
    +       "    um_version:                   13.8\n",
    +       "    Conventions:                  CF-1.7, UKMO-1.0
    " + ], + "text/plain": [ + " Size: 4MB\n", + "Dimensions: (projection_y_coordinate: 970,\n", + " projection_x_coordinate: 1042, bnds: 2)\n", + "Coordinates:\n", + " * projection_y_coordinate (projection_y_coordinate) float32 4kB -1.03...\n", + " * projection_x_coordinate (projection_x_coordinate) float32 4kB -1.15...\n", + " forecast_period timedelta64[ns] 8B ...\n", + " forecast_reference_time datetime64[ns] 8B ...\n", + " time datetime64[ns] 8B ...\n", + "Dimensions without coordinates: bnds\n", + "Data variables:\n", + " surface_temperature (projection_y_coordinate, projection_x_coordinate) float32 4MB ...\n", + " lambert_azimuthal_equal_area int32 4B ...\n", + " projection_y_coordinate_bnds (projection_y_coordinate, bnds) float32 8kB ...\n", + " projection_x_coordinate_bnds (projection_x_coordinate, bnds) float32 8kB ...\n", + "Attributes:\n", + " history: 2026-01-30T10:03:52Z: StaGE Decoupler\n", + " institution: Met Office\n", + " mosg__forecast_run_duration: PT54H\n", + " mosg__grid_domain: uk_extended\n", + " mosg__grid_type: standard\n", + " mosg__grid_version: 1.7.0\n", + " mosg__model_configuration: uk_det\n", + " source: Met Office Unified Model\n", + " title: UKV Model Forecast on UK 2 km Standard Grid\n", + " um_version: 13.8\n", + " Conventions: CF-1.7, UKMO-1.0" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "example_netcdf = xr.open_dataset(fsspec.open(asset_url, expand=True).open(), decode_timedelta=True)\n", + "example_netcdf = xr.open_dataset(\n", + " fsspec.open(asset_url, expand=True).open(), decode_timedelta=True\n", + ")\n", "example_netcdf" ] }, @@ -125,10 +732,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "820f3c35", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAHWCAYAAABUn0dnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfQe8LVdV/po57bbXX3pv9NDS6C10pFdBA6jAHwFBEAQEpCkqRaQooFIsCCIICEjvEnoNKZBCSICUl1dvPW3+v2/tvWbW7LOnnXPuK8ms5L57z5Q9e/aUs779rfWtIIqiiGqrrbbaaqutttpqq6222m4kFh7oDtRWW2211VZbbbXVVltttU3TapBTW2211VZbbbXVVltttd2orAY5tdVWW2211VZbbbXVVtuNymqQU1tttdVWW2211VZbbbXdqKwGObXVVltttdVWW2211VbbjcpqkFNbbbXVVltttdVWW2213aisBjm11VZbbbXVVltttdVW243KapBTW2211VZbbbXVVltttd2orAY5tdVWW2211VZbbbXVVtuNymqQU9tNyr7zne/QXe5yF5qfn6cgCOiHP/zhge5SbUT0i1/8gq/He9/73qmNxytf+Upu88ZgJ554Ij3lKU850N2obT/ZtddeS495zGNo27ZtfA+/+c1vrsd+ne31r389nXzyydRoNOj2t799Pd611XYjsBrk1HaTsV6vR4997GNp586d9Ld/+7f0r//6r3TCCSfQjdne//731w7Sfrbdu3fT05/+dDrssMMYTN/73vem73//+3RjteFwSH/zN39DJ510Es3MzNBtb3tb+o//+A/vthdddBE98IEPpIWFBdq6dSv97u/+Ll1//fXrMrYf//jH6Y53vCP36fjjj6c///M/p36/X/pYZfta5fzL2h//8R/TZz7zGXrJS17C7yn048Zs3/jGN3hSAtf3QNhnP/tZetGLXkR3vetd6T3veQ/95V/+5QHpR2211TZli2qr7SZiF110UYRb/h//8R+jm4o95CEPiU444YToYLfhcBitrKxE/X5/am3++Z//OV/v/WmDwSC6y13uEs3Pz0evfOUro7e97W3RrW51q2jDhg3Rz372s7HbxTV88pOfHB2M9uIXv5jH+WlPe1r0rne9i+85fP6P//iP1HZXXXVVtH379uiUU06J/u7v/i76i7/4i2jLli3R7W53u2htbW2qY/upT30qCoIguve97819es5znhOFYRj9v//3/0qdU5W+lj3/KnbEEUdET3rSk6Kbir3+9a/nMbviiisOyPH/9E//lO+PMvdhbbXVduhYDXJqu8nYV77yFf4i/dCHPjS1NhcXF6OD2Q52kNPr9dbNsTgQIOeDH/zgyD123XXXRZs3b45++7d/+0YHcq6++uqo1WpFz3rWs1KA9e53v3t07LHHpkDrM5/5zGh2dja68sor42Wf+9zneLze+c53TnVsAX4ASHB/if3Zn/0ZAx9MdhRZ2b5WOf8qhn7qNic1TCAAJN5UQE7V9/JTn/pUBs+11VbbjctqkFPbTcLgIOJLVP/c8573jNd/4QtfiO52t7tFc3Nz0aZNm6KHPexh0YUXXuh1mn/605+yUwXn6va3v328/l//9V+jO97xjtHMzAzP+j7+8Y+PfvnLX4705Zvf/Gb0oAc9iPfH8U4//fTozW9+c7z+Rz/6Eff3pJNOijqdDs/q4kt4x44dqXb27t0bPfe5z2UHuN1uR4cddlh03/veN/re977H63F+7jlXATzYFiDpM5/5DDuM6Mstb3nL6MMf/vDItrt27eK+wLFDXzAD/ld/9VcpxwoODPoAh+Zv//Zvo5NPPplnT3/wgx/E697znvek2i1zXWBf+9rXojPPPJP7iHbf8Y53HBCQ89jHPpavl+tQPv3pT+dzWF1dzd0fDvJrXvOa6JhjjmEn+173uld0wQUXjICcG264IXrBC14Q3eY2t2HnDGzGAx/4wOiHP/xhvM2+ffv4mH/0R3/kZSow9n/5l3/Jn7vdLrMjp556Ko/h1q1bo7ve9a7RZz/72dz+vv3tb4+fCW3vf//7eTmui9jhhx/O4+PazW52s+jcc89NLbv00kv5Z5yxRV9wbPRN269+9StejvEVw3kD9Pz6179ObVu2r1XOv4zh/nefWX0PX3bZZdFjHvMYfr/g/jjnnHOiT3ziE6k2vvSlL8VMEoDd0UcfzaAJz6i8fx7wgAdEGzdu5DbucY97RF//+tdH+gIA93u/93vRUUcdxc/0iSeeyEyYTEqUuQfF3vKWtzDwxPHw3jvjjDOif//3f+d18py6P2UBD54LHB/3C96rCwsL0cMf/nBeh3sF7xocG/c1rivul507d8b7+47tvodqq622Q9Oa0w5/q622g9Ge8Yxn0DHHHMOx1n/0R39EZ511Fh1xxBG87vOf/zw96EEP4qRTxIWvrKzQW9/6Vo7PRrw/kr61Ia/ntNNO47bMdyTRX/zFX9DLX/5yetzjHkd/8Ad/wLH7aOMe97gH/eAHP6DNmzfzdp/73Ofot37rt+ioo46i5z73uXTkkUdy7P8nPvEJ/izbXH755fTUpz6V1//0pz+ld73rXfz7m9/8ZpxM///+3/+j//qv/6JnP/vZdKtb3YpuuOEG+vrXv87tIRfhz/7sz2jPnj109dVXcw4SDPkFVeznP/85Pf7xj+djPfnJT+Z4dZz/pz/9abrf/e7H2ywvL9M973lP+tWvfsXjjPwHxNgjn+A3v/nNSE4Q2lhdXeXcik6nw/kOyGtwrex1+clPfkL3v//9OU8D2yHvAvkXcn2LDP3HT5EhIXnLli252+BaY+zDMJ3uePbZZ/M1/NnPfkann3565v6veMUr6LWvfS09+MEP5h+cJ86t2+2mtsP98dGPfpSvBXJBkKj+zne+k6/DhRdeSEcffTRf60c+8pH0wQ9+kN70pjdx/8WQM4J790lPehJ/xri97nWv43sXfd27dy9997vf5ePLdc46X+TG3PKWtxw5X1l/t7vdje+N6667js4888yRNrDtpz71qdSyc889NxakqDq22A7mHgtjcuyxx8brYegX+o57W0QvqvS17PmXNbwvkIOD/B+M+3nnnRevwzWGaAruVbzDIErwvve9jx72sIfxewDXWttrXvMaarfb9Cd/8ie0trbGf3/xi1/kZ+qMM87gZwRjiefxPve5D33ta1+L+/3rX/+a/5YcqFvc4hY8LjgOjo+2ytyDsH/8x3/k/kJIAe84PPs//vGP6Vvf+hY98YlPpEc96lF87XBP4j21fft23g/Pc1nDM/+ABzyAx/oNb3gDzc3N8XK8j3Bd8S5FH6644gp629vextfl//7v/6jVavF44/759re/Tf/0T//E+2Gca6utthuBHWiUVVtt+8tkhtMNVwMbgxk+zExqNgUz3eedd168TGYc3dCYX/ziF1Gj0eC4fW0/+clPomazGS9H6ArYGczKy6yqnsEXW15eHuk7ZmVx7K9+9avxMjAbRSEtk4SrYT8cUzM3e/bs4ZndO9zhDvEyzIxjJtXNi0CuAsZF2CxhazCDjDAjbT4mp+x1ecQjHsHsmQ4tAtuDY5d5xWXNJI/DgmEcMPvt2ic/+Ulu49Of/nTmvhgTzJjjmun74aUvfSnvq5kcsBYuo4ExxGz1q1/96ngZWDjs+7//+7+pbW9729ummEwwdThuVcM+YM5cW1pa4uPiHoB95zvf4c//8i//MrLtC1/4Ql6nWS6MtTveZcdWQp98LOpZZ50V3elOdxq57/TYVulr2fOvatjXfbaf97znjbBDYOvwTgHLIveDvOfQL/0uwT112mmnMYvjvm/Qxv3ud794GZ4vPGcYC9dk37L3IFiVW9/61usWriYsvTvWGCcsF8ZIDPeJu1zYoNpqq+3GZbW6Wm03aQPTABlpyPOCURCDQhJmUt0ZZhhYDW0f+chHmIkAi7Njx474BywMGJ8vfelLvB1mDzGT+LznPS9mdsS01PHs7Gz8N2Y90dad7nQn/qyVpNAGZkMx67pehtlYPUO8ceNGnl3GuVxzzTW87EMf+hDd/e53Z5ZDn/9973tfGgwG9NWvfjXV5qMf/ejCWdqy1wXtQ4XqEY94BDNIYphZx8xuGcP5gD0r+vn3f//3wrbANoGdcg2qW7I+y8BcgbF5znOek7ofcL+4hmMIo4ExAIsH5ubmN7956h7BNcA11H2/4IILeCb9d37nd1L3EphCMHdVrOz5yu+yYwMGR7M40zyWPg7YQGAKLV1epa+TXO+qhnse7IpmhnDNwbRgrMCeaAM7pd8leJ5wfcGe4H6R53RpaYmZMzyneI/hBwzNQx/6UC+bJfdm2XsQ9xbYZMj3r6c985nPTH3Ge2nTpk38vtDvJbBY6Ke8l2urrbYbr9XhalM0fElAa/973/seO2n//d//zc5XFcMX7hvf+Eamz6+88kqm7v/wD/+QQ49qm75hjGH4YnYNjjIcaDgBCEkRQ2iGNjgOuG4AND5DSATssssu49+3uc1tcvsEietXvepV9IEPfIDDZrQh/EwMsrVwZI477jj+4kZ4Exx2hHdNy0499dSRWjM3u9nN+DccKwA5nD+c5izg4p6DO36TXJd9+/axI+kbe+zrA6muYbymNWZwKhEa5BrAqqwvOmf3XDCubpgcHNG/+7u/o7//+79n4AwnUwxhTGJwQhGS9g//8A8cZoQwHgAeOOEIMxJ79atfTQ9/+MP52uL+hGQxQqYAKqdxvvJ73LGZ5rHKHKdsXye53lUN98c555wzslxC5bBev1t87ykY3hlZhvcLgDbCFYveU2XvwT/90z9lAA+AhvcJwi8BtBB2Oi1rNpsciuieL87n8MMPL/Veqq222m58VoOcKRqcrtvd7nb0e7/3exxnPI4hZhma/YgrRnw5HF781HbwmOu44MseQOB///d/U3kPYlXzYMAIIaflhS98IRelw/44BhxPnbuC7cCgAEzjngHA/uu//mtmlhB3v78MfcJsKepM+ExAkdg0Hb9p2OLiIv8UGa5tEQOFXCtMcLgmyyRPYVJDPhhywPCuQe4F2C4AGrA+bn4TgC/uDczO//Zv/zbXTkJeGGa5dS4IQPjHPvYxvpeQm4D8iHe84x2cp5N3vpgRB8jXYNg9X2ynl2vDMvTfx4iMM7b6WJgAcLeVvJO845Tta9nzP1jeUzDcC1nFLvGuKft9U/YeBAi75JJLOO8QuXwf/vCHGRgh/wyTOdMwzSqJoQ8AOFkMbJWcn9pqq+3QtBrkTNHgWOY5l5jxAyODBEskdGKmDE7pve51L16PhHHMuCKcRGawy8x61za+STFQfAm7dvHFFzOTplkcn51yyins5OBauQ69ux0M1xdhRD7btWsXfeELX+AvfzgBYllhRHCywPThBzOTSMyGCILchy4LU9UuvfTSEQcOScIwSfzHeQEkZJ3Tel4XMBJw5nzj49vXZ5hQKONsoU9uCJVrcB6RwA0HSztdCCsEi5J3f8g541w0swQRC9wX2pAAjkKY//zP/5xajveKJG6L4T1zhzvcgZ09zHb/8pe/ZAEH1+CkIkEbP7ieAD4QJMgDOThfACK8uyB+oc9X1sMg+gGnEmIGriHhu0yF+bJjK23hWBrQIKwTYVMI78qzKn0te/7TMNwfWc+DrM8zef8g5DTvWcW5Yxu8p/Ksyj2IZxUCJvgBU4RJQLynIE6CZ3jS91TW+YJBAmN0sE2s1FZbbfvH6pyc/WhQwTr//PM5DAnhPQgXwey8OGj/8z//w84NZrzgMMOJhINRMznrZwAJcESgUqSrbeMLHjPaCAErMnxhY5YfjrKorYnhM2LVYQAguK5QG3Mre8t+wgS57bgKZQgN0aFrMMxaYuZYh8/AuXC3q2JwDMEUiSGM5V/+5V94zBCqJowS7muEkLmG86xSZb7qdcF4IfcGLAWcdzE4nb7+rHdODhSkoDIFNk0MeQDID0COQx5bAccToY0AIPr6u9deztu9R3AMKGD5DKFnGDe0hVAidzJG7lE9o4/QIl8oljaEuKHPmJkXQ7/AAAEsaJUq5GLh3XbVVVfFywDoAZp16BwMrJKEd1Yd21vf+tasBoaQXx1ChQkkONNoR6zX6zFIcFmbsn2tcv6TGu55gCw8azp6AOeJ7woNsnyGkFY4/gD1PuYSYBoGAIkwa3wf+YCefleVuQfdewvKbOgr9sX4w2QiyX0vTmJ4L+H6g2VyDe+komPhvtDvFBg+C6jU9yCWlVForK222vazHWjlgxurYWj/+7//O/4M5SeoPaFWgzbUXHjJS17Cfz/jGc9gZRrUPoCKFlRyoDCFqt21rZ+6Gor8QQXtFre4Bav8QBkINWdQi+Lyyy8fUeG6/vrrR9p+3etex+tQkf1v/uZvon/4h3+IXvSiF7GaEdrUyj4oHgjlKNQlQWHBP/7jP47uf//7x9ugbgXqfqDGxd///d+zehjUr9A++gCDOhvUgKAK9KY3vYkrrT/ucY/jbd74xjfGbaEvWIZjoHbHxz/+8dLjhT6iLgjqWkC5CPUmUNMHqktaJQxKUqgPhDH8gz/4Az73N7zhDbFikYyXrpPjmk9drex1geIa1NWOP/54rs3z2te+luupQEFsf7/ioKAH9S7U6njVq17FdVSgLIUaIhdffHHh/ngXoM8PfvCDo7e97W3R7//+73Odk+3bt6cUwF7xilfwdk95ylP42j/nOc/h2jZQ1NKqaWLXXHMNjyX2QaFL16Bih/vnr//6r6N//Md/5HcRaqug3SITxTHUH8G+UBzzqVpB7Wzbtm1cQwl1U1CjB9cS95RbP8inrlZlbP/nf/6H+3+f+9yHxwe1gnDfPu1pT0tt51NXq9rXsucvNXDK1GDxqavhGuK+hqriy1/+cn4e8f2A8/zIRz5S+J6TdfKs4F2CscFvvHN+67d+K1Uj58gjj+T3EFTd8J7C+wrjLcqQZe9BvBtwP0Nl8p/+6Z+4tg6+5x760IfG23z729+O73uo2kFNsmxBzzxlNNzHaBf1czBeeKZQzwvPlB4fXxtuLTVde0ybfC9gbGurrbaDy2qQs59ADgq2YRlepPoHjgecCxi+gLHNJZdcEu+Hwo5YVsZBqi3f8r78P//5z3PxQxSrg8QxvoCzioH6QA4MUssoXCnXFs45HBV9PWEovAe5Vjhn2A7O+Fvf+taUg/HIRz6SwQUcGhQlRLFCDXJQkA/OFcCPtIO/AYq0wVF44hOfyG1NUgwUfYRjgnPyjR+kbOGgo5gkZJDhlAPwAeyg4OI4IKfsdYF95Stf4QKDOPaBLAYKQ6FBgBM4yXAS4Rj5pHh9BkleOPCQ6c4rBgpHG86ibIcxOv/88/lYPpADgwOJ8fjGN74xsg7A8Oyzz+b7BO3hOsMplWtX1GeAAClKC0f43/7t37zb4lwA6DEuONaTnvQkdt5d84GcqmOL9y9AAO5bFKl92cteNnI+WSCnSl/Lnj+e8SIZ8TyQo4uBoj8AK7hmWcVAfc8pDMV3H/WoR/EYYmzQb3wHofCuNkzMQUoaEwtSZBd9kmKgZe9BACSAKDkegCPeXZCj1yZFcAFGxykGmmUAYHg3oI94VwKoYgJKF4CtQU5ttd04LcA/+5s9uikYwiK0uhoK8kHlCDKtbnI6QkMQ+oPibEjmFAofBuUoxJsj1CSvKF9ttU3bEAKDfA6E7dR26BukwFE4FXlWte1/Q/gUcroQclZbbbXVVtv6Wy08sJ8Mib+ID0ZyOBSxfIYEScQKIxZdkkQlybsoqbS22mqrLcuQc/LJT36ylqI/QIa5xC9/+cv0b//2bweqC7XVVlttNzmrQc4UDcmcepYUtQNQgA2qRVD+AZODJGfUwQHoQaInkllRi+IhD3kIJx4jOR2SnEgQhorQs571LGZw8lSZaqutiuG+0wnZriExWBfgrO3QNbyD/u///o8VwJAg/4xnPONAd+kmy+zXdVmqGQRTioqpivhJbbXVVpvPapAzRYMSDSQ1xZ7//OfHxddQUfs973kPvfa1r6UXvOAFrEADmU1UskfNClG1gaINKp5DvhWKM1BBAiiqrbZp2VlnnRUXnvTZPe95T551ru3Qt6985SssCX388cezUl3tFNZ2qBhqxuGezbM62r622mrLszonp7babmKGmf28GdItW7aw3GxttdVW24GyCy+8kCXs82yatblqq622G5/VIKe22mqrrbbaaqutttpqu1FZXQy0ttpqq6222mqrrbbaartRWZ2TMwWDQABo9Q0bNnCCaW211VZbbbXVVlttB5chj2vfvn109NFHcx70wWarq6vU7Xan0la73aaZmRm6KVsNcqZgADjHHXfcNJqqrbbaaqutttpqq20d7aqrrqJjjz32oAM4J52wQNdcl61+WsWOPPJIVti8KQOdGuRMwcDgwD70jRNpbiF7ZiCkpO5qIxjGfw8is8+QqrFA0l7Wflgvx5FjlDXdpu63r/9FVuXYclzfMbHOt3xcc8+h6hhljUGVdnz3wSTH9m7rGbMBBd7l0zK0P7LMnh/6jmNnbYP18rvUsaKQ741ulC6yq++ZMm1VHQ/9/OlzkXbyxkD287Xnrs9arvcrel6xvheZ1/3QiVLG6Lkm44V12D55R5nfraBPTRpwu7o9cy3y3oHD+Ppiu9Vhi5aj9si5yja+vug+t2hIc+HayHkNIs/YU0gNda6NIIrb0cdwx3Gc946+33z3etGzXnS/6ucj676VYxatHzl2zrO5FmHE8/suY4jt9HgW7Zc+lrlf5ZrhGveiBi9boyY1cR/RkNfjCLplOeJ7r7oL/fax34nH6p2X3p2iKKDn3OxL9KYLz6Xn3PLLvA5t/P0F96TeapP4tIcBhbta1NobEIYuiIg6u4j6M0SdvUTtvUMatgLad2xAzVWiYEAU9olwOfiyBkTDhtkPywYtot6CWYftGmtmH6wfNon4VsWhAqIQbfWImitEjV5EzeWIwn7E7UVhQMN2QGEv4v3Qh2Ez4HZndg2pvbdP/dmQlo5q0toW23Zo+pCyyPTDvS2wHX4aXaLZHUNq7xnQ6rYmrW41x8DA8l0RoW/2XG1bOJZpxJwvXsX8Y7dBuzgvPqY9X3xGO4O23QY/g2T8sJz365MZ52HEY7C2kWiIffha2XORU2vYvmA89U1h+4n2hsur9PN3vjr22w4mA4MDgHPF906gjRsmY5n27hvSSWdcyW3WIKe2iUxC1BYWAprdkHa0QudLVWxgHY48p6PKl0KW+RyYPNPHTPrRSDkosrbIMZQvStdZ0cuyjp/d72AqYMFsn97O7WdxO9nn5XNS3Pby+lBsiZOTd8z4WN7rtH9CK937QPfdu33UtE5uuTkYuWdmRo5jzBxrFABVdRpdcx24LKfR16dxreg+zwM7Q3ZerdeRAiTJ850co2GdyFa8LZxMAQbz4TB2QnV/fEBDtmmzB2OO1bHHmqMhbYrWjLNqHU59bqa9ZJkLRtDmXIieus9RFsgJHICDc8IbTrZvjIBH/bu8mXb12FSbYGkUvkfantvNB6aq3tdZhkmEeRpSzwJmjLF8p8l447N5fs34NoJgBCDnfccloNpMHDRoYNtsU3fYYdjUjkIG2e6xdVtvv+xedN3ujfTGPQ+nIIxouNqgcNmMafMOHert3E5v/uJjKewFNJiN6E8e9D/xvm/5j4cZ5xpOfUTUnzPAie9EOOZrOC+iZiuk0DrPrX7EDjsACfepHVBvPqAIznjLOtgAB2vW2begJli1fwsgwBj2I2oODMhpL/cp7A6oP9+kqBFQn0LqbgHoCPhKx3frxogG7Yhaa0PasDsg2tCg3iyAkBpcCyQEdIzcWnYZIrgw7TC3tELDbR3qzoRx3xioDRQ+QhsARha8DTpEoQUx/Y4CP/b4cgwBMkM7xgB1vB7jiXPHb2DOPlHYIArb5tgRANQ285vPA2Cxa7Zjw5gKyAnUMvTRHntoz+VgTi0AwJkU5NRmrGZypmx6tjHL3C80d5+y4KbMsbJmRbOcrqyZNxd0VP3CdL+sdZ98xy8GO/52fcuKHIyqfXQt5UjkAY2KDEWZ4xYds+ys7oGwrBnjquMj94iZbMT4DrjdqsxYvL1lmqr3IR/oZJkLTLIcat/9KSZ91/u57Ij5rfYh4ywKOJGZ95hNc95JieMKgAP30z++xkENvU4y4Aja8b23Qp4Ktx8C4+imnn81tC5LMDpWUUk2xzACI31JjZmfHRvXilieMvtn3duaRXS3wbIWDcaeQMNxV6OWeu+kQYb8Lcv5nonvl7SrkQVu5G9z/ZP1zODYY/M1CyK+d2Fvv+K+NIwCWum1KIqIFjpdWu1ZVmalQeFigxpwnFcDaqwS/eX/PpI6uwMCAYiu9gYBveljD6OZHQaMtCPFCjSImsvWMQcr0yZa2WbZzKUERETsMEfMsogT320YBsQAIzjkBghhuNj5bwTMTsDgrAO4YD+wFo01tDXkn8Ya6J2ABp0Ghc2IAjQQGVZDhr7fCfinG2FZspwfKQs6Ms2er8zBYp/Ozh6DK9MvMxYaJMXMS2Tbt9sI+xKfo2JUAC6YdbG3v7SL7fuzFgABVCpw0sS2AIh8M2C8kuPLNty+ZayYubKRXgHax489FgAYAyCAzIPcBhGe8cnbqK0GOetiWbNUeU7XOLR+2e3GnUWWLx7N4CRfcOZNEip2ivsUz94GE4VklWGgJOyp7EzmODYO0ClqbxrH0w7BNICTvo5yDadt7rnpkLkssFMWoMZmTwN7tQKEU1kWoMCRRD/ie7rg3st77sYJTUI/022k94tBkPrshuB5wb4K5dMmDntbpj+Nfxafm3v+I9fAhgnp0ELZV2/D+8aMr34HeK61rLer+J3DoNE4yvjdpp49bhIilwW0zJg4LANYCMsSyjvNcEDpcD+flWFy9Dsy6503stwzOZJ6RjKebQNC/RMXLsCpMhnCQNTD/KBNABwXrIxGKKTH0be9z+R6yv2HH81UoV/dqMngWrrVCcx9cN7x3+T7YCbo0YaGqf/15z95KG3cvExr801a63So/as2gxiAlpnrA3bG2/uINv2iT4MWWJeQlo4MaOFXQ8PCLCAUjAyjsmZBG4eHEeGU2GEfELX3RLycmYkWHHRzHr3ZwACDIUBSxNuygaGAM56chmFP+DgANdg2otZew+AEvSENZ3FQosZKn4FaALDXNucAkISQtf5MQN2N6JvpY8xkaBLbRN+Zxx1dVmCFt7UMj+lTRIPZpgmZW7UAQdaBPRGwgTabScgaAw0bMsaX3rnleBsBKfJas8t5DG0bHAKI3Hv0jcGKBYRRwKCTQZGE+WHIcTzpf0JWx6aZqOgQSE8B646fSduorQY562q+GPIyM5FZy6cRvjapVWENqoeP5bTpcXbdL+Fx2i1jZcLXpsXOZLVZNIZZjtQ4uTgAPOMAnTL7ZbJoOaxOlXBHd5vkWSrOIyhiB4pMHysL5Ou+ybrs0M3EsWbnXgEM82m0Pfd45jlJg51ih95Mf2p2EqFkerJD+uE7f0xIx++qirOJGhxpZgez9ugDr+cp2vLtarCDNgEq3WuigY6b6+hjx9zlpn1hGUpMdvD9nv4cm3MPF4EUeaZHw0JHj2nOwVxL/VusZ8MUXUYIyzVg8QFV08fxHSvpi+97bibsGYAa3/8Rf9bX428vPpcGw4BmOz161en/Qy/9/iPZ8W3O9qh7NBiVNrX2Em26fGhyOzYFtPPmTRPC1ADgGVJzaUDhjKEGEG5mgARYFNtH5MsswtkmXt+fM6CCw6FWwaCAaTFha8N+YMBLN8knEWbB5KhgmQUFOMflIXWuX6Go2aBwpUvBap+CPu6SOcNU9AbU2zpLzWUwLCFFjdAwOLMBDeC4ZzzWDGL4jzTQSQEWy6jIytXtbWaRcJnBfnG+UD/N6IyAHptn028m4XcxoJF+4HzVpAovd/oteTgc/mdzf/rzJlcqzl1CX4Sp4fykZF+euxH2SgE5OWlc69puOlaHq62z5b24s0DLJI7W1JLVrfOVdmySN5PL4MBcB9f3ZTsuGChy3PeHrQeQyTqObyZWrCiUr6xTlHctXcBShunBch/QKRuSk7edD2j6whIz16tTzHsWvWFUzjgXPZ+jqdCj96jv2hgBA/f4aXZA1huns+EFCMOokUrg94Ed9zh5oamyLL4GKgzJZXPkbwklwiS3mDjJWWFkPmOg4xjnY8gzUOmdFtFMsJZ8tixO+jzVc1Eg+FDl2Ru5V/EMZoRI6udAb9PzXFcxn+iGaxrQjEQZcJ5Ng8PZTChixPdYVp6VLyxwXIDjfkdKuKPcz9KuAEhzL5pl6OuGcJXvg1fc+hNxm2++/L7UW25R1DOedtAe0upRfRq0TTZ+f8E477PXRzR/TZ+ay30OiRrMNjiMrGsT5wFSWksRzV1vHP6BzU/BtrgEYHwQiga2p70votbiwITALTRMUn0rcf6jRkRrm21+S5TOw8Ex8PfaYbPU3tWl4WybonkDNMKVHg0WOjRsN2htk8nNgXF42iYLnAKi1qJJyAejw5MUyJGZU7kpYiocjB9J5L0oxWLux6aAZnaZDZurhs1Z25yEizH5bEEG72sZldZKRJ09Jmxt+QjkOznHFvYnTAMfWReH18VA0LA2OCcGUxZQhTaXCeti0CJhhk0H2Digaj+5CxMZnohJvY3JW7hxWA1y9oOVzZ0Rm3RGuYyVDYvymc8pluVwcOVLOmsWfhqGY2QxB2UYHnfb/QWUylrWePkAjsteZF3bqvH/WeNbxNiUZYImyQ/KDOEpYNumJQCQZb7n3Jcf4eu/zpnRTj/CdCS/Ic90CJkwPe7zJ2AnjAxzETuTNjenKIzMXdfjOBHVB9uG77mfQYYw1nG+hXFqs/J3fKYBjfwt/XPfsa5qmt7WdzzNcvmYHJ+SZZkQtqzJCl+ooQ4/Y7BhQUZyTkkfAGTd5T4rO9FhJrQiFnLYO5wZyaNxRSQkt4rDZakRh1zmCUD4QJBh1/zHiK9TZMIKEY4Wn7M9r/ieUmGNYPyu37tA4Z4mNfeG7OyuHWb714moD4ZmxuTaYHgBSNq7VplBaSz1qT/XoO6CAQ9gYdqLQ5q7eomiZki9jW1aOrJF3U0hA5skjCugYM+QmisDZm3QJnc9RCgcUW/OtBeHa2E81hKwg/CzrhUt6nc6RmVtbUgz1y2b4y40KWoBIAXUWrYhdfNhrM4mam0Abm2b4xLfIurZlfwcZk/sXAwn8Q+S5H9Rbht0AmZFEArHbEkzOQ4Dja4BehKqJqyLgEOEA/aQx2RZJq0ix91SeTWxyTZglgZkVOLahqnB3YD+MPOG826ZtuM8HM3amJvR3iz2nC37cyjYIMLkwWThZpPuf2OxGuTsJ6uaczOJ/KbvmFkOj/vFWzbsaV3YowpOrwZaefuVUX+T7cZJzl9vcOQTqSgjupAXFpZqr2D2tQjQZrE5er03DE0SuiuGuOUyegW5SdPMB3MNDmmeCaCQxG/dHx+zIiCgp52/qJWSPRaQMOI82lCzVD6MV+QDbUke0sDmMCV9EXldb7iddSpFuED6M2Li0DlCBpIPJIBHn4/ut3ZeXRNHOzkfDeSyr6HOw8liZzTz5Y6Z6Wv2PZvH4sg7Fj8AFJIH5nv34F7xnXcWqCn7zGuA46oCupNTGngAPPDxbeK/7K9/u0yPLycr3WcjQuE7jhjW/+1l96XuoEFBEFG7MaAXnvIZXveWX5xLV9+wmaJhSDOzXXrlbf6HXvKpJ9DMdSEt7LB5MrNwyBu0cuSQBvND6vUbDDBWDiNaOg6sQEjh7TfQlksiI39sBQAYfHTAxiC/xiT0t69bps5vBhS1m7R22Bz15lvGCWdBggYzNUnifcDHhyPOMsmWUQBwYjCyb0iNrgljQ8gZgBWzQ3MNG5IVUtScp5lrVqhz/TKfb3PTDO09ocMMEsBTzIiAFVpLRABwDAYKUZK/EgsEYB+E0AFgWaDD4XhWKY7POyBaPkxi6yxIsAAHxgDKAg6E5gEQYXyQTwSGScLHDMtljs1heaKSZpky05j62wIxsDOQ7Ob+2vyhgb0e6KPIUYNFYqCjhRH0rSYqdjpGr7ablNUg5xBgdtx9xYraKApBcW1aCeyazSljZUCFONviRE/DfMf1hXHlOeHjqCONaxr4jnOdpl0bJw/o5K3XACdvu/1tVcBNmec3V+JZhY25IUF5ziK8Esyc+1TLkm3T6zlpP9ZYzXeWBfhwPxGeYx3yPKAj2/n6jfwZ37imGQGVh8NtmhCokRl9ZUaO2qP6qNmenHCzqjXJpG0fs5K1XlsWw+p+F8gzmhJxKAle3Db0MdJAJFEgTMCOHW84k+p+lLHXAEfGnlIAPAMsavYMjEzOu1sADu5nBvjW850Lu/RHp3yR3vCz+/Hn55/yOf79up89iK771RbadKFxY1a3zRLdBrkrAS1cZWrJwNmHChpEBXgYuya8rLPTMDndjQGtboeAANGeUwLa/qMBDWYCWkFYmnXMl44Gk7LAjjWceFMXB7VrAmovmsR/ZjIgh8VMSMDgZeuFi7TntHnatxGIxTjbcNIBACTsam1jyACHQYEN48J27b2m75yMP9Og5u4uA6twbUDdDRBGSIdimRAzxYQIW2JDvET9TPJhBBSIIAL6j9AyubLNpYShERABNTrZ3rRrGkNYHsYCbE/f1u1h1srWv2FAYpkbZntsmBwAlvwNy1KB07cMq6RZoCThbSJ2MLqj/TVM/+3ovByUVgsPTM9qkDNFk8J40wo1c9vyAZxx2J68ELKshGhR8+Ev4P3gkOYxCGW2y7Os/rtOQ5nzzFM4Wk8WR9aXBTvrJR2dBQTzAE6WIp+sH3fsRIwib/+y0uS+faqaG24EM8ULw9L5FJrNcNtJAxv1rJKR+oUzKkyPBlNxQU7nOF65aQ/Q0cyKBjqmDVM/RffPFTJwz0P3QbZZpbZXQtWwR0Y4wBcCmOS4yJHTOTZF4CYWelAgVOfuSP90uNjIObnXPCeET+6FrOdTA4qyypdhFVEY+043jCHifkZV8hC2JuFhWf1J2isOq0xt74So8TH53WHCNAF0loYm6x8MjvTpBec/jqI9bVq4KuQwK4ROhd2A/vSTT6S/fsS/05+t/Q4d/r0B58gg/GzQbhhmhMPTzHG4QGeDaPZa42hDlGDHbY3smcg+c04OhAZ4e8O4aGeZmYpuRDM7h3ysYTukQSfkwpxLx8zGQEuKVgIwcI7JZqKdm8IY7LDEtHX6uQ4N+jkHcYQmdTY1KBjMGDZJwIPWp1BFNIWtiQGQTf5H5BIDlJ4tUGpDyOLLKQxLMFrcU9TSWITBHgfHBHhsrBllN9nGiCzYXCTbP87LEfEByenpJwIB0cAySfZY8TmJEIL9bOddEnlqMeeR1o+fgKBUrs8hAnKQFzdpG7XVIOegN7d+TlITxJ8cnOWQ+VidovAdnyORJ/tbJmzMW0l7TIbB51iXsTIMTZ7p/mb1ez1zfYpC0sYVG5jE3DEtC3B8Ng5gzA1LVDPT4xTH9UnCZ1WEN9sFcR6Nvz/uc5MnqhFmhv7kyieztLgnnyrj2U/C0oZeoDOyreqD7ofUOJFZe3knoW0dqgfLkrbGcuRahFzXPgllGpHazhDo4NR0dtj7sSKdW++mLJMj+46IrwBoeQC1T6QlNTbOdrrfybg46nxx34cpAI3x1MA+b9JK34suUEmFq8VAyandZpev6pA1z32bJR3uY3/c/eRewnpc63+98hwaDEN20J996peZzZHtmp0BdWcGtLbNJJi09gU0dx1U00J6xXt/h/7iKf9Gr9zzO9ToNaizK6INV/U4XwZDefW9Z7jAJ0Kd4KijaxxS1jLJ+zCjlmbAzsYrutS5/Doabt9Ee09dYFU1EQvY9NNdOCGzD5TQ9u6jaK1L3TNOoX3H2YKuXCPHjqPNfREGAwwOsyRdKy0NEIOhs3VjwJLgeGCHJOyKE+0lDMuGjMlPzAaJipmAHhUeJrVpcM4xq8Q5QKZPhqmyIWLoo903Zkzs5WMxAPuKYNEDy/oIOGFwhz8HiaQ091kuulZYk1vJhqoxoBGQI+Fmcn5GO8JsrkCQrtkTtykHU6+xKX/11XaQW83krIMVOVTrKQVdJhSuisOX50hnzZrngR839yWWPXWc8KKwNFfJaxpOexmwVeRwTwvUTDNB3ndOWQBv2uAnrw+6HzL2PpbHBYxl86yqjKP7TBQ9Q26fBgXhZ6l9PUUUM/ulmInVYYuldMsm6k/rfvI5rrHCmpMvw+8LzBpbRkDyY1JhabEjncHWWsYFIXYAi4AT4yh3uayOblvOx3XUfWID/jExAC6sOEkVW87pSDK//qyLtcIE4JjzKJEfZI8nPdCha3LO7rZF5gIZUVrz3Z9u7phX/AFS1bEnPqTnnfyFeN2bLz+X9izPUH/QoL+4/Uc5NweKaf35Ic1e02CHGizLzK6IFn49pFf+0++wglq0QgSSoLuxQUtHNlnyubPLsgEtotWtSY4HF+FclcT6iFrLETWhFnbhVTTct0jBvkVaaB1PiyfOMhDYeNEuCnbuJRqA0gESiGh47OG0fOw8LR7VoPlrh9RYNXVvVrc0GKxoZ511FGzoGPpKSxYEWOV01gZoGDAVsmhBEqbG2whjo5TIeOgsKJE2ROGNldAs4BAAIYAIIKuBfBwLonh/CWsLs8PJeFmDqLfBKTxq9wUIY8CE40lhUQFn6vgxc2MPJ3k7WkgA58dgTkLo7L4pkCfnq6SoBeDoQqYHu9XhatOzGuRM0YqUdvK+En2AI0vqVjtibrha2Znqou3yCtplyZ2Ko5qX6Oruk6rH4MxeFjEten2W3HHVPKIik77nOhYV1N18Nk49njz1ripM2aQ5T1kS0rIuy+LcAOf4uj1fO/pYeQCnnOyzbTNHXlkfRxyyImBTJLErDt9X99yC2z559no6ob2DlyFUB8f5weLx8fZ33fhzbisOMRuRJxaJ50SkwD0Xb55MjtCAABX9Oct0WFsqtG0MoGVUvhyp7AIGc0S2PwIDYTwft0aOC9wSGw1RG73H0syeD+iCkZoJ+pnvd/0u1yIOqQkfMnkqUBfzX5vR+8rHzgjz5d6nAvw0mE0zaKP5XN5x43wxw6LhnjRsmu6nw+TZ++2NP78vPe/UBNC8/bJ7sYO91m/S0nKHOp0erVy9gWavCakREr1w6XHsuEbDgBPul46LaHU1oLlfB1zcE/VntlyC8LKQc2cANFa3mtAwAIbZHQOTw7K5QYtHByY0DSpqeyPOsYFsc3N5SI21AQX9IQ2P3E79Wx5LzT2r1Lzqetq8Y4aiuQ4Fa30a7t5DQatFwUyHBiceSXtPmeeE+ZldRlQAKmVrm0JWQ+MhkiR/CwRi575va8GYC24cejAqABtNU9xGgxrTmP1tw7yQ48KCBruG1F2AaAFYo4jPDcVJV46w9WRsOJ6wOAA4+BtKZqLQxnoEFqCwcFlStzY+jxiACBhS+UF8jwDkQHhBbSegwyA41VaQ9ItTfTR7Y3OGmB1as2BOCUNAmttQY+kcnWHLiDqwel9gcrBi5HeQW62uNj2rQc6ULa8WQdYscV5R0KL6OmWBjevEldlPfznmJdX6gEoR0MlaVmZdlhU55+6MdJYzLcf3nYcsc52IbEdoeuarCzOuTVuEoAjoVFVpy2u7LMDJC98ZxzS4KcPYmOMF3mfazVt5/zV3om2dJWoGA/rO7pPo0vbhdI9NP4ud/NsuXE3f2XsiA5dlm6MAVkfL6uaZG66a9/z7FBazQuXiWfwMBbTkmBlMXoYMMxd7tDlNuk6K24es95L7HtZqYK56FwyjqPNbfGOij4V+rxZce4ADAJy89bGphH/zb/rdX6VOGHJoTPK+c+9ZSVlf0dOUBLPKt0rldXmU79zjAtwI6B4B3yPvhGQ833LpfVjW+DmnfJGedcqX6W2X3ovWek0a9kNa6XUoXAuosUzUXCP6iyd/gJ7/9SdQYy9qxphzQDPIc9lzYpMZGYCb9t4hO8rdDSYnbGY3vN+Ign5Ee09usYMMpxnhYwAkzTVbnNMW7ezNQ7Y5oKDXpsbakHqbZ6nZbnJRzv5Cm2jzDIXbTIIPwFBvQzt2/pGnwszLXMBhXXFyvXXMeR8THWrGAgBsN3EYHQAHHnEuxAmVNKtQJrk1cf6NFN20AIOBAMDBXoxTRN1WwDVuZq/tUW9Dg1a3NSmyKmryyIn8NLotCmuijIaFLLZgpaFHTAqLKhYmiQlTv+12fA/YsDcuMCrha1YSGsfjc1dMU9yuBYdYz/taEQVWV5tLFxxlhTgwVgImLYiKSULPqdR247Ua5KyD5TEtvu3EitR3itgeN18nywHLKlBazekZjRlP7VOwvihBXAOnPGd8muFVOq/EZWPcPqT652G8xlI/mzBEreoxfUBunPH0OTxV2hlXxrqIvfEBnbJMWNY2o3kk+c+am0fiGhzDL+y+FZ/jyqBF7TCgueYa7evP0P/ecDqdNn8dgxnTFp5bk6/ABTFZqjs7LyLLqjC+o+IjaXDD/bJqbFlAJ6ndk9Tm0fk5AnR8NWp87z5dD0j65etvkSiLD+zpEDfwDFmy+g0BJp7xQIidhOlpNUSfIEECKEbfMbpfuPbuvq5JbZulqO3ddrQgqem3JPjn5XVlqf2l8rGcPJ1UeFpqQkKNJw3pRad9Nl729ivuRb9/wv/RM075Gr3r8rvTUmNIS9fOU3M5MJP9IdHL3n0ezVhp6NaiUUvDIzJ7Q8QyzGAvsN2umzdMjsiAOESt0YMgANTTQupuMgn8EBtAvRs4xsuHhxyqhWFqriDZ3zjVc9cNaO4Xu4lWQJO0qXv0JhrMNGjv8a1YUS0QYIOht/kuwpZgGZxxzv2xwMqd18FnMCmx2fUsPQ12QgETBjs2gV7XwgFo6M0RLR5jleFY8S2k5nKDQdT8NRHtOdkmxUiB0iBRQeO2JO8G9zaksVX+i5tDw8utynRcTkuzOzoUTbNOdpmApyG6JHlEVihBgyQOO1slGmxEQ4FhvIIoVr8zynURh7FxoVR7PKi/cfu25g4AJI8pCoke5Kbw70Rt1FaDnHW3PKBRJfxiHGfFnc10ldqqiBTk9bNMnkpWMnkZMKS3m4R9KF90MM0WFAkqpM5hnQpOlgEwVSXAq9bMSe+bP3O/npbF/JQpuJllOl8k69kw+SbidCNbt1gBT/ZzWZ+0XG5AM40en1d/2KBZZBtzXAfRRYtH0uGdfRzCdqeNl9HysM3tYYY9C+Bo5zLLua9qopAWW+oSjN4L+l40ifRhukApKrQ7QMd3LoBPPnOLfGrgk8Xs+CxvYkdq5YweT95JePbt9o6aXJv6McD11clxj697PE6tJ2GotFJfNvOeMGEAOGVNX2MtKa3bdHPOTO0lw6RpoCOhaq4tddv05kvuk3z+9QK1d6JYp62bMkc0c71KfLehT3DG1zYGNHvDkEPEYJsuHxqWoGUZlQ0BLW835wvBgeGqySXpbgpM3kjfshoWjPCyAdHcr1dpsDBD0ZY5CgZDaiz1WEFt4y97XPQTp4VcH7BBADD4G2aEEAKau7ZHjdU+rW1FIdGmUXXTks6SZG8tVUNGQtEASiSPRoGCuG6NhIAFqiYP+jWDejdNCqKIx0AYFBDAYMUgciAS0XGOjO2PAQqWaVH1aswBk74KcBFwI4U50V+u0cMFp2x+zsARCVAhZpLLJ+erQ+RMn1QHhgGFaANAtI1G7D6tKGa8YrAzNKIN8XgeCuFqU1BXm3T/G4vVTM4ULV2HISztVI3rFLsApKidPElqX9tZ4T5lwqaqhFcUsQm67s40wM4kqmE+UDYCxIIJ8p2ceyNrv0kcet1nsXKqZ8N1Az1lBSTKhLb57k+/k+q5D5XT5gIT3k+Nv0gns0X5x3cLHn5q523tthH1LLCRsKC1YZM6YZ9/br/hKt5OwtI2NBAkleH4OwAny6oAn6zEeR3yJUAkSyKaq9qzlq1iL+xsLYAOwtISgGDYHGF04qKhPtBp7zmp7ROzKhUmGrKYGslPQjfgqCegJypmMWkY5+FotTUp/JnyaAss65nXwBnARhej9TE3+ntGQtI0ywTT92i8nc2v0ecbH9+ul7A7nZtjtknq/WQJErzlMgNooJwGNml5tU3dHbPUWMIUPFEHDI5lRsQRXj7agBpRR8Nv3EsAD5BwFmccimsQEEDdGzjbACCtFeTeDLkQJ3J3hu2AQ9wkcZ4lkK00NPJqWksmL6e3uUNhf0jBACxQi3Ns2vuMRDWON3dtn3N2Vo9aYCDT3ke05bvX03CuQyvHL9DqthkOHQMQoiXDNuCcwLzEbIe9PZjpkeR/KxnNrJAdM7kcIqOsWR6zIHHmcV4AbGA1YvU1gMIO0ZotEhrvi98CniwokdAw/M1CDgJMLBiMIDdtw++EgJEwvNayuT58XSS0TvoK4IQirXitqcchzqkREGhvGc6Z2o0xM+xMjHVaqOkDdscsiOeh5HGwoAopeTFwq33/m5TVIGc/WlnlpirhNVWd2zKhKnmx6XLs1Be+x1GoxH4427oOr6/A6HrmlLiWB3DyzOc86XXeJOISAGma5gMVvkrzRTLHVWpjuFY2J2ccgJNa5wk5nCR/KlQz+bk5a7FcknEiMVZnbfwFfX/fCcZBt6Fcd9x4JV20dDStDUxuw3EzO3n/DYjVsO2YZ9MfpmauQ5JDUcXGldiOzy9jWUrC2NMlHebmAh3TH/mdVS9mUAqw5N4XcWhZ0kFx4iW0Tofpyn2jwVnSn4iBWd47NO++y12nzs93r43IRecAb07idseHw+8SMQ0+HysgkCUZLfehW+cmSzlQ2jL3/JBV0qIoiMEOPpu8kIiijX2i61sUYaYes/GNyOTg4FC2K73lkGauD5iVQC4OlLXQBIpZGuAT0MphIixADG5ay0Nq7TNSYr2FjnHCG4bZYIDTI+rsG9Ls9V1mYPqb2jSYDanXaLCYARgjHGNlW4NzXyBm0FzuU2/LLK0c1uQCoxuuGtDasZupt7HJYWxz13apuWuVenMbmVEBQGDZaCTm25CruG6MzZOR8Da+NFZummvYCACQHBPNhjjXXYsTACzJbcPS1ZpFkvkbJWIAMQS+ilJQVBgV214SFqYOZ3NnsKwXJtLUODfOqWna0L55e/4QWOB8NKsyZ/Nr+JxV3hGAX7wcyxx1t5gZUrV4EjbMwi8rdjBGJPl+N4yHr05Y1TZqq0HO1E0njpYx/cU1TniNb1kZVaksRqBKf1NqamrGslQ7Jbbzze5n16UZ/bJ1100SvlZGfS0vdM3NIZCZVRF18LZnt/Ot983EVrEsxkQnkueZD/yMyAlPOaQtS7ktS0lKrKiAoc90ErgYh924NUkiVS0+x8SRRiQN2j6mtYuO3LLbHEslw99546X01T03o37UoEuXD6fbb/jlCMBxr83IZ5kcKKnY6FtfJEVfZcImdnoRY6OOY0KWzP3v3isxePRIP/tUz1gMwpeDZYuHapa9SAVTwtTkXoIymwZBgwxwhuOgH2BxZKLHDcsVmXQ+H2Y3/Pl+vlwz934UxTi36KwALDl3GRfZXsZfDou/wSaafibS4PKZt3GU0kbGzG6PnCCuIeQAHff5wPZ/9fMHUasxoGed/CW7b4MFB66fb1Owq0VzF7dp7tqIVraFtHyMBT1Ixr++RUE/oP7GAQ02DWil0eBCoMLCQEWrN2+ECPB5888jGnRMEn57cUjNxT71NgCMIK8mMMnsXNSTaPOlPWot9SnoDam/oUX7TpjnMDeYYXgi6uwxstBzv16j1u5VipohrRw9T8uHN1ihbdsFXVrd3qJdN+/w12Jnz5B6C01a3baRVc9wPFYFE5YCYWMSYuYk9IMRmtkZMTiABPXaZquKpoUDJHHfKX4ZbwNQYJP9W/tsfZyGDVOzOTe8PQBJz4SYSf0e/IgqmQnFMzk03PVICSpY9oz7AmUzC2hYstqCEN7OSluTzVWCqALAjmZthPHhfSzwY+DUT0LZGASiT/ZFEfZt/g0LGFhWp2fYKwaGLQXwsuv4HjRmybCJ26itBjn73XR9AnfmsWpORZZcceU2ckKn8rbPSsafhjpakTy06+xm1e3IPQ8nmbmob2UZh5REdgbQKWvu9utZY8l12vQytwDktMytd+RKSPtYPb3c9NFfDLFIECPLkjouxddK8nQ4ibvktU2YAwndsuqF1vGERPT5+07lbcEKlGm3LHNTlIyv15WpuZUXfinLpO6Ldnq12pkk8HsnXgI/0NEmanfcrrpHNQMztNO6WghCC0lo4YOEqVby14oz0s+JPoa0wyAjJ7+wahFi3/2YJ3MO2Wrpsyiq+dpzw9MMgB7Ex8K4sroa/50d9JECQjY0Let+BIODtl73s/vR7j1zdMS2vfTWy+9NjXBIzznxS/Sim32GXnzRk6izgwst0epW07/ZawMKftVmh7W9L2J2Juw1qLdpSMO5IYc+Bbsb1F4yYAV5KXO/MaBkbXPAoCfsBbS6tUlbLgHoMYwMwrlYlGANiflDmvkNKCCi5RMWaN+xUG+zuTl9MEUAOANqrA65sGjrN3to9aStnHcDxTbkA4VrCGkbxgVDTV4MWKgGO+CNXkR9LTcmifjWq5VEeslraS1GtHDVGoOyRhdtGEZCJKYhoCCKbLEKmklRSaSaRW55zj5PUJ8LrfPfVNLVkmOjcm0YkM0QNaBAt5KEnfE2YJds8VB1IzLwEMECEScAMJJHV4AQVnHODkQaFFskcW+RE77G+1olODGptyMS0wyqhLUB2OEDO0pthwDIqW16VoerrYOVdURLx41nJO0XbTdyvJwchHFMz07GjqaTp5JlPme1zJe/6/SWyeXIcsrz2AofsPLlCo22OZqnk5V/NRbgidYvRE3/9lkZcKOdzLJgyB1H37gW3RtVCoTmWW6uU5SwOeltTCV1nReR3U8dgE4psAMHE+4pJnXvvOFS+tHyCdQpKRHtM2k5Lxm/COgUbRsrNVrBhqwJE0lAN8uDlCMci6PYNnTfzTGiFDMCRgLgQtqX5HnDdsm1MeIMfDwIO6AGjbAqSgbaVXPTfTfrPCFaFFEr6MXCCXp8oYSn7w9WxPPcu/KuFNW0Hud4pRlr992hxwU/KL3C52SdQgEiwt5ga2EZAVikv+ijAENhFnUu2mrU5vXz4Rr/ba5TP5aI9j3rOkcL2/XUI6L3Mesa9OSTv0n/ceVZHKr2glM/G1+r5376d2j+WggImEKcszv61N3QoJXtCBVLQrY2XGXYjf5MyKpkzEqIIpllCZgdIUg5W4fc5nLsPrVl1NWaRsQAx5rZNaDm0oBWjltIik/2ob5m+iGyxsjjae9eo3AJ8XENau9Ypu72Odp3fNuAj35IYa/J+6A4KZpC7Z2Z6xFvRbR0DCgJoxSXYibASgCkIEQNOTgAVQAWa0R7TukwIBNmhfNzcE42/IwdfQUCJFzLfVxZFnvBghqJ4ALTtNtKcG9UhUab5pwB4OQx4LCxVQtS2pDmVkpokc3hMadJrUVzXjgW8nZieegW8qDMNkNohlvGZqCYqPiRs2IHcs4SpsjjZuWn4cFymo+AKAt04pwehMBBjGBgxCX4eOO/Uvebmed2MoUE34TQTdFqkHMQmZscXQbMVGFMquQgTMoqSd98y/WMfRYzI5a1Pq9oZRk2x7A+uihpep8yifhZzFMZVmdccDmOetukuUtl2bFxGB7N4pQZz3Gsyn2fJbYhlqe8lq7bUw0QavvO0sl01vzldMf5X4yVXyP9lH5l3TdVWMEsxUW9rOiejvdTYWt5xxGWJw4fi8Njh3E+jDt2rnCBiDaYcwfwHg1bc8Pg0n1O5+kYYNJPhZ65f7sTN1k1uLTlyewzuPDcd7EshnXuevbrXN7dYK80UHMZJwA1NgZIsq3U9zHS0mCFGEQinwx9sEIDehJDlNJS9Ys06+R5X+GaPPPkr9CGcIW3f/GPHklhGFHUQc5Mg0ECnFKol6GYJpgY5NS0loxiGfJaOruHNLNzQGG/wWzJzO6IuvNBqtgmnP7ZHRGt2vHnMLaNNvRslWj+uojmfmOYL5xOb970FXk7CDObva7HxTjXNjU55C3a1KD2ngZFnRb151q0fNQMszZQL1u4qketvWb7lcM7XIQUQw5xAglra+9r0fIRYVoK2hIOmq3gcbMhagATnPxvw8liNsWCAN5H8mqEBZG2JG1W5axIHotsI2psrOBmj9FYM+AQCf0QZ8C2LPIAgAGGxyn+ycAH0ZAhcT0jCSdDqFtcv4cfm4CGYE1ZttrKb/cTsBOfiwVlMaMk+6vQNxmjOJdImCPHoK4muT+6/YPZhrgnJpzQnHT/G4vVIGcdLa9GgrasMJv1SKx3GRf3C7dKrs6ks+c+RzavaGTecm4rSL5cs5Lm03H/bn7H+Dkkuh95wG0S5ky3MYkAgQ8gFokHZNZAqeDMZ+3ju7Z5IHOaACjL8sbXl49inqsknEqHWGmT9Xq8haGDo4ll5yxcSl/fezNed86Gy9Ux0o6jniFPqtOnE/GLzqWsFSkxynEkx6yqEIV7/6UmHBRTLJ9xliIbHe9j80ZiqWq7fVLb0FyxVP0WfhemLatejRum6xYTLstC6vazRE30OzoGkJZJdBk6s31SXBRMFySs3XsPy3WYtGwDwCi1juQ6CHumJaaNep+vJpaIFqTzeeT+jMPYVL4XVAJhAHB/+rXHcmhRNAiodUOLVreiZkzIaloALgA1C78ZUns3kElAi0dBvWxIje6Q2ZeFX5mcGy6+ebiq+Miz+hG1lhHeZopysrNt1dMkXKu1Z5WCbp+G8x2a1cQtWAyWqm7SvmNDGiC0KgLggZS0KSCKH6i1zdzQo9YNS9TbNk/dzS1WXttw0S6KZls0RAHRbp+iVodBVJx7ovrJbMZMwogwoOkjXC8J2eKQLpujAlaKHX+beyMSzzHTY4dBcpSwH0tXJ2lZ6jwT1ge4gy/N0AoDIPcJ521ZIDFWolP1fmL2C9LUq7YPYNPch4uZmoAClRU/bIrss1WAU3k+8eMdquVqzKDJIuFsnOMDcQrZR4WoSe0f09nRMajtxms1yFln0zOp69K++iIr6xjmSeiOa2Vq5ehjT7uwp+ybch7HAC3uPnmMUfk2J1PxqipK4FrKYSp5Lr4+l83JKXJwJwGT+wPglLXsEK707L82d3Y9leMR1xchusuGS/nvr+y9Od1t48+N42mVrpK2zN9tLj4xCkTywE1ZFqcoL0k73JKfop3zqqaLY7oWT/5wXkc62b6KDHNaRt/PUmVNPK0X+PaJFMhvE8qYAB3XzPin8zx0DlHqOAJAbVdjUG6Zn0SWezQUr+g9oMEN7k0NxF31NV4WQaGuRdQLqLmnacQD4CB3EwWuRbAk7NiHLNsMp9kkmMPDNwxKY6XPYWJLR7Vp7vqIZnYPeP3uUxq0b3tAy107jjbUDbklmy8bUGdPn4aNgHaevpGB0IbLF7m9YTOkxhoYIjAOIe05KTSOvs1RWQM7s2RygxauWqVwpUvhSo/6m+do8dgOA5/5yxcpmmtzWFu4d4XWjtvCbUN4IM6V0SaXxMpYA5ggfwfFTZmxgZMO8GMT6eP8HdkX6wT0INStm4gbCKiL6+EI6yK3i9SVscaMjoBEqNL1DNuD6yECBSnmSN0GzPJY0QK5F4VlEaaHb+O4wKmqfQOlvdDUtNEMlLTLAM7mKskynDP6iFA/sHSmRpJNSlIheTrH51AQHtDlMiZpo7Ya5ByUVhSClpUbMk0H0KdINaL4Uzb0rcR2kwKJ9PHSQEeWiY2qU6VBX5YT7mMk3Pbd8Cv5u2xeVe555dTJKXtPlQVtef2rOkvvhldWATgHAtSMy3zoHA+fjPrAI40s+2n2wyiRmXX33HhJLN8L59AG1pj9KggklJGOr1I7R+qeIG9jQ7A6cr7jPM/mWqdZGDFds0iDHVmXFWZYZhLAB2x0+FnZvpeZyBnnuReGxu1j6jOH9ZnjzlDPKTzrYcyVVyuABiyg9H01Q2hAh6hpJlH/7QPi6aKtJgST6+hERH95n/+il3374dTvNSjqhRTO9CkahETLDZq5tkHDBaLeRtRJCUytm+WIw7j6syaUbdAyCmkIL1s8JqS9JzYNmFkzogJwjte2GnDATMMK0dw1a9S8YZF6h2+ggL1yotUj57gtsELdDe1YsYxrzSDlxrIcRoo6ok0/3kn97fO0dtgch9V1N4Y0e8OAOjvWKNi3Qv3jttLathlmghDy1VwZGkfdyiPzZdOXRoVscQ0dDoOzAMQqjEmCPYePLRrHXsQRBBxyn8HaWEAIBit0FNM0UNCAgK8Zwv1sro/U7GGmDqpsyG9hkGBZFwWsGYi0rRKaLFftSn+MOlryjmNmRzFB8XCogqcMjCR/SfUX7A2zSj0zHvgbtXR4DG3uj36d87kcAjk5NciZnq2fVNM62dvf/nY68cQTaWZmhs455xz69re/nbntve51Lwow2+P8POQhD4m3ecpTnjKy/oEPfOBYfRNlnSoS0q7Fksy+9m0OC75Q9c94jEd2Dkm2THP5L30dcudTgPP1Kdl3NNzFt8w1NydC/+g2qpzHOM5aUZ5RGfMVic10cCraOPdNWZPrrX9G15fvt9zzZX4OhKVZgSieIPAqu6mE97KSxm49HLmHcQwkkGsH2Gf6HkneTJO/9uGgCsCR813va1FK7c7DZkmY1rQYdff9qycyRgF9wsrsj5lVt9izya8xIgnyTgELhhA1uQ/TuTrDGIxjH2HnmHWJmrQ6bPFvI2YAEYFmDGSEvckr3Oouk/DK1579MfrLu36E3nDvD9DMfJcanQE1F0NaPWzIeSGS9wGFM+TfwJGG8758uMlZwee1zWGSu9I1qmOr27DcgBPUzkHNFmyzckSHukdt5LAp5P8014bU3RCyDPTqFiPzvLqdaPE4SFEjNI6ovYdo9nqi+WsHNH8N6JaQehtbtLalyWALJq/V4bYNtLa1zVLSWMeSzTa3JaX0JbVmVP0WVjTj0Cu1raivWUYEGLRvmRrJXeHwLTULIiwOK7xBgc0KFcS5LqqETHxrqnA5YUAArFhhDYzJmkmQGbatMIEAF128U/0tctmDmcjUPkKdI2wiIYO99LGxD4fJyY9lrZiR0YU8bZ+lDzg/LhhrC5hKDZ6Y+VE7T7nUXG0HuR1S4Wof/OAH6fnPfz694x3vYIDz5je/mR7wgAfQJZdcQocffvjI9h/5yEeo202e+htuuIFud7vb0WMf+9jUdgA173nPe+LPnY4t4bsfrUrdmKyilHkziUWOdxHT4FMNK2onFeIhM1T2yz4r/MOVL65qPqYi3WZyHm5YiG+fItYha32R5HQe8BvJM/DkV6xX+KNrWbk6kxQANeeen6czjmXLiwdTyXnKUykTZTXfdckKa9NAR8sSA7x4iztacJFyZDNOzRW58CV/55lP5UwMjvN80OXfVRkPbVnPR14xTMlLwTghX8StMyW5JPo6AYSxU++pJZNqvwQTlXVv5b0/pwVusurn8DonDyphBVWtH5XRDSjinj8AzXLUZuCBMetaMGSAUZM/6zpNulCoj7Fx/47X2zYkl0fn7rz0+4+kmU6Ponafuh2shGNs0AOHca0aJ3XpWOO8clgXmkF4W8fmk1hlNK7Tgp++UVHbeGWXBrMN2nNig/YdY1ggMC8bL97FQgLBYbMMRFa3BLT35gOK2kMKWkMKd7Y5PwhMAYqEIsRtdUuLFo/ZQv2OYSQ4DAqsyYYGhYMOh6WBiUH4FRz93gbztxl/NRhRUuDTJyRgTkaFfSnBAhlWvlVtGFYEQKHcF4TZYdzwSgHrE2/v5qdYkYYY9FjABvDQR66QPUcGJl2i3iasj+Kk/lgeGs+nEgfgfZbw2YyDlpYWIMViBgp44Zjx/jY3Cb+l1o2uzWNv54QhkvOwcz8APqy2xglMicT2wW7TmIg8mEK7D6QdUiDnTW96Ez3taU+jpz71qfwZYOeTn/wkvfvd76YXv/jFI9tv3bo19fkDH/gAzc3NjYAcgJojjzxy6v2tkjdRqV3fLLGqxD2OVXYES7wp3MTcMgU106FmPgCXnc+RJY2cx0wVnfc0xAiKwltGjumRjdWhSW5oUJlrl6dwl7+f/94dF+D4bJp1d6ZlvrBAt7ZV6m875ermo/jAjRYHkHYBeL6895Z09w2XjORNyKXLYmCy3i9ZgMtnvrorWYw0mAH8TCOPTksnuxLPReFoZSwRgnCfl+og/WB0Gny11mS577oaZma0gC4DYRUOqN+3+vUCYKtD1fRvF0gXydHH/Va30Gvv8DH68x8/1Dh5KP7ZDYkGRj55ZbupmwNGYtCOmFUwss7GWQbrgmKXYGykLgwYEZE9hlDBymEtloxGvg1C01a2Nai1F8kmcOCHMUs085sGrcIl6AfUXAyotWxYJICgxRMDw2ysmdA1cdLNMcw2kJqG1w2mqL1i+9OSvktekT19m+ciqSQiRuCCHqurYSI6NfuC62wV0rhWTlPl6ChWSApz6sR8MW5KxAxs6BlvYlXc4uNYoCGgA/GG/IxplgXA1IagST6QZqpMfyIaWHnqVI0c6Zqcmxyb5bntuHGYmpWLQx4Px6+l9w0EDNlVAHrMhAFk5ZPfB4XV4Wo3QZADRuZ73/seveQlL4mXhWFI973vfen8888v1cY///M/0xOe8ASan1fVr4joy1/+MjNBW7Zsofvc5z702te+lrZt25bZztraGv+I7d27t1Jsf1JsbjwHwZeTU1WRrcx24xT0zLOqDpGv7o5Z5g998FlR/8sCnazl6+mg63j7kWXWsli9SscZA7DkhVRqK2JVqtTSKXP/FEn1VrU859qVlnbPJK7/4kgXc7spcQIza47z++LeW/Gy+226IKW+pmuR6GT/shbXs3H2dQtNjkg4ZzA4082hS8CNjzny3fO++yZV/NMXFmvHwC3gOYmoQNXJhkksr32tbKctGUujoBYXogU7Y1ma+F6gwNTYwfjG31E2H0MgryffRgMcF+yk1CwlrM8yObrQqtzrL/nOI2m41iBCbs5Sg8K1gNkbZvBs/gVYGST+4zArRxDtO9F+R0D2uJUk8HPolnWukTTfn2lQe3FIK9tCWt1sjj23Y0jBMKLuphartu09GeBoSK3dIXV2oDYPwtmMYw5mZvnoiAZzpi4W1tMeRUpDIRFFQK1KWGvFUC5IhgfAiTGdTaIXUKJBkmYvOMzLgoo450U8NguC5JaQNsCCCLPC4Wu9NGCJWROb6yLhcPgM4GiAiQUtlrlheWvkBHHtIYPEhGkyYWlGKpuvgoTXWdYJ67ubbR+wXd8wPyyC0LLhYyyWYI+pAA4zVjaHiEEQxsIeGyIVfK0HNm8J4ylgUcZKWBvBQ3a8wf7VdtOxQwbk7NixgwaDAR1xxBGp5fh88cUXF+6P3J0LLriAgY4bqvaoRz2KTjrpJLrsssvopS99KT3oQQ9i4NRo+GU4Xve619GrXvWqyucwDSlXn/kKY1atO+Oz9ZCwntQSeVW/RLRsM06b4/UnCTOCVQE9aeCW7Sz5HDJ3u4PxWomN1gkZX1mtyLmWY+1vZRlxzn1siziNMD25kXbuA7rzwqUMdr6055ac+wBnEHVKtPTuuPk0WcpcPrCTdQwBOFLAclqmRQV0v0byW2wfs5TVRs8lGhFQccFh0XNzMLI32jS7mMV4pUUtdFiZ8Uh9BYpl/HE/7h3OqnydhH3JEh7IAzjyN7K4Umbl/yEj3by2TTM3GEe4uzHixP+gF5g6LV0IDERcLwcFQhFKBYdX6qAAkHBtXpugDycddXK6GwPafRpq29i8DQABywJxWNZsaOrnWIe7t3lIc1cZRTck8eNn0IlosGFAwVpIjdWAQ9g4fGtgavpgXxTt5PHoJzk4UrdHVM2YAbFS1lKgEufWWDOheQBEybhYRkcrsknivc7tEQOoatqwPazHtjZETNgfCW/TeS3x7vZ4kujPyfsOm4KNOLeG2zTxbSl2iMGKWR4X/0RoW88oxZnzDuw5mdweBkAAI0BUqi+xupoVHZB+GBBjinzyOQMIWZZH8nigoicqcjHwEoB5kFuVYtrZbdR2SIGcSQ3g5vTTT6ezzz47tRzMjhjW3/a2t6VTTjmF2Z1zzz3X2xbYJOQGaSbnuOOOszNpo2DGl0cxUothCsnqvvCwom0Pti9xX/5MHtBxl49/3PFnZN1Y+LyaH77r4zqNKeUtdX2yrlkZVsXXju5fGTYnDeb8LF/R/ST5OFVf4Fpwwwd0psHgZE1C6OfWrTwvfxt2If3tKeMjIUKaocAsulSdj8/RVrHvhH26aPUY2tJcolPa16barCpokgJXOeAkT7UPx+TkdZuDk3e9qxToZTCqAI6PuU1tTyE73UZuOzkXjK/bd1EKE9CWl4MzLVZqf7I6VUsUJAICYa4yoAZNPQoY4LCYAJ692NvG+UFuOvsZFlAj11aDZ30PYxmeg7dcfG/qD0IKwoj6R63R0rERRbutPBYc5BZyckIGJUtHBrThalO/BafNIWNdCAIYgQIADYAfOPoIU8IyCBBs+IXx+qW4Jtb1ZwPaeatZs9825M6A2TGO+tItIVdGFDSGXMMFym+t61txLRgcd+GaPgX9iNXVUKA0Lpbp5J8w0BHRAa6xAyEDJOMHRp55zii2QYENBgA3HJj2IDSnbycBLDEAsMCBGS9Rg5uxRT2Rw2T7wepsHdlJSY6zXrQCPQ0LOHAMuQQcTgeJbyPpjYKnHHZm2RUJHYTAgIAJHMAc2y4DU9Sw6m02Fwkb4trF9W0sKyT9i4GOhPKlxBrMMTVoS8lXq9wmrdKmQd3BarjfJvXN0EZthxDI2b59OzMr116b/tLH56J8mqWlJc7HefWrX114nJNPPpmPdemll2aCHOTw+MQJfGCmDMCpAj6qfCFrR7qKdPC0WIG8Yp+T5nSsR60f3fYk7ZY9tzLXI28bXz+rFlMt6qurTKePnb9fkguxnkB6HJGBItW6ou2LatJIzRjdtjuTzjPvHvYCw3qfjRfSld3t1C5QTisyXz5RVRNwIDk4VcwNSRppWwmSuMfzmSTCu8fIY4CqABx5R+rfbn/L3ssHAvC4pq+5T5nRgBcdnijPbFI3Z1Sswf/+9okLsEVJmGRynHSbIC6edbOvxP1604Xn0nAY0spKk2f/waxAaQ2ONjMLAXFxTslDkYRygBsOjbIKXUYNzDjTCDtbPC5gSWnYylHm3lvdZlggk8MD+bbIFMRcDmn2wja3193ep5nfNDnfBwACOT9oFzk6qMcTtYKYwQEbwwyOdeKlbo3OxeFhCaD6ZhgQceKXjgypuRwycJrZOWS1OIgcBPNKbU0l2zPwUIn7rC5mgQ0A4EAprqG/PE4Nk98kwAMGNgQgg383cfIRMyLmQEbimUEJXgGSe2OBGk9UgOHqGGAUm8rrkXbMuRuxAg1gOPwMjAwXBjWAx2xnWSPbnlZWE+lrLWIQs1IC2uy5mfA2VWT14A16qO2mDHLa7TadccYZ9IUvfIEe8YhH8LLhcMifn/3sZ+fu+6EPfYhzaH7nd36n8DhXX301q7AdddRRlftoviTST1BVxyKJw09mziehLcuoBKUYoAwWoUzbZViHLMfaqxxUAnCtV5jWehTwHK8fvvATGyPvCDmMKyIwzj55Sn6uspRPRlqrq2Xd3zr80rfcd7wi8wEWHwBwmZo8JkWKMabzbPLFADCumMHOWn9Ce4c9t1Ep8ayaN2XCYauo88X1Y5TYhe8e8wFaPZmR9/6a4elc/7WGKIHY0rCTKNiJupdzX/lqe+lzrfKslGWoDuZ3SVbomgaN8TI11rgvwYSJQIap0xTGcuVSs4nXOfldUHHTMtLmmpics3SdJckhMrVy3v6ze9LqWou6O2aptW2VegA4raFJKg9C6i8MaYBU2mFAzSXjqHNxT4SpWTCB3JzWPiMKQHPJzH5jF1FnZ0C905eoB6cZzry9vt2tIUXdMGYuwtk+NVoDGmxo0L7NDQZY7euavK67iai11+YDsRBCQMuHmfOKVb0so4DfszuGLEDQnwtpwMn1hn2KQ8ck7wTHZUbKOPYQQ4CJAy+3rYgToBaNMBQM0KwyGzv4LAaQJPpz6B5SnGzIHAMiDmlLUEMcRtdORCaQCxUivAzHA/ARYGJloflWEOlryZ1hEYB0AU9zAJVLA9AKgLRqVhqGKeLlXOuHw+Ts9QVwQmVkPhdTJDSWgRbhBbRtIuOS5cKYcRHZRMyBr49co4PcauGBmyDIgSFE7MlPfjKdeeaZHHYGCWmwNKK2dt5559ExxxzDOTNuqBqAkSsmsLi4yLk1j370o5kNQk7Oi170Ijr11FNZmnocy5sxjUMBHMdPf4G6DsE0E9uzQEteKJPP8tiCLOcgqSUxrOwMFIGdMkX49qf5WKYqOTtuqJsfFOLNb4COu/xAqpWVYlJKbJPFAvpBc3Un0g3PKgIIOnFfPqeYAnXvubVrfPLCYEYkF8dlzLwMj5O7kuXAls37K2J2dIFMARO6mCmfu5P7pJ9Tvk42z8InKey+c/KALNdjyQE4eSIuCVArB3DKTOyMw0weLJMmYq5CoO95SEcfuIykKegp20qBWKxPVNqS0N1kWxEfME8TPuP3C2/xWXr1D3+LldTa7T41mwNa2TtjZuKRlC7sBaSi50w+COdkRFaeGeFOSIoPQxrMAzGgvk6DnWmwNd3ju0RrTaJVUDaIr7LOchglxUd7IdGuNg2RHA9nWCSN523+iQ2RiotpxsuMo80K0XFdFhMKF0JwQDv5CD+zOTkxk2HBA4pYcohZ14RugcVh2WelshbXorG38GA2zWoYtiZpkxf1iZo9ywbZXCVuyxbllHHlbuPy2jwXZncwFqiNY0EUcmxi4QEryxybPSHkx8A02JHwMv2YMjiVMDquoWMLjPJOhpXic4nBkgFRqdwkCd/TOUHShj2uCDYATPN6G9Z3MJuvTl71NqbWnUPaDimQ8/jHP56uv/56esUrXkHXXHMN3f72t6dPf/rTsRjBL3/5S1Zc04YaOl//+tfps5/97Eh7CH/78Y9/TO973/to9+7ddPTRR9P9739/es1rXjP1WjlZXx77s4jhJHk4ebVnUiFNgd85l+VV1M7K1gCaFNyMLzqQOH9Z/RpV1coHO74iqFWdLl9eUJEVMTLuuRRtP4m555MVPlS11lNWKGnqWCo/RL45db5N8vymJZZ17keRST9RTDN2EJUIAT5hFt0tGCoqaz6rwuIUjYN7Drof+lroPscASwEOH9Dx9d93XaVtLkCJejiqT64Ed9Zz6JNb9+Wplbm39mfuYt61nHY5Av29JHk52gDYcQ3i7dV7RcaXi4Py/ZCEJkrBUb6X7D1g+g8GSXJxknbxLEA++hU/fih/BtPSnu9Sv92gYa/BbAvijN5yr/fT87/zWAoBcGRW314bgKPhMKDBAMxJSMG8qZHXXW1Sa7ZPs+fPswMOJgYOOxTXEMa1eGafomFErV0N2nwx0cyuIa1uNaIDCDNDAjvXi5lPclsARhZ+DabBMBtcE0eHkzWI1jaZD5wvswKWJmLQxTk7OPWmZjgMCOGfjslTwenN7I5oZZvpB7elCofy4wagoC+YBSMChtBeAElpROKBgWKgIqFdFjwiRA/Ka92kJZPnghyc5Fgxi2PXiYob5wxZsQKAIlFgS7VlASVuAL7lkLtjZaYxJoNZ5O9AejoJMePaOpCj5rad7xsNcBTDw8p2AmY4/M0A4WFgwdzw0AA5tU3Pgihisq+2CQzCA5s2baJP/vhkmkcxsAJHR3/xHqhK7ZPYuHLNk9p6MjaTOuhVc4S0szdJfpJvVnyS9sqOrXYoxxm7cdimKo5mVp/yHMg0wCloPwo5FMdNoi4qMlnURw16/CDMOJNZTMw0FBx97W4Ol73S9269Fb2/Cy58AF/XyUmdBwUcouZzvH1haXkApyjcUYO2Ku+W9WJm0nky/utZJLNd5hgi5KBNM4tgGxF+5oIYjD8+YzlC2Zhps+0I2HfvTyMEYQqAQjlQ7K2X3Yf6w5D2Lc1wiNrr7/qhVH9eecFDmSV57ekfi/sF+5MvPYGCJtBBRMGeFrX2JqpvUFiDAw5gwkyABRFw2OevScQJkFOy8Kseh0TtO75NK4cZMQEAEmZhOCE+FclnDhGmAYeEQgmLEoeZqbwUyc9hcKPYG1YFs/2WGjTYltXRJJFeASeWXhbHPk7eV0pteKYWkrZEploeGZbVBjDpWEECZjmMwpmWlAZYMeAsOWe0CRYNYWQczoZtpAgpmBg7LyQMm1EyU+DD3g4CkiR0jNkku20MFCWnCSwej0OUGrdUzo++PnIO+jGOz8v0Idq7Spe97qW0Z88e2rhxIx3MvuQktrRvQA+57eUH5XnuTzukmJxDxdwYfp+qTFHewYG2rH5NswjkuJblYI8LftY7jCQvVMWnEDcOUJqkb0l7o9e8jGpZWcBW1N8ilqvMjHupULic59G9Bj6RgjJAIlEAHGWXtIJYVTBmHP7phCQWCaT4+iNsTVVzWR04xQb4+AFOFrMg6/X4wlF3gU9eDpG3b55rllfbaKRP61D0OU/S2/2OKSumEZ+jFblALtmIGqhqmwU0eBjAppncGi0HjfwbDVr0kLl1pGI2H8VIbRsAMINhQH95x//2vgeguPba232M/wawYaW1kGjul012ksGuwAFmh3zJsDQiJ42/YUjiZ8npbQ1TdwZszjLyQCzDsTKg2R0DWtvU4IKicP6Re8OiBVBSWzGCAjGQ4fAxm8AvIAi3dz/JkRE2hf11JdMsoW5xDo8CKPFwWaYmVmiLpZvTKb8CPLg925fEobf5O2BuAGBEwhqMkHsbDy1zpG8ZCfECEySPlg0VY6CBvtkYN4AdDtOzeTncNz6eASjM4CiTHCQtRpB6rdvt8fw37JgiZ4eBmdTk0f6/NC+5Sy7AkWXy94F3YQqtzsmZntUgZ50tM0l4yoU2p21lQVeefLE4D3l1YMoWJa26bJpj6ys8Okm4ls9BTSWte0UYssPPihTY3G2ygEJe/ZOyuVJ5RVqLFJnGsbFycaLyLE6RgIDPIS3KO3M/p+5bVUyxiKnxKjfmSEG7/U+Hk2YLQUieBUKXqsSKu8wrS4CjKCUYMElc94S+CcMgAMc7DjHjYBx2LmRJgxjs5AmuFN0z2WA+e7/S4DcjTDDrupWpi+QTxsiqI+Tea7i2qwS2xkhzG1XAdBsMSm0+TTy+Fmgvsx6wvyipvj+xn+Sq4W4SwPsnp32Olwlb9JofPYTFB7jOyWpI7ZP20Z/98BE0vGyBFnZZqWUU4LTJ7lA8kzo5szsjBjGsKNYXYGJYmebSgOb4b4B0sBCG0cHnxWNmqLN7SAu/HlJ70STALB1DtHqYYSxQD6cDOWd7P5poVTjmNhke52RzRxDqBlnofifgMK54TkByeCAEgOV43y6jGOmApafXNoWcB4SoLGZsOo4EtfXUBHDw0CqWiZ1+hTUZ6JjBNkxLM6LmsmVPItsPK5hoQtVsfo/K+cE+XFwUYWzM/kRxAU8OA7O5PENsH4scAMEoRtUW7WRGR5JrRNJZwJz2QmUT/G5GhrkC0GHmCPsFfGzeVPJv5JZmIQYBVlZ6XAqb2m3l3Gu76VgNctbZNMDJqlZ/MIOdSUwcmNwZ65IKalWd2axZdLfd0f3Gc+CqWFVxAF9lcB2mlhWipgFOqp9qGHyAJyu5P+lPuWuRJCtnAdz0OJTJI8pjc9ZTtjeVK1YiYd+7LgNouvd3kTONb/AspzrJfRhSV+U8uG1w6JCTvC99AcBw84EMiChnLvganeRIq0aKlLTrgOfmpjh5OKbGUAKeXMtjAFM5RfoYakymdT+5x4oBiuQQTKKk6YhhZB1bTM5LRDBicBO/bxxRAaWoxtloHsAr58aAhvPVjeiAFAvVeVm+Ys6t1oC6MwMKFpusotb82kYKW8YBxxh1doKZiWj5cOO8IqyLi4MuwiE216g/YxxrhJ61F03h0NVtrXiGHwCnNx9yyNrCbwbM2ABkoEDo3LUDwwIth7TnZJs/YnNbODEeDrdE+BusloSTNU07RsbYLLO1Mk3oVW80nGrfsQ2T19O0MschGRlsG2anHfTUK9yCCxE14OOxFLPti0rElyKbDCy0ShsAoXL4zTkmwgLxeeE4yJeRkDTbAQ53s9iFw8oiD9sUAxADCGU8YlU2T4hbLFLACTuReRdZQGRC8yArbfspggkqBA7X0/TZsm0qrI2V5cq+yA554YEbp19Z1WqQs5+BjbaDKS9nXMnUPKU4bZMmqk8L6Ix7/LyimLqPvnaLQtWKQd5ovZEigJM6rv1i0bWSxk2kLnNuxeBGi0tkMwhV+1JqH9e5LLCsaxOzEwViA7qPGlS49Vi87J3N+3HbMsneSv43dTwzGy8gxw3Nc2vvxGFdKpdInFgk/LOUsJr6zGOK9LoRxiJDkCDZ10g5mG0GfK495+tJTyzI+bQ8YWm+iQC9v/ce4NAtk18iBifeJM4PM6+POx5Z94M4/wIOXJsE3PjayJI9T/VZvR+R+C8iDxrYFB3HfDYsh77mMg4zYY/Pl89ZwtUI92YjaQtiZ6iXEw5pZblNYWdAzYUurXVmjELaSsCMjTwKADjMMEA1bIWYhWnv6dM1d+rwzD/XsLHiAhAPQO5Na2VIgxZU0yLqzxiAA7Zkz4kNIzO9RjRzlTnAyraQP2+5xAoQdBR4YMfeMjgCcOQH52Nr4WgFNGZBrHBAnGsioEXl7Ej4G+fjWHYIx+BwrW7SPpMXtugoPyLWeWfZZcGqMRhR738b/iYqbywcYJkpZnHAkFjQpPOOICRgQvTS94GwOsJOCXCJBQwsexU/maKOZsdRCn4y+IMIgpA9LDZgfaOeAWcsJ83jlu6EhOjhHsHxTc6QLTJqc5Gwh+QcHQqhavJM6YmmcduorQY5U7esYnaus6SdnKo2bZngvNn8SQBYVTUs10blp90Z79GZf9+s+LSZskJQMUEbedtnKlO5DqMzyx1v57muk17nvPA06cPoPtVevplyw9H4bfpyHVJ1QzLuT5+z6zq2WXkrZZ93c4x8S3Il0mZm0ZNCpNqhHq0FZLyZht3ezaGYCfomBwPPmW0rTuj3gJ2svJ5Eptgeh48Lpyc9ky+y6Ob4EbWCbiq8zJ2A9eXc+J6rsnlaPvBR1IZPma4ofGx/M/i++zMdnmjeEw0wOhSkGEBmYWjIIAgmQgQMg+x9wEVDuQ0yYgX2SgnAYeAd9M39g0K5CHuMJ2uI9g1m+PO7Lr0bNcHkLLWp2w+pvWWV1oIZGrZR+BN5I1YMAA6rBQqsYrYZQKTFzjDADQOGAAn4CG0KaGb3kOWYZ3b1qLEyoOZsg7oLbVYxAysE9TIAi/a+PoXdIQXDFvUWGrR0VMjtACRJwj6AghQkdRPgJSmeyQyb0yLrdVK/AAbJx5HbQMCF5POwky6OugUuJkE/Cb2KFHBiBkmOay2ul2PDwgSYRBY8wKQYanxLCEizbccSzUoKm9tGKBgACaSmsekgEQoQQIrQsqQtG8ombaIvVlbaSFJjrM01A6jBviJZLQyO9EnAjhQ1ZRBj6+8MZmzejgA1G0on10AAa203DauZnCmamc1K51booniuU+ibfXS3KZPfMAngqTqj73NqXWfaP7ufZq2yjlvF2Xbrb1TJHfH1z2xXPm8kKxyuSE2rjHPjk9LW72b33ikrre2Ob5XxzmNtfCEoJnlyFIi6y9yQtaqhdPpZ88oRZybxp2eevapgKgTIFQzQ24kjKb/zlMayLLnOprhokQnDIoprcjw5JtanxlbNphuWqD8ika1ZEgN0hrlgwGWty4oyaNCn7wf3fmJQW4LplH1c5bb4vB3TDJfvb23i1BeZlgKX88xjaHLDEn3P7oi0dzi13FD5PR/AozcFQQdq8gT3EhduHaZZxka4QjsHC3yNhF0UJTVdFFTECZBphYl7AB3z3mpSqzHg9c889au8zRt+fD967ulfpHf9/G70zLt+jd7243vS4PoZai6aQp8AJM1l43T3Nhj5Zsz4t/clgINlnWeEQQnZ0V08pkNz10fU2TOwggPGOW5ameTuhiZLFXc3NGybdtzBpPSN44y/kXMjTI6wLTGLogAPP54SSgYTZ94yP8CN6B9Yo9aSyR3qW3UxUTWbv2ZIq1tCU0RU2BgrHoBjNBfNdmC2YmEEqZXDKmmqTzY/B0AD+UJgqGKgxWDDbGjaMawLX1LOP7JMDx8arIkNGUOIGEtQQ9IbQMfWzoklp03ImYAZ/q2KeQYAKQJeLHtlWCbISqfD2URKWpgiU4QUjJxRfOMxQV2frlVRk7A4XDfJGUIe1iFAcJh3yWQT2cMbaRpEVatBzhTNhH6kZ521lQEv1UN2JnsQ8nIcyjjASXx9uTeHODbucX3HKgPA3Pob47IseSFlZce4bGjcOFK1PNM6AYOXNb5F8rq6D+nPo7PwWWAlL9emat0Uc6zqeRdVnFOfuQ7wCDOrgIG0KWAnK2S1jGAELJ2U71cc8wJeJHyTmTV3i55KnxI2Jz/EVgOwuF+uKlfOufqYg9S+bl2tksVz3ftKi534+pgX1pWlYlakkCnbiSqcnG/hpMcUFNmygFlWH73CBE4fwMZw2zamn8P4MNJDA/QFPEuezlzYZZDCuVtynznPE4Ait4M2bE4Yfs+Fa4YdCpI8sD+57ee4/aef9nV+Rl5w+8/T33zpIezssnpal6i3MZm9hxABfkN0YP7aiNr7htTdENLeEwKTMzIk2nzpKnU3tzjJf/GoZsyWzF0/pNa+ATWXetSfb9HiMS1meJgVkLwUdtbhOBugw78xLiu2/s0gopXtDQYaDCK0vLFcp76qWyNJ8FYkAcClywVNLSBB2NWsreUzE/I5i5KahLQZh97mKpkbIVVgMya7myrh3lxU4/xb4MH9ZDLEAhGthmaBSBy+JucEqWcOt7M723A43sbWpYFAgEFQNpSNk+5Udc70TczXybRvc3AYBAYmF4jbTfZhlssyeSafydbmwf9tHF/q7CSy3tyeDfk7CLIDCq3OyZme1SBnima+zEbDf1xH0MdA5Ldb3kEcx8YJVUo5lDnhUln7ZlU518t8idpFbVctgun22W07b4zLMjdF6/IAj6u6lpRznvyaFgGcvDH2/e0DYXq2Pq8d/3HKAa7CMXQYhjynMK8dDWBcc0OUZFstZVwWhLlhZjBRv4JholXnyeh3CSuXxfcIHEqAnIBDiFJqXg4DEzOtGcAsAdoJI4t8GA0qslicONneuW55k0Aus5Nl/vsquy9yjhq8aEDk1gEqAkK6DV/oHpsnp0eP8YjCXhaIL7jvxjX3+pg8py7tjWbibUxxT6IN4aoRK+BP5vgzQZca4ZDBCtpieXDLjCa5SgGHtfHfLEON9S3aEK4wI9TDT9Sgt/7sXswIPPu0L/O1/ev/fTgNZ4dEc33qz4U8S98CoJkxM/oYwuWjI2quQEHNgIXVLQ3qbrQSyLZuDADO9bdrxHVmuMhlBDDRoOZKg5rLLWrahHWWo7bKbAA8LGTAuTYGiBhmB2cScRgcnOpGF844WI0kvIuZHctooA/ilMdsmA174787BsCBwWlCfGCDccqRX7K6XYW0WWDH4yigR+UGxbk+MAEwEkLHeUJBAmgs4AnXEA4IcCDxb1p0wLA03BZCvixTE3WSA+lwPYAcJmsk6Z1D17SvYMaNhQhs/hD3h/cxy6K2DBDCCJFHZRms2SGrzHE+Ul/V3pE+QxihFVHYDymyNXy0ZDfGmLc7RPJyapuO1SDngEkvl3vSDoa6NK4VMTCuQ5TXhg/UjJurBHPBVtEMfZmk/zJgJy9crGpYSpaJClXhNhVtHHBTtH7ca+jOxJe1InZMHEqdWJ5aX2Lf2DI2dZWrYFmg3R0jLaWsHWRROhsBjymn2IAbHWomUtkSZucDoHHujhN2J+foOtASZqTHQOdH9WyWsSs64PtcdG8UTVb4whrL5t4ICB0JL7P91AUyfaAnfZyw3Kyse384zNaBNn2dEOYHoANGBwyOFrTAdqzGxiNo8ndw5yH/phX1ad9wlkEMAIvco2B4OpYdEpMCotj+sOZe2tzo019d9AD6o5t/idt804XnUh+xW5yYHlBkC3viM5gbzN5LcUwZPjApAAlwZlE/xwgAGKCycniDBrPWmeawM6OUxjVquOhnQINWxEAnGAypuRqx7HRvA2rrNOK6LMIOCKAQxoAlpFWejIR68Y8CJrD49rIgRH73Z6zwwErSJoOAvircyRSSbceGkElNmjikS4MKy5LE/eZLbML7eFurnDbCPllGR+fmyAZmuWhU282tVDNiweT48TkAJPH2+gAWIIHxiVkXnZxk94fgAF+jgGg15M/c335yvqjTAzDEIYM9m7tl6wrF10Awl8qBOpjNvKHqcLVpWA1ypmhB/CbJSoAdzVvwrfdZXqjbeogQlJFidfONzN/V3iA+Z7h8cnb2WPu2c/uYHaLm2yetcFYFfE4zwbjs2JR1oMYN8SrTpv5dJnRzkr4UjbEAB29BXk9ftICI7BsrnZUUFimy0TFJzt+VcdYscNLHaISFcc9L2pRt5VyMc5qctzBDcGClTTc0DQ5vaHMxNDMVvzPc95lPZW0Kz4OrMOgLT8sryCzjIhMxGli60tm67ZF+jFkYdRo27uRNnhqgvl6s+KcYReTqYD/cA8zq2DpGECTAfmBx4DHj/gF4RiibHnNzz+g8nb5VcDM/+PvFt/wMvfy7D6dXnvFxVjDrrTUpOGKVQjiyjSH1j4iov9ag7hEBNXcZuSxmZVYsKxAZ1gOgAKyOYW3AtJhl7WuNohqHlbWR1I4kdxP61lhGcyZ8q7PHoIG1jS1maKDI1p01IWyobQMGBuFkyNvRMssi4ywAyMgYK6EBh2XhHBEFdJiZ4RA1ldxv84ACyzyx8IHNpZFaOrwdIxl7jWcEaSXJ9hIOpotiMtDjNsHWpOvNxAyOHVdpS+rzcFsM9mxjADYDA3D4x54rsA0XDdXhbnLO+MFx+OTlPOw/WCRgECwOFPBWA87L6m1KwBdycOJcI1WXBz8p0QUpmoprkcbbB6Xh+clSN6zSRm1lpqFqWxeblKGRyuH706YFcCRUzReylrePa1lskbu8SAZYm0nCrpYzs99UkuA4pKqN54dt5TlCui05Z/mZ1PR1RXuTXGPXihjCzP0KnFHt+PkUEl2WhnMTWCnK/KTaqshguaFsnP9gc2/0T97z7gMYWMZy0hSxkwkHFGID8sMMEBLKgx7/wGHlZHIlsDAOkBPH1cfgTJqDUhXguJYKT5N73uY6YdwF/AlT4cs70r/133n5SJOed3ysks9o3na5YghOTo2wXqyOBtGAqMGAZjVq83hpmXNxqky+DZ4PFACFnLkw9Mnknqi2wQxgAnPUpb8668P0up8+0GzXGtCw16BBt0GDfkhhI6LmXJ8aG3o0mB3a0DEDPgAEEILGvyEZvUTU2UXUWjQiBfgBY8N5NEvGYWbp5A4S/k1tmpXDI1o+dkh7Toto96khrRwW0OLRIa1sN2BIHG9de4X9cavYxTV00BdhiNCXFfuzauvgWKU0Xr9mRAeEdYjzV4T1CVU+iW1f8lF4fLhNO9EgYMqyP3p/WR7LWjOgUqFmiqERgJG6dWxeEoMeYWXk5AXcCZPDDJZhW4y6nGJnZLDcY8hn3R8Ji7PhfmhP95llrZtquSpAKgCK85jkeok4BEIY0/Vra7P2ute9js466yzasGEDHX744fSIRzyCLrnkEtJ2zTXX0O/+7u/SkUceSfPz83THO96RPvzhD6e22blzJz3pSU+ijRs30ubNm+n3f//3aXHRKmQcAKuZnHUynXuTlZzts6r5Or7tJmF2ihgcF9xMy8EvE1qWt+8k2xwM4SKu5QEtH9DJYwXy9i8bVjfuPZU4zOUSycv2yycVrvfxtpdR08QVDXAd0rjKew54mVatqySnIWFp4vO0zri8UyTPAXk3+nz0ObgArAxj6xYq5X7pULUM8x0/nQc0GsKnzfd+LGL8EpCSD2xcRkfGVec6wT5ywxk8Zo/Y9j27ryoa4jEf6MnbzrUq6ntFuUb+fRQDqSxPSCGVL+SE1cVsNthZCwaNrDTYnSazNRISqguIuiZy4T1ISA9naXNjmbfd3Z+l1ZU2tTp9ZgraC10a9BrUX2pSuNLgmfvhlh7nfgxQKLIdUHtnyMAFTuzsDoCciMKeUSuDjDTyYVgieq9RJltrEHUXIurPQ7PYhFilzn8motUjIgqRDwK1LlvEE/syi9IflX8WlkSfbpwnY5kk9zXG7IJcTglvg2MOxTWoq2HoreCAMDYxWyT5JhI2ZigTs0lPqYuB8QGzw8DGXkuby2LqyUhndXFOHTamwtI4VE4VBOXBgsSdZWI4p8aGvkmjzNbY5hBmZsPemHmymzCAEpZL+mMBWSweADBjQ/2aSyEN5obmWMiTEqCFTXsmP4uBEELbBPShbzg+M20Hf7yaqxQ5XhvVzvMrX/kKPetZz2Kg0+/36aUvfSnd//73pwsvvJABDey8886j3bt308c//nHavn07vf/976fHPe5x9N3vfpfucIc78DYAOL/5zW/oc5/7HPV6PXrqU59KT3/603nbA2E1yFlHq3qTrrfAwLiWBXCyrMhxKlt4dBLgU8WqHGd/sWfjhv2VOQ/NHOi/xxnvPOCeFLpMq2ZVuZ9HVd3GK/DqOm7CdIycT4UZ9zL3QmVQh3yVyDAvqeUwW5NEjitAqAikieKadlLHkQ5P2jBejG7DzWPxWR640X+74izjgpvRc8gXvxAA8ZCtPzL9zRIUUaFtsr8WgsjaPnd9Ru6PBvrjVkDPmwAoKmarLe4LP0tpeWyMAwCO2W702ul1sr3kb6E93D+ybma2y+Fqa4ttetXdPsrLXvWd36JouWFECIJEKri5ZEBIf8GGdQ0iaqyZfkKEoLspyYFZ5Zl/orWtEQ0O61Kz06c+FiL1HXkde5vU2mfu7f685IyYfeM6KwJarFMukVdxToseShX+lXLgZXFH7Se/LQMB1TSuX+OwKhyGZcPcYqU1UUyTfop0NYMCdVAJGRuaEDFdb4cBDuSgw8hKYXvufSdvB9uzhLSSnzaFhTRiSpiaWNEtiuIcGdknltaWPmuFNCs/zQwRS2ibQcZxDTMWGNDTiKgxCLkgaNxfGzKIc+a2rPjCwW5xAd2J2qjmQ3z6059OfX7ve9/LjM73vvc9usc97sHLvvGNb9A//MM/0Nlnn82fX/ayl9Hf/u3f8jYAORdddBG3853vfIfOPPNM3uatb30rPfjBD6Y3vOENdPTRR9P+thrkTNHwYnZttFjl5IIDRTko8qadWGc9R2CgqhPuU0rLq9eQ1cZ65JC4luXsH4wiED6g4/bfN2ZuQrwLdMreO/l1hMxsbZ48cBbocUOm3PuiMhiLC1L6gUDmTLtOyrfjWySqUDgmGdsZZqFp8hd8gIVDqaK0apsvtM6quaWPVZy/Fu+PaBGuh6MYnSCpUm/aS5w2cZRN7RNHKczjvGeNR9Y9MYkYRRYryIpzVg3sv3acRY/Z/h1mIx689cfMQLQwQU2J4z3adloJTsILiyS+fSxX/NkBNUXnnFXRPBOcZbxbfUDHp7DH95qRwzJCE8wiRnENHAAZhDziM5bsiyBCYAQupBCoua/S+VIY5+Vhh7fD/i+59ac5ZK21YDV/iagz26PVrQFFK00+fGtvaEK9erZmDqEoKNHykRAUMMBnMAdVs4gG2/rUmO3Tp+76tri9B3/jWRwGN7PQpR6Yon6LAU5np1kPNsDU2JG6LQnQsVgnvv/5bxkqfUkkz0Rty39KHRsVlsbha7aOizBGCKPToWyyb3/BFrtkkJOIBoAdgQ+SCBugoKYFB5YZCVcsQJ8fUDQMUfHGAA4V7sVtu56hzb9hoCIFPZF7I/u6gI5BVBKaxvk7lmkyuTxqPAC6TIqV2YbHzajVmfY0ULMhc0wygc0ToGWAr4S0mdwjyyzxNbTjEkbUnzu4v8enbXv37k197nQ6/FNke/bs4d9bt26Nl93lLnehD37wg/SQhzyEQ9H+8z//k1ZXV+le97oXrz///PN5uQAc2H3ve18Kw5C+9a1v0SMf+Uja31aDnCkavkQmrSA/qRSyBguTmD/fIycnYAIAop3GIqAziWUJEPhsNBxqvOsxbXPBog98ujPvRY65P3wtHyiXYWSywEvevZlVLNa9L/IVr/yWx9IAWGTJ+PqEMfKERfIst2ZQBrvkA2v4aTmKVZPYaP7NgFbt14MOWXPrxsAEaOUpDFZjjtIAK7WuRN6NT7hBPEpdawiA8iM7zuDlF60eQyd1rouV6or6537W7FpZ86nx5bE2WaCmcDundk8W0DH9H82j0sa1cJSk+YBBTN/UwYmBeWSBoinyae4PMzstjI5vzEybpu9/euvP0hsvvm9yCnBYhwE1N3RpsAbGJSkIKrLOCElDcVBJ/MeMfn9Lnz573zePnO9gb5uCtZDWbAHLcLnBIWLxbTdMAEag8m1gXPRS31ri2GvH3Y1Ocy5JrMQmAgS2hk4q4T5Ih8fBEHK3aqWjOR+HQY0thmlVzUwYl4S/WTUyYYkAAtCW2nakdI3QU0J+KgCEsDIk74vUm1F7s8oGwsgodTWj4Caqdhn3r0WBwkbFf8hj6I73WmglrIWZSUY7Bn0APgocSZ2fuL83oXC14447LrX8z//8z+mVr3xl7r7D4ZCe97zn0V3vele6zW1uEy8HqHn84x9P27Zto2azSXNzc/Tf//3fdOqpp8Y5O2B/tGE7ACWsOxBWg5yD3Ma50eWLos1F28rPypcvwDnq9Pn+1ttrBzKzMr3dhteB9fZ8GeeBqaL6KSOORMH2WebmTJXJB5mGZanQZTEc7pj7LGssEzCRdv7zgE4xw5j8bZyt/FA3t49lcofc4/lkm926KHqfMkzNelnWDL8Y17ABu2CBjmEa0F+lkubkzaTCnbygM5tpgZMqVex1H3zHgXHIkWc8q5pmzKTv/LtEeJpmm8SkGCrOFcICwkAwEGIVMHNPYByvH2zkZce1d6bOscw7tLBQq1OvKWvc0zWdgsLJBmGQilgmAXhwfrJAaV74mghiANDgGAJs0BYkpHkbrONnLAEx5ppJAVGAc2TQy5gAbCbPoj7+C27xefq7n9+H/37J6Z+mv7rgAdTtNinY02RgAJW01cMjlphmFgTKaLuMc7+6HQxOj+Y2rcb9f/KFT6Y9yzO08usFai5Csi2i3lyDgl7ICm0cHubKOytAknK2HUDjmtp9NJHfFwnGwMOKDAhmgDBC2zA7DLiGBsSxXHLTiCZIblBjJTRgBhZKOB/6GxgAhDA09Wggb2dot49D4hjUREQAEJapSeUcARBZUMiqZlYcAHlNABcBcn4GVprasjLYhvulmSJhpayqtGZ2UnLX2EcDJjuq/HfPXD/pN4M3iY6zYgwmXM0e1zJaKfB0EBtjxQmjVuQpvuqqq1gEQKwMi4PcnAsuuIC+/vWvp5a//OUv55ycz3/+85yT89GPfpRzcr72ta/R6aefTgej1SBnima+NPKdxipMS5ZT4tvOvzwJUcn7ktbsU17c/Dgyucn+yTn7HOsyfXCPO6nkcPXwl+wZXPN5fRgoWH54VDB2TSO3nbzZePd4LtgbS/UsJ3xLW6rvFQ7jLTAbf3H7r13ROGWBuXHEFdL7K6/Kt95WijfbUMrxj8PbUoDX1GfJ6mvVZyCreKVPgaxMblMVZlQDHJ9UtttHtlgpzBgUwf7tmjvTA7ZfQFsbiybu3bLvhzX3sfN9ZHO3yS/x5Ws5zIMOUdNiED6gk1c7KHWe8o4cYZ2zxWWyGB6T65MGOmVMj3OZa2mEBvoxgyP97Sn3wn1XiJy0y07C3n75vehZp3zZ7Gdn/990yblxW3CaIRUNx3Z4xBoN1xrUvrZlQsokjAuHZqc8Oeedi3PUXWxTe3domR44xKENbzO1VWTGPx5ulV4ywnbov7O/+lNqbLy5MCdK08KAgrTcsbBJA4SwIZzLrpekfO5vrJqmatrwoKbr2HBhTWxv2ZnY+Q/ttq0hhe0Bh6M1mkNmQvrdhgET+LE1Z4JmZJkZQSWWoeF8myT/BoBESmpgfE3V0SR/iK+NAinxa82URjJ/87VUMYH2WBySZvdB26m8I/RTmCtZjjwgZpvUBbgJ2caNG1Mgp8ie/exn0yc+8Qn66le/Sscee2y8/LLLLqO3ve1tDH5ufetb87Lb3e52DHDe/va30zve8Q5WXbvuuutS7UHEAIprWHcgrAY562B5TpIOtymudZDvAMoX62jej+/4xbPmZWfi9T7cckGInnueWfk5ZRTC3AKKbhtFpvdxQ7vyjj2pA7seVsQ4jMjsRvmMWFFCv++ezWMCyliZMMBx6iiVas9pxpdQn1enZhzT91ERi1aqPQ6tGpQqOKqPb/oQFILbgfO8iEGBTFgxX76TZnGy8m58f+t++6wwnM9h+0QG+v3X3SkGNZsay/GxmsGQ+hQy6PEVR3X75QIFARjCqOSZj6HLA4u+42eBnSLgrfsaK8bl5Ev5wtYgrrDK2TZJ2/r6CYsmIX/7LHUgBUQlVM01YQvl/H//pP+jt1x6b3rqSefT0079P172rp/fjZ1mdsA3dWmwMWBJ6VZzQN2lJju2UExbPXpIQXNIjZkB/eud3s37rkYNetjnnsPCAu2lgDq7TRgYFwCdRY0cMDk20d9KMTO4QZiY7WPkATMxIFLzEjrXPjb8rbbVqySkSySgYejf2hbbBwmbs8dAvzXqgtCCHFdq85iNlTABS6zZXJdGOrmf17WH1Jrr0b1P+rm59sGQvnTlaRQ2QuqvhAYI8jlAsGBoas2AuZHTE8ASd8ScJYMiK9AQ94lBjQUcq9B0JoraEV8zw97g+olOtBU3cMbRgCbF4Mg14c9DZubi8DjptwKTE+bzH0LFQKvtjxyn5zznORx+9uUvf5lOOumk1PrlZZP8hvwabY1Gg8PbYHe+852Z6YEQwRlnmFDgL37xi7z+nHPOoQNhNciZouElXOTo+8J2yn5plRExyPrSysuzKHLcipyuaQgCVKml4p2dh43h+/rOLQ98VhnzaVnZsXHD1vKuixsSVLbt9Lkmzqy+Jj7lNl97bg7M/o4iGBnXjGHWEvBFJs/ZuGA4L28sT7zjQITXhXrm3gE2WZY1WZP3vvSFqZX5AtfqZ/w5ChjUSEFKXM8HbL0g7kNKZMKqf8Xv4xw2wwW/PtbEB2Dc+j5Zbed9zlvuy6eZ1Azj4gs1DlPiApqZkfUaOMk1QM6OrqGEv//p8rvSYGjC4cSeeuo36S3fvzdFfXNdXn/3/4yZoBd9+XFGLnhzj9ozkJ6O6J/PfB9fw+f+9PG0e8cCNZYaHOYFIMNCAgAwnHPTiBXJ4u56SOMRItkZAnffLNYnEwQJ4xMSrW4jmrnBCA/gRwQP8JsLhiIh3/ecWVAU18uRTSyLYmrOqLAxGxIXNIYxwIHhGT7v5t+md//kLgZ8gC2RsDGEn4Gnkbo5En5mgWEiPCDj4gyIqonD4WYsuoAQN6PshsaC0CCjKArNMuT+6AvBMW7O+EaKRbJheKlcKduP6BBhctznZ9w2qhhC1CDz/LGPfYxr5UgOzaZNm2h2dpZucYtbcO7NM57xDFZKQ14OwtUgFQ3mB3bLW96SHvjAB9LTnvY0ZnYgIQ1m6AlPeMIBUVaD1SBnHS0rhCy//kc6pr2SKlLBl1iyvqzC22h7WY5rGYfZlyTPIQ4Vw8Yyld48zbh9KurjOIINZcLUxg2xq1Kbxe27r95J1vpx+qSdpiy1tiLb32IOuWzlZDi9FDvrK2bpSzjXNXKynsMylsXi+I4t5+Au87Wlc5uyavH42Joi6zlFNkXsID6u1GnJ6K981vVvMJZPPPyb/PcHrj+HPrrD1HMA4Lnz5su4b1ubi7Hzjv0gRCHHMqpxxUxNWWEAbVUAzjiGNrggbMVipL7QwGTsE4W0OO/GghYZIr7mKscMYKYXmKKfUlQ0q6DqM075Gv39pfek9152Dj3nZiZsDblULzzzs/T2i+850tdwps/1cgBueKIxNBLs3YhoeaXN8tADqImxnLAJTWstG8ZkZhekppMk+1h+WcLArKWuvCv7bJelfru3inW4OacF/RCcIj6/MB62rs3S0SanRhTXuDkWGzBs07CZVhLjsC0wKqkaOolEtAE+ltGIa9nY34iHU/a/F92aWTKAjbBj31VgT8CMyPkJkxOfpy7wGcu9GZECu97UwhEWBkyPfG9btba+YYxwjTg3R4ehsZCAXPCk3g4vlGKgirkxeT44plkWh8ZhseQu1ZYySEPDRClN7D3veQ895SlPoVarRZ/61KfoxS9+MT30oQ/lAp8APe973/tYIlrs3//93xnYnHvuucz6PPrRj6a3vOUtdKCsBjlTNBO6k7ZxQ1x8Erplti/bdnYyecEXuX2rV8n1yLNp1MFxHcFxw9fG7UtZgOOz9cjj2R8y265VEQXQ+0xy/csqnJV9/sqIKGiJ7fUAaG5CeDYzm59TM5ovls2g5Mkkp+ovxQ5sAjBGJxz8DHSZ8apy32bniSVARRgC7Uw/Yvv36aM77kj9YYMwkb9nMEubuPLi6JhpeW4fwJF8HPe8yjImk87UljWfyECpelpOyFrWPjq/Jq2allbhM2FpjST8LTDgKxZEiFUDB/SHp36Ff8u6doCgwoga4ZBeeIvPsuQ07JXfeii9+pyP0Su/9zB2yofWEX/mT59Eb7v1++m9Z72HnvKdp1JvtclO9HCARHyiAXQShkrBDH6yLfoZJ77LLa9YGpAM8UgyYIhXOWoDiUkuDfv3kpQf7zRKdIBx4gKg9odV3SwIMupllj2xxUQlWV9kkw3XIoyFkU6WIp3CnhigIwcd7bPUAA0bQxpyKJlRt0vlHsUnosCPs47bsWyMd3z0fgAlujtroQEwfHFsW8ivse2xZLZtk08FwEuIIw7PCxJAk3FtDlbjXMEJfaOq+0cl6uqcdtpp9OEPfzh3GyipHajCnz6rQc46W74gwGjITnY75Z/QMqzBNB3rcWWzJwEVo2F+adBVVBtGt6VfguspHjDO+ZdR+trfoMaV/M4z37XwSXNn5V/pdsqxmeUV33z7jrNtAnyCiXK48sbSZWSypLSTbVxJ7OzEdf15kFnQNWGVwNxUEg1QDIBvedYEg2ZtivLF+LdVnNP7a+U5MDWXrh2R2ndDuEobwpVkO5uon8hiF+SLjfGu2B/gZhrMf7yd5FxRxLk1ABxgVlBnCOOGY7VDMCcNUzPHTt+bgrYDGqBWlkyOgVlSdaBikGSXC6iBaWU/jPPysE1PP+3rtAcFcOy9+Wdnf4oBz4vu8Bl600/PpWbDtPtPt/kXvr/+8KdPZIDTvmImDuGC1DQXBV1AvR3Lekh3XIEBMQt6gi5RA2AIks9WylkLCMShZybliQEKi8nZnBudosKOu2WQZHtpowEGp2FlsGcMgwO2ptFNwBhCvCTJnnNTVOI/KdbGFNG0NW74XCzQsYjChIclFiKnqTmM3zlB0KfhIDQhY7ZoaFwT0O4f586AveGcGivjrEAP4FcsBmDzihi4IFxNgTwBZHxufE6mndgHtwwO/xLAJsdoRNx/3mwQ0ADFXi0LFAO9QwDsHIhwtRur1SBnylZldtoFO1XquKy301vUlwORAzAJC+DW4ZG/fe1WtSInbBoJ5lXNl4Bedd8yQLFqOFWWMts0BR3WKwTOx64WCYlkKRtWCekrCjnzPavTYEjdvkpYmgvwsvrhhubp8ygCOL724v4ohiAtL519znCyP7zjTDpt/rrUuM+FXW4LssoISzOOeaJk58ozj2Oyf3l1s8mOl2ajTHHgSoBaja8b5ib1pLhdkTK3YIRD/GzxXzGMKbJxUFw1Pj8nVwfXRkAPAM+aLdKqxTmyyhT83cX3oaWlDs3Pr1Gn1adev8EOuOzbGzYoWmyxFDPq6qCA6Nx1Ec1d26fVrU1aOirg2jMYDiT/sx8cKeYEwEQBAmZ9hkTN1Yg6uyMatgKWZu7PBiz1HN9aVo1sgBCzgKi1ZMUF5hJGJ2aLbNQV33oWSHAT6E8voIEFBsgjwrEEk/BnMCwxS5MGTRwOFosooLptQNS0ggCaTgqIPv/zmzOQOPfUS6jZGsRgcTAImc0xbExyDfu9RpynA5P2ROaZgYkbRh7n4+iGLMBR+4OtETPjaRkey+bEdI3sp3JyOfSuOeT+DPpGHjwe07Zst/8jHWo7cFaDnHWQkM764s8K6fHl6WR9nrZlgZkRmdiMkLC0AzZ63kX9LmKy8sBWXoiUdtRdh7s9Mqs9qVOxvoAvK8lczs3nME8CdKuwR3Eok7I8x1fWg2nQ2/iYBhdsaWA0rXCxSa6du28e0PEqdVWcKMiT6k6PTRJON/ocl0v8HxE5yahbZfbPbr+oCK1vvGQGMk5Id47rig4k9V/Sy7H0v3acRX0ushrxz2VLh5l1wZBzcubDNf4sdV5kv6TGy+QAp0he2t1+GqB/EpEB3/hyDRtnZhisDpgzgBywOPi8obGSEgyA6Wed22OWzIhW4MoMohZ/NsdKs4+472QspN1O0KN3XXo36vYatLx3hhrtIb3p9P+kF174GHrj7T/E+4H1AcDa+/MtNLPb1G4RwQHzE1FjDQ5/YAqIiorZwDAlszuG1JsPDHhRMegACAArg3ZAzZWI5q7pUWNtQL2FJi0e02KhAM0G4bi9BSNXzSDJFvzk88OtJ+SCAkexNLQqRAoANewMKVwNOWcHJmAgVsW3oInbWAV7AfW4NDgx7IrJY4mPifo2jSF//twlt6D73fxi+vrVRlkL2wprg1BAztUJImp3+tQD0EGB1taA2TLpf3yCKh9H58TIdix6AODHNYAs0mMFN1eCTkXWoa82LC/evhfycs7pGQTU77fM8UQFTkQTGFjimu/fPNADVwy0ZnJgNchZZ6s6i1bkSOyvUCrX3CTo4loifnZK1lU9blWVOjENAHwOeapPwYHLaali0y5WWeXeqhICWfba+8GxYgsCf9hT2bC0vNyTMuGJ44C47PusuJ9Z2+cpJw5K5uxMk+VyWbm8e6WMyl66CGZYia0yTr0TqhgM6THbv8O/P3LDmbzsThsvYyf587tMnQfZHmFWAnTy8nDKWhY40rV1suSopw1wqobgurk48lsYHggZSB8NoxNRC3DHykwj7AzngpA2nRMV/63D10Q5LzLAh1k1D4tj3nkGaP3z5XfhZb938/PpXy87m156i0/TvuEMveIWn7CFSof0jK+fR+EuxJMZhTKEjXHwXIeouymgPSe1mZFp7xE5aXO+HGLWRZHQgFa3omCmWS7MCysbA7SgMOd8SP2ZFs1dG9DMdSava+8JLQYk7Jjr2jdcjNLk2IjgAMCTqEFjCIxyWpK3w4yPDYfDAmw/3DCIw7uCYcRMj6ivyRUGKAr7ptgnipxym6gpBCZDwFfMgtjPGF/IN3NIXUD9QcMIOdh1cT4e1O2sIaSt2RgYsbMwYnZnsKYQYRzulv4dMzYsYw3AJe1bmWvXBLylVFTjs7UFPk2/eFxYYtp8jlk5bLPcGK0fdJAaFymetBjoQe7H7C+rQc4UbT1CuMZJ6K7aftm21wNgjRta4zrmZVWhytg0io2Oc7wyx1yvMMGR2fIpnLvOdyrTni/cKe3kZyfSFzmGeUICcux8EFHspGedR1mbRJ48Kyyu6Pkqk+uSta5MgeGsfYvea8UqdQpAOblHLtCBPWrbd+mjN5zBRT/hYD9464/pUztva9piRqlBragf18qZxHwARwNtDXR82xxIy6tDxGNpbxcdxibqcybTJp+tkjYw3rH6G+fiQHggSB8nMEDHMH4mv+pfrzibneUnnvQd3hZhVSJbDXv+/z2Wom5IrRtMPR/M5A/BfIDZ4Ho0EddlCVdCzm+JQYc9HTAtUC7j0jI2sd/kvyS5N4LFAY6wbW++Ravbmrwv2CEGIfNEA3hXFqhA7CBWVQMowfEkkkqFrQmTYy8GK6hpACZFSQFiONfH9kuAk8nXSZTX4lA1HliiqDNMqY/hb+SwYGwazQGDlbVBk555q6/RP15yFxoOQwNOcEy8x+3jAQU7fBcBAEEMAj+sioZzj/Nz7C/Pd1a8LFAgBGFpnHyjdrZhgsIGCbOk2+SgUrA5Ioyg3z2ymTBFvKp2/m9KVoOcg9DGVT6btmWFj2F5GTahSAEpi6XR+5ZxdnxhQ77jZn0+0LMg4xzLV5dmEqs821tYD6V8e96QpRKgZRIltXEYxbx1eSGnZWwaghc+1mdSBng0dyrJdygThibviirAS7M4Zua/OPnfBTq672KP3mYc41Vq09Kwwc7xTNClBhw2JM9bBa9pm75Xdeiar4/TOFbqszN2hfmDTj2brHa4LUdGWsyEsDUZ/Mi+PpbOAJy+EStQx8bEPl8Hzjs3UuBrso318v/jF2fyNn91i4/QzsECr+Nio1bFazALp9ueJ6tsGTYFAGP2NyEzOJzYb+vQABzgdu5DtE2LCNgfYUpixsSCnd5Got4mouWjkEui1NkExEihTyt6INvEYEkzK+qw/Fv6IWCBiQ8MDnKBADIAdCA+QBSg/g9ybqSvEAdggGVD0+QxkoKg6tl91Vkfp6t7W+matU20NmzSNiQQCYNj3/UCKvpKDALha1zLRrXVbAPBmeMPpCgn41UlNJASEXDknaGYhu1EocECQAY4VmAAACvFEjH4wt1gQ9P07X1gAl8mNpMnONm7YdJiojcWq0dhijaOsyk5FfKT5Cyk/x43Ib7KNtoxygNavr6W6V+ZcKYybbg/0zKZNdyfAEfGOm/MtU0z92a9rew5+a6jCbfKLqqZtX2Ve6PsuJdhz9zwyar3ZdH2+pkrawJIssbQfffoY/iU2brW4ZR93WcmmXVPT1xUec5jB9itl5OjFAQnWnJu9E8WCwjH+ou7b0ndIcKpRHBgfQBOnk0L4Mj4uHlEGphkTSZVOYbP5FhgYxCqBgPAAVjRoW5xGJpqh8Ge/SzXHftyTR1b50irKgLEgDFwnwOEGcahhu0BNed71Dxyhf7yfh+i9mErFGzq0mCjFZRYCViAALVxenNWprltGRxEMzFYsGFmtkioBhkCVISNiYGDZmRs6JlhhZLilHEbarv4ByxL04AXCVGLc+pV+9IHZnlERMDWn5H+Sh4PFzxlyWVbI0eU2IAFmfUwJ/aaHz+ELtx3NP1iaRv9ankzL5sL1+h5t/oih7CJxYpq8ckYiWm9nCW8LXARNTdsowEOq6BJno1VSJPPoowmoIbV0qzwgYTFYX9mkizoMfLRho2KQ9u4w/Lb1tiRsLuDPyXHhHFO4ae2msmZqvkckaryytp5mHxmtzgUJQvYZO1bVjp4UptWeN44Cmx5MsbTBhVVw4X0zPi0+iLAtWybehyguCWzw2XYiLwx9IHgcZiZce8d3/0fFz49gCGM7nKfEAWzGQpg+HKbyr6DfKFo+UppaRarao4TL5PcjAlUyVyTPB3df4yHJLDff+tPSxf6nCQPp2poZVUTpgQ5MHE9mVgJT+U8FbDmyXlIvo3Oixt9DkVpTRTWONSPgQxYPnscD4MDkQLNtgkAGqq29H2ObT50pSng+sxTvkrvuvzu8f23ezgXt/XGS+9PrzjjE/ExcW1brQG9/o4fpud+5YkMCgazRGtbjePPfQJBZBP8WQgArICNbxF2J+UrxvVo7A8rlSVtyPYAONwmQuIQxqXbELXylGCAFQKQtgBQ8HvN7MttWCAEsQQoqjFwYSBhQtfkEsUKa5y3I0ANzA4YnSSMTfAW8my+dfUJ1GoO6OStN9ANvXk6qr2bxxjLeJyGcJrNVdQ5PGBB+b0zsIC0NaTBMIxD1hjgSL0dsC1WEjpeZ5k5yFBjseT8MENjwY85noAjA24aADVBRN1uk/dtAFAOwOU0QCU64W7M8dgaQRwrWdtNyOpwtXW2PMdiEodpUqerKMQrr/2qAGe98onyjlfURzfcJiuEpkq+zMGSr1RkeWFGZffTM/6+vCi33SwJ2EnG1DisxiFKL89WfJs0FLQs0C0bJlYErN0+ot3cOlC21pPeJ+s4vuPlAZysfdyxzXKgM/NvnBlH2U7C0CTPQ1S+qpgOZRNnmIFNYGq+TFeIQWo+VamNNB0JdRfowDPmZQWCDUX3amb4mmoH9XIwltIPERCQWkNpVi5gkImteaz0JBJF1LXszQhjbY/1zsvuTs845WsxkAPrA7AFlucFp37Whskh42dIf/qtR9Ow36Dnfv0JnCuC2jP8fLSJ+huGBiBANXA5pNCCCREHgIKZAQgBgx8BHS5jE7M8os7GG5htAZY4HA6+vER52TbilBQ7tMK4pExkpU0tzqQ4qbU4B4XBC44hIWo2TE0dz2uCsCzDASDxyz2b6ajZvXwNNjeW6bW3+hi97MKHG1GCKKAmgJW9NhKmNhw0eD2Hmdl8GTAww0HT4EDL9jDAkdA13i+0jI0AJ2KlNggYmPaTsDbD9Fj2BmCIdb1N6BrYI7SB8L0B5wQhPwc3mypSiv24dtChAXKqMuBZbdRWg5ypmoRrFDlx00gez2p3nNobVa3sbG2Wk57Hbk0jjyEPHGjZZW099Q0zCRuXNf7jskDTZMyKwE0RcB636GueI581LmXAiJaZ9m1XVt2t6vXOe76n8cWS9Vyk1MTy+qZWuUDevc+F/dFOtsteusurnGMWayNgxWVwhBnIyrfRSl3uMp+5AAcmSmubGyb3YBLz5QKVNR8g0ssqAyY1JgwOhV0pyG+Se8v3PhWAMzLuSjyA5aUpoOXhLBdWnQvWaDnqJBMRai4V5yN1dQAxWYmNBbb6fB+0qR8rsOn78LyTvmXOywFy/3DFPemPT/l8vJ3kAb30+4/k0KfObI9Wl9sU7mtQa9G0t7Z1SLShR8HeFg9HYzXgYpu4lL2NJqwLh24um+XM6Mhp6/CyhgoNwzZaCGCQABOjmmZDq2zYlMEXIq1mmRUbfobfAVTThC2y0tVS1DMufgmQA0cefQMws8s1I2QugmWJONTOsEBG2Uzdu40hszbo8/VrC/Sr9hZaa7W4XajXve6SBxowIaFi6r0QgNEbGKZnCEDHgMYAD+6PgCL0A8e3RUJFSMC0kYAmqLaZsLekCChYH2GFpH0s14ALP5ATB3CGLDWvsXSVYbdMyNtBHOEd2zTCzepwNWM1k7MOpp2k/Vk0s4oTXcZhLVJI0uabsa3q8JVx6H1hdlnHH3fmvOw4jjPe2iZNCi+yPGCVGzJmV1UFZS6rU+Y6lJEWzjqWO6HgMgjjMmEybpNIda+XEmGWFbGQvnUAPFngRttUhC2Uk6xn9/MATpn2isynYvbgLT86oEpmWblCecuqmITeSfhXHLqmAE5eGJvcZ8LGuGyOW8cI1lV5OFg2Q11ajdrxOAv4kMKfUidHPssxOkyfmNwcgCCeyIAodBTQ+664E7M4YixTPWjQi778OGpvWmNH/TW3+xg7d61Wn2WQ11ZaRDvbFHYNI9NYIersCmnxRCTjGAYDjAvLM3ciGs4aZTewO8jfMXktiTJazOBwqFtEDTA9Xa0QZk1CxmxtlhGT8DQLQHTejgCeIdbNDA0gsU69JPDz/gALa4hlswVBbQdGAJX0WcBOfKMYFAVVtXarz6FnsNVBky7YezQdM4eQtYRl4YLACphoYYLIMj0Mi8GmMBAxhUQFsHCftOiADIUCODg/FiyIT8AqubGKnn0vD/BjpOk4LI5zgwwjxMDKJvnwOEgik6q1c6iKEdQ2ntUgZx3tYE4Kz5u1zWI7ikIevOEOGbPCPsuaeferbwWl6t9M87q45zJJ2NW0Z/zLhprpkKc8yWT+XcLB17S6CzTzQsTKjFfWfaZraJjtcmRvK4SL+SYniu5fd/9pgpus8czbVq6tu0xYHPl7NWqmmJm8UEPfscqGnmkQI06wT/WnCOBkSRO74VA+0/uhHSkAuh5WVsq8TDHbcYGYjJWcty/ML0twRv/m/D+PHLebk8OharY5uRY4NpTrcA7yWxvnywSmPhHaWVXiBCacUDNGhrHttPoMpmColYOQpX37Zumfzn03/eF3n8RMxMt/9HDDKgxCGuxsM1hpdgMOP+vPmMKeXFhzI+gXotCGR0UsyWxAA1TKmksBNVZtuJj43FYxTQzb6ZA0ZoMoraqWhJIJo5DkxbikGheuBHCR5WBpVtHJpBxMEudmFkTtIUUtw/pYTGPAi3zQ7yx8lDoxdgd8jsPH1KROOxywMMd13Y38+X7H/Yxmwy6d0NlBG8JVvkYXrBxH13c3UKfRp89ffTMLVIw4BBigldU29bsNBiBJH6x8taikCQsD8IT7oonQQxMSN8KS21wfk9sjIXaGyRowcxQwe4cfXt0Nk7FgtTl77sKEHcTGNZ0mDlerDVaDnNpGrAoYcWcE83J7xgEXZRXHfIII4zrX+9OyFOfGyeWQ/fW+LnCVtqcVr5sln+z+Pe1rwLU1PI6ib9zKhFdm2TghoOtxj2Wdl7su637Kui5ZEwhl++AzH4jJq7+Sep+oMLb1MB+zMy0bJxdnPfpl+mHEFHQ+U+r4HuW1QvbULerpAUg4XiNLPjveX56TREpa2By0DRbHNxZPPM5IgL/3ijtTKxzyT7hxOXaU17pNBjiSyN7YtkbDjSENVpoUrIYUtANma/pHdKk122dGoQ+mZy2Mj8Z+MCSluxYfqLo4EgIW18xBCBnWN60im030R+6J5Oig7osBJ8m2JKyNqH1ZBoPZD1ZBk4KWNryMqaVkHOJ8GwEtABW2LTmW2VAjn7RJ3gz3y4aFnbLlBrpi91a+X5b7LWZ0dnXnaKG5Rp2wT512j/YNZmn3YM5OmjRocdCma1Y3JqGvACLqnBqtQRxehr6ECMWzks9BnJBkcZfIVPcbvC+DHcsYcR0eWy9p1AzQQd5VXKxUgTxznonSQoCYuoPc6nC16VkNcqZo+zM0rUgJrYyznJej4Uvmdo9b5rM+VtGseF7+UlEOUrw+2D+gZtJ2pyGn7euLbldfR1coYNqMQ5kE52mp1ImDKJLRZfunVeRgZfowrix8FREHn+nxKxJN0MvLhpj6pJ6zwIU4tQ07cz/Srif0zAdushgcfZyqNg4Ycpkd/du3zTTMZXB0SJnv+JOG0xnp8OS4un0f6DH72HBClaPjMjpaGlqubZqtS9r2nQMmJ1Y59ClUbJBfVU8YKEhTQ9xA3mdwouGA4/czTvs6Pf8nj7PhSBHNtbux7PEfnvZV+ruL7k392T6vM4VDI571hyM9QIK7OOTdkJqLYHGUdHQsCmDBiZxjPynaie3A5Mj6GAD5HkMTHcYMjeTbMMMDgIOQK4jTsRS0fJcZJx+fkaOTyt1hpTDbrhxrZkABcmtmAEhMeODKaov6q0gKsiyKMDfATS2T5zLT7hn2hYjudOQv6NrVjcm1iALa25sxbQ1aJgLAPqe7e3O02JuhPuePmHA6aQdgB3/3u62kxo0SJpAwtlAKfKrwN4QaiogBn55ldvj0bU5PXHBUgKINJYwfW0SstUHxJMIKAnQgRlHbTcdqkHOIqKnlmTtTjXoWeaEQReDGN/s/DZleH6tT5OxVFW442Jia9bKy+SKyXVlQk5drVdaKZoTLXqOskBpxFKv2zR2vos8+IF12IkP2G2fioyoA1uPtmxRIgxnjkLiz93lgIXFaHUfcOqFZRefy2JsqlhXa5Qthq8IEZTEnmgEpMhesTBqiJttNy4TV0e1KGItPOlvArFtaYESN0wkTjCcSUixPclzf9UDIk8h5syIbQtM4XG2QEkkw7BDuswa95/I7U2/YiGuuvO2iexoHGA62TUzv9RsMaGDPveWXGCC97Sf3IsYmUHdbbVKEGX8wOAhP6xpgYUvtsBnwYT/IJRMCxjI4g04iO23yaux2glFsqFuczyMhanH9m4BzhLAD5wN1Iu6LFBJlaWiwQoqV4GPH7EySP8nreiGH3XURzgX2ozGkTqdvwrsscIpzX6B+ZkO8JBcH+U17erPxGHDIIyvlBTHY2dufMdLSwYBmG106cmYv/WzfYbZtM0iQm5ZjtTp9KxJg+su5PRbcyFjpdyRAGYQHZBi970/NTgnAEQCpxj9lcZgfHRJWVBusbBu11SBnv1hVhmLcWTtdFDFrNjjP3BcKaqAkxzh4GJEbI5AZFzxOyhgU9aesCEDe52nJnCfLswFO1nOl7+WiY7n9r8J4+o69HqaPEc98K5U0l6mpyrZl2Yjcc24ejV9+uGzbKVU1h5nQ22hHvewXezJmo8CjLMDR2/tU0sqa24dpyUpzGwwWso+r4/YF9HAdG8vouPdIDGijYqCTTEakVeIAbpaHHT4Oingahy4d7sZg1dbOkb7iWXvqyefTuy69m8nZACMzMLPyXDsFSevI2UDCeys5s3+48B70jNt8jd7xk7ub48/0qbvUYvDBoVNtIxcd9g3QkXo3yN+xJ2ZMQs4kTK1B1F9IQs9SKmwW9DA2QdumhBCx/88hcYncs4is8Q/6wvlB9nhowwoE8Pgg1E36I4VIMUQAWFI8szWI2REGJBboMNgRBmkY0Py8EWsQ4LPQMrlqM42enYhMch9ddnpx0KGlfodWBy3a2FqjneFcfP3QX2wLsMn7YawgFgBQ18TxTOhZ01VfA9smymr2HaYV2PrdphE14AZtRyTfRn1maW38pHJvzHjzJsKUHcSGDKVJw1dNllNtNZNzCIa15TucyRdmFsDJkznOC33TbY0LerKEDva3VQF/662Cpq3KMaqMW9m8lDwxgrxcjSIltemA+fFya/Ket0muaZ6M8zjsT17f5Nyzc2vSDI1rZXNvXKGAslLNWZbF8lQBWqm8jpJsSFWgUrbdMla2HR84mralmJUCoK9zeVy56TjcUybQ1DrJp4m3VYU95dJqhg0haj1mayA7baSmRUrad81cZghhUMNhgwENnHWENzFYUeFQK2steuMF96Vn3for9MxbfdUAOFtTBcnwnLfDOMqABkCCPkKsArAMloVRYVAxE2MLdTIgQTRUR0QFjMAA5KitQFzMyECFLRYeQLgYGKsWEes1cEK8qsFj+wNRAxNqFdFwhijqWECg+pFQRiZ8TYqSsujCIKIwimgQDunozXsYUPzi+m18/nDyWa2Ma8tEdOrmG1hFrWmvUcze2PdYf9jgkDSjyNjg8MG5Ro82Nld5+6tWttCJm3bx35fv2WrC0SQlyHaYwRQqxEpejA0f5Os7NLk8wgBxXpXkDdn+mPBCS4kJ5sP1Rigf50AZBoxD+6zaXNTBQNuEH1snJ2gOqRkXNKrtpmA1yJmy+Zz4snklZWx01rz6DGJef4ocDt8sfRUnLk+hqig0bdz8CHf//QlaJrFxwEEeUJ0sAd98a5URFtA2iZPv3htVxRjGEVqYFmPphmaWHYMyINOtbaNr38BSs+s5jm2eElr8OSoPWPKsTMhdyqmGU1UiFEzW+7YdZya0ai5OlWOUUVMTQOdjQCa1MsVUdXibrk6ZFBZVid3KXKCDcUQtG1d0IG6PATQKiRq2T6SkdWibACUNcGH7lmcYvMDed/mdqG/Ds55wyvcYLHXCHv/G8aVoKNp+0W0/y+psf/ONBxHByV/oGSnixSaF3ZDr6Gg2JmZyJPRMXWpmZ3pEzRUDUriAaMfIUDOAsmwQb8tsQyJWANCDz3inMmkhuTnCNEA+GtgPbcBx7+MYRikssDV8+GsBYV0xPQGAZ4AOszgADizl3KTf7N7Ey25z9G/4PfSjq4+m+bk1utnWHfwZzA1Cz8B263dMP2rQ2qAZg5Em6CibFL/Yb9K+vsnVAZsj31PHb9xNV+/dZL5rmFlLbhdmZKzoQLNpZMFN+JoVfrCh8lGYMDN8Hva6szgDg0+bk4NwO7BeqClk2Znh3ICaW9ZoptOjfbvnKNzdNNdnfkitBeRrRTRcPfhBTh2uNj075IL23v72t9OJJ55IMzMzdM4559C3v/3tzG3f+973UgB1E/WD/bThxfCKV7yCjjrqKJqdnaX73ve+9POf/3wqfS2jKDZtFsOEIKRDCPL6NSmrpGuKFFlZB1vygnxOa9X+St8mS3SfbqJ+kenzLHvOvu3ckLNxzyHJ98hX8srqV5mx19fcd/2LxiAP4OwP8Ye8fpUdgzLjmQpTs/e1fCH6vhiz2Be93LiA/u1k3bQBTpVwSHZUCwACzzxnTAB9+IazMvql35OTszhlgEmVHJ5pmdQmgrn3il+AIKwMiPV2qG+DH7cPch8tDTucJ4NwNSxBXs5a1OLfuq/SF82KgkmQ8CXY4kqHZYdR52Uu7DLA4fydKGB56uVhm177wwfTa370kFh+ujHb56KRSLyHzHBjJaTQMjBS7BOGCX/O07HCA1IAFMZdgPPM4WSJslpcD2aoC4VaZ3yQDqViBofr7ECuOqBwDSDL1n9BM1ZpjdXUOH4uYJW4EEpxyCPCZ4R/tYYUtAf8N/aBSf0Y2AnbdtKJ23YyUwU747ir6TaHXUPtRp8BDhiZba0lBjpgaPAzi5+wx/LQ7kQhnlUJZROAkyrn4BQcxo8lxFKhaea3+RusEhg6AVRiDIIGAc3OdGOQZFbY35YdA3AczgyJZgfMUoEdEiU8hACGHVPodKhFCw5i037LJD+1HWJMzgc/+EF6/vOfT+94xzsY4Lz5zW+mBzzgAXTJJZfQ4Ycf7t1n48aNvF4MQEfb3/zN39Bb3vIWet/73kcnnXQSvfzlL+c2L7zwwhFANK5lqYqNk4Dtmr+YXLX8Gz37XxTHX9TWJCxQXu7DNO1gZnD0GLgJ5XlhhnqfKiIDPkffbcN8qRmQg5+B2mV0u2wm07e971zHNd+5VGHtyoZiZk0QZB0D7blsZdl9Zf+sa+8me7vOp1bD8p6Lku9dDysKnzMz9X4TR9kFDlXByaO3Genh9QQTrriA9DEr32d/hKqN9LGCep2bA1XEcC1H7Xg7OX9hZUz9m4D2DWfT92KQhESaPH9zHwLIwABKjFMNT9WEVv37lWfS9g1LcRNgdLC9UU5M8lG1/cltP8dtAPBw23iX9kPqL3aoubdh5JpVkc+UZLTgFsu4xDk3UvtGDQszMGYYjAw0wI1yxvlXj6gBZgZsRTOi/kZz97PgAIdWGdU0lpJmFsfuFyuuCeiRg9qOQaSAQ8KsgpqtR3OXE67gUDMYwtFaIUYiYkADcIOcqIUG6t6YfmCMlgedmEVr2twb2DAGNwlIR5vgy/DbABqT4wMwA+DiOpjsfAOcqdeCBjZc78buL+IJIq89v2Byhrr9Bq0tto14BHKQIG6A4zUimpntssIebKVp+s0MmFXl41yuWl3tJmWHFMh505veRE972tPoqU99Kn8G2PnkJz9J7373u+nFL36xdx+AmiOPPNK7DiwOgNLLXvYyevjDH87L/uVf/oWOOOII+uhHP0pPeMITxupn2VyTSWZ4y6hgVWE9smL2qzqfPkczK1ynqox01vobi/nGo0y+i952RAUpJ6HeV+PG93e8b4QvMcTPIza7+N72mQYd7vGLQIZ+XsrcE277ZawKqNf3dRWW0tfPvP74lNJGwlQt0HEBi5b+9fZnyqzBOOFSiUS1FAvND8kdadcDetwQp2mzI1n1bbS8uRzbVwOH815KihDsbzDk9gfmQlF934CVEdPnCWYG4MYAjE4McCA8kDqGLQDqLtPHR1s4JkLTtP3LFefQeSd9y+TcqOdSX3cAmz2DOXr3T+4S72dYAcMABAArIEHWkkKcKgosFhrg5lXYGjMxct5NW/yTV1hBgYEJG0s98oopMuyOAKxI1c+xLI6wRgBhGuAwcySMjVmBaDYhz+520uUMNmDIpxFws7m1woAG914rRDFWc03XwHhRm99DYMK2Nhd5/DBu+FkLm9yOUVsz44zPYmg/YQ/sxATH8yHPRnKlpB5PIiQwouoKyemBGUSAIHxutQbUbJh+xkVEBxCWQMHR5B5Em43mgFm92CJbLBUgKVZ4U0prB7G5ETnjtlHbIRSu1u126Xvf+x6Hk4mFYcifzz///Mz9FhcX6YQTTqDjjjuOgcxPf/rTeN0VV1xB11xzTarNTZs2MUuU1+ba2hrt3bs39eNztsaRRy5riJ/Fz0ww4N9G1nE4EuojzqT7U9a8yckla3Fkgb48OjUrVEv6PE7I2qFsejzdUC5cb7mebUdxTFiMIjbDrYnh/u32BeAGM3k+tkf3s+x5ZfUpTz3NF5qWl8uyXlYlzybvx2f6OshxXIAj510mfluHna0Xa+NaKn/LATi6z/Kba6Goc9QhVQg9QpgTftLHCEs5B+7yEelkUaUroWrkAyxZ7fm2l88xIItCZi3i8xUWZFrqalMy0zf3XEbHVICaC1zEAFjkB9LR8+Ea/8YP59QEPZoL12gm6MU/Eob25JO+yTP/2A4/Tz3pfP4tEyBwynF8LItZqCCiLc0lLhDKRUKbA2oivAsOMEBO3+TWcN87REg1GfCPkXVm4QDkwljgEUtCiyKaKKjF8s9GCAB5Omg/DjeD4Ze+VeQz2ukMOaeEEHYFwGOT5c1xbTuhtG+BEY7NAMfUornrKZfHYgEcSkYBF/JE6NnGxooZF/u9IQUnAVw04MF1wZjLMjOG8C0AZkJuG3mA7XBAc801DnmLv+MpYBECXCM+Dn5zKBpAjJqQ49C0QVxXByCFc3NwH+D6tvocogZWptMc8E+7Ya4zgyUrtCBiCwYUQWFvGD/DW7ctUmf7CnU2rVED11sA1iEwUVqHq90EmZwdO3bQYDBglkUbPl988cXefW5+85szy3Pb296W9uzZQ294wxvoLne5CwOdY489lgGOtOG2Ket89rrXvY5e9apXjXUe08/BGZ3lnbaD586wFzl3ecCo7Pm7x1gvCeuq5lOaWw+rkktShZUrYobygJDb1iSWF7bm/p3FKE4jxC2vX77+ld1nnGMWMXZwIlfjEJ70NagadraeQEeHouWZMDdwXyWsCR5n3n7f2Hca3WfjhV5GqExivXbGNcMyCdOTBYqqtJm6HpFO9p/sOo1TYHWkDaWophXWOAzNAYVFKnjYFs4znGhhG3j7FMsjbgnYhj4fByAX3jzu/Scd/+0M0RzjtMMWh60YGAH4QEYa8sV4jlZ+vWCiwvqizGX83uFMRINZCyYU0xLLOTPAAZiwjI+Er1mgIjVtOB3EAiN8MDk5tpMS+uaGncF6IbM/AmxgaIMdeVZaE00I4+Qzc2PzVAyAIzr/yhN5+9se82sGH5taK3FY2lxjLX5nYFzdycceNS1INJ9xnZDntEQdPoawN0nYGrZLy0yzuhsFdOT8Pvrl3s1mGQAZRBGkoKcNRRNmhXN2AHCbg5ipwzkIAEruEUiGm+NxEdFwyAVdEcY20zJFjuReFIVAfBLVvdpumnbIgJxx7M53vjP/iAHg3PKWt6R3vvOd9JrXvGbsdl/ykpdwbpAYmBwwRXkJ0Aci1MobcrSfJI2zztsN0RtXAKFsqNu0bZwQqHGOUZUF8bEuZdopCrkqakePh5t7Itc6Kycnq0++kLv9CXL1+JY5bpmxLgpJ81nWc+MybaamyPrn15QG1CXEDvRnzBx/fvetOcn5nhsu4mVyDnBsOFTJziLH66LqEsna6fYBEy0KoNe7LI3vs9uePlaZ4qI4TzAZXC8mSNeiqWojSmZTADrof9s+D92o5S26ygCGBinRAamDg0u2bzDLLA2WSfhZAqC6NkQqcUmY3eH1A3bYweKxqIHEccWMXyL6IMALoAhskLQHGel3XYL6OkQEtmSxQcP2kGhhQM0ZUxdmsKtDrV2NhHSxYAS1aYStMRLFdr1VRNN5OiSMTi+w0tERDWejRChARVPpUDWAItMIsJ3ZNmZx4NDLOiVnzcDKAh2Tt4LjY6yHtK1thAQWGms01+jGgFLYNWHC5PkBi4pr04qMIt4+6FZ77p3Uc6HYmwSwWlXEgJh5MaDFhKCywADucR06JmOBlCRmchLQg+svBtGE5dV2/A4E0wPmZ3ZhhVmeuE5Oqk3DCvGwDBPBilCHtB2kNg3GfX9+DxzMdsiAnO3bt1Oj0aBrr702tRyfs3JuXGu1WnSHO9yBLr30Uv4s+6ENqKvpNm9/+9tnttPpdPjHNfPQl8uf8Jl2DPNs0lybcROufZbV1yzAoz9PE5TsTwA5TrjfOKBoGo59mWs7DjOU1Y7L9lUBOPp4eblFVfo0ieXlMFUBumXYoTxxAZisM46cA3YqhCStNwhynd7kuP6xMs7/kO69CexMRF/ceytmarR9Y9+p/PsuGy6lu2zIVr7MGoc8R83XPx9oGcc0aCorTR0DHb6+pjynmzdVCOYmrG0Ut+McV4PqlIJWzniZsLUBn8fmxhKDDuTnGFU18x26ubFst4Xs8yAOSXTzq+JZ+pSsfCJyICFyGDGwFnDUJeRqEDVoZbnNTnRzvkuDVsPM8q82aXjDnMnHAXYGoMEOKn+DwQyDjUAhjWQdlvOQyxAoEQNTB8eGuwEkZVwOlokG0LEhaLEJ9nGXW0llLvkYRHSHE6/m8UB+zKb2CgMcKKRhrBgURg0aBiH1ggZPFoDlApvmsmCinCa/mUHLsdEQ/WQygsNpEUJGRi5a7utmA0DHFibVp2rDztgPsulPuLewDIVFWRmNBQaMChvgGoBU3BcU/LR5P+69EvcPstaHAKnDuWwT+jST7n9jsUMG5LTbbTrjjDPoC1/4Aj3iEY/gZcPhkD8/+9nPLtUGwt1+8pOf0IMf/GD+DDU1AB20IaAGrMy3vvUteuYznzlWPyeZdXYdw6Ik/Lw+uFY2lC0vRyCvz2VBRqr9CsOUB5pk2cEoSlCVCeOZrozwLZ9jnHUMX76HL7QReT1VLcmPQp9Hw8qmZXmMlS+srUyfJwFHWblKRcd099efNTtT5tmTyu/uva7ZHG06tEj+nhToZCqmlXCofc6w5F1glv7uGy5hp+wbizeL199z48Xs/ENyeFzzMSvyd5aVBSZlAFFWLR/um30G5ZrIDLY4OgA76bbSwMf9rEHONFgcMcz2a7U1F+zI8ZJ72gAPnO9M0KUuNU2oGiXOtWlraPKxrAABcnTi849zs/ImaZLcm3f+/G7x8ied/F3+/W+Xn82/N2xYYSd4eaXNORq9fW2WYwYAYcIhjjUDODGgwqiomRyYgL1wo5wWh6oxuDHrJaRNLq+N3rKdNGFo1EVImlFR47YF2OC4YHAQWgVABFloW0uVxQViFTUppmkyqgF0HnDLC+mLV9yM7nvyJfwOmUeejDBoWsRBhXP2Bg3aNZyPr1HM5tv8HC0Asq29SL1hg5XXVlgyOkwzqw5bj6GDHT2/l65e3JQCNAJaWs0+rfabMXDRggTSFiuh2dMWmXBeZo+HZWgLLE/KP7C/0R72YdCDMDcUSR0S9ZatBF5tNwk7ZEAODCFiT37yk+nMM8+ks88+m5XRlpaWYrW18847j4455hjOmYG9+tWvpjvd6U506qmn0u7du+n1r389XXnllfQHf/AHsfLa8573PHrta19Lp512WiwhffTRR8dAqqqVDRMqY0Wysz5QlQdefE5uVWcxr69lQEaeYluWCpu0n2cHEuBMwtYUgbmstqeRs1OkxJaVB2P6VuJkSoCLMsvLgr5x+1DFyrZVFuAU5dQZAYL0l7j7jklUyfTserYTvD8Aji/Z3le4+FO7b2dmfIOI7rfxJ/GsP+ychUtT59Nm+XIVoneQWF7tm7LFSQWkumAnYXWUhDZPLMg4RN6cnmmMT5aAg4AKgNEsIOhTj4v7FJl9E7ltSEAPOZE9kZQe0iAwTAJg0qplfVLHCCJOlBfWgSWkbXK7+S4xxxMH+/dONWJCi4MZevcFd+b6MlInB4RP1DCFPWMgAyAiuTPckI0Vc4ZWvpqQspIAoiRHh+uyALigbxKWFrMz1qG3wgHMzdiin1KMB/9JEUyWQ45ZHfP35y69RZzUj3MGwHHHnN8PHPrZ8qr2mYKpBvzvG8xwIVDce+73KhcMZZEA5sGS8LQMY6EAy6yE9kKcsnkHXbpreypfZzR8zZ6PbRvnKc8CN2M3l2sr+TtZuTcMouw2jdYhEK42hTo3B+Ok74GwQwrkPP7xj6frr7+ei3dCGADsy6c//elYOOCXv/wlK66J7dq1iyWnse2WLVuYCfrGN75Bt7rVreJtXvSiFzFQevrTn85A6G53uxu3OUmNnKwZaPlcNvm7bKL/JDYpKCvzILnbmBjejPCVCtXhyx7/ULdJ8j1geaIBPtCi2Zmi48h+WfsUgQGowuVtk8VeSX9EhawsuN8fIX5lGDQX4PhMr0+H6IyGyzU4LMeG5tgaF/G+BQCnDEivMoZZNWAEiH1xzy3jWeAHbfkRfWb36XxeUBgTZ/8uCz/jNiD9i+TnRrBmotSDcnknRaxSEUtTlsXx7SNgJgvUFDE67IDGIT+SgzRaK8hsZ8ZaM1U6zK0M2HHDwiYxyZdxi4Hq48hpA564/fOJFfD5gWFAiBtclsgq8dmwKlYKs8pgTevIYlz+88oz+Ddm++EMv+Oiu1O/3+C/IU0MIYJ+a0iDmSYzLGiExQbiEDELRDh2KglRk1OLkJ+j6+hoBseCHTnfGDwBMIlYAcwWBo2ZHglxQ1FQ2xgAjwlNk/aipB5OGNH9Tr2Y3w+Sf4OJAlwHCdXz3YeutDqYGjPZYEBSb4ixNiFuAi44HC4csNOIMYfCGsCQvmRSk8f3vXzqlh102e7tsYABiw1wXR2lIDm0xY1t4VIOWbO5WSbXB3k25vkGoEEfRHFNLJ4UFnBjx0suB0DawW6RVb6btI3amIH1pWzVVsUQ4gbp6W/99Eha2BCWCrMZJ+Rl3DAZXx98s+Nlw43KJEqPa5MAugMBeIpYtKoOpN4uq0iru11ZkOP2JX0s/74SeuCab3vZVsLY5Jj6fhsnt8bdxgeE88ZjXAbH98xKGGAVAOSCHFdAoKjuS0qOuECow1dTh//OKBaada6+9b570QcmNMiBI6uXg7kx/ZS4/4DO3nAFO1YIVUJOxvmLp9KdFy6l/9t3mqnJETUY9GhJW21VHHkXvFTJl6lieayNC3K0w5kHNKTujLtPlhlJ5n4l5TnZ1uzv3z52OD3j5yqt6XHPc7Z954J1YHJWo/ZIuJopMCrCFUaMYGd/gRYHHfrSr09ztg3Yae72GtQfNKi32jSFJAXM9G0I2UAV3dTgBOCDKRYDQOKoMYAce0tyV+LQNguM7D582pbJMcexx+AcIBOWxkCHt1dshaoNk+TqJEwOil8+4GYmfw3PxpbWMufa8Dl7nktmz2JVNP/Yx/lPAmxsIVcxAShgjFYGKK6q300APaZ9UV/TYaEASFfs2UZHzO+jX+/bGO937MY9/PtX+zbFoWc4fwgLMLBqGAlpFwj5xG1870ds3+01aTAwwKi/r0u/+P3XsOIuisUfjL7k07/yWGov5OdDFVl3sUfvuueHDsrz3J92SDE5B7vlgRsxmXmo2mZZKzvDrB2WLAfmQFgRk1MU0nYggE5ZYFjV+dZfEtpGawf5wYiv/aL7wwoEKRZxtO2iUDW9PbfJlc3lSyj9nFTJH8tjNsuCqKrMThZ4co8j4yTPU5m+JeuzHVt3XZUaRD7TOTpVrGoopjjCOm9D8om4H6htgplYatBveputXO0a/XJtG50+dxVvc9cckYFp2XoAHGk3C+jkKbGlGZn0NQJgaQUJ4DGhXCaPxSfZbJxTo2KWLCuW9fYpp6XapZDanOBvZM1doJNIdCP0ULGRalsf2xfLTytAxkCN+oTAOMnJEoAjbXEOiS1eCcdbQta6A6OoZeSKTV6HFIvs7mubMDIp1skgIyArO5AAEyUnjW0ResVmo8lY94xZGptjI7LQmnnRxUXBvvBJWFDFynMQJoBSWhK+xr9svxnoKICTgBwr6R0MWSYahT7lM1gtHnObO4N3ApboiYI80KPVDTWwia9lgMKhfQot42CuM1jY0XtGrjfq9gDgmPYDOn7jbv77yj1b6IRNuxLGiEPhLNPTMPlCa31cywT8SR4P9mEWB8No1dsk1EuAEoMi5OP0UaH10JjT932PjNNGbTXImbplhQO5DlpV6eQ856woMbuo3aqWBeLKyDpPKqk9CdMzzdyZSULJyoDhLBtVqisGOJqBcLcREOLrtwY6MDkOfucBHXddHrAZh8nxWdk2xwU4ReeJIqmFYZ0ygWu/iJOws+lUtU8U2PxAr4jFkb8nfT7EydVMAJwaLQ/M27EDO6Druhv4c8uGGv1o+QQ6a/7yVG6BNlc2WjvjqaT7jDot6wVsXJuWSpvPmKEJiR1/Xxhb/BlhgGQEA+T6u2ptvpBCPXsveT8iWIHfCC006xIZ6AS4JPkdZr80qDFaaGgzYQ/cnDLNRECUYpXPQaS1EVcm9EkSIrehscpOPMANVLdYBIFZnKQuC54RTljfuEaDfkh9YXXgWENSmg9unWxmWUxYWBQ0KBpGVi3NbobcG/cWFYBjpaEZAwHYCHhBW/3QhLoNJAfI1sJxbxUsl98WNHHYFer9hBELDfB42jAz87f5DcAjYwMRZYY8qn0GPRHAYUC9YZPWhvZ6WhGCWLVOybdjG4kuEOAjFstGh33qclsmX0ceNVkv7ygAHIAbc60DumL3Vto8s0K7V2fNJY4ZLRwrTEDNMGSltU7LMJQSjgYQM5TQNHuepkAowuECA3b41jHg52A3fGdOnpMzte4c0lYzOetoZRyqKjkoWQ5z0cz4OFakZpZnaQc5DeqqKrMVMUyTjt+BsGn2owyDk3c87aib/RI2pyy7p8PUsvo2DqDT+5bJX6nONoxKQpcRFMg7zzxgnxVmN+mMW1aI2jgsTplwtSJGwBfmZGb9h3SvjRezA/21fTdnRwm1cW4x+2tmJX6+cgQDHdTr+M7Syay0JvVjso7hq70Tr8soSLk/rSrQqbK9qTOT1BHShTjFpH4ML1fS1K6KmzY3FC5eb/WPtZAFj78hJUZMj7/+WwNNgKW8+zHOKwITg8KgzEoA7sAZT4Ab2gYTiGUAOFwjJUzuZzjGADu60CRLPzNTI9VAA6NkZgtsxj/YhIGKk9huGRj2390wN2FyuHlT8ybOq7EhbwJwhAnKfH3ZfrAD34joIaf91DQThSwVjTycTY2VOFTNl2OlWZhE4tmMHpgvvufUo2IKexqltZVhOxZ3YOebFdjM+KPcJljZpG2zHXi+kQgADlkzB/mFBThyLJzbvm4iLiHghfsGoQoOLzRjjPA1rcbGbYioAG+fsDhiTIzJ5geHG1DbfrIa5KyDVXFayjroWU7cuEpaWVaGYcprM+s4ZRmcvFAkXz/l7ypAzNeX9ajdU8XK5EW555iVY5Vl3m2sYECc0B1/q6f7huWa0dFfYHn5OT4rA3iqgpYqQgBl1/m2y2Kp8nJtYkUwOLBj3F9FMtNxztWIwtmonHSWQ+kDtFnMn7kfRuuxZOZwBEYi+H923oE/wzG71dyv47AngJpOo0fnbLicvr90Is8+IwcHLEWS05EfcpUKi7N9cQGOAIj9yebo47p5LPr3pIIAvhwMDXx0e2JZssxZwDBRtnPuC+fax0yeyt1Jbc9cTsIaZfUJx+GiiFFoJMZxP7CDbfOM7Lp9kREJYtnkYUiPOu6H9KEr7xDXTUFBSoAcASiddo+d4YGEri23mVmBsaoZ/4F/kqR1A34MuxMrnGHc1xqG3REJaZZ+tusZzBjgBDYBvEzQsPuLYpqYIxEdm4Ab7gfRPU42ioOogaNDz/YMZqk1bPOyrc3FVBga1w6y7AyzXqxSaOrliEHcA2wZM66WpTFad0a1jrcXRhiqekFETcvEauPrZcPYYML46PceAI6ICIjNt7v8e+/ajBGxs8wbJJ8BLmfaBsDh+oK1wTXF3wCruJYyRrEvAEG7Rp+302AnzpE6yM0AygmLgdbCA2w1yNlPNuKcWOq2rIM+7ux/lf2KHP4sJ3vSPma17zuGb9usyvBZ5lt/MKm0VQWm04q9zQtDywJSZcPWqlDnI6xBiTDNcUwfJ+v88sQZcE7dVKhQWulqZEY8VwXOH7Lm3pfFSf/ZIWlGqjd/YqKK8IiPRUm164SOoX7HUr/DeRM4V+TfHN+5gTaEqwxofrh0PMtGM/vATlk5qdckfyObtUnyRPb/NG5Wzor+7MtdKZOno5e59xCDD8t4uPvKtuMwXQxEgrQsuQss8/KOctuV7Z3vAtzXPuYJhUP1eAIMwfF91Ak/pP+68g5JbocFNCgiCTZBQqB4PViAFoqBRpzMD1CCmirasA1vD//ZsjIMfoQBQs6OVXJjYMLiA2gLXIdITyPjx9TIAZmWUkyD6Y8WZMUsTphIH0tSP85Tzl3yayC7jTGRWkO64KeR9UYIWiL8kVwfG/Jmc4al0CpPCoBtk4kW+xvgRfJ/uO34esk+Igyg6unYiaCZZp8BykmbbuDQthtW5tR1H1IAKW/k6ylgKn3Sggw4f1xPXFvcG+428j6KQwUTzYiD3mQyZtI2aqtBzlStCrPBywvuwZSDE0w/5Ml9ybkAoQh8edWWxmCxyoASty8akLkKK4e6ZV3bvHN0r4ULEgrzVCIrx2wVTuHQZzNKxaDFBQRVAE/ZMLmqbI+vvTzmIqvf7niKHLQOF9L3Z9oJ9QOpvNycPGAjoUM+cKPD08YdJw3+Un9XqMNi3nUDeuCmH/P5fW7PbRjg4Hx/tbaFfknb4vGCupru+7iWxSJkbu8pbDnJdmJ5rJFvuWyftc7H7uQBCMl3cbeLZ+hzgE5SxybZRoMPN8dHQtck7skH5mTPEdEBT1iilsc2wgJGXQ6/vUptkREfEGbi8Sd8n/776tvFjrJ21AF0Yuc3jKjfa9CwH9IQYMWCFGFPzEbmxRgvw3dOL4ylnjnsLQYtNhfHFsvhqykgKBTAJL2W8zChaPyXBVO81jJJ7U6P7nrcFbxsZdiKc2hEdIHD9ax8tEiQ414FS6rBoQANMx7m3miFhhnDvlxrKDKMD19Py1SbbdU7j8MkQ871gWqa1HTi952EldmcKBYZUcD9xI07uQ+Qk47vjSCi2ZZhc+KCn3yNzDoJc+MwNLBhSnwA4Ym6SKiPoZTvzVitrrabjNVMzhStSBXKXedzIMqCjGkkCOvjj8MGVOmDHovR5Pl89qWM2tqBUlab9DoUOd4w3X78Ii9gO/JyTHxgaeQ+sLI+WSIaPuffx3RUZXPcHBnfuZW1KnlAPrW0InBj1pUPpcyS/U3GflQqWrMmWYAmVkLKuBfzwtSqXI9xc6mSNtC3Id1v0wUjktYiG10V3JSps1LGygIXcR7Lbj8uc6ST9t22YrATh5imayK5Ag9x3917QJrOuawauI+G/6VzvFLMjg1JE7DpC8vT96QGOGD1DNOgarQosKbHQhcVhZmaSubv1aBFv3vCt/hZ+sDVZyasgFXckpAoZncaQ2YO+muGPQCjA/UyUWcDsyPqZ5LczhFsMUax0l+SY4OUlkgDmERSmlXdLJBisCMhVCo0TV+bVqcfAxxtLOEcDljlzPyYEDaMQVKrKaQ29VK5WObajE5W6OdbirmacMHsaAreZ4h6OvZecJ4LHSLq7ttq2Lpew5C2zS4xw7PSa1PAsYHxV1Ccs8PXwRYVZZDVbzAQYhVHsHAeP8FcHzumPK6HBsphgD9hXyfd/8ZiNchZR4tVjZwwsLy4+iqsxLSBju5jmf3cv/PCfYpCsHzJxVVC1vTnSVTbivZ1w+RchzzPipkJN2HYX+xSAx2zrf/YPsZBziHrmqWWO0An+zpMl81xAVfe+fksS10sry1ff6WfPmCjQXXixEs7Zp0sHy2G28i9pwyj5gcy2jHU4zOa3ZBvVfK5xgU3q9bZNvH3Usne1s7hvADTY+TrAODo8xuHydlfIgNVmJwy5ubm6M9uGFv6t1EQE9AlDn+SoJ/IAPves1qymdep0DbvedtQJ9k2oTnSbI52nEWFTSSn5fxkn9T9HOGeacefhZVJ+s4utxq3MLXMhDgm5yChWgBNTzn+fBa3wDn851VncF4JsmSYLRAlLxSZDBsxWBE2h1XaLHsgBoe70QaLYkGLFTUwiTkqSkPAjKxnQGNQkLQfL1cmQ3vuqZfE5wOZ6GM6u+JQNH0fMoOTCg816yWEDfcE5Bog48yKa0p8QJsGKTK25n1mxlffSwg1wzXtOvlmaMO0a9pqWnYWIW6m7pUBTsdv2MXLdqzO8TKEEJrxTgZD2BoeE7uOFdZ6DWogVC0UoGTZIwamIr1tRHRYBnvQoGZrwIp6hwKbU+fkTM9qkLMOVuQo5zkNJja2vOKSsD95AOpQyi+ZhlUBO1UkrScNh8tnXkZn+d0wQB/Q8bWV78j7++ADrVqMwGUe18Ncx7vonikbHlrm3nNlsouAYl6ujGnPzl470tJeB9k5Zlp6ORwLsGnzwR/f5EPpd06GyEBcnFHlJukZ9yxWAw6wOMMH2lwxhfW2srV0ZJk/BMwCSGEwbP2cONRMhSv5ZndTIWgZzm8V09fSvU+yzldC0/JMAxxfzpYL0kSggJcNiboBwt2IHnPsD+g/r7oj12niY3N+jlHmarX7XKeFC0daxgXKaHiemfmxbbMD3YCMtM3Lic3KR0u+j4SuASRZdsewCrYdnZej8kkAsh5w2kX2PAYMcDY1l2OAIwZFOTOufjGOeGwjgJsmTyhIKFqcy2ZzayAuEOdvOQAKzbOIgO13Vo4ZRAsEeDQQSqfCEPvyvWXHRL7Dts6s0GKvTcv9pPhlir1x7tl2s88skCyPx9pGdJANbcN17StFNggQQHo7svlZtd007OD4ZrmRmAgJZDkieTLKVdSOXGcEco5VnU/t3FQJCxoHrEyDbarKeFWtQ1TG3DZ1vZOq5jqVRUpKRbPUWeygm7uk12W142M0yjrDeSxl2byecRhKX0hVXgjaiDpaTl+KwK/OqTH76AJ7WU7s6Cx4fEwVyiWsjji42jHx7Zt1DH0+MDg6n9h1h9ipuefGi1mdCrPfOiTLB2b0OjhNOpcIDjYcsS/uvTXdZyOkbrFNm3YP5oxM9OqRqbbQ/3M3/rQQ6PgYHrdv05CMzqq5s56AZ1JRBLf4JsZ/aZjOx8m7JzislK9hI2ZDstTaxPh6R0YgIpZ5zjEJXxOLw+0gD2wZKPeYnG/CIUquoEVSx0W35wKz1Pogog3hShz29pQTzufjLg878TMBoYKZVo/W+k1a7bbMOzMcUruFnA/jTGu1LlnGzrhVV9MABiFvYhKWFoMeDk9LQt/OPO6X9N2rjudtsexBp1xoxiAc0mkz1zCYQd+F3cI139BYToX0+UyHFO4bznCRULknXFlpeY+hbg7XF7IiBOgDQsRgADpYhzycZN+A+gycAgY4YG54v2BgC7S2vGFsGAfk67Spz/V1kMNzeS9h8mRsvRLyloEDkIlFGNzvZbtsGOLviFa7TQpDq5B3kJvOnZqkjdpKgpw73vGOlcYKdOHHP/5xOuaYY27SY+zm3IiVkWf2tZF1DLf9sn1zjzfJTP00ZvirOrd5UtDrKUKwHrk/ZcCNj82J/55g/KvcQ3khiVnrx+1PmWNk5YuUATi6LV/7Zc4li5Fz22bnocCJ1+E7Am56qdA2o34UF/7zFrv05+1wroZqC/00xf2MI4C6NXAmUJuGtx026Et7bkW/teUH8fb6XgRwQYjINxZvRsdZhTTMnO8cLNBVa9vY4fnM7tNtoUIT5uI6KxIKI21ngYpUkUhVo2W9TRcczarLM6lNW+1N2jMJ6HD2Qg7XgvH4R+oe0+cit3FkwE68vTbOsTMAKJnxt9JfHM6UJT09Wl8nFVpl+2XAs3FyE6EDbsFRjTPH1PdjHvOUqHslbQDQoxgm7r/lYZud8d8+8btxiNu7L79LnLcDVsckwZvcDxSo5MnMfiMGNSIa4M1zkgKVWs1N5fNIOFbLFrg89/if23OK6PDWXtrcWI6vIYsDWPVBPmcOfxutSZM6f4SpDQ2D444L2hhhdqzKGkJM5Vrg3YGAt36cD2RYFwNyIwYpuN8AfgCEIEqwu5+opsn5jITu2jyb+SZ0KiM6c/sv6dvXn2DeG+EwNZFplNOM8x+ptgRskrNdT0lHG9BzYPJ2xzGo8E0KUmwp2Zu8lQI5P/zhD+kFL3gBLSwsFG6LF8Bf/dVf0dpamla9KVmRJGsVliEr3Gta4V9VhQN8Viamv+g4ZfMwsoDYeoCaKqFsVUFBOhQt33HKU+cqHbJUgUVM9smXiE76V35sytbPKXuMcUBVUZFSN5euevtOiJonxya1vWVsupGpUyEFEuHMAUTwDGkwoIds+lHCZCpn0U3i987Wq1n9D+88k3/zDCsFXHODxyEc0P/uOp02t1Z4ZhaOyqf33JaPzbPIQygx4XgBAyTsg2Kely4fkZKKFYcTydCiAuXWWRGAc/b8ZUqVy28AT/6aKqOsS5a4wziWx06sF+iZlgkzxmpZzmx/DBIlHNXmbuhlmuHRwFvm2Rmw23AwAUYuAPXWwLH5ITABtrhm+I+XBZJv4kQr6HbYqU9yjlzmSe6/RM7anH8ss8zJ+P14nOBMCyMJ8AN7xilfMyGWQUS7+vN0y5lf8X37igsfisQdk5MDSWfBNnC+47yctGyx9o1cw3aPutmP+Bk7/IR9MfDAMwkBgWPbO+NrKOF5PllwzdgICDLXqcGS0vgtIEfeGfIjrI3UIYoZY+7LgAFOx9ba6UR4Fkffj4aNC2itj2Ol3wM6l8cw+FZe2iq6Ik9oX2+Gly012rEgAQzsTnI/mTZkveRSZX2P4V0lktIMioQVcvKrartxW+lwtRe+8IV0+OGHl9r2jW984yR9utFbXoiam2OTtd16WV6YnM/Gdbqzjpt3DM04FDm3vryO3CR7j+nrkCVhPY5VcczzAFC5XJNq10ODmqo1c6qCm2nm9xSNRdnjFwGcPOYmr908Q4K+hGrBxcCs7Vf33CK+fxlABAYIIXW6KIxKHNMsh/NhW39AH73hjDhvCKzN2sAc/2Hbf0DfWjw1ngUVZwnrUcRTgxY4M1Cq0sYOjg1zweH1/SfgJgZjSjlLMwF6VrkIRKw3s6PZHP1bLEtp7WADQXnCLtp8IYp6fLlAa+xAN9Mqb1z+xXnH2m1jNsk66poZxD2tC1uyMyttqjBIX6ibCYPzy2lr51pAfixJ7Zwnji/iCOz0S7vRkLY399Ff/OzBvN1rb/UxeukFj2RwwsUorTIbn2OvyUAnnaNjTMLS0guJHnDSxVw7ShgV9GOhsUbbW4u0obEy0k4M3BxhCVepDkASYyYMDrbnMcaEhfwdh+OazwJ4ePxViKyZtEF+i3lP+N6RGmQifN41ZnFUoVH9XpDQt+6wRXtX52m+1WVws6/bUQVIrQ+ASRYrUADzjbU5llknxx0M/NflYE99mLSN2kqCnCuuuIIOO+yw0uN14YUX0tFHH12Pb0XT+SaT2KThQ1XEAqqGOLl9G/cYZfKIqo5DFRnqcSSry1QuL7O/Li7pD80qcvjTILpqmGAvJXNefvv1AOdFbeYpummwlpV74zJueUU7cycmFNMh7Zok4NFX8Bd23yq+v/AF3QmGnN9iREn8AEcXYuRYevu3hKg1HPlhM1vcZRnaxX6HFpprvOxTO28bMzDoL2aUJXzJFPFM3ytJjkD6/eXNzZLQJgVOvrd0Ep29cHkK6Izk2njks/NU2KalsqbHNytXR3/O2j7PfOpp0zBfHZqRbUr0MSuHBxbn8aTCCR1GzcoBi+obL7PPkDxPkgyvgZjk+ci1BMMi94EAJgnX0u9FzeLwvcGTA0MGUmCAsL0okcn5t8JeLL0t1wOAx5xrQO+98s4x+Hn5RQ9nYPO7p36X73ewLbB3X3pnXt6wEWEIcRu6CfFEdP8TL7Z9N6wC8lfQVzxzM7EE9Br/jT7JmIlins9Mbal0SJ8BN0ktnYYNwxOmRtqV6wu2R8L2kLcjkxnCAOFc8FtychhYuflezjsQ10LkrfkYg87I9jAAGii14fdcsxev29RZpb3dTgqsYHmsSKcYMy1QsNxtce0cgE/ZF597VvguqWd08FqtrrafQc4JJ5xQqdHjjjtu3P7cqMw3++86AFnytPozm1OccRqSxVk2bWc0L/Rsmm1nOf1lxyGr5kmW87qetXny6iXFOQweiekyANndZkQ2usAShqHoHEaP4R53PdXasgBOFeXCIudZQjPYCoYOjgUXNFThaxKK9ZEbzohnQE3ol8xg2u1ManalsCpXbhqA5+M7TRV4HAtFBZEo3B00qBs2aKZhnA04JYu9GdrUXqF9/Rna052lw2b2cXgb9muB0RlI4BIcMQPgOAdEgcbQE5qrnW24d2ctXJ7qbxzy5uQVybmXYW2mIUCQZT6QWbVA6P4wAQSuI6qV1qqG6PmA3kgBT3XN2EFmCGTCpxhEgDVoSGYHJSFjtj1s4xYXxbUUBtOEtpl7w4Dm5LkzzIt5fhhU2WcG7BL24IkGPeFmJZKlAO1alCTlYx3yc4ZBQI877vusxgaHGQVG4/3VA/97p56vGJaA3n0JgJEx7PeoU35kwILtP4entffSYc19/A6QXCBuQ4UX6okVNx8K7RhZ7AQgCqsjrIych4wpRCmE6dHX1YA8g9B6hHeUAWm+OjkiGjDbWGPQI2Gv5mTTW4L9waGlmGg6rDXJoTG5gcAf9js1IFodNGmh1aU93Zn4uCJB7ZoWKOg0B4nogIft0WGFtd34bSx1tdXVVfrxj39M1113HQ2H6Zfiwx72sGn17ZC3kZeDI/nrc/zyar+UCTlYT6dxWrYeLIy7T9l9y+RfaEdtdLZqOkBnPFbIAJ2qQDq/3fwwxXEAzv62KuAm6/pn5wA5yawZBXVTyx0Gh/elgN53zd04YRfGX9zIjeEkbOPIcBXwxhoXz4zBQ0H4VF4IF9ensY7Y7r4JBcHxN7dXaG9vhmPjD+ssMmgBqIEDg1CSI2f28n4LjS7n4Ehom4SmUWji9Vlilsc/OY5sp+9JObc7LVyWCUayCp5mWZYS3HqLEUhew7hAZ9rCAzATcmScyixGJy3mkEhTFzFWcq4JEEnyrFzTeSK6oO4N/QUGFpz/4nG2NTNmxDcM8GEwZNdzeCeLD4DBsP10WFHJszF9E0YkLWts6seY/bc2Fr2hb5say/SHJ305ldcmeSwCBhic8X1tclmecrNvxTlAwoTgnl8IV+iI1h5mazY2Vp3r5gl7lP5bRsx9LaXqHqmwNYwRoIeMs08BLxF3GNLhzb3cn65VnJO+m3w8kyfIbJsFaFBqu3JlO62gvk0qH8oBvXx/pOXjXVU3nXtjRb/5X7Av0j8pBCrH0O/rtV6TRQUgLc3XFKwNJm5s3s+hUBfHtTpc7QCCnE9/+tN03nnn0Y4dO7yqaoPBTVeDXGR6yzqsRU6+Xu8WfyyTiL2euTvj5tPo5eOAkrK2HmDPVXpZD8ED37iULQ6bZeMyJr57qeXpRxy+kiMLvR7mnyQY3c4VAYBNk4HzgXYNcNIFD80M6/uvvzM9/LAf0Gd23oaXI1AGX/j9obnWYFPggJ21cAXtHsyb2d4GcgZGQ7lc50XYIXc7sw5KScZJA6gBMNnSXqLlQZsZnV3dOWZwYLNwjtTscZKfZkLdmlYeViTsJcRFnBjM4kq8vQY4SAi+4/wvjIPpdYrU2Obc91ly0ro+z3qZCwYOJiZHZIXHDY9NZuX9+3uFIqyc9Ghb2X3gnBFq2TAtw+a44aA6PFHy1rAdAA+20+GefN+P1JUyBUzh7DMY4pDItDiBj93SywGkxOGWcRXVOiPAgDXdkbBFkcaWnBgcE0pp+CliJF3wIuflCiy4hV+lXZwv1ukioenaOEqZzobBdnENKWCpbTk+rpEeKzn3/7j6LOo0+xxeNtNIWKikbyaXUNpxlcJElQ0KbpgEicEOoR9p9gh1dK5dXkhqjwFgDkP+wTvLhKal/U4s54mVBnJ4gkOOwXELAY/bRm1jgJznPOc59NjHPpZe8YpX0BFHHFGPYUlzQ9CyQobcZVmzz9OW7Z0WsHEd43Glrd22ylpV1qKKs+sDGmUS1POcDXf/svk1eeE4QvdXCW8sCxjGKaq5v8B2Xv5N1WtdBAx9bWmxCx2SBmfoXb+5F3VtxW/s2wyH9MFrzuLPYE/0jDqAgSQGf3/pRI7bf9DGH9ttzGx3GacaffjAjjvx3zpMBE4FGBzk2yz123TD2gLNNbq0rd2j69cWGLjIzCqOjf329Tu0qbUSh9QJO4M2ZDxwftiPldcQB29ZKuwDBuichUvttrYCu+PIjYxnVpioc+/76uWYkVr/+y4rP4f7MQHDM4kJw1C0TVGh0TwbKe7KYWPpEDZXsjp1/9plBpCDKUjna2iQMbKvAlkzQZe67BobYJeuVZVW+YLj3/W8P1lMwWVMPCGT+pw4DMwqsZnxTINKgJ9WZHOQgojDxNw8o7Qstp99NfdTMxYC0aGYOnSNGZbQtO2Go0n7ufmdUchhbfhBiKEIPcg54vwgG4/l/3r1ORwetrWznGoTz75vkleAycjzbjeT/oowgWa3hR0255vsg/fJsBHE7A1Lfdt8HWw320quTSMkWu03TX6OlQKv7aZjlUHOtddeS89//vNrgDOBpRSHxvwiPtBhaWXUzfanjTse05CJLupLUaHPrD4JZT0KiEdr57jgskx4Y9Y1qgpu3O2rsDnTAutFdXCmYclsajEDKw4unB04DQAuch1R3XuuCXeryTOOS4N2AhagoBYM6Lc2/9A6RFGmZHQemyNCB4/d9m2WjBYhAThFyLvZ251hZgj9Quw7DH9v6yyl2kFOzu61Wdo+s0S7uvO87Va7jQAZTjAOhlzrAgCJHZNwwKpRYKQaYZ/Omr88lVuQ7n95gGPGKC1CkB3yNtru/mB48kIJ19tGZswzmJEy+1Y6lgUe2lH3FfKM++AwP64qmg51c/dNHQNy0NahB9jRtWBioQPrROPatAMDatJhp4ZtBdNTJpfLB859xUzdezgrXIyBS4YaH+fwObksPulsrAeIS49/OrQyDleNZehHhUwE4JjcQbAlyTXEegCcMma+t2jkePqekbBXZnvtYuQIAujwRFAw5No8YgA25lyjeF+d6wdmB6AnbGBixnwWQQK0izwdBkN08FsdrnYAQc5jHvMY+vKXv0ynnHLKFLtx47KskKYyuSiT2P4GFpNaVVWvrDYmMX2NikLRikDQOBLV41pR3SQfA5Q31hJqNg57Axt333GuX9VCn+NY0b6+e0OHqCV1W4zsMwDAtSsb4v1+s7SRDptdMtXCkbxrZ0IBCh6w+SfxeXpj6RXQ8SXCwykRBw+Oz+O2fZv+84azGejgWN1Bk8NMAFB2rs0xq4SQEzhMC43VERn7sGNqWXB7ttjfPKuxmTwcJGfj7/kGZquT8JRO2KW7bvx5HDoj/UmNc84zkJfvkaeuZsbdD4CmrWbmY2lc0Lm/2RyMja4RU2TifOprJ7/LjpFRvmrE8FPMd5/G/WLWxNTbccPGRNHP7Ot7l6XDrWDCRPj6xmZFDLRwgU7o52PbsRMmVYNpd6LBKI81cyewJP/H1LoyeXEiUS376mfcvVdESS5LWS0P4GjWKJUTI6UYFLDi8FUU+EWtGlZa69AHfnVmruzyNcsb+Pf2mWXzLrDPt7A5eDdgmbxHADTi3C/cW/H3rc0vVdvBAGTajT63c8TcIk8IGXbHnJv0jVkisFi2yCrAjWvIyzECKbgJDn6YU4OcAwhy3va2t3G42te+9jU6/fTTqdXSZbqI/uiP/miK3btx2jiOfZl6L+76/QF6quYA+ZKzDxSb5QMz4wKc9TQ5tq4loc0NEcgKhSwCIeMCnHRfq20/qcJaEYuka0+VNTf3LU8yekSwwJER3jec5UTrW8z/hr+0BSxAHnXH6hyDDYR5Xbcyz0pCC601+sSu29Nvb/1mJhuQx+RgJpb7rXNGmNmzeQRgdChgNmlze0gzTSiptWmhZRza3b1ZLgbKAgPDJgMh/IiKEgysE8AY5xCp8cCxkasjdubCFUll9rivQWkltLL5OHnmXjs9e465+/WyA52jo2vE+NennemqgE8DIv13AnaK24sZHcVklDFd+DXNAKXZkDxmyuSrqOsE39fpg873cScbDEvbKJTr1jWF0FWu86IEDLJYN8nnSfLhRFwhCb+TdbFctjJht8R8gFWPE/KdJCQNKnMQbZD1RdcS77HNnVVqBhAyAchBX8y+LEpgdwdDIwAG45LkcqYBq0hUSw6OjT7FAFEzGv5/9r4DzJKjOrdunDybVxklRBAgISRyzskPE20wzwhsgx82ydgEAyYnky2wjYnGfjbRYAz4ES1yEAgkIUA5rcJq4+zkufF9/6k61aeqqzrcubOaZffou9o7fburq6vT+es/5z+qg2Kw5sG/0G6mwDnGWBcbNZtV+odUjZwjdhuDnE9+8pPq61//uhodHSVGB2IDbPh+OIMczkHJqxfB67IVVRmTy8pus17MZzcGlXsehhUFMkUc5FCRyJALlQVGQv0rAnD076F6IcXAzTBsNfsYlOEsss9WQAJ1Nf1xC+Al8t2UhGwABhwOzIZq50E7Qj/Yd3tyAPatjKnFdlNtHVugGVAAHICMo8fniMkBgPDr4RRhDfhf1LpoVFrk9vzbnvta50ZWIR+tdtV0Y4mASxWV1QUwAbjZ1x6nbQB2WChgHnHuNS1EQOEivTpdc9ONZTXfaVJYG8XS15R68PTljiNGM7VmFl2Pa7UQqPEdt5BqXNmQMDd0q1weyno2Phb90eyDlm32xlbkyMRCpHzQ4s/8u3kkLkMQAxYxRoe2C+ZUiXo6VGRUz/T7OTncT31shr2wgMAFOxyuxVLUsf74Y8LKbr6RUpuRreb7PJ0/xCwS1qurBQAdZkg94ASgIeWjZaHV0FixappvDrvr3GuBZ4oBXGBuWEgB/fjPm8/MlxO36mX6PYXtm/0qOZVc44v/heHoMNEjw9f0MekxQf4fmT2/PScnh/IEK4kSG2yxoydeKN/GyxFLoJb+zkDnUIA7R5ic2xDkvPrVr1ZveMMb1Ctf+UpVra4fRZn1aKHEb6lANQyHviigWSswkVWo099XXiL8avpUBjzEtvOX5ynlZQPN/DycUNsxCfGQ+WGQ4XXU0EyqqK0XlT6/f7yeU7+mgEXlnz3J6Ni2fnI1ZkI5bAjOCMQFwISArZluor6EDhH5k2O/q/555wPUfHuEEnkRn/6MLT9K78NLYvdldvk77x+tP33rj9UX99+DiniCwdHVy/X8Jv4GKOHZYDBMPRPmAScCxzrfbZJs9EoX4W891RXXG2ZksS0AzmS9RdfiOZPX6QTrgJMlk81DVkSZK6amdsTc2XYam36xULUixkDHCcOMCBfkgcYUoPLq7bh1lKT0uglvq6RzcpLQPNT5SoMXv0+6n8mkUVLbyWVYZHhayAhQUZ+0SLLsO9cGYmOpagZqvuIZ594kbSeg1L9v/NA02R/6N3Kv+fLYPsDh6+WzN90jOQ7xDpThYc7YUWhakq9owx2956UUEkC7lKdocw7ZP8K/ItvOsDko7IntOdfHD9+TYgIW8Bigo9tPQA/aXO92OIGc2VldoqCMTU9Prx3IabVa6vd///ePAJwMy3PEhmFZDJHvEPoFI2PbrwXoKlKnpghQyyugmqV+5ufasMk8nEEeEmHp4OKFCPPAmN+OHINBJKUHYUyKXK9lr+m8cMtikurpPvB17l8PsRo4WeqFbtvxdWQVds43me3p4nUwLeG6oh656VJ1/oE7q0dtvlTt6UyryxePosR8FAE9anSW+iLBTazOjgQ6joNkxA6wP1KLqlQoP+Gpm35K6/z9zocTkNGCB4oYpNn2GB0blk3VV2g5K7vBiUCxUB5PyEHrYnxaKQ3WNuNyyugu2zd/Vt5XefJtGEU7s1iCg2H+zPRtbdLJpcKYKabGVQ3LYnR8ZibEJmaFhcXGhpdzGFe7krgi5G77OTxmdl/LQSdFJ5mVcYAOrV8Lgr+8MMKQ3HLoua7b1bk7yfPLBSowLvTJTBADCyfE1AAcuQ/ZTgzUhPrN+7DfI8dLBT9NfR8GOGCfC03EeaGKABgQJIGQibOeAEjI38Hf28fms4/DgBPavq8nU/RxVLSzSgCnQkAF/24f0yIoCPcNmX0HCKBzRF1tfdnGjRudiLA8w7pXXHGFOuWUU9YG5Jx77rnq05/+tHrVq15VdtPfeisTJrZWYVmhdqVzm9XHta5An8XolNlvqIZQDJAEJS0LAoRyNY/Sic6D1qkIWRbAiQFYHwgUqbNUBLisRqDAV4Mrc8+UWbfIOQ6FGBY5f+nt9N9wFsDg4CMT7Ge7o+RE3HfqKnXB3KnEkIAZeeq2n5EE7lR1OTgpIc130GRl+JneOCkifWvmdAofg5LZtvqs2tudVP8ze7p62qYL1P856nz1kV0PptlQzgvi+hYs+wyD0psOm2sR00P5PDb8VidoY93xWltN1lbUSaN7vImEtHpa9jkwFd1LKqwVSfgvYr4TflsAlrUSJtDXR61Urk66jRKseGDsQuBGLuPCpfy8iYXlStPyw54EcgGhCQY+sl86Od8s60vmpVvoOtHLemrUS/6XSf+yf9KsaIEHcGQ4W7L/hMHKu8Zj15IEthyaxgp4WkShpv7rljMy34EACMzoOOfRSMiDIa7XNLOr2cSK2rWka9zEjEJaTRFksMX8fsCECwmbeM9CblsDHr1vhP4iN4j7SJNPMq+ngpygQyfySEPo1fli62PKpZh97nOfU5s3b85dr9/vq8c97nGqjJUGOSj2+Y53vEN97WtfU2eccUZKeOA973mPOlytqKN+sPJOpPMLp9Q+oDOu/kEYniI1c2LLizquWQ66nP0J2SCsR9maKkgTlf3Ma7OYE65ffJTncRAp9jxmxgc4odo4ebaWeWN5suA+6E/uk/wQQ2ZMrKwqajv0azae3tbjMMwOZnC/vOfuBCg2NhZtvkuj1lPbarPaMTd94Lj+LDU1aQBTr/rNk9TtN+1Rd57cSQAFxTwfPX0JAZxv7L+reva279G65938SGJs/vzob6n33vRoVwGp0qfYdmY2J+srFOIGcQGtjtQj5TQs4/FjR5MdCXbQMBvsh6zlmZPgHShWWFRRTTvLxZ1Bd9vBwU1WLkoRywM4g0phSzllaaH6NXlgq6zSGvcx1Hd/Gdfc0fuHGllYTQzXCckmU7+NnLCfX+SBnbLhczGToIhzkXAcrOaWf/3Eny0AVIm8s/s72vcVFFmdLXYsfhu+zDUXi8V4cr/x/PIBTuj5afNaAu8jqDQibK1VqRNAobo5qk/5hr7J8DTKbTQ1cPzSB/Q8oD6H7wEGQr4RqyxUAnlfh4odTuFqJ554onrQgx6ktmzZUmh9MDg+7hgqyPnlL3+pzjrrLPp+6aWXOr+VoZwOB+EB3zgfZ7WMSRlFsiTkxe1nkW0GqasSc3Rj4WZFAVSSIxEGSGvNQoUsFBZYxLIethxqYmf1BnC6+PqIMS758sjh81hUna0siC7aBh9X1jH511kWG8fr5l07MuyNa0lI1oCclEqXQAecfDgPv1k6Vp0zcS39fu7R36d//2vfWeqksb3qMdOXmArseKHjfGuHg51zX9UpS1r2Tpt3ETPzzVvvqJ5+/M/UV269m/rgLQ8lBwPFO/9x58PUbHuUQAxYnL+55omk6IZjwTI4LaxGhOX4zHdGSCRhpjVGIShgdJYqqOXTciqZIx/nOrWNEoY31BfVSruhTh7ZbYorshRvEsLiO2ZZsricgxFic6TzXoTtiSaXM4tUIsQ05OzzsoMhZJDXPjvAuu6LPn4qtOjVWAkxBVlAp8jx+aCmDPDjfBoKrytwPqR0M9bFNSHr6/CuAR38tvxjiIWohd5ZDDJCxyjFZsowc3w9cz0fAB5mgpNJlQTYxMJXk3o2ybohUOMXi8X+IVgSyxHl5ZLFwb8MdLAOh6ol6mrapEiANEeinvZh2DzTLcoBtDLTmOjDfmVdIM5ZMnV2lFLHTxygZxxLW9tj4Mldsb8jtn7s2mv1e7Ko+bhj6CDn/PPPL7vJYWPElhjGJCYuEHMgy1gRkJKXxJ0XthbaJgQwioQtxWq6FAEFZQBdKCyvLPCx+4pslpWfkWdFH67BWexA3lHWMa62BlHedZolQrCaa5yBWaiN2PHkAevV0v56H5W0dKxwNgBwOIEXEqy3H71V/WDuNPWQ6d/Y2d7p+jIBHJ9F8p2UEFPhO03s3NBMZmdEbWguq+/suyMJG8Dwsr9pcYOabi6TLPVsa4RmWak+jimWhyKfsJF6h5bj95nWKM3IoiYFrFWp2WKhnUbV1vKZ7VTpeLiv851RdfLobpOj0DNqczp0zwcmxGQhEdswQCHWJ1TxPqsOSVaxUFwGWaxOEYCTNVNfhsnxWY4ioEXup8i6uC58tS/a3ggSkJlwL7utnATLUV1LtStDGlfJammxDqNaFjg3KQZDCCzoYp48ey8EClLdcVmesmGOwVylnDyYLBGIhmF8OUTOz8djgOMLi8h9pYqmGiDDYWhc1yc00YDl37z1TgOzATYszKt7g0OQ97ac1JDvMVmnCDLT3EUJgiiUkLqSrBsyCaoYhDEwI0EVlYCz9WyHE5MD++53v0tsTpa98IUvVO9///tVWSsNco5YMZOsDf8tbVAnPM8k41FErcrvT8xkfxuFnfVs5icGBqMhaQWMj7uoAEKRdkNhZrwsVoeDv5fNy0nnheTnrhQRuhgkh8Zn6BiASIdIfpfrrxbo+Ba7npNYfjcUU55vnhWMCRD41iQnyz2/OO+s2EahJabGBl6as70x9fndZ9scFxhUycB8cIjNeKWl/teGXwgFJC07XeQYQ+AGfVhWDfW0rT+lfXxp391JnhX9RGx8r1cjwHPD3CY1ahgaAB92AjDjevSElq2GrDWFltT6SW0LpWibyYbOFwJbJB0IHB87SKeN3mqATZ0KjUp2RLJdrDgl8yiY9fETrdE/H8DI4qCOCldQkQvt6v3J4piDWCzkKgt0pPIIBmB/yoTQSUeYWA3v2cPOJjuUqd89MYIyuUJ+rZxQ3koRk+poCUBJwE5IsTKaR0eqZLXg5AFtQ88EI3Lg1ZXKZH2ZgfV+H1Wd5P6trP7dzYBEhsb6JpfLkDTk52HCRYIcP1+O7118vrf71FyH2IKSHLEeGEnJB9uQ6oiuEh+zLMRCUV8Q7qtzAvXvOmyNAE+14zBMEEWRzwCEx2lmqELPNvTZTlId5NDvQe1wAzlPeMITqCTN3e9+9yjA+cQnPjEQyCnkgT35yU8uJfP2zGc+U+3apRV3DidjR5A/RQDMsHMTpIMfEyEIgYAy7YeOlZflslyRfA6/X/6/ZftXZPkgY+A/fPjly5/ViA1gezjYciz8czXIgyuvYGZsWaiNMsAldL5XY8G4bLGPLGl2+XILJfbn7YdD1aSyGcLWEJ4GpwJOOZJu8fIGAEAbyGEBmwOAQ30IzBajjdQsrKqqd934GPVve1HnJi0ZnRxTT73z2kerD9zwUAI4YHXQT4SpbWzqRFyEoi13GgR8UDjvQGtU7V0aVzctTFO4GpZvHV2gyuKolwOWh8EMAbj2GAEcHB8YnIn6Cn2OHd2vThjdZwULdLx/wnaRg2Ji8kcqbXXtyjZ18eKJ6qKF26kd7c1aoME4Y3PdUWK/kvGvklgDgyB8/GR5AkviQ2PZr1Ob+NjwrNU6Cr7Snqkd41tYpjgtqewn3Zfpg9y3HzIlHWIejxiwk3lPeeAvj+Hgc1yWyeF7KSRFrZ3vpGYMPnQNmBC8ELujHfq6rcvEy/ga0uFa2qnX7ZoPQR8JmPOf37Hn86Chxf7ziHP8YgCHj4W/cygankVz3TG6pzSz3FQrvQati3/x94HOuNrfnlD7OhPqQGdM/WDPKUbOuZf5cZmatAPObfhGgNq7VzHpxPk09kOTIMm93PX2QdsI9UYf4Mj2MdmED55pUHPDx4mAOCI/v+7sT/7kT9RjHvMYddVVV6V+e/GLX6w+/vGPqy996UsDtV2IyfniF7+odu/eXahBqB+gM29605vU9u3b1eFsRR56ZVXFirZXVgygrDMr18ubtR9GLkfRY/BBwWpYoVCYWMLgxJihYkDHZXwCITCVwcBaKDwyZDGgsxpQMix59CwltqzjiameJeuE83bS+/VDOipOsU8tuaodC3zgoEPqFAn3bAAEeOHqf9PsDWaROZRLid9hr7v6CWrL2KK6ZWmD+tiuB6o/2v49m1DPs+uL/SY5Qi856Vvq32+9j1ZM6zYo3Gy8rkPOTt9wq9q5rMHMaB15GS0CMBzDvthpkjMAcIZ/cUz4fXdLy7FiGxQNhYMBYCMdkF2taRqXU8Z2q/nuqC4aSgnUbfWrxePoO5wrqVLFbMHO1kb6sHMiHRo3pEXG4LthL3zeWO4axsd194kbVJcAhpTkDYck+bVDyoSH+ZYVzrUaVsjfzgc67OCzZQG7RMFLyEzTMjBw+pyltvEYHdlfXk6FMb11/DGQy3wpdN9wJvX6WpQAlhQ2JYkJ0Za8nwN5K+a642tIFxc1LCE2NWFQfvhaGQXIkNy7PNbgNt544X72c3RCOTZsy4KNAbjh7fAvAIwGN3VKzMe/uN9xj0DtzH+3+bmL+M75ek5OYq9K4V7y/cTgBr8DWEiT920iNpCsL0PSKMRN3Nv0zDOsjS8u4PdXXvP2mWFYNfyLfJ0b5jfmlo1YL3a4MTnvete71L59+9QjHvEI9cMf/lAde+yxtPwlL3mJ+shHPqK+/OUvqwc/+MFrB3IAXO5whzsMtIPD0Yo+HFcrPrBay+qfDzzk37Gk9EGS1Yd1nDa/wQv5kbNkg7JXIcnm5HvxUJhBQmYGYbJWk4/jn8O1Kvy51td5KDwtZEXDGuXvXOgThkKf+Nxn+mp1wSxmRXsEeCg8q9JXj52+ONU219Vh+8SuB6hzt3/fgoCxhg57gxoakv8/t++e6vc2/8RxDDFrS7OWlZY6dmxG7VqZooKii22tgAbm5dcHjlInT+2jkLOZ1jjl3EC+Gr+BvRkdWSCHYMLUzsFsKtinY8bnnEJ9ty5PqWPGUIyvpmdcUe+iOWcBBo7rQHtCbWosqB0rW2jcl3raoYJz1aj2oqFn+BcODKnLGVZIOkPszEApiR0dApi9mgZBVVZ3044QloEtusfEdeQe05CbIpJ5uTn+vZzFSAwqMLDanJUQCE/na7nhfM6EinCcixQsHqTGDIec5QGdPLMgyFuuQVZSHJfBT7Qmkwl500qGzFLiugXjyKBZs48+eNPbFwMpUeBs1ONixgCHmSt3H5UgiGXZ55nuOLEzNy5vtPePdpCrtn4MiwTkOfdWWKVboxDXmmBxYFTwUwAauZ0ELFmWrn8UBjo8LjSGWI7w1V6YQdXPegaBgvXkgt5cqPYQADdsOGecS7SaNg4lA5h56lOfSkDne9/7nnrLW96iPvShDxFp8tCHPnTgdutrJTZw3HHHqcPNQk42WwgA+LktsXCbWGI5W1MWKRNgw5eQzusPLw/lVmQlhMvfBjU/t6MoK+CzNtLQTsuJ1y/v/IfkiF12Ie0oxJwH34nywwqTczV4+IO/3TDYmYMFdLLOz1pOGKT3k2bjZN2LLqSTjWPCsfPj1ZYNF+MXrmQR2MAGSUM7T936U/XeHY8ixuW1J39ZvfSEr6uP7HwwgQ+uS8PtfGz3A9X/2f5t2uc7rnyU2jY+r44Zm1X333iVvT7P33cneqlvHFlStyxOEyNDTE21qjY2l8gZ2rM8Qbk3uNa2juiCeu1KjfKIICiA/CM+jm2j84ZJ0udgrj2qNtUX1Xx/1MnluOYMBecAAQAASURBVGllkz1+VmAD8Jjv1J3rGvtH3D5AEo4NH7kN5z6xswMbq7XFDHDNFgnU2+k8Cey7Ya7Zny+cpO45ea0DbEK5Ob7jzvkaeRMSRfNlhiF6kcUWc/9DOTUwWa/JaUO+ewgEagU2GkdfuMFuw4xjYNyEkp0PdmDW0RRAJyZwkFuniveFfjuhkk3x7EwYK5ZnxjEhGDgBekZynM63Pm4GSpyrY9cTrBmPf5Zksw2hNMtisuayDR/gEGMs1NGoPfPMIbamO652tabo+3Vz4RojUgVNGjM1nH8n1wXASSTmkzDUlBiA+Q72F+pqLBst10vl3vhiFsTWIs83CZGVQJzYqZ6iiRI5qZLsA+c3GedGtU8TMfy7ZIhPndpL7S/ZtY/YerJqtao+9alPqcc//vHqzne+s1pYWFD/9V//pR7+8Ievqt1CIGdQmuhwM/tyFiYZkCwJXLmuMkXJYgyEXO7/5qjkFNhXVn7GsJzbQeSdh+G08nEUdZCzE/jTIW9+cnrSXo40rnVUDq2Zlhj49NXshgHOQstD4h3y3KVD9YoVcy2aO8dKaFBLg1MyWumoZY6F7zVoHWJxqj1HZCC1P/Oc+NAtD1HPO+bb6oM3PoREAgByXnH5U9SWsQVK+sfLGmAgCU+qqmdv+4Fa6EPutapOmJqhbXYsbqQaOXAm9q2M21nM+YVpEhfAcoSzwWFZVLoeDoAPO5xgi9hpQUgLmB84HQza6mIcdWx8X812xjTbY4aOQ87YiQFwWejqeHlsg2cjF/bj+hm4FThmH84lh6clVcqxbpcYJHk+Y4wAO0q0bWBGXDMcSdhaTLGOlovNswBPXnhbKF8l1P/Vyk+nAUnxtrhuDo8LwqB0fxNwWJTZkeMr15HHnhW6lhUymppwMnWa5PpcKoH2ZcLROGQyUdsT59MwfMzsWIBCYMcNtZI1ZWw/hGyz7IcsPMkgKhSKloxbmgmSAIfziLTcM3Ju6mpPe1ItdEfU1bPZ9UW4MCZCzTj8jMBo1StYavrsgoMAe+L1XeftaIbXXS9Wz0qyQJrl4iKg/HyhMVJ6woMmhnrhkDbd1wRMoR9ZOclYh58n69liuX9l2zhU7LzzzrPfH/KQhxCT8+hHP1r9+te/pg/bi170otJtH1FXG6LhhtMzPe5Meihp390uzPCQEKNgZXi2EvuR7I3fVhmQEqpxYx8g3ku3TSEO5V/ERZxI34HOy5sI/RYCg2X6K9sqVwx0MMGBQRXT/HWyxkBajB3LArx+7lWWIlCoT8MW1siyEOjJAjqhXK3YtRaSeqYQKyQIm9l/yltRPfWQqd+k2rMCAhQnrmWoMYv6vh2PpH8BVpD0v3lqhv5mJ22qsayesfnHtP035+6iHjX1S7Xcb1LI3JaRebVlRFGIGcANtgd4gfwztj9lei/tc8/KBAEchKE0atoZWVmpk3Q0JQxXdBE/bDNZbxHT0lF9BYFpzsVhp02Ht+ncI5Kh7mhQBQMg0apNybpUBV3M5spnylK3YUUN2MAkWRMOMgASO1K4Fnm2VoapkKMj1KNi5oYZifVEzocDhjIUFG9rdidhTeIyxb4kuZQgDjEIzOLwOjGWyC9SKY3HTwLKLNU1H3iGnqlODgb1221DnvOEjaqoRr/r9NU954kKGwI9U2BHjImzLxZFEAU2df8D59bU8LHHSnV9PLUxv30P4LAYAcQDIByAPMC5zqi66sBWO6Y8vmBjEM4JZobBje2KybOp1TSDYo8PICMgHCAZmyKTRjZMDM8PE/IaOt/OODmRI+6VBpZGhwDLCYzkd5ropbydhEEKFQfltjXAWf9ha4dbTs573/te5+9jjjlGXXLJJfSRdTiPgJzb2MYrXTUhFJwGkcX1HS0JeGp9zHgkbFAILMWc0WGGHQ2j1k9Wu3lthwBQUVC0Vg+HIvk2MlwNM1axGaeYWk/eccUARZ4oRB748b/7+3RzlJJretgAxwfvRcYjD+hIy20vMOPMKmJI/LV1LoxzF6pVkuyrqraNzJOjD1DxyC2/Up+86Z7EtACswDnAb3COoLL2lM0/U7OdUbWzu4GuoY21RQIki90GARwKO+kqqomzpblAggcz7TG1c2nKJgZPNTU44fGYb43o/lZ7aqLRopATACeZewNHiqWpYWB6NjSXtOJVr25ASoeAUtecGJZv1eBNhxAhXG5rc4HGGE4Ijg2G7dAGHBACW2Zm15W6RRiRdsq0ipOerdWTPsqR+EbujrzuUjkAJiRJhnnxcidcqUTujm8+K+M7ejHHr6j8cpkJlVDNJZ+hkTk8upYOzoFfQDMMdEIgJa/uTFZujlOYs+TkkRSqoHvZMHIABrg+pDBIyEjO3LA/+lhlIdtaUK7aBzjRMfLZI1qWXJ/yOGWbMK5zg+sfKmlgUZd6DWJwbEFOzJ0YQMIAR48J7hMXyITATOj5iDbomFIMTew9o5lc3OsarKSvexntwqGC2AeeB7jHRzzAglBUaSQJb+SkZXpAqE+SWeb9HbHfjoKgZewIkzNEcyj4gAPrO5SytofvuHF4G253/g3rN4JhOeHvsXXK5gvJmj+2xk3G7P9aW4i5KCsJXLTA5yCOemgbtAd5aE6S9tcvytwMKmpRBgBlXSuh8x5j0FajaldWcCKrDXcGuJJfY6NgXyTg2VafVTe2NtMz4Py50x3BgVQoEcIyVFc9ccuFTlvPPv6Hal93Uv3nzWeqraOLar49SmpFGxoIi2vYHAuW1B2rtuj7a273ZQJYXzhwtnrShgvVO29+jFqp1tVIraOOHZ8lNgV2y8I09Q/LAWimmytO3D2ckwPtMXIGWHiA82fAsOA32AJUmjjkjBKSawoVLUbFTC7aAMjBfrA99gmQtmwU4DY2l/V6Zv1mVan5biMJZwNINLlINmTPVEUnJ6iiw5DATHGcPsvMws6ZvJZEGWi8PQcIeQ3S0ZcOvV9NPmZlBEfKSEevhuXxGZgi6+t9+sBdF+OMMTxZFhuz1PIMJTZn/UDxUl/Cnw19tqBWsInoM2TMARb4PMg8LbdwrBGpoO9p96jtuUw8RhxOljUGchsClthncPLTDVGD4f6HiuHOlQ0kHnLD/KbU5A3ADVgbLOecNc67oyE06/e6NaqJlVcU0/+dc3b84p/z7SY9Qzj3j/etc+143XR4tq+YuGLyDzk3jyc7cF83DMOrVfJMiJoYPBYd4XZZShygCm0x84vrwn5fx3Y4Cg+slR0BOUM0hHPFQqRi7ErsN0rkF8UyYyFweexM3rohhqdobHhZgBMDJLF2BmFkyoZwuUmMYZnhrH7FxARC/YoBnDJWtF+DWpnrKWYhJidLlCPWRjCmOgPEh/PL4gdUBOBQGJTIx5FOHpwZxJSjnQsWT6VlqNGiazfkO4O+vPHnd51NoWZ4ObEDQyyH6qsv7TtLPWbTJeqC+VPUo6Yvpf6cM3GtGq+sqE/tv7cufNeaUH+39EjDiFTVnkUtBc3JxXBQcCxa6tXk+/SratLUvoEh9E3qWY3XVyjpH2IDaHei2VK7lycNKNIS0/tWJnQBUgB50yYMv8EAVvauTNB+4IBMN1YoPA/G6k3Ynv7t1lWPnCT9N/bZ8JwXYpogd2wkvSnhWTASdxm/KTcnRZ7HPMd9PVkWs1GUaYltw8+yrHZC4HCQ8QuFsSV9SufrSDEXnWuTf+9KSwqkmn0LQBITDogBWR/YhPKyBh2bEMBBmNotrY00SbDQ0eyrb7i3oc9Wr/XoO4sKcB4OszccuhYCOP47UDrKWN/fRkpQ4/5t9nUOH8AW9RvPBJ4w8XKqYvk6dhwiam00rsjF8gBSyOh5QUBLC74w+DoU7HAKVzvvvPPU8573PDU6immyfPvgBz9ItTinpqYKrT/Q073T6ahvfvOb6p/+6Z/U3NwcLbv55pvV/Py8Wmv7+7//e3XSSSfRgNz73vdWF1xwQXTdD3/4w+qBD3yg2rRpE30gTeev/+xnP5ti/eQHRYkGMe1AJA5dzEnzPwBH+PgFNmUNGtmm3NYvyMn9CCmNhcwvxskWKvYpLaSwlmexMYmty8Z9kx9eHpOILsOOhB6mcrz9cCx3+6TGCbcV+4T2HbsmDqZ0szzO0DXI1yb3dRDzz0fsmOWHmEsbD15u3z54ja/nhobkmVOfQxR8pKKX1bbaXF9Qv7vhwuB2/rb2Y2rMPPfY76jtY3MUVoYXNBW0q3bIWdnfGlfnXfdwCr2hmj39GgGe/z5wppqsrRBz8eBNl6sHbrxCzbZHKUwMMtEQNMCHjrVfVQutEQo/w+wr5/wAxICl2d/SYAXACv/CKcBvACla3axP/cCsLUAS+oV1GfBwET4AI3xgYKNmVsZIDnu+M6JZH5Org39Jlla81LEegxueybW5LqbuEAMpyjcw4W/8QgfAwViCxZGFQtfCVlP4d1CLFfDk2jE+i+OonXnmAxw9861zzNLtu2Mp91OUOQoej+mf7KO8p/DB+eR1KDwUPRfP1dCYcOFIdqY5Yd+GfkXq2vAosoIZFa01Hy78y7WxdGHRUL5JMhmSNTb+JAsXLZUAR/e7acNacc/cvDgdbA994ZA1MJxj9TYppYENpmcMiaJ0CfCEZvn5HmQWQa7jr58lSIBnD+51fo7g78Vu0z4rmOmVn9TYOLLSHGaqpfnByuF5hA9ydbigqGaw+NrQ/+J4k/pIGoBJOe4jdtvbX/zFX1gcUcRe/vKXF67bCSt9tq+//noCATfccINaWVlRj3zkIwlR/e3f/i39DZS1VvbpT39avfSlL6V9AOC8733vIwWGyy+/PFh49Nvf/rZ6xjOeoe53v/sRKEIfH/WoR6lf/epXjsQ1jgcVVdlGRsKzJUWsiCMmAUFsdpuX87ohxqVInk1Rx5AdXD8cLavvch8SlA1TZS1PcatIuFrRfcj8jUH6Gmoztrxs+CBvM0h4YB7YW+3veeb3uyxQKrt+cSBd3EllwQAyvieN4AArJumQCy0+G3NusmZ4EcL2tK0/VZ/Y+QCSj0ZYGBwbHc7VVcdNHlCXzhyjfrrnduTAYPlp07uJwfnerlPVhpFlkog+bnyGZnzhaIAxobo1nQZtsw3KbTUNJLAc+2DAQKFipi8AGceP7lc3L28kUAFwQ8ptBtAAnBBQ6VUpDwj9AwBBeMhkrUVhJ7tXJul3sDVapU0DFit0gLZQpLSjZ53B8DDI4jweABiofRGLZMLU6LkoauhQnH6/qk4bvZkcIIRb+Q552Rn19V4VPZSvkifJzFZ0LJgZGwQormbMQ/132B5iYsSPNrwsm93RbGzDbccofKX2IcwHMlkhjXZdkw/EwDMEelw56iSfR7aP3yA0ABU1TE4kICEJGWP2RDIVEoRwTp7uQE9VeH0vbIuBTAi4YWzy6u2AhfaNJzFomyocTqMuGJClDtXa0Sp6Wq2uXtPjRccNeQjzG/LwHDPXA56nvQp+wyQI7ytfHn492OEUrtbv90kmul4vBkeWlnSEwJqBnBe/+MXqnHPOURdffLHasiWRLnzSk56knvvc56q1tPe85z20j+c85zn0N8DOV77yFfWxj31MvfKVr0yt/2//9m+pYkP/8R//ob71rW+pZz3rWQ6oOfroo1fdPx8oZJmUi5ZMhF/nhpfHatjE+lHGBlVjK7K8iEm2iq0syFiNI15EejhLqrho34qOUdmxXC0gK2pSBr3sdsNipvy2ZA4bmw98Y8IDZRObpboaOyuUaI1ZRsMuUBHQQNJ2sD2fFTTO27lHf9+2jdlnvJi/P3sHdb+pq9Q3Zu5iGQ5WEjp5fI+NY4cjBEAC0MH1KxgkAfDgQ/Hzpq4Flvf6PbWxsWSLd6IGDo5ibwsStU21uNIk5gfGgIUU4PoVtXVsXu1amiJmZ2NzkULLkBQNm24sq13Lk6rTTfICqCBpu0nr69wbhJv1SI6bzxWWg9GxtXC6DWKc7HgiQdmErmEdTmCeqi3bPBx/3Is43WUYibJ1dFYrEZ3VB3kN5+WF8DXm9tWEZZnCmO76XnitEClwBAu88V1NCGCWapvel05I5zGl+5hCPs02dH9qJ9jm6QjZYdxTti3DorLzTKyQLTKqxQaIsTHb63e0Fo3R7ep2rOiIPScmRM60709u0HPM1O2RzA2OCd85Bwd1cABwkhAwt+YUG99Luu2K4+TinvMjCkgoxNzDmu2ASIAZExJe8JgbLq5Mz1/NsLEctX4OaYVIfCB/T+IpAoRpRqehZpUe++1j87amjuyz/k66sjrPzuwdY8RiJVqcgCc5dfgas32wA50x2x7WbfR7mhE3IbV5oXLrwVgZb7VtHAr2ute9rtT6v/u7v6s2bw7XhRoKyIF+9Q9/+EPVbOqXHhtCyG666Sa1VtZqtdSFF16o/vqv/9opHoQQtB/96EeF2lhcXFTtdjs1QGB8wAQhpO1hD3uYevOb3+wAON/AWOHDNjs7m0jK4oVh6tyw+WE6CMHBuouQV0XCbqWjRm2hNYQFpOMIiyRyD+LoHuxij4M651kJ94M43rxdUXnhrOWxPBsf3AzjfA1yzIOOD28LW61imn+dDRr+VjYnxzd5zZUNN0olQws7Z+xa63T9bOkUdc7YNantUjk9oXvaqIhxLY7x6gpt8+Dpy3QoEeXTaOBy36mrbHtwhnYvT+lQsK52KI4en1PVimZBKPSt1lXLnToBnE3NBVJng3jBTHuc4v3RJsAOwmNIHro9pkNP2vpvBjhgf1i8AACH2ZktzUU132mqvSs6Vhr9WGo3aPaXZa25HXaAiBUSjiyrsRH7ZMJbpMQ0KUxBOECoTgKcnTZ2a7zi/UGwPGGBrBo5Wb8VMR+s57FQsRo3vqpXfHsNbiTLQzkUq8jRyeprHrvDoEfvu+KAHssaYFi5jUDCO+5DvIdxDTEzyyF8OozPsLWU19JwwwRFeygKzICJzIKgsAw1HxsXFyZWpl9XB7pjFOIlJdI5vJNDyvwcGQAhHC/n5FD/PCU1bM/5On4bSWiYfjb5TrJTp4gQMXJj9CSF/G25C9XFRHSA+y/b2bU0SUBHn7v0A5UnLkg4wIiKUCiaVSdNngk4e3ydYMzkfvS12qecILA6YO2OhKuF7W1ve5v6/Oc/ry677DI1NjZGEVCIfrrjHe9Iv1933XXq5JNPDm77mc98Rj3taU+j74jyev7zn6/OP/98NTk5qc4991xqO8bUlAU5Za00yOn1eqrbTSdw3XjjjYUTgQaxPXv20H6POuooZzn+xkkpYq94xSvUscceS8BIhqo9+clPppN39dVXq1e96lXqsY99LAGnWi0sAYsT9oY3vCG1XFcJr6i2qJWDmzOZATI5DnRb6gfAqOpQzRsblmZnn0G3+k5xWIktFrpVRFa5qJM5jLAwv628op1+jg0sFLKX5Xj7eTvuttnH4juh6TyneJ4Nn+9Y3/Dq0k6NGnhc886/v+5qlOKytg+dk5AVLTy71sA7OQ7XASiqriadRNyvV64cre40crNlI+4xdp2zbjgHIhnPr8/ejZyjB0xeTn/rmV/vHqlU1H/sPUNN15fpunvI9GXqmzN3sWFhABks7QwHATOYc50R62ig4CdC2TCjCdCAcLbdK1ManIzMq1PHd9Ox7FyZVtfMbrHAg0PLlo1QAByfOlgY49hMN5fVcaMzdGy3Lk9RqNmti2BvauRgAZDB4PTYYp7mvqEaOqh/AxBW7xB7A+NcHwAzBlYQPoA4Aot38AQFEorHq2113fJWtW1STzZpZaZeIMG9fAiVb6sJdYkVCx0G0LH9KzhLLdkKWCwXJwaofKATAjtswwA9/nEFQZonWCD7S/LFxnmWz3WpxqZzcLRLZAuIstS4V3/JFuiFYptgz8C+cO4IG3L1qA0T3ho6DmakuDgp5yK1wciib5VEGY7BB9e8IYMwgAE/bXNPsRJaiiEwCou6/65Smj7WNDDx/w7lskq2lo1ZJN8cwOSwOBIYcTuaHdbsNYenJqHlnD8VaksXGtYiJVxodLquz8d6NoyAN1c+UBtl7Dvf+Y768z//c3XPe96T8u7hCyO9A8U4JyYm1AknnKBuueUWZ5sPfehD6p3vfCf5zDD46I9//OMpMgpkCNZH1FSj0VBvfetb1W1hpUEODhq5MDg4GBL1ITgANPa4xz1OrVd7+9vfrj71qU8RayNVHJ7+9Kfb73e7293UGWecoU499VRaD3GCIQObhNwgyeTgAsDDdBkPPVOZlwEOG4qXxdgYP2QNRvLRniuWV/VdPxbSjmmMNSkChPJ+K2NZjnbRmi2h5b6z7If8DdrPrP5KdRleNwvcVNcIRCbMhD7fsXMaY8NiktwhkBmyWBiln4eTxbQUyQfLM2zHBQJD8tG+pY8pHf6TZdjHxUsnun3wHOmsmiHcx8dOX2K/f2bvvQjIPGbDJSlHaHNzQd138iq7fE9rghwBhIktArQsT1qgwPVrUIsHky/j9ara2Fi0s5vIXdG1ZXTNmt2tKQuYFtpNO8ML1oQBDxwjJDRD/hkABKADfYUiG/py08IGtdRqqJVOXVWrfTXWaKv5lRE7BhvHEBKH0BHtAGIdGOf2IGwGTjKKCKLvLCMLpwwgZ6TfUWPUbz3CvD22uedkAiyzLAZ0fMc8FvYVU9yS4Wl5QEX+PkgY22qBEFtS1LZaKnxTAp3Ub2KZH8omx3hYbI8cv9i4cIge/WbDxEU9HQ/sYJlWY0uehTKMTysjJgyMBDz6uKtq2QRaEZjEOhUu4t1xAJBTF8j0E0ALbCruR9yb+Ncerx9GLQAFgRozeRozUloTf8tQ3hBo8X/z/5V9CrWTVVOn7PVP56Sv8/HaaiQahizPVbunVMO71G6LshdljUQkVnmP83U5ayKNZHpGKO/8q1/9qvP3P//zP1OEEyKoHvSgB9Gkv5/W8YUvfEH93u/9HjE2sK9//esEiiBMBgLi7ne/u3rTm95EBMPrX//6VATYugQ57373uynZ//TTT1fLy8vqD/7gD9SVV16ptm7dqj75yU+uTS+VovYxyLfeequzHH/n5dO8613vIpCDgQeIybJTTjmF9nXVVVdFQU7sIiHJRoqp1Q9T3JAsfxqaCWeHNEt8QIupxu/KtBOrgQ5TztKxjTmwWY71ahLGfYs513k1d8rsNwZuhpm3Enpwg40rC25Crm8WAMmqTbOa8LLQOmVD4UKFaVPS5B5bk8UOxUBryGS7cpZ/NQxPlrPHYWc/WTyVtjln/Jokb45j7kWicSg8In7cVQof4/3YY1R99dCpX+uQFlVVn99zttrQWKL1AX6u7yIWvkUAAupqCA+rVzV7oiuGd6ldFhhgRbLJxjKxPtcvbKZ94BkGcQI9rvpvGNpjgQHOlQG4gSob2kLtGwActL1xXCeG0nomskfmBMhEaAA0KLDp9rRcdstIUbPzg7oWCK+zhUFNDQ6uofGA6SuCCcWxsCxpZZXBiuTiMNDJ3m8a6GSFsvH3QfoWTMJHWKORVaa2C4oWMMgrAogcEGREAUIJ+EUBj2RP2WTdmyw5agYTSEbXGTL8tzs+PToPGuRkTvoJBob3w0CFWQW7vFtVKxV9IzDLw9cr5/zIbRYhMmAER3gcdQ5PnxhRTDS0RZI/gAvXx0ESN92zeP4iyiFQ+NM3n7mRbIq8V2Ogokj7ch95bfihbZyjg3wkjAHCU8kiESDyvNV5AhL5iua5t3IooJwh2gknnOD8DUICgCPPDhw4QP/G8l8Afi666CJSPGZDBBTIAhlxBbyA8DUIfp111llq3YOc448/nkQHoHSGf8Hi/PEf/zHpViOOb60MCPDss88m0YAnPvGJNnQOf7/gBS+IbveOd7xDveUtb1Ff+9rXSDAhzxB2t3fvXnXMMccM1M/kQacfNHz/6VlT4bR4NVNkSFuqzUByte9Q5znwWUAqy4rW1mEL9ckHGEXBRhmluoOReB+zQQBOUUuc9uLrF80dYltNYdc8kCLbX41lKQsOI7yN7w9/3OR9I3+Dm3Tv8asj53ywkCa09fStP1af23dPt0aIcOC4vg4YFBgCL5A7s6m5SE4AhAcAdraMGPlpUyQPQAZTuAA6qEUD9uT4sRl6Ju1dmVRHj81aeef5tlZlg4Nz7PgBAhIQIGDBA1Zkw7ozK6NWba1Z184XJzLLXBoOb5PKUDD0GXk8XNuHrVerqE6lp2ViKz1y+uj52a+qJROOR2Mtk9RVlZTVskOa1l72uejstHSQ84BOaFsrg5xTmNT/TTv5LovjMBWh2jCBejoh4YNoH2yOSppJWw3Dw+MWA2dynGROnS9SQG2J3B2AneS9mxZ2CB9jOkRSC5MkYItCBCsJQOHaTwR0UMzTno9EZtkyYiJMSxfBTZTW/NA0PpZQwH0Wc+N/99XcQm1I8OMvl/e8D14GFeLw++9OBLr3Dp6NGEMoTaJuF54naykrvx7V1Xbs2KGmp6dLqQfDt37JS16i7n//+6u73vWuwXU++tGPqjvf+c6Uu8O2c+fOYEoJ/3ZbWGmQ893vfpcOCqAGHzbE8OE30FprZQgRQxITwMq97nUvCptbWFiwamuI/YM0NHJmYEiaeu1rX6v+/d//nYQReJBBreEDgIbcmqc85SnEBiEnBxrct7/97Ql9lrWU5j4SiM0DrdZPitrR394NzvVAfHNChioCDMn9eOv2AsCIQnkykvfLmD9zHrNQuFMWGMmTrQ6FPBUBN0VCl4qYDEvjfxnc+GGFvlnlGu9vuSy0vt0fJU0W72sW0+Ozh6ud2IpdV3nnMy90MWvb0LqynlRRi4FvrsGSdd1iVrhs3kDM5Dl56uaf2m2/MXtXG7oGRwl1OlCvA6FjyIEBSNAqaR36TrUpujU10x+j+jic84J8HXYqto/MqaNHDqirFrcRsMFvNy1uIJEAgKTJ5oo6fuKAUUTSeT0APZtHFql9JA3bMYKD1tMqUqjJMd5o2TwabEMS0XBwehUSPSCA1ampzeOLBIK4LbAKLEQAm+mOUb9n1Bjtl4uF4hjgqGiFpR7VB8K2ql8jgAPNrZATMyi48cMNU7LNjoLbYDeSBDuxdkLAiR34QfKEcB2FzDkeLw8ltp8yKoV0boTUs8zloX1m5E0lIMWvbRMHhVz4Mxbex323rAnCzMFW9jtJ7SADFUjtC/kdkWK/vvgET05oB9/IVJuQMl7fihwIgQGp5haykPyyNaMQF2JOYqFmoRwcP5cmK69G1rqSrA3X0/IZIPyNGl55FhQkoPsgHmbHbC/bdXMJC7FvWU/CdxYS0aj1agRch1QMdHp62gE5RQy5OZdeeqn6/ve10mdIxhl+9d/8zd+otRIau/baayl1pKi0dMxKb/3Qhz6Ukon8ujSgtvBbSJRgWPb7v//7VAQIwAWABfF+iCNkpAhVByiusf3jP/4jDdZTn/rUIF2H8LdLLrlEfeITn1AzMzMkSoCcI8QQDlorJ6Wbb258HdKTJMvx84vDyLLyKHywwGFszn5LsDr+dqvNWylqZfZThrnIa5fX8ROffdCTFcscajNLWIDaC3wv6o74oImun1WyVX7ujlzG+/DXlRY71rLXgS+TLsFWXv2gPMambKhamL3JDlX7ydKp6t5jV+vthyhH6k5o6HYBcNgB4jyI6dqyevDUb9Q3e1p4gJmOGhL1EcLV7FrHcRMVE62pAy2AnmWblzPXHVXbmvNGvraiThjXTDPnwSAM7ZbFKbWhuWyBEurkIF8HjAtAFtqxOVA046y/16s6LwiAhhkoCrExIXIjjQ61h9AbXWfHFACt9tRkfcUoxNWtYw/FNQC5Carvox04Omde0UU9Kw+2RzOrB8OY1RiGPHRWnZbYb344W94zoigY8WV2s4CUlFIuxeoMaEXrAcl1goyO/F1KEpsJRRpzMIM9/VzBmlSMUrUJiKz0GqmwNZaSl8BKOuQawIScc73M5utUEW6mc3mgLsbPSyiS7VmecLYJgYgsk+yKbId/87eP7SdkrJ4I4/w7THbItjFpYfOoIm2GjoFFLjTDxSGCWnnN7t/kT6HNGxc2WKEFZx+HiLTybWUveMEL1Je//GUiLRC5FbLPfe5zpFYsS7HAQBZccMEFzjJOMSlSpgVtvvCFLySfHHbFFVdQCgmWgcAIlYoZOshBzCfEBnxDiBcUGA7GCYiFp0EsQBok77IM4XUIYxuW6VCS7MS/ZMYoqeYuLSZMEPudDVXpQy92KV8cC1kbNOm9jCMc+8135kNtxmoDSUagDNBJ2sp32n0QkCcs4DM2oXWKWMilYOnxQZkX/zzHxixLUS62flEWJ/V7CQmZ4nWG4i9OudydTMgANiLUBBYDOGWYG6dfZvZaCkfo3L50DgLXgfns3ntRrgryYvZ2mhSiJh1TMDtc7waO29bmPNWRgcTq3vaEunlpI4EJrmsB0AEwA0EBOFEoHgoggzwchK9xnRwAFTA9ur6OdmjAHPGMNRcp5Q8UItF/hLGRk4OZXYqr130FyJlrjRAI4jaZsdnSXLDFRfX5c/MD7jGhn+9gcCD9K51nmeiexeJkFW4tYuwUSyAy7Jo4RfJ75PcYsyFZH0iToxaLNBmW5auK5fYxIq9ehuFhNidmRe6vWE5OXlvBkD5ba0Vf045hoqaCsEnwPPxc1rLHCHWjfYs8G/ns4THBpAAzSZiI0MsYiLFiXUdVzTOSa+VsHllSe5bHo++yLNAj2Rw/zMzPnQkBHtm+D9Y4JJXDVGmywvQZYiWcHxjqC1u6Pww6k/A2rWJrxtpIgEshg5sXplPnmEO3fNnt9Wo45atWV+uX9+0BJiAmAF86JhfNoWpPeMIT1LZt25zl973vfSk9ZNeuXZYI+cY3vkFMEvL48wyiXkiDwf6hfMwGRWQQE2sKciCzDAPAefazn+0wHWBvwIjI2LzD1YqwARRTWwDgxJaFnNYsB7CocMFaWVYoV28I4UpFFcPwL+oYZVlIHEJ+DwLJzBZNvyPL88CQv10sdK1onRjbRgTMlQU4ofVWo462ViZf6KhkEconkC/tJEcObxsRkleCuclS8UpyItCuu54TNifyLr5x4K7qf238hfrSzFlqc2OBAI4y7AacAOTKSAOYmeuM2hC18WpVXTp7rLplftoW8mMRARIsaI2o6aYGJLDFdlMtNxvEuMDBAquD8DOsax2bfs8W9cOyA61RahNhZwhdo3AVI2iA9bToASSi69TO9rEFAlosMc1FDTmPaKKKGhh6X4tdFDKFoEJX3XvyGu0Iqp4aNRK9g5o8T2UBTygfZthFP8taDGxJANQ09WDk9c9OozT/b2c/gXvBD3EbrP/hkLUiDI4PNgcBOKk2U4WhEwConxE9BckN7I6EBOgYwDTW8turJA46A5wstoRZCgAdiH3ktV+U1fHDv6TggL++/7cEQ7rIcMJsxgAX3+N51wmDGYyNFhtxQ9OcPCQBcABqTpzcT3L4ADYMbrB80MmoQzUnp0yIGkLQvvjFL1I5GE7v2LBhg5NvD1EusDz//d//nWoDkVAAM3/4h39I+fBo4zWveQ21XSQ66j//8z8p3/8+97mPQ6bc5S53oXSSQawwyMGBMtrDAMiDhigAOvXc5z5XHc6mX/bpBE52AvkGRaK6NMlElFEYK8Je5FlRpmg1+Rm9jFyUPBYnz2LCCLFjx9jH8jDyVMZiRT0L9TMnL6d0G5GhygqhA9sXszJqbLHcnrxQs9A6EpwNQ0Ag5iBwjk03IJvLf/P9qQvQBa6FkgAnxCS44Cactwb7wr5zbLI9173By/4Tux6gxmot1asidj/pM5wKsDCsmsZOxubGonr90d9Rb7z1geryhaNoZnXT2CLJPE+Bkal1bfz95tElAjpwCDY0limMDDPGaA/ryqJ/zLYAyMAAbACysJxnb6ebK9Q2AA7YInGgtg0Y2CI4R1RUlPKLunSM+M4z/CR7Xe2o8Vpb3W18B41tCODImfCk2GKyrKz59VaygE5RFbSDZVmCBVyHRQP4bKDDywexsvk6MjdHmlNE16tT5fQzA+CUy5HDxEGa1eHfyOjZ5ebt0L7N84OV1BLlNB1KSbVwzDMJDI4OukyW+6wWnSeErxlAdfOi9sWOn5ix31OiA3JMCkSWyL+zWBz+LQSC+N7nbVkFLeuZngWKWQkSYXv+MtrWTJ7gmcfFRzEJw3b9/CYH3OB3AjlCdvuIKSe9A/aQhzxELFXq4x//OBEbbB/72McojA2AxjekgCDUDWpqYHUQ3YU8+je+8Y2qiCEdxU+FgSH3PhRBNlSQgwOFIYH/r/7qrw5KaNqhZrbKML2A0w+JslK9MQc+5lj6Tmfsuw8upNNdNkcn1Ka/fV5SfmibmBVxpMtajL2JCSzkHY//CJXgpidAX9lHrRSUKApwHEUwL9QvT3EvT7yA1ykCTIowc6sFOJKli4dmFpC+FfdAXgiNs51XeNIHO1SQzmTTtfoNWv8rB86k5wRq5XC/YU/Y9HMdc+7V3GFn72cLJ6vdrUly+hGWttJvqHavSuwOwA8cjBdv+x8122+q9+29J1ULP2Z0lsLY4FAAlEBkgByGWuLsbB01OQUUfgKmZZ6+A3iw8hpACZL/we6gHfy7xMU7URCxk8zYsWgADKIFOpxFq77pmh49ksKGce4iO9pSQve45n4bZgWnTydX6xleP3mdxiyQ3J5nvmOdJThwMK1MDkqW+QpuUrZY3hdFZthDs+3SQm2UUWNL+lxchEDWrAmJRxSRFI+ZDOPK6r8UDOB94Xql76S62jCOun4uIOSU25XPDAY6zITQswwMar+nTpzYr65f2GQBTp4VCd2NbSePu++puEn/hsUHCNzU3ckQ2Y4GappBTpirBPSFDM8dfh5g230reoKdw2U51FYCMIiogHlGKKy+Lsz7FjLbh0DI2m3B5PQLxrehqGdWYc8TTzwxyPIUMYiKfeUrX6GwORgDm4985CMEmgax0jk5SNo/YmHDA0DG1NNzKQPohAAIQpFCxk6p34Y/+x0SKUi1FWEU2AkfOA/D/ouXaHx/w7JBxBbycp6ygGhovHzjMQyJDqzGZL4G/70aozo2Xn2bPPnkEICKqQKuB4uJdvjOVshpiU0U5O5TAJFkG/23Hx6EnIjxWks9dPI3Tvto48szdydgAoMjdP/JK9T/mzmDAA3s5pUNBBQWOiOW8QDQgCH/5qmbfqo+feAcdcPyZmJYmOUBAMGsJxwDsCvaUehaVTZKChbSz8iVwf5JhrU1QQ4EgA7WR99RgJStWa2rbaNz9MyDWIB2TioWIDH7g77UTNFStM3PSE66loUY2W5Y2azuNn6jldAO1cXxz2UWuFlNHs7BMp85XI2T7gMd1FtKRxwMBnTyWB55nsqCxSJ5VVJFjU2CHTmOqx1DKbbB4+NOJOl+yNo3KOwZOi7ib+Qkj1FFs7mmDtCRfUjCQ0OiAHlCBD7wiDE6/ne/5k5sH7aOTWT/MDk5gbPlX2t2G+ND9QKgjI8DFbVknhBUHEO5N4dKPs6w1dUOJQN4euxjH0sFRaHY/Hd/93f0/Yc//KH6zne+M1CbA2mzQVnhM5/5DKmZQb1M2s9//nN1uJpmcMIXlq+gli1fG17Hd+qLzqL720oLgZEy7YVeF70S7EZZiwErPA1ZYjvG6GQJJfgOsWRF/L7nvSLl77FQvaKWxZAVsbx8LEfUwYCeUM0YvtaGVZcoxODEQtrKtCdfjiE1uTzA4r8YmJFdzQsDEsdwuuBYIheCHfqm6lqAQzLIxv5r/z10/3qmOGhvTH195m7qSZsuVP939/2oL1tH5q0TBPCyrz2upurL6v7TV5L62ncX7kRACL8zwEGR0M0jCzZ/56aFDTSjervJ/Wqi3rLqZwAos+0REh+AU8hhagBBPBYbR5bpmNAe1I3geCH0Zq49qjZSPYqW2r0yRWCIlNHqLVJHo5A0KFRR+J05J+Y4fIUpBnm8DH1hpzdRwUpCe2QIYgzgDBPc+M57VGI5oOYVcraLMDahtrIsxGywvDEr68US/4uAlyzQksXmUP8j25YRg4gBmKywtaJhp6HxZeDi1hVKhAdYmptV1DjUrYiEOYMePycJ9y6rRkpnnsNMY+IAqfYDxT59oBICO75IQbDvgkXRtbkS0QBmDrFc76enRmsJC6vvVf2mlH10VAMz9o3nki8sgL/B4hDzZFim1TIjR2zt7QEPeAAJD6AMDIqKfv3rX1f3uMc9bJHRgwJyzjvvPPXqV7+aYvSQoIQaNUgI+ulPf0rJRYe7FXGIQoUNYw54iK2QyyWTY4FPwKEOzcSzA142KT5mWa+OkLNf1FHOctSDLJRgw7JC2PJEBWIhT2WsSKgem79ewozBiinI5e2zyJiHwLRmJpNwyNWMTSz3ZjXhanlKfz4LKp3SLGetiJBIFouDZRcsnkov9jPHbkgqtIu+SYCjw4iqlI+zpBoEBhDexb/9720/VF+bPYNC06gdmuXskbDAqaO7aNk3Z+6iJuorFkjgeYQaOseNz5Cjsbc1ofYujZOzB7CC9SBQANlmCW4AgJDg3Kx1CKwsV+rEyEw3VtTRo7O22N58d9SRaQWoQTjbtpE5+ptBkJxBZhCCkDlUIg+er54JYav01Z3GbhHnRJwvE5bm51jp8yFn8+PnsawMeAjMFK1VU5RVSLE4gfu/CChiB9O/vuU2PDYa6OT032NBiwAdthgzlAJXEeGBoqBQig8UkdXOM3mM+N7u11Pnggt68v5xnSd/DyeGgaWSMZnAOTFlJl+ywFCWTLTM05HLfHW0RGWNc3FkiLcOU/XPhZ7cSJ8/BxyZ31k6W/aXQ9ZYLAXGstF8fRyK4Oa2UFe7ra3dbqs//dM/pdo7H/7wh4fWbmmQ8w//8A/qQx/6kHrGM56h/vmf/5mKZ0LHGrVr9u3bpw5nm6h0FOqCdyt4yLrhRbH8msJhMMIRyHMG3XCq7Ct9NfOaobCsPKAziOhBKEwvFiqmLXEImH3IyjPxBQWGHVY3aHt+3pRbbC7eftY5yMu5kmzNsEUp5D6GbYlwR1Gw44qCUFXynBCPIvk5MrwG+TdwHM8Zv4acpAkj/xzqd7J9Xz1p84Xqy/vPIglnKIqBHYF9cf89CJAAqGxpzquzx69VG6uLakdni7pi+Wi1rzOpTmzuIYCD45vtjKqZ1jiFph0/vl/tWZlUO+Y3qi1ji+rk6b26+rfqEwt0/dwmAjUQIsB+WRr6VlH4E2OwbWyBiodeNb/V9hfJvjyrvLG5SM4YQNVYtW0dHlv/wxwu5w7BYcO44rhk7TCszwDn9LGbrER0XoiaNClaMEyLsTYxh9ovKOr2MQCYvKLR0edi0XAyusZ7boiaYVnk2ODabYIND1znWUVQBzE/rNDmZ0TAmK6J4ooPSIlm32S+Ea/v2yAACNfkSEWHeQLs6BBUjqoI5QlVg3ljfNx5xpMYXbMf3WZFHTd+gL5fa4pd+kIAPvDww8+yJm98aelQe1lMkW3HE1ySQOXosVn3vAsJaMtYiTpD/nH5RnW4DNABe1MlkJBmdw4tkLPanJyhdeegWKPRUP/xH/8x9AKjpUEOQtRYKhoKa3NzerYOknFQWPvABz6gDncLzYQPEooTyh/x697E9ssWyyMpw974YCZr3dWEZuU54JKpstswi+XENsPcsKQscMO/r2fNlTLgcdgWC5k8WAUX88xR07Ohb64salBUwIPlIYegjDpUCOzg3/FKKxWCw86cZh7TalEQHtjZ2aB+NHd7tblp5KJF6MqVC9uJQTlhZK86obFXnTF2g5qorqiN1SX1pA0X2v18YOfD6d/xaovAD8AN2gAIgQGQAAQdNT5PseyQgN5E7E2XGBuKce/W1cbmkppqLNO2OxY3EqiBUwHnQnWSwn+z7TGascX3iVpSWVyGRmkHUYMi9FmGrfGYYdkdRnemQtT8EKoQgyMtz5EcpJhrDODIf4dt8jnm3I8lRQksiIh0U6p8OQ55xlNmEEEBaRLgFA3Vy24vzPj4xoxPEaDjHyMlz+PCpzHTrI28lzn/DEwjZDJC4Cb0PPC/27DNngZuFAom+nzq1F7699r5zZlqaFlAwX9WhmrgSPOfk7j3oY7IEvCp8c0BVbH2YRziJsUGQiF6lMMCUQGfhQqc20MpN+dwsyc+8YkkI/0Xf/EXtx3IQdVSMDZQULjd7W6nfvzjH6szzzxTXXvttYXVGX5bTUvUunk29EI3Ny69oALyxlkKVyGTL7qioVzszvnhXUWszKuLQYc/x5YXBqEK9McJLyvhYPvJ8X7OjP99PYGdYYTMrSZXJivcbxiSz7F98/6LWLAmkql1k5VcKx0357vIx5JCBW3jhDFgCSWG0zYhCV6zfpIzkBQAtf0T378xe1cCNgAjS6TIpBXTwM5QGFljkWaU97Sn1N1Gd6hvzd7FMgzS8T91Yrfa1ZpSF+w7kYAHZoDHGm0SLADAWeg2aVwm6yuJJCv62FWkkoQio9jvTGuMPiwRS+1zyIx5zmE7tKOZpOQ84Fh1hXgt84rtp+vL9Pu+9gTlElEl+WpHbagvqtFKm0AZ2BtuYzUyxrH8jkEAzsG2kBhI2dC3ULharDaQTuD3JZvFpN0qZ5eLAqE84CFzm/xl/nL+LXS+0+FTOQIH8lqqgK3tKC6putgd8ZimigaM/ZjCmX9McZYHQAe1eNpCklq2eerUHnXt/BbTblgBLXXskXMZYrH95QxoePx4IsRvXyso6lpjeI6AwZHHx/k4YOVkmNrOpalov5k15u8cnhYz22/z70nTe9RP1Pq220JdbT3YaaedRnLTP/jBD9TZZ5+dUnF+0YtetPYg52EPe5j6r//6L3XWWWdRPg4QF4QIfvazn9mCoYer+QwOZivt3wbswOBc+LVy5Hah9hxHsKReeBYTkxX2NIhJMFMGiOSZDCUr264T6ldQJIDWp9CN4uO5FhYTWliNe5aXfB9TFCsCtlYjHuALEBQBUaHQuthxOXKsGeuFJiHsmBgnUC4v4zxLIOQDHJksjVowt3Y2qB3Lm8nBgSMKgMP1ctjhv9fE1RQW95Cp31CuzooJScIM6FKvQawKAMRp07upv9P1JZKbhvT0tQtb1L7lMQo32zqyoLaMzFMoGlTaGIzA2cC/k3UUHe2rycoKAS8oq8Gg1sYFPCFwgP5hP6z45sxWmzYna1oG+oYlPfust9HrrfQaBKw4PC05B9lXvAR4mazDKoFNmdybkCN+sC2lMsb3lscsyj76ggTSQmFXTuiZx3iEhAdkDlpen/MASFEGa63PB65n1GxiAQKErLESG4WcBRzOuDx2PxoCy/uifVTCQKcIwJG/++tLOehYO44wgGGtQky4XLfXS55xNTA/kn2v6mPiyRJMyCTj5Iba2TZFiFtRwz6HHb66FoYerraX6/8o0/bRj35Ubdy4UV144YX0kQY56YMCcpCP0+vpmw5CA1u2bCF5tyc84QmUNHS4m3SIehHGhUJAUDPDFpqLO5QhJ88NuclndGifkeWDOOsx53+15ifY+zkyPrjJ6oMP4GJhbrKt0H5Cx1pkzEJhdGUtFGoYOo9lWDlpUSddiFqELC+nZ7VWpg1a12OQY8IIzOxYSdQc5Tm2luAls/IrBjGpBvWtubsIJyZJXIZD+egNlzrOmnTaIEVNAAdJ/KKAKNpAXowOrdEsEPJvAIAWOw2aeR2faFEODvYBNbSZlVEKPUEh0Hqlo06YmKG+7W+NU8gI2oL0NPJ5oKAGJTVsD4NqGufYsBPSMBdxzbA37AgBaLFCHLYBzBlRbVKn2tWeVqNNTAklhf0wI56nuOXWFNJ5EOSMm/Ar6scQgjtlQc0sW2tw4zvtISaR+yoLWNK6odwmkTxfxhGUwCarYCobh6XJUMSY0MCgks+h+3Q15yMWFpmoOfaohhPWwxiC1eF7wGe/nHBYCeQFgPRD2izAMexpF8+8Xo3W47y3Xx84OsWwFDEfxCBU1e9nlpFMfK1LwiXcF1n7Jmlf94t/4+cG3Udgz03eHvgwlp3ftzJu94NwWg5Vk4pvdar9FQCRgTA5G0Z4xNalISJs2FYa5FSrVfqwPf3pT6fPEUs7R6QqFJiFYLNMjwA7adUWMfYmjIaT0EPhVb0CdWxWY3ksinTuB3XwQ4yL3G8RtigBLelOhLaRYEbPvqnb1KoFvvO59l/dZdmXmIXATBkBjEGtLBvkh9WtViChGwrvwcREv2FDqLL2k5dbRuuwvK5w4h41/csSRUqrTmjbfAdhZzzTi7wKSD8jeb9HzMzelUkdeoZnUrVPSml44YOJocKeRvIWamrYDmxNzxTvBNMC1TXOu0FIGsLc8IEsNCun1Sum7g36WNE5BBBOgIE5wtNwpSsccFZjEvVx8FzDvxBSgEO5tTGvttZ1iMtAqmdeYn2ZbUOs0Frn3qT6UABUh8COD3RgWY4vh2GGWIQQAJFJ41bgoWT+mi6Q6S7jPnL/BwE4awEuY+BYvtMTIIRilx2acPDX8bcNJd/zd2KClAYyMUGCy2aPsstkPkyof7BBc2Oy2sWECC2DTL45ZscC9QK5MDAx0qZmm7vvnqp6fWfw5fdRsjr+b6Fj4POynu1wDVdbCxvobM/MzKgLLrhA7dq1y7I6bM961rPU4WqytkqQYRHXnLwpAXaY1ckKGUJMrrO/jL6sBcBx2vcYjjLMRda6WeAma1lsnezACNeaFTi3a+e8xIBaiJGJhcT1BgAlq5V8DrVfJIwsa51YyJgEK4OGvoVARlYIW7K/SnB2GvcnlJSkkxycKQ4U+s3aPwBTVShchQCM47BGZuw5nAyy0gvdETsTjLAw5LygJg7C0I4ZOWBD3nSejZ4lneuMqK3NBfrO+TRwMrDufHtU7YJq28R+Oymz2NG5BwyieAyxPuUQGWCjw9iSmjVoF7O3LCzAY865OgBpHIZHM9YVpfa0J9VRjQOp/KmQM82gJFjzJZBDJdvzjcJvSHNPDdXJ9s9tXphl0dBH+W9sG1ZZS/YXfitYoYccFsVnIXygg/Npz0nsnAUKeNrj8diTLIU3CUhvizBBXQ+H+52EcYFBbVf0BELIWAret6AIign/lKyO8/wqMLkTKvIZUmKzy0QYmjTcxRymGqrXI/eDfB0YwmJle6jbhUkThLkiz9AHOjgezvNBAeKQ/8RFhn11uVA/eL+7RAHjdWuHabzaH/3RH2X+/rGPfWztQc6XvvQl9cxnPlPNz8+r6elpipNjw/fDGeQUmQFn85Wf2AmVzh8vQ+K8LNIYsrzcmmEl1cdAzFqEr/ntrjW74gOcooyOD16KblME5EkbNCRt2FakzSLAJHSfyO2yRA+Ktpt1z8RiyFPt4UVqnIukCGW5sxEDdTLRO0nWT5zrZQJX/SCwAoPzyOlL1Vnj16sfz59qQzHAzGgGp0kAB8uR3I9tASgAhABG4GAgbG3rmAY4MISyHeg2aaYVdW4mR2ftGG40eTgr9WULSNA2QA3a5Vlc6cgAUPEEzny3aUHWdGPZOnnkDKLWhaiLA3bnjPEdtI5kz7LHWAAqj8HJBB45Cm1FrSjjEt0+MBmRqTY5AMuRtBtQIAvcJmVqvPhAh/fhhxH6SoJ6ubsfZ5sCIXDB3wcILZXAsUioXOg97rblsmMuyJCspgtYZPt+bpuf5+av7y/PEl/hZaGioFbG2U42CeBjREqqfS0hz88oLIvJT0OS3l8OgASQI8eBpc195Tv/2GRtrpiVYa6O2G1v+/fvT9XOufTSS4lYgR7AIFYa5PzlX/4loa23vvWtanw8iZc8YokVkXf2lZ94WV7IWswaOUxK2ddh0fyXMnkyoW3LrF8EQNTyVHkyHHTeVq6TxVaVAV1ZjNQwlOeKhKgVzd8KAYNhSkcXCecqY7H7IwkHdfcZeulnqhkKZ6eoPC1b0eOUjguq10At7UFTl5Ejx4yCv6/HbLiE/p2q6dlOHZ/eJcCBDxyGiXqLHEuolUFyGqpqACMnju9VO5Y2qZMm9lFBT8hUA3wcaI/Rb8gLkrVG8Dc7lQBRbAA4KCQKUASHBcAJAgZU90aMNZwWjsHn4yUGqrGsbtfca/MzEtbHOMrkNCcMTzHn1q2NI8Fp5nYC7Piz4kXC0ySDEHKO/TweHa7VG/iayVLzKystHVMri8kcp7cP1yPyFcMozMqo7fn7HlSC2p94WA34S/parE3KuTF5OMkyzeposN9VvUqb7mm6wgPFL9P7dvNxYo462rrbxlvUbw7okLUQIIgBBf6eBRJCYWAyHwbsMRsX7OTt5He//2Bd5HLKPyTVRijIGcCHf2umkK1Zl9gcsz7vLyaKcMjbEMLV0MahZl/4whdSyxAt9vznP1+deuqpBwfk3HTTTaRwcATglLNhOnXB9kuAhSKsjg8oVuPg57U9zOT9vHAzAJnYOrw8tk4eqxTL6Vl7BirMVuQVVw0ZAIw/3kXZoKIz0EWsTKhaltQ19QO/5bQTC4WxamyetG5S/6pKksdFHYesWWa0Debm/LnTKRkfxRtl2wzUUBQUTtVTN//U9pUdSMysUliYUWFDsj/W3d2CSpoJLzEOwvaROQJD+BvrAOjgb4CfqfqK2giZagNW9Dikk64b9a4pKuqGFKH/EEJYMsnImtFJKqHz+sc0ZtRiT7NN+jgwCgyMuE13JnsQk+GG+cA0HhZVxGIAp+i6hQqGZigE5jEYITBRhPHIAjyOzHSgfVq/b2TTEcaWwdy4cu5hkOGzb7H+D1soxDctj9wjEGNr5RhHnfuMUKwuwtL6uP8AHORxJM8RfjOn8nH6EbEDb1kUiAcZujCAsb9HFNp8NgW5gFkWqpODyRAC/P1wKJz/DNXMbsJ0ZR1rrD7aoWa6GOjq2/htMGgAvPSlL1UPechD1Mtf/vK1BzmPfvSjSS76lFNOKb2zw8lSRdtynFAOVSuaNL6a8LNqRlt5wCLG3NgcGOMkD0OBbdghcFkAx9mvdbJKtj9g/lCehV7RsetkGGDahk0VYG9CSn95bRdZLwvchPJ9fPlpv2ZVrC8heVKSfzfhYzKMFC46QAckcLVLome6IUjAYKTMS9bNR6iqhX5TJ4D3K+rBU78h5wxt66rqVXX+gTsT0wJZ6D/c9kO7/X/PnGnGwMyUm3yao0bmjEyzBkH7VyaJZYEqGsAMgAcXGAQjA3GA40d1uICta4NZajgl/Sq1CUAEFSWIGCB/B3k/0lFhBojEBGqJghIfI1m/pzZDla3apuNLwtZ6aqqyHGR1ZL5OnsWUwfh8lcnZ0PPvw3sQpeqy5ITKYd9BIFR4LNJqfEUFAooqm1EImseWUT4OSQdXHaCp/9XXs7MvAVZC4w1GhNqlmX13XyEVtWGwOX6bifR7ohzmgjP32QbxAc3qQEm1SxMtjb7J0TH3FaSm2XQOk9ne1NPDvQxgJNmdJFzLtFGCvQgxPLaWjbeePA8+uIHCYiwMLhQqFzqnHAoHBTVmh7aNzovtdP0csDxUv4ueQ25NHJa7jlmoL1tHk/DcI3Zo2NVXX606nWJhy6sGOY9//OPVy172MvXrX/9a3e1ud1ONBpfC0gYp6SOWdrKKzobL/Bt/ljpYN8cDLTGQEgJF1gHPybPJUjCT38s49Ly+BEN5ifmrtbUUFcjc7yp2m+fKHKxCocMo/DmMvhbN0wnVaoDJF3MInMmQUV4OUAMnZ9SwGk2F0K0k7AQ5I5JNCzkcoRh/f5YaScpY9vDpX5m+gNlpqJ/M354cRoSZgTX5g60/stt/Yd85Nv8GoOSokVm10B2jPBiEoQHQ4Dtq5iD2HX1mgENy0LW2AT5tAibsrJJTVtVKRJrtqdGMNPrIKk4kMmDEBLhmx5Vz2+3vd5i81Y45j8mGugY32Ac7vVJYBapq2pHRY4I+IedIj2sY6Dgskpn1zgM6RWwYctN6n3yducVac9mVjP3nOfGSwXCL0LqS0oOGiDn7onAtAGItNMHnVUpFZwoYlMhz03LD5Zm1QdmcYCigJ64g//WBjg3BsqCiqkZsjlmT1AZlGHG4Nl7FYXfYMDkha/Gx+hiDAb1/d8IlFFaWBURi6zJAmW6sqPl2010e2SbYrgnh5HUBaFhtkQQFMNJVUOh1Nd00BYSFrDQLDsRAVsi4/fVsh6u62ktf+lLn736/r2655Rb1la98RZ177rkHB+Q897nPpX9RldQ3CA90u+v/Alora9ub2hSd6oeZGfzO6/LyUA6EdCpTM9exGf4AeOD1Q+tmbT+oZW0bYnjKgJv1IO+8GmECue3BtKJsTwhE+NdeWfamyH6LmOwb7h9MCPjLQ/tAnRut8BTOxWGHhWcvZcFQCsni6uV29lbPJlNeXQk1tVTIjU3AFgnIxhlCqBrLTHNew+bGAgkNJGNQU7+z6RfqX3bd3yqZQU0NtXEAbmbamCHVy/FiX1INU9tmUR3TPKBzdlDbo19Vly0dQ0wNmJmZzoSegVYVNVFbsX2AqhqcJBQCBYuDcWG1NBiA0elTtxilKdfBkepJyA1C35EnJB28W9obk/Nin481deHCSfTtdiN71YbaIhVdDJmjthXJEXHGm+7ffOe3SE2cLEvVqhEWAwG0zGRj8XZl+pBV/JL7kwdwaL920iy+bqIqVqU6R7y+ZQqMNLgEe2xNISrhH18MHIVUuFJ993KLhm16bIwgiQDflDRvno92XATAlJLxI5W2qte1v4SJBLCpmEwIHSuOEQDAcebNccP5h+Pf6SCJH8qJPUryt/LKPGFqBAOsZTyOJTgKiRkASIHNxW/Y/0xrzK5TJKxMtiv/XSShFEyy4LnFYKfnSEqjcDGOd+PIUgrQYOKF1d4k+GI7fmJG3bhnSq17w3Edhjk5v/jFL1Khatu2bVPvfve7c5XXhgZyfMnoIxbKAUjAjHaazAkT1xwcNICgWLgNy1GHZpmZvWGg47M0ZWScQ+sXzT2JtZe1LKvNGLjKOp5BQE9MnOBgMD1ZxxJi22Jg9rbMCYsJZKy1+feIZDy5XzGzDqOIb+fJBQTP8PaU6C9yRiQAkvuIJWGvZkzYGUH4GZyeh2/8tfrO7B2pECcMIgKS/dnVmVbfO3BHqlWDGV1WNwMYgmHZvuUpddLEXmJ6sN6ulSn1kE2Xq2tXttE+WMkMoGdfZ4KOm/NpuLAfAA2ciW3NeeE46ePXoWzJawTbMLhYIfUlHUuvC4N2df6NCcG6ZmmrOnbkgK3RgwKhHH7j1r/QOUNXL2+ntu8xcV3i+BswsBYMjAzBko7iIOYngOexTJJ9SI6vXOgcg4QYUPCnI31JZicUK5YbY0K2ODQtpJwm/5Yhc7IvIfP3FToHRWSTZcjeMEzKYtP+aeJOCCkIgOMbixGQgf00EyY81Cs9vu6TcWTAT7k9QmqdC/7iXtk8skh/M1MDxTMYHH6WcOahSokRRNijkFBB8JgqfQIeLM8cCiHzt2UgIn/n4+DjloCJJppMUV9dz2tR5xfSPZMcD9jqjpHs9lks/H3z4gZoVgaP44jd9nb++ecPvc31XxXpELQWy8F6mV9+yE8o/Idnp31jh64XqMlj1ymYo+ODgqw8nBCIiNXIGdRkwn5em7G+51me6lpZGyQ8LyuPqlcy32qtQEYoiT8UqnawAY7sC4eSyVCNouZK08p2fafMdVqkcTgOAaRArZxYvZO006bZoC/NnEWhJ2wILcOLGzk4VJQT7El9Rf3+lp+I/XbVdG2ZnB1WTAPAgFQ0GBmEn21sLKktzUUCLCwicPL4buoLgAxU0ZjxQBssTIB6Ov64MDvDM83a2cI5cGeXAWpwLDguEi2ocMJ5TbXN7DK3AXUmgB6uqyNndNEGJKedwoEmNO77s6fZZx+O+Z6T1+rcGQEKKKQowubkSUpL8wEUMysh1sGuk+HgmlH1ZJV5pl8n5sf65zM76XbTlqX0lmWhsDqfeUQYJ+4FjHMSopZIRMeYIhaYyLMYsCoCbGJtxSzGeoVCTPW1JdnfpJitvD99sOMDPbvciHqA2cSH1mElNpN3I0UN9O/6/mPGtc7fjfIY7h8GNzJpnySePdGBmFKZlZIWrLYED7gvucAwG9QV/bwZeZwSAMnvvO89yxPq6LE5Gi0UF+ZjZr7PZYp65MC2xLPTH2sJdA4lMYLDVXjgYQ97mPr85z+vNm7c6CyfnZ1VT3ziE9X//M//rA3IOe+889Tznvc8NTo6St+zDMprh7s15SxVzn1lw2LEMt7az8txw204YTDcxrBCyVYTIlaU8Qn9VjScKy9vaNjgZlCAk3V+Qq/fZO62nK0G/DCYKXLNDrqP1fZP5srk1X9I9pmff+C/4N3CoAmLkzhwSUjboMIPeta+SmAgeRGjyJ5WI4NjAweD1cnkvqDC9rWZu9paFlgHTI2s6A1lNYSWjVWrar47QqFsYGxwDHCcAH4YHEHMoGpCzoI1NgxQSWRttdQ1Kc6Jmjn6t4TnYgeY+wSAg2Xom14/UaXiEN6OqacBRw0OGJwocsxMyI6Mq+/2KuqSxROo32eM3yDOQxzoaKWv8rWOZNs+2JFOcpHE91huTl6+UIilCoXTxfoTChmLtRtqj8/sQm9ECwiIsDReLwvccJ+S410fnliRoqtsoXOr7xuwRQkrTKICJtSKwI4ZK+d8iEmENBDU0QX1Wlc1DAPNkwtoC9c1BW5y6CztS8x2EhurQ20tMyMBSwAISJP1aHhbqZYGkAJZZ9S8wjNEMkkh6ehQ25w3wiO83QgPsAw3519xyJr/FsWy0ZobMsj3+6amZoVgOxYSp/mQiEXCIaz21lgft1Yp+/a3v61arUSanG15eVl973vfU4NYIZDz3ve+lwqAAuTge8yQk3M4gxywMDEmJuZQ+vK/7UASon6AJdvBpCPKzgH2XQToDEMGuug+QstjzFHZmjmrBTSDhqdZJblAXZ1BwtMGBTixRP4sedksKyossBoWZ9BtcY1n1Z6iF75wPvx1h5FgHdr3MJTtwKLca+pqtdgbodwYnHiEl8G5+F+bL1LjlRUzgyzCO1Rf/c6miwhAAOywzbVHie1Am7cf30XL9rSnaHwQxgbHFA4Zim+SUpoBEiQDXe0TGJntjdJ2WMayzzoUSQOGRIoZzzvUAeFZZMy4JrOqcDpItMDsg2d6kReE4+NwOPzeMgCGZ6HhBKFvcJSaBoShPwToKl0TUti3+1jqN9St7Q3qqEbCQtlilDRBlKi18fHoWiau411UeawI2MlidNhxDLEVDMJCrE5MoCCWN+T3QbJJRYyZGh475NxADINzb8qKJ2QBnFAdIQnSZH5KzELCHsM2p2ComECBoAb1j0BI3cjOJwCEzMlVSvKi/IkFZnJ8ptRVHuOQLzwbkrA23Z7Oz5FhX34IV+H8nAyVtcnGihkTzV4dN36AmFmwPJicmGmNWpAljwPgRoIn/F0RkySw6xc2qTtM7bb71SFrfZubRLlejjS1mRwRfUWIH+zEiaTIZKufdqKP2G1rl1yia77BIGq2c+dO+zfy/L/61a+q4447bu1AzrXXXhv8fsTiluVowhnwwRA/jqWyU8iRSkk4CwAkwQ5btaQiWtHaNFIquojJdgdNui+T48PmAxAJhIpISofW8cFUaJ28Y8x6/R4SM00H0bLUBf3iuvwiTcuxR+poRBSvirJEqzE4sZ/ffzZ9P66x34atod86CblKAOZJmy7UDr0JZ8LvLL0MZxO/IcQNTg6AwIljOkEfxwBp6801HS+PPJzx6goBqXtOXKNuXT6TYtjxQZgbjpPBFdoC6wIRAzYGkQSIUvH0Xeozz6ji95Vuk4AK2CKAFOQU6Urp2hnBctqPcU5kXD22Y6eXWSLsH+0367rmjiw0is8NK1vUtvpcUIFN540g0d3NRMF4Qh1PrlcG6CTtuI5j2WR3HxQxY8JgTLcdlk3mPpfJG4rWGTF5aegLX2NkqAXTrxODU0S0gPqYIfNcpk+p7T32KLreGpvbJxfk0TXITA4vNPLqbbCaxO64YVZSYj3ZhwsqKCSO2NNw3o8fHhdiVKTCmmzb/+4rpsnnKwkccF4QQJkAwrjX8Rvu4clGiwQA/LYBaPh5LgFOWUuHGbvHsmtxkr4jZwj9Z0Z8vdvhpq5297vfnUgSfBCy5tvY2Jh6//vfP1DbR3JyhmikqOY9qBtGKMDRzw/GiWvrlZTadSu5J2AnlLMTsixnfJBinFn7GZZiWyh3J8Ti5IGT0DLexuYJUXx1dhshgBPr78EEMHnnXypbhZbH2juY+Ti+uIDfn1StKZoF1S/3GMuSzrPIUo4K71uqy8nJiBDblDVev7vp5xbAPGbDJSQ6QE6QERrA73DMpYML2eizJq9Xv1w8Xte4MQAHM513mNhJcf2XLx5NDAfEAk4e2a2makvqrPHr1HK/qY5t7Fffm7sjMT5jqm+FBShUrtq1AgaYMeXwMJ4RxX6kBDUfO29ji4ea2etmVYMW9A2GbdHWgdaYdbY4ZwB5Rwx4UIx0pde1gMmG2Ziiok7SshUHqKpfLJ5ILNYDpq/Qv6VCjcT1wmISgaR0Pwm/rEBB0rfwPaiXu2DKBzqc1J/0KWHS/D7Hcs2KKLPJPuP6AJDxhQTYQjVuBgU4Wap1wZwk0Zey4gNrbdRfA3Q4T4dDyaTyWs/UvtHLRaFPk7tG6zn5Wu6xOcyqFedI5yyVkVT2BQAQhibzZdhZrlV7JFPNIWvIydKdrKvJhj4nLDyCiQP9LFixYWN8LNzfGxc2mHtah9QdOz5r2V2/X3i+8LMINtsedZikkLAH9dGEvt68OG3FDfpLh4jwwCEYbjaogTyBXDTqb15wwQWkqMbWbDbV9u3bVa2Wzr0aGsjxtauz7D3veY86XC39gst2OEN5OMMwBjjDCtAZhEEJ5fcMKh0dEz4ow+AUNWZlBi1mmsWOtdfJQ6ssuAmtezAAT0waOrRvh+0kqdZyDIw/45m1LefSFDn2rHXQjtTN+sbs3SiMrFrRhfbgJIxXWqltnrT5Z+qXyyfQ32A34Dxg3VPG9hBz89PZk4yUqn4pHNOcUdsqsyTXu7GySM7iQ6YvU9+cuQv9TgVE6fi180XhYEh4NiEgJGnd0aEh7MhwhXb8BgCjc2T0/rgdrA+FNWJ3qh1dXNQkMktHbBlMT023KWeLKVfJhKfZ4zeOiiyOyOPH36frS+o3y8cSuMOlAPZKWkxaOjlnaQWwtbIs1oir3duwO64DZKSLbX/JeQ6zPVKZLcsgWQ4Ao5kao5xnnFgrOR3JtwmKFHjFQWMWAjoxUBQTIiiiXHcwgY6jwCbOAdfMkc8EhHrqULyuyJcSOTIVfX+nRQG6Spl7k7aRjGhunRjNsvjG9XVkKJljvarip9GkEUjg+xWCAQgrBcPTJFn5PjG+IbDGOUrHTxywAASGELfJalfdaPJn7jS9S+RCJs8LWSdntjVKhUklOGLjIqP2uKt4TvVUe0DW6IitnZ144olrpt5cH0S7+uc//zlVH73jHe9If19xxRWEss4+W4deHM7mFAXMWbdX0gmNqXKFnD4d8qai7YRYmmHn6GQBhTzFtrz+ZDE4vDzFsNgZ9+wDtb97D8MiOT8kgx3J1dFuYdr8vKy85VltlbFBAIrfJ2Yq/GtwkFwVH9RIhsQyBiQnnFblydpfml2RxfzcGc+YPHbsPJDDJfJlssBfzEmzx6J66n9tcJ+1flgVtt3Z2WhVyRD6BYdBMys9dfniMVpMAI5Mv652r0ypH3VOVcdt2y8AYE+NqpZ66IZf0zhcuHCynk2lmfs+JfPT1SXqezC40ONUVUsmX4ZyYuzx6ZCyEZ65NgprWLa/NUFMDVgj2FGjs+SU6UKjiRNITJxxsmSoHP8uAQ6PCzv2miXStV2g5HbV8lG0HGCHxx4gEO6kn6OTYkaEQ18kBCrm1GexFSHnnGsjJX8ns/0s60xKjf2GDbPj+jQUtieube4Pz7iTGp/oI8LREILGAgLcX2m4hvImBVaT7zaI8EAo32m9AB2/jg7MqVdHQAdXID8vNDujnyPmeumLOkZ92Y4bfsagiULijBABjJTWjMqZzrvT53Cx0yAgAvNlnlN5P955QTiZZluTe5LzbLAPrZpYVfOdpqp367aPADr8/OBwUz8kDrVrnHta/G7fJ5W+unFpKlVbB+vOtkccQQVeLp9ZUgHuULDDLVzNN+Tl3HDDDSkRgic84QlqTUCO1K4GUzM1NaU+8YlPqE2bNtGy/fv3q+c85znqgQ98oDrcLS9EKGtebVDHtUg4j2yb/g0AiiI5KsMKQctiPEq1EwEumTkyleJgh1idEi/PWM6PPd7g8GbnmgSrYBfsT1GAEWN1ioQ8pliUwO9+P0Ky1Fn9kX2SLzKpABRiYoJFOYMV59MvVieJ3Mxk+/VxOElcAp2iYMfuzyTAxwAOHbPqqbneKDmdo5WW2tXSs586x6WqThrdS07vEzb9XP3X/nto1qRWUZubC1TgE07wxvqiPQ44Vttqc2quP6rOGN+hfr5wknWiKCSGVPb6asGrkI5xJklnw+jUK1rZDcbCAXBkZPFPzuHpcs6PcYzgeKB/C10dHjVZa1G/MRPMogKsvMYKc3AeUU8nCX3BvxrkNaq6bk+3Yq6Tvnb6kYvEQEdzVBLMoM6Juyx0rorUWSkLdArntgiFO7k+yzbrYEYt/ECKd/y7lEHvV9XuzlRuuFd20c90OFBIQeugMGDrCOiUVdJjiWnaVshMO7VrWJraMNLEqok6Mc7+ncKjyX2h5efd0LW8uje9jPwYrE+5cimw5RYOBTMLg4T1CRMzxMRq5TlZM9CfAMzzm/oUzoY6PDoXSD9DbL+9nEy5He9r6+i82rOsc3SO2Pq0a665Rj3pSU9Sv/zlLyk/ByFsMHxnEYKyVnoKBpVH3/a2t1mAA8P3N7/5zfTb4WyOMoyI2U9+1xZ7BfREHg8+bttJ4U/5YSeYP7ytP7Ms95mapc55L7BYgPzwdmUVzbjgZ94+Kf5cfGJ9SY6p73z8dZ19e23m9aMoyMrK+clitWI3oWQwimxTjYRJ+p/Q8jL7HsRC7ZEMuvlIY+EN/8PtSPOBjXypFwU49jdIK9PMNhLiteMIR5GXMcCR/cEsOc+Ih/aHUK68cSyaLI3QNTARU9VlnZthmBQk+iLn5sTmHloPuTZgTABG9rUm1GxnjHJVfFvsN61CFMABMysAIvhYtSKaodW1eLCMZ0V1LY6G/ZfU0MyxLnSaam9rgj4H2mOk+oZCfIilh6Oi169TcVLOJ0JuEctps+Q0/mYQheVgsBbNPvEBQMK6M+1x3U41YWjAdAEQYTsAHb8QpS8vzee9rGiAtCKgheWwg2BbKL65yyXjqBkdvvb8vA0+BvnxnX9KgAcLyGFo/GG2SBQD9R3lsibbl1a0CGjR+yYGcPyxGKbF1NxcEYKkuLBk6UjlkD8m10x+0B6fJwpfrWi1Qx8g8CQAwAQpkEkpZ+P8SxYGjE5ooijPOMeFw9o4d4dZIbQpGRMCZwSKdF4S+gdlRUx6IB8HH/RTP8u0RPTVc1scBsb2UVXUzqUpU5+n7oAtWQfHl8uW7exc0hND20dRh2edW39In0PMXvziF6uTTz5Z7dq1S42Pj6tf/epX6rvf/a4655xzSF76oAgPoCjP7t1a1k8als3NHQIXzxqafMiy4ECjQH5HLDfHZ1/k39Lpy2KA+Les0CfbNyd8Izt/Ribm+7/H2shb7uxDAsaMscuSpB4EhJW1QiFsAujEWKYyoWy8rn/d+NeICqyj+zP4028122axSlkCA7E2YvUd5Hq+IxmaBQ0XS5SJ3GknkmfJEXpCfbFSsu754hC4YB9TRQYTxivmjLEjhf1xkv85U9eRmhrL7T5s+lfq/+0/U20bnSNHH0U1H7Xxl7ZtCBnAQcbYADRBGECPJY9psj8CUQLUsPO03NEhKcil4RljytVRFaqdQbO+3ZpVYdrXHrdjj2rlXPtGGhwiVlPjvB/0BaCNWSAeU8oh6dXUYkerwcEAdgDuuGaJDo/pqWpNhwgB6Nx+9FbVqFSDKmv8ry8r7X+P2WoZDFmLhpX0kv33bdiZznnCtabrFrmJ6ukk9Nh+WEUtZGUcX9/pXk0+zmoU0mLsVFrQIQ508kJKQ+3JdkPANVF8NKGUnqqaDCOl4xB1dbRqnpGRNkwOm5SXlmyQBhQVklKuivyaRPa5pWZWdOK+3l/CyPjPVCk73QW4EedsotHSzE0X6oldNVrvqOnGkiMU4hsrMd5xg8638Q3Ldyxs8hTqNCsLVkizzck4IBcoZOgnnjMhdv+WfRrsrG9DX1fruxx64Wo/+tGPqODn1q1bVbWKXM6qesADHkDECsrT+KkzawJyQCUhNA2szb3udS9a9pOf/ES97GUvU09+8pNLd+C30TgfRtPS+Upl0mHNEiOQfzuOVGAdnzWSQgSDxEGvNneniFJbmUT/UB/yVNAGsbLhaqHth20+wMliCddDJDI71zEhgUGsiBMmHY4YuyMdS58t8gEQz6xyDsQFC6eqB01dZtsfVUi4BdBwHeioUIKtzeKGubFqmb9/ACvM3H979s4mR4cBVp+cdsozISa3q35n0y+on20T3kYzw0KentdHovlX9p9pQYE+TpMXE5Caxb64kjoMQKZn4g47XR2CBoeH4/Q5xIX6iOVwlKg4qc4PAMDCfhZ6dVqHGRyAFWZwEOevVZ8wq637JGWnIVGLthZVU6vAVc0sOSUbd8251eE/xGqQM+rm5PjsSVlHO8upjyqIiTAmPxTSD4tMtUmgmJkWvcyVoM4H1mXuJz/PJ6vQY8gGUVgbpvngJSYukVXMlNd3AFOOSIVbC0c/Y0LSz3J5UvjSjLOpmSSlpd19JABH3reWEbGFw1mNLX2uZR0dvxYOwI3NyzGnikPaMMkBhTNmcIhF6ul2ZMiqLNaZjGUcCJ00sddZTyrSsWQ12gSQgc20xpwxh2Q07n1WdZT7rhwRFV63hnA0pMPAAHRuvvlmyv2HMMHll18+UJulQc4HP/hB9Vd/9VfqD/7gD1S7renPer2u/viP/1i9853vVIe7FZ2NToXuiO/yERhTkIqZ3BaFRXmbIiR9UZBRRCAgrwimE1JVGQ7IGiZr4zBJIiQtBFqy9uvn5WSZz8JksW8hoBNqY72YdcRKSiyngVKeM5YwOD6Lwo4kL2MWBuBB5lwk+TduSNFMd9x5YZ81fr362szd6O+nbv6p/s3oJDFYccz7k1/AIWMlM9lvGBgahHUh9GOy3lIr3br6xfyJ6hEbf2VBDwAMjgHHB6bGGR9znGjxc/vuTW2hDenYoDAnzC3imUhDs4wswAsUi2z4ismzAXujt9FgZ7ndJGDE4TJYd9IIEPD5RPsAHaykBnYILBSJGfRqVsKafwODw4b9UaiMCGvDIWg2SLcvxRB0Xg5mycvHd8eASh57EWRUBMCB+axMis0JqZjJWfcSwCYzbDPyG19fRawom5NVBLSIxViVWOFQXr+MRLi02Lqx5SwTLYGOXt/Pb0qzava6MOwq5adV0iqStjCoVZXUx437F6FpfD86fQrk5+Be9qWXOXmdhQcQ7cHr4p5G+37bG0eWaTkztvbeNYqMiWBF+Ho9bnzG5uIxOCFVOmaZjNQ9jxsmPo4ac6OIZH0tO1bGTp7Yp9a9DSPc7BAMV7vrXe+qLr74YgpZu/e9763e8Y53kIT0hz70IZKXXnOQA5T1s5/9TL3lLW8hQHP11VfT8lNPPVVNTIRpwyPmhlXp5PO+A0B8K+Ok+rPPfjhbVihclpWpkZNVFya2jJ30lPhA0BlIGLFoqNuQqdks1bb1YllAh39fjWVdI70BGJxqSFa8xHiGQs3SgglVIa0ccn7gcBg1KepPMgvKxflYTpfb+tXS8eqMsRuIvfnl4glGhUzncyC+HP360oGzaF2IB+j8HK3gJYFM2dnvBAQmstVspKamehTjrot+Jio0QbEDG1ZqnMKKDu+S8rQyNKXV1apnMv8GoMaGptQ6NIMLZwIMCgGdXkXVaz0nVG2yvqya1YYaNSFtWE7Mjo3D12Po19Dg8eXlAGLssKJvoRwAfGeQhPMHkMc1ffD3SKVD5xC5DWBBfDZnUMsrHpqXDC9ZBimJncXm8DhxMncsfGoQR97mLJUAKoNaVl5OGaAjtwu174evOfsRx7sWhuuUn3s2FC2jgGe714hO6OA+8Cd8/PYSCfeeBTl2nI2QgWRs+F/OreF2pToXxglJ4AA7nI8TqluEkeRQuF1Lk+rosTkdhioAh3zOyP37x6zBr37G0/am/77V+zo/zzl+Y3aSVzI5h4LS2mEKcl7zmteohQVdvPqNb3yj+p3f+R0SNNuyZYv69Kc/vfYgBzLRj3rUo9RvfvMbQlpnnHHGQDs9XMxnK2RuBjkv4iIM5c0UYXFCM+HJTHU6l6OIDaRyVuKGyupHFlPi16/xc3jKApCiktKrsdWEqxVh7vzwRH9ZUWDrg2P9PR1qJf8ump8DcKNnIpOQsdALLr8dN4zCv1e0uEG2w4lkey56WO3rHBaAkh/N356YGeQ9XLZ0rHXwdHJ2Vd3c1nHiyAshmeRqR4dPVURF+kpPfX7/2VrKuNJTj910sZqqLNv8D/9l7r/0Y8fcVDqHBm4vGCOe4c9TwEtY3IQRYMfkU3vuk9StYccFoSZILO5XCcig3zOtUccJksm9HLY23VxW9XqPttu5OOUwKxiHseai2t8ap5oWYIGmG8vJ/mgM9WwvxArkcbOKG523TkPXuUAdISRaG0dFJ1zr8B5bO8cKDzRt0VJmIfhfn83hPJhB80EGBQUOoIiwEr6Fwp18i0k/h9uLTeh4if2+clUJZbUyoGUtLCtfZ5hgJ/Zc43wcnWOi70bNQtQ8Nk+HsRLglUDASFIzJ6PvQRHK6qggJqzO9rF5u0wrH+r2ppsrloXh/DjZZ+TcAdAw0OHxC9XQcVTtSPqYEV2PatXokDJ93EmfXYGCELukwVTNHrP+PQnj4+3wnBsxzHDoXByxQ8ce/ehH2++3v/3t1WWXXab27dtH4massLbm4WqgkyDzBpBzxLINt2MtS4nLVtzWDqh+WCTmJCIHapHI9fy/B31Mx2SdYyFqgxTMDO0rS4zABzBFCnX6ACYGNoaZu3OwLBbuGMrrkkAnJmwgza97I5dn/R1rj/bb1/VtQhaTN43FjcfMVRPsqWXj5Pmz4QA3F8xr2huO9WK3qe4zeRU5/FAggzMCxxh/Y3+T1RVS9LqxtVmNiwJ4cE6gGDbVWKZ96vU1c4Ptz5m81u4fjAE5Mab7AA+f2n9vm3+CY/3jbd+LOkgMdJCPwzP9PrMTGgs+j7JQZK2SzIzi+Fn2mcUCLKDpVymkbLyun2DIe0H/dNHO5NzgbzhJJILQ0yFp7ExJ5wfrIOFZHpN2nHRhQikgkMhTawGCmZUx2g9AFYAWEpzHay1bUBTsDNYDI8TiBGC4uHYQMUIEYhDGp0UHdE5LzzJGVjhilc54rFhmnjE4zwI6mtly92MZsNR9XNxhz7vvYttkgXO338XD+AYNWytjayU1HUrYDwEdBjgqUBxUs3mavQ21i+u2K4QLElGBBMD4YWihZyyWcfiozLGTOTt+nRV5f/oWlEgnGWtXZMHPy8ky3VeX+eLvOxY22GUnTOy3L7ci7feHrLC3JkZheau8Rg8xkNdut9XY2Ji66KKLCGewbd68eVXtlgY5kIpGTs6b3vQmKv7ph6lNTx8KyhUHz4LqXzT7gLj/9PocwpX8lgY2ZWSFB+lvmfWKAJXV7Cuk/ObvNysXhgFSHtgZ1GLtDQL+iqir+dLkMQEKf/2iTKDcn389xZT/YsCGk9z9F37MkcpzsEK/+8fH4Eb3V7MdWmZXz5r+cP4OltlY6ercFggIIP9D9hPABrOISIBf6Izo9moVcp41A1IlgKMLb3ZtkUvqS6VPIW4wtAtZY+wTLALateuJEJKP7n4gFfbkWHJmg567/Tu2sCCYJz4uefy+U8xKbXIdBjv495N7NcCSFdI5f4YLBmIZJ/Pib11VvGdDziSrwibHgOt0cNVzEhLoQRZXOGB9hNOMUD5Os94leWkAm01NqCL11N6VSQI/W0cXSMKa+mCcGIBT7BvCBSzggLGGYR0ukqqdng4VO0WQ2p72lJqqLqlRwfzIcYuZrJlUlr3xgQav729n/ybmM5yno/OtEI5Ut2prw5RFjikWJrkNUnEuyX1L8iyS8bgtmJsi6mh526XECMwxlmWeQwwFTXmYnDFmdfhfXUtGg1xSCKSVNOiR50Tfy6ido5lQ2pdgx3FLpidKemrv4iSxM7hvNzaXLWgB88qTGPL8M5PjA8IQQAwVD+UxIBESEkTBxEdxk2xVSKCCjxFqbHhGYNKGcwdDbSXX6PoPVwMZxoTYato4lKzRaKjb3e52A9XCGSrIedzjHmcrj0r6SMdrVobewUPRUnkCMh+HHWDMzmK8vLA1vb1meZjh0RaeYS/10Ci4TZncHQniYgzLMFifQawISxMLcysiMJAnSFDWQqIBMQYlxPCF2sgLKQuBZ26jl/O73D7EMoa2Xa2qmt+2BGkAOKGinXs7k2pLXYdtcM7GSlf/vtKvk8PP9Rvg4Mx3R2yok3456nhyLJcGJx4v1d3LU+rYsRldy8KwQN2+TpyHsz2hVlS1YhSHyHkxL252Ajk/qKednxXDRrDzzo4jCwqA1ZHgLWt8eCTgPO3tTqov7TvLOimQZqbjaI/SbC6LCJASWq1r62lQzk+tIxL6k/h6FO7UYW5NCs2T8f4AgcymYGQ5P4krn2P5hsaSXQZwsqG5RIBorjPqVFLfNjJHy7h9nGnk5hDINKAMbbKTw2xQ6v4BgOw31KhKBBlihUBDbMIw2IU8RS7ZJ9oXq2vJ32l5LchOOIqAqUKUvVwQJh1kF9Skt8XvrZJuRIhJGaaUNG+bBXQGZXNiEzEh+WVePxbWx5MODHRYlZHzdiQHwllkOFXtnk7Ex/OjFykQCvDj5/9sG9O5DiFjWWlWUmPBkSwmCAYQRICm4o4ts0BSGIPy//CfeZ66OUVp1T6Wm+b9yWM5bvyAumlxQ8LkFDBuo9d3xViO2PqxV7/61epVr3qV+td//ddVMzgDg5zzzz9/KDv+bTX/pQqBAT83xpc65pCsLNO392COdJ6ssP8qkFGzWesyqCkCdPi3omDHX9cXN8iyvPwcn4UKrV+0CKj/3e+/v8+QhV7l1VyQGm5QBjEVYYZsfwWIjjE0yd/SCUpkiWM1bwZJuM+ylqzqbpyIZa7f0tez+XBwvjV3F3qxcT0ZGEDGbGeUQAycaZ0rVFVjggkghaCGrrFAGTk13X+Al+m6duRpvfoyLTt1cre6eOY4HarVq6o7T+/UYwNg1NGFNUeEehg5K+hjRc++MtsFhx2O+2RjWU3WWtZ5p8Rlcg6k4pqbV0AFAylnzcujMFcDcoq+NXO6ZqzMrGiH1dIARBqJstJsa8QCjOQcwjFh58kUIiU5aSQ2t6kNjAWADZtMBiZwZybFcG9BZhZCD7UapKU7mqVqLKuxatuG8dlcoV5N7W9N0HiAVWKr13X4G4fEFAlVwTjt60xS31FAFcBR1sbxjcczlNyeqPFlTwXF8sRiLBBJgcNJZzBkgI7N37DLE2GGQfbPbUtZ5EGARbOCOkasGlYgpyhHNnpYDFCWIEERgJN3LPJ3ej/FFNtQq8lz3mEN1TFhlOiPYNSZ4TGqYrbPZpIBrCRdsyacE/cHWBIYh5/qIstx8OqHk8KgirZ/eYyWWUlokasTkp+uGTZXtiMB0nETBxzxkp0r0+rosdnUWOKZwOGrsq+8P0wW8bXO1/0x47N20soZo+DxpkPe1rWh66t9bR5iTA7sAx/4gLrqqqvUscceS7LRfqTYz3/+c7XmIOfBD35w6Z0crmZVUPA/z0kPOdEhRiCWa8G/lWFdYhYCMqF2eX/VgOOeBXR8gJKrlDaEyX45jjHAIsFOkfVXY0XyiPLOoWRYsoBM1vIizFCe+eyNbIPFBUL7GjbA4X3ihcfsDe8TkwuPmv4lsRcHuuPq+pWtGgz0ahb0zLTHbA4NXnzMbMAowKyvmR5+cW5pLJADTqCl1lHjVU6gr6mTJ/faXBf8TX2zIS5J3QvbfiD8hCt0AzgA5OQpf+k6XFomerY/miooyuMD5xggB30HkGLVNAIXZt/84ifRgJHEwUicjSqBGWyHNvi4SHUNymeoE2SU5nh8AWoAIOGo8fHz2HAYm86NMTU1CMxpUMOhaBgLR+XNhL6wOhvGiJfJsSVmiAu1CocJ539ZNdStnWm1sbZAIV8EZEvc8qt1wlerWEbqfTYXRwIh81SIsBip8LhAsdNBmSopzWwdfHH5psH38OrjSEW6vP5lMTmpsE8vr6kM6EktN6GmKbDDtW9Mro4+Diw3zzmTt6OPQT/Y7fvKvBAatcTR1zWodOhZUHWNhQk4p8rKUOv7Y9PoEk3U7F9J6s5kGQMvGc7HbeMZecvCdKoY6dFjug83LyapDWCHt49qtl2KiEjVxV3Lk7Yd7OOE8Rl3LGWfssKi15FCatQOw5wc2BOf+EQ1bCsNcmAzMzPqox/9KKmswe5yl7uoP/qjP1IbNiTJYGtlf//3f0/y1Tt37lRnnnmmev/732+Lkobss5/9rPqbv/kbdd1116nTTjtN/e3f/q0NueMwu9e97nXqwx/+MB3X/e9/f/WP//iPtG5Zq1PCP2JYB5cm9oFOntOrvMTy1cxR+AnrWb9LC+XllGEyhmUy/yamnBYCkugbQgdlO2thsfylMucsD9zE2srKrykqJCAdaD/nw2dvstqJxf0X2Zb6btgPLdWc9EeqjoE5AKsDRwUAh42c6b4OK9vUWFQHOmPGKdYzhdiO5IcpOb1P9VVYYQ0MEJgcLAdg2NWa0gyFcSZI4YhmUfUMK+2PZuQly+XPjGpwVYVyWa1Kzj9e8qhfA2dloY8wsLRyENptCNnopFBpcl4W+yNU7BN5QJfMH2cBA8f4c17LeL1F0s8YG0jUIj6fz5N0WtCvEa6lYZxUbMfrajnjRG0OdXzAZHE4IMZ8RGlAyUYhZeyg9LQzU6tihruimv0EhDGwoTHjPC+IBtQ6aorYteQcyIrr1rGzjqoWjcC+MDYT1ZXSMtJZQGBYkssuS+CGXzYqAJFa5pz2KfrCDpyfm5IFcNj0GHMuSLIsZqEaNGSBTfyiulk2KNDy85fy14+HrMk8HP29WigEN1ZLKAF+4ZwuCai0XDKHexmW0uwL96gWJ9DFfKtVFMitiTDRrtpYXVIrtbYtnuuyGBUqpqmPzRUIwfY7F6bU9MiymmquqKV2w2FmqPsiX0e2GQpPWzTPEV6XQ9v2rUwQW2zl+802cy0dDswsMViio8d1/Zs9yxOp/KYdixsJ6OiwPPmMTfJ4UufhEHT8Dyd73eteN/Q2S/vEqJODujjvfe97SdoNn/e85z20bBAqqYxBJ/ulL30pDQT2BZADybldu3YF1//hD3+onvGMZ1Ch0l/84heEEvG59NJL7TooNnTeeedRkdOf/OQnRI+hzeXlJOyiqHXgeJnQnUTSViudSQlp/D1MwrRaIPQpFpImrRf54Jjk374VqYvDOUmxj78tf+T2ZUyKDWSuV3EBjtw2lwES62V9YvtdLWNVhHWJXWtFr0G+hkOsTSIskC1wEAIpqzlGzL4zwKEK5aaSuOwz10kZrbbVWePXqduP3qpOHtltBQjgeMPJJ4fY5NKgX8i7gXOA3yE4wAAHxvk2LL0MRoNzS2QuCjvWxPqYmhdopw0gIxK15bq6XowGAmCK8JIHm/OtWR1yl2c4VsvKmM9sd1R9Y//p6gcHbm/zYbTcsscWGwDDDgDi8zeOLNkigg4wUxUK8wMLBHCGD4CKdsww7sm5QHsAbTguPkY+ZmyDbaWyGctOW3YHoKrW0YyT2D+tK8L2CFipii0eyvk4uu9y9l6fJwa1N7S20qjheirjHOv9xmftB53xj5krNJGAFnM1Oev6oMRna/gj1+dP1rKQxX6X+/H35x6XC8gGtWQkio8r3yNZJs8l36f+5I47gVFVKyiuKz4agLjnT360jHTd2Zd10iNFTnlMOcePJ2T4OYF7AMtoUqHaMfmGLcuWOuc6APD597GGVkqUBpAiAQ63AUAixQbw8dfFOqRoaXL9eF1pJHRgxArAul4/t4k+S50GCZ7IkDk/NM1hcwLnFu3pczTQ3P5BNVN3ddWfQ9FANnzkIx9Rf/3Xf034AgZ//6abbhqovUrfipoXMxTmgX41mI96XV8snU5H/cmf/AlJS3/3u99Va2WogHrPe96T4vZgvV5PnXDCCeqFL3yheuUrX5la//d///epsNCXv/xlu+w+97mPuvvd706gBoeO2L+//Mu/JMU42IEDB9RRRx2l/vmf/1k9/elPL9Sv2dlZYrEu+vV2NTUlX6qJA50HRKTxbGwW+xFiBYqGrhVlAUJCBUXDrqSVceZT+TIRZmi1YgNl1s9ro0yfQixSav1KsWKqIVsNeC7jajCIR3haVn0nn8UYxLQzkczU88w2h2LxbCg52SacDbLCmKm/dmW7ZTnwkkPSOcAGAQnh8LOjwHkkxK6Y6tw6nCl5KaMN6pfJF0nGIolFtyFdRl4azgbAAe8HxmAJ6mupYzYvc/yG/k7WVtQTN8YnkXhcZnrjNjQHTNZ/7zvDhoYcPzGjZttjNlQNzA6EA2D429aZMedy94oOD+EwNc7TAXDxY+GxHCBjvj1KzBCU0iBBHWLtto7Mq5uXNtJy5DPxuOrjSMIRGWyyPDfH4kvmhQsNctihHxbIDBMKgPogAQ7XHUZ3EjOC3BzNkGRb0dyVPAnnLMZHbgMH2N1/JbiODF+TAKxIaE4emJGhXil1uYj6VYwN8kHqoIxNzGJAp0hOjl88VV6LdjtnnTTLHfqd2NoqnkzJpIZsL2uyStbS4T7KvtPf9AxOmCd9fOZ5SbWt9D74frJsrmFEWX6aAc3upSQPgtkXKzCQk2cp++BvI00+FxjY+O0yQ8STLGgLQElPrOgJi5Mn9zljqsdLsobJZMgN85v0BMd8S/3gdz9Avt56UwNmX/KE971RVcd0UdVBrbe0rHa85LXr8jhjdskll6hHPOIRNAaIvrr88svVKaecQkVCb7jhBvUv//IvB4fJecUrXmEBDgzfX/7yl9Nva2WtVktdeOGFNABs1WqV/v7Rj34U3AbL5fowsDS8/rXXXkthb3IdDC7AVKxN2MrKCl2M8iOtUdEfABw5Yy7zKULMSrUECyHZDmYFsM9hsUSZIXclfVWfmVlLkFSovQDLUjZELXaO5LHaTwaoknlMEtiVYbIkq3KwAA6M829iAEf+pl/wJcOCgnlrsbC6qg3PmuuOqV8snkQsDj7MMtDMZqVN/6IgJReS41lPGF6gmPW0cf6eOhIzMviQippxFEjOFZW3+zWSPkYNHTj9B9pjdiY1LVmsxwSAAf3SogQa1GBb7GuRpK2rFliFDPvHccBRt7kRJqGciun1q+rEyf3muJesAhmDF853YeMcIoyRlpM2IXVmFjjJielb0MOzxgA46A+2xXIACd72qNE5+sBOHN9LAAfjRYCDwwOrHRvyg/GVDgvGBJLTGFuE1eFfCsEzYTlgzQBeOW9qgVTyoEBXUbOdMS0LbkJ76DhVX/184SQLJPJkh8sm52cxNpn5G/JciDtT1znSoI1DnPTYueAsj0GJmdzGbyPWnmUVUqqfAXETAqOaeRikfyHmqoiVFR2QQLho+KFVM5TMmfKeG4bVkR8JhGz/xO/cJn94rH02hidiElEQw20Z5lTfX7oNeb/z77csTqm9y+P0kawIgxQSGBDth4yesczuVjSz49fagXobPu1uzSq5ybZjxoCHtiVGpkKTNnLMcG+zNL4NX8WzAc9As01IEvuIrR9DpNazn/1sdeWVV6rR0QTkIcVkUAKlNG8HRAhEdac73clZvmPHDjU1NaXWyvbs2UPy1GBZpOFvVEUNGQBMaH0s5995WWydkL3tbW9Tb3jDG1LLATJGA8yNz4rgu58z4v9ehjWJJf3HmB0/r6OINHWsSGjbbFYUWOWppJVlcMqorjnbpRLw04DHr60TE4sItef3kfKFTMhiLC/ID2HzgU7M/Fo5Rc9FFhvk/+arp9F6lHBarH+JE+DO7MfU3tK/64RmnawrimHi5d2HulpDXbx4OycU4afzp5h8EC0NTbk0hsmRbApLrfp1XuQ6zviYY+DjYuUfBjEAD1D8Apg4ZlRPgLDDweEWKGa5TINsnO6Knk3Vqkna2YeRaho5Nj318T0PUNubGiQ8fvriVJ9g22rz5PAD7LUrdfXYLb+kkDWAAqjEYSxOn7qe1v/53Immb27+Cn47ZWy32lhbVN/ad2fL/LCxohPP3h/d1Me4oW7AL4EOrt+hAeFII9ke1w39zpMeRgaXx51D+gBQwIjNtkfU1pEFAjSoxA4VO9TNkeNZNawYlOla3aYVNtAz1/pcKKhQIWzH5F2hThLA5UULt1P3nLwmyYuM5duUBQ2BeisyMT+krhZSQvOBDo9hL5DnQQDCtIFrEjllPrtD4yzvZ3MeLTgeUHiAjknsJ5afMogVATdlQw7LWhFVLhYDkawOP1/oieWxDqH2feln+XxE2/Z3YlZ1DhXeG3gO6naS54lsm1lNfkvw7zvmN3r9qGRKYkfHB8/CbjUFbCRT4xuBHvF3SpgBDI5geQCcMHFy9Jh+DlK9IPF81uPLxwbg4+b9YPthCV6sqR2mwgM//elP1T/90z+llh933HGZPvlQQQ5CwJDj8q53vUvd7373o2U/+MEP1Mte9jLKfzkcDLGCQJxsYHIQNucXu5LAhR1HBjgxpiaVEF4A6MSc/JCz6u/HdzItWIo44v568rj472FY4fC0sqxShFUJgZQscJPqB69j6fHhAbIypsEEhx3FLS+0MQHj/kvO/F5x/w0JDwzKLOW1A8aCCyFqoKHUJUsa4OgXuVZRY3DCM8dYBrYEjjAMOTmTzRVyeJd6mgGwoU3C8eYXr+OQmi6BMYDsMSf44qULZ3xTc4GACrE+RshAiwroWVd2BqXzxsCAa1xo4QMdRobfELKGY8BLPiaVqutvVGiMlvs9Sqx/3OZLSD4a69114iaS/IXdc+paAoe/nD/eiBHo/CKM6TVL2whQPXLzr2ndn82fpJkmw35R6rthwDbX540Yg2af2pUE5OjjbCaJ/164mRZu0MAGY8Whe3JmFyAL5wpABQVZASDZEdOJ1KZ2TqVH4XIAYTzbq68HA8oQ0kZhSGa8AXarWm1PV6A3DiXdp71VMTqhAqCyCGhRoBMLD8val92fKdapAzrddsBexUK2VlufJtbP1VgIwOQBn1gf2MkNCSf4CnGcN5NXVDmLyU5y1HTODrMqofXJsur7eDV1tAgBT1IkgIdV2GBQiGTTYaa4N/Tf8jmyZXTR2RfC1jjkTIaWwWQYmh+WJoUGkn4nzBCDHr8tXocZHt9O2bDH+VvW18H9jefurUuT9HyEHDarPcJ2Lk7Z/R0STA6GYrVY7BDAcr6NjIykIqNgV1xxhdq2bZs6KCAH4AZFP5/1rGdRLg5XKn3+85+v3v72t6u1sq1bt6paraZuvfVWZzn+Pvroo4PbYHnW+vwvlh1zzDHOOsjbyToR+MTMf/T6wKZoHggDDcluFGE2pOW9algYAcbFSakdGYKUc7P4zFDm/rz+5+WkxApt8vK8mjchoFK0eGfoPMUEG/xt8mofOQpwot5QHsDNG2NXQjg5t/62RQBQjL1Jre8BHB84sxpavJ/h/JvY7DZehiiIybVx4Jzca/xqctgBdkhZTTXoZcfhMWiX4+K5f+PVlu5DTymUpKRaNoZxaZgcDun4SYaCc1BYyW1M1LSB2pcOtUIolkkONjHk1DZCuKpttdgdoRcuhWhVO2q+M6qdUpFDwswTjI4HycOqr6WPmXmha94NQUGxy4VKk/oMwPOojZeqCxdONnk+ekyof/2eusfU9eq65a1CvUzv75jGjN3HvaeucfIvWv06gSU5Ww9ABQaJ9mHU7dAuXwMcLw9mRbJHVnKako2TGW0o2SHMr9efJJW2ekOH2kB1DknIFgRV9XJkUel8qJrqoKYO8o3sdavPKxUkZCbJAMter6p+sXiizc+hMEdTLDSrqGQZxTB9bXsSy2K5ND9MyinmGegPAIsjuVsxOWpOLo0L1DUI1qA05fSXADo+0HAkrdfYfODD+Spypj40XoM4uWWKGdtnn8/ImL5wf3DPD2LM5DBYsspvItcG9zit208YGXomoaioZHwwSz6hnUpdX6eidi3qXLwsYyDC96DP3uRZaP2Y9DMzOHY9IUnd6TbULpFDtNRqqPn+iNq/NG5YHx02N1pvB8Pnjtj6sic84QnqjW98o/rMZz5DfwNrIHIMKTJPecpTBmqz9HRLs9lUf/d3f6f279+vLrroIvpAAQFqa1mO/2oN+z377LPVt771LbsMwgP4+773vW9wGyyX68O+8Y1v2PVPPvlkAjpyHaBIqKzF2hzUuFiX8tid0CeWPwIQkqXelQdGQgppVaEwFmJufPbGzx2R7ZYJWfPziUJKa1mgcDUyzxLIZbE1q5WSjrUZCpWLqcz5lne96PYSNbTYOWfzfwsBHNoG4RCR90NIaIBzVUJhCkkBUVYZSkBQojAk2/TDOuBku0nBcCBQLwZg58yx60lR7YyxG9QdRm8hZ+DYxgx98H2qupxyECZrywR62OFmZ4SBDdfX4Y+vaMTLOWdCKhuBgRmr6jApCQrGaytqsr5Mzg5meNkAcHhs6oYBgsN/94nr1YMmL1MPmLycnBU4t3BUlyk3KH0lTFT0PmEa6GnHiEOaKBep0iZwcruRvfThwpg6/4NBVPI3PryNVXYSuRI4BwAJ/vnSOQka4MARX+iiSCokrRNxAT+vAYwMjh1gBc4bpK0BdtiJBbhB6BryhvAdanD4TiDPhKvBISKBCJGLw5K7nHDNIg9XL2+nI4FoxWJvpBQjkZvPU+JV6yu0yfybkMnlnK/DYwjQJreXyl6wkKpakeNJron1N10sldMY+MhPnnESvyPjLZ5RMl8mz7IK1JZpw6+1ZXN0zCQK5d2YyRJMoOj7MgEznBPEwiqstCb7yLl2vjEwYAYmM2RNrOOvh9wbztWRH7QrP7HcH4TVMRDjD3KJUKeL+zg5smJ/2zi6ROGtkMKWTNKhEa42pM8hZu9+97vV/Py82r59u1paWqK6nBA6QyrMW97yloHaHFhLb3x8XG3atMl+PxiGELFzzz1XnXPOOVQb533vex+ppz3nOc+h38EuIXYPOTOwF7/4xTRIGLjHP/7x6lOf+hSJI3zoQx+yKPElL3mJevOb30x1cQB6UFMHimurKUrEJKp8hNUIoITWzYpxxcyje6WmcyXSoWbO72Jz2R9fNrlQ+JaX68MAadCbKTM3x6t1I/8uo7hmGZ8IM5XXhywLvb6yQhH99ULfy6rXlZkvrRZg4mLJ/rEZzFBOToi5YdMOVuK4aYlmnpVPHLFQm+m2KsFYeMxEc0gWnJzbj+wkp5VnrnlbDs/CR8Z1SyBCM58mapzViJhN2VBfIgBj+4cQN5MfUa+a/Bzj8MuiezHT+Ub6+Fl5Dcsu2X+sOn7igCMqIF/UD568jIBOUwAYitGv9KnOjgy/unL5aHXm+PU0wwn3D3mEVOizroHVPSauC4dN0bq6pkxa4Uure9mq9xTeU6WQN3n+SKSg0qZjm0c9HgNYto4u2N85Lwp/I1QP7W5uLKr59ojaszRh1ZUYYAL4SEaHQQ5yeaYayzbEjs8phwLq8U7EJXoVKGDpfdMxQsiih7wfTu7Pzy8pG8aWxwTJsfdNO60JuHWZvLSQhL9PXRfKY5D87QL7ZRCs12cmWjwEzPW/Vvkx+eArPeNfpA05uRIO/5N5hfHz64ezOWpr3n6d4qQGsMTajzFJfv6OXE5t9vW1i/PNEvjM6jSrWnFNS+G7ANAPOeN//TwdDjuLqag5xwulNwNqpFqlv20ozA3/YqLphrlNtP4x43MUmkZj46lTbhpbtIBsy/iC3c8hZYdpuNqGDRuIiPj+979PSmsAPPe4xz1SAmJrCnLAngAUMOKCAWVBhvnVr341KZ6tlSEfaPfu3eq1r30tJSEhpOyrX/2qFQ4ArSX3j5yhf//3fyf5uVe96lUEZP7zP/9T3fWud7XrQBUOQOl5z3se6XM/4AEPoDalskNRy1JPi2/TjwIf/FutVBywEwsNk46/42STU+KuGwRDxjmPyVfLXB1efxCT7YbC7/ywMtm3UP+LAh1uJ8VMxerYDBi3WzQULrMNjykLLSsbDOJfj34OVS8D0BQJ0UhmOeMMDDti+oWqgY18aYZYnJjpCu9pZ4qcAXrx1wjU9IysMsK+oLqGWU6Z4MvF9jADGizupzTLwqEgDHD02Ol9aTMAx+TycB6QXY/bM/vxAVriRIM90s4HbEtjTj1s+xW0f6iD6TFE/kgCdHTIXLr+DbM5s339LLv/5BUmCT0pekqWRDemx9mwAqEkevd8IG8o+W1/RxfvgzMFJwr5NORQqQoBj5kWcme0LLUUecC6+J2KqIrrYNvoPIWhLbSbpMyEGh5c00dLfyczvFxvB04RugkoQFGJQuJb9htWN+Pxm6VjidHaUtPvNrak8GZS16cI2Cma41JKmrqi6Nq2f3smr+8yJvsaOkbNEmWDPQt4vKKXqwU9MlRSmh9qV2SWXoawyes4xTzwGIhrJ7PdyL4ppycj5DHrnDs5PZHnsHyO+f3QPol8d8owYleOmkPdjp6Yc8YiL3wtBnC0kpl7v0lJaOX9ZvN1xLq8HM9dCWaQL8RslGSN+G9Zs8fv0xFb/wY/HJ9hWOk6OUi6/+hHP0rqYve///1pGVDX61//evXc5z53YErpUDbWNr/sN0dRnRzNcGBmE7PLgRnoyJDLdRnoSAddgp22x0xIEFItyTyEDG364gSY9fVzYWL7cFmspM30MeeDBH9ZVmhZWXBStmZOkbGNjanPThUFQ/JcxPoU+71I7k3u/gPjIhmcpChoUjOnxaphXhsyJ8bpZ0DJx+8D18ex8s6Bo0vWq6irW65qYtL3MBDjBGNZ84LVzdh8gAIGSCv81FLha3YbEVqSdXx+W8wCIXxKMkjSKcKxAjg9YPwKy+SEDMcBx1jm8nB/sAzy28TGRJLY0/1lQGrCnygkpm7zdW5pbVQz7XEr/oDjh0gD6udsG5mnML4lG7Kmc2kAhABuENYGZ0wKHWAZFXDtjFAMvgWdtS6FqTGLA0N7UK8D0OF2mLXTtXT0cXPIIQNSGksDdmRtEhSRhdIcgz3pKIauxRgIijmzeYxK6DxgzHFdyPMQZgDcbeT5ygMe/nFkhabl1QWCherOFDG/NsyglifaIFmcQfrq39+6hpd+jvjH4OcN5T0fpMXAawiI8bUsiyAzk8Nyy7hfWC0x9gzeuZAo58YKeYb7GgN+abZGLmd2iO5/w97y7ywqgtA3n8UJ9csXHOgtLK//OjnvfPNw6uS87DXr8jizDOkjSH/5zW9+Q3/f+c53poirQdmc0kzOJz7xCapGigQhtjPOOIPCxP7sz/7ssAQ5bPIRw2AkBmhCFgNF0ix48pxkBjqxRHNnPxHVNIfZIIdNboMwoMHK6BYteBmyVF2ZDOaFw9IGYWGKbhNjQGLtxcLSYuuElnNIoAukEqDg59uEgGbIighGFFVIS8tC91Sbwpj8JGtj5qUOBxvOuX9MoT4we5Nl0pmQ4VbswPAy/pdYGuOIsDCBDH9zEnstmPPCjAhocO6LBiFyOwYeWTPrmInVtW0UOe68PufqcI0ap1q9+I6eU1hVJMwpEWDwnbqKWhbFJEPOapF8Esnk7GpP2xwcmxNjwAwxLsRQ6/ocUE1D3PwJE/tpvPa2Jsh5QagZF2zV7InOdUKuDfJwlrt1KzjQrGnRB7SP35EXxAVCAXT08etCoY5DRYA5Uami8Lceaus0nfG9bOkYAzJ76p4T1yhoWDHYCQGFGOCJzdpniRtEx1v1CARbhqOigUuesRw5hykWBTyh/ceWy+vPEQwh5b/8/ZQtZjqoxa5rvm9j7M0gDNlamGSe/SKkoedoksvi1uEJmc/eSGCTJTEd2oYtlPjPbYTWdeqTdWu2no4O1zXvyF7Vriv74u8H20KKWjJF69mMevaq2zjU7B/+4R8ozeSpT30q/Qv78Y9/THVyAHz+/M//fO1BDkQG/Bo5MCzDb4e7FXmc9XLAEYCMDGNzxQXyAQqzPAx8YiCDf4/l57BCGNRYLKuTo/BWXSWYWY2Uc6iNotuUNT8sMaSwxt9DYDQLjAXV5Oj8JucyKyyj7Cu1CNhJbWNq5LiiAQlbA8eZiyxe3dqu7jRys55NVDV1TWu72HefwrAYCOAFdvrITdHwHfm3DcsxPQdTcX1bq3lhlvtAd1wzGL2G2lxfIOdkT2dKbagv2mKZOkG3ohYF48CSzzw24FNice8h5oRV1RgkyUrnfjs8ZiSlLFgidkKSfqQBDpgfqdBEuTBC+jrZhwt62PkEwIS7gH2AqcD2FOJnZIfTuTeJuXU8XGd2f1sXFARr0unqmH9ShOvViXXZ3xqntiH5yjKvEAY40BqzxwaGBwCGt02OO8nhgQOMXB2ptIYk5I4BQ1WShk4AFfXVe/PTrDYxUFrCmg0KbsyOACzBlrpKfWf2jlZ44uyJ6+h3BukhY6eer9FYHo4EOrhvpPCDPI8+uEDuGY09akdFHmUcouizUKgxZds2kwA4Zhb1CObf2Do9GU+LfkwOW+eccd2eLLnptQA3PgMqJzzIOKeO3o0uk1NUQtpncXi/MaDjs6r+/rL2KcENnnHO/kX7MqxWymFn2dYxncuCPDgJUHwwEmJqfDBjQ8ki2znhowbI0PGZ+5HvYa6pg/YpFFVsg4CkLBlrBkMkh30oSEgfpvbWt76VwMwLXvACu+xFL3oRRY3ht0FATukphjPPPFN94AMfSC3HMvx2xBIbJITIN+34uKFqvvk1a/zlADGj5kMKbQLg5Km+4XefIeK2fQDj77tMTZiQ6hgvp/ZKPJh8AYVY28O0rHMaU8gro0JXtDAobFgzVanEfqnaZgCOrg+jgQ479/gORwkfABzYr1eOU5e3jlHXtbbZsCB2XtmRByjBy/qXyyeoK1tHq1+unEDbxUzPSJswBpJe7qkTGnupPSilbagtqg21JbW1oQvHwfAdL3rsS6uNJbk4kHSWAIdqzoj8hlHIC1c61DbU2PBdj4UOBeFxwnKpfhRSRZK/ZwEIBlLMDtm/IYFdW0kkqlWSAySVuGJ5UZoJ6DjHT8upfaiZ8X771onPCluzf/er6qTRvXbGmCSbVZ/C1ABG4GAsdhpq38qEmm2Nktw2HBgAH+TcYB0AF3zAzHB1dio0SOpsmjUD+AFI8meSST4a+UudplrooA2tKJXU7akk1eANs6DDeZIZbpoJN8DIB0Voi+XBL1w4yYKCPBYlGFoZCVNL+pWeg5T1W+S/rHznf2A4n3wus8w/v6yeVgrgZPxuQXNGMr6vgMYqh8NmQ+wYRRkpn13Xz74iLI6cqMBEhBZXKf7+CuVEyo/Pwtj9eSpymkXVz0Wcf4ikbGwsqk31RbW5uUCfjY0lNVVf0ZMCSteakqBjs6mdE8plYdAgTda/YQsppWWptBGYERMOaI/vfXzwN+focA0fHKsPwjjkTfaTGdt1b/0hfQ4xQ178Yx7zmNTyRz3qURR2N4iVZnLe8Y53kFLZN7/5TSuz/KMf/Ujt2LFD/fd//7c6nK1nWBR2YH3Q4cxklHBGmdXhUDU22g/FrLt5ONKB5vyg5Ddo5+PFl/Q57/XBbIRuSy+TDncoPKqMQpg+tvB+1QBjVlbhLG/dIkzHaoBFXuHVslYd2nbh2UXJ4Mi6NlDy4pwPJPuzzfVGSbYZxgnTyWxn8tIBcOC6HXALIFMst8EL6ubOJqcexknN3WpHe4s6qbFHzXTHaT9H12fUTe3NBEYQNAfghNA5GAECEw7G+4cTiIKWcCrJGRa5LRAe0Fl2acYCDBTCrfBiZcBB40izp9qkMyKBkFT44lljLvQn62tItkayRqeN3KrGKyvq4uXbqXuMXWccmXheRDhB3YS1kIoZGBw9278MRTYhP8zf9ex3384a+4425RD19LonjO5TO1sb9TVTa5MzNdMeI3CCcDOErW0eWVST9Zba1ryFirHid32eNcvDzgtCzrhYJ5bNtUfVbFvX40EeDgGbXpXC1ujvbo1C2SgUrttQ43WIE+BKqBEYpNA+oxLHYAy21Guola6+TtBPe04wUURJzjqnhxWpkOvzw7nbUxgbVOlwraTYEjneoTtTsh4CmPByZnWYVSFWoGTIV2EZbMm4CJOS1EVNMpd83/Dx870by7UpW38oty8ZimtoHzlkibR4wnTElMtCJnP1eNIjK5dI1vOhZ4C3nqx9E+u7f3z8fIiJNOBv3GdgLHVuThJOymIdxF4SLZgAkY0jqCKmbWZlLAVsJHMTy8FJ9TnQBsxngGKMjxWaEJLQBOwEw0PbG1l0ACL++4j4wPo1pMF84QtfUC972cuc5V/84hfV7/zO7xwckANJ5ssvv5xi5y677DJa9uQnP5nycSC9fDjbMgAIqmibytmNAFPiW+gRGmJsGKhYwGLWaYjwlHaE6Qnl+hRRgUuEB5LckFjtlnR/iznqEtzYujmBMeN9VDP66ijDpV7U4ZC8IibHKpbvEgJCg4ohrBfzQaUs+slCA/rlrg0OJBwZhKNRMchegwAKh0JxeA1eNDK8QjrvSD6Xy7AdQAx/59lJWEtV1cVLJ1JoHAAOQNFcb0xtrs2To821TuB8T1WWbfLtvu4EgQcs1/UluiL3xZ3dpcR0E/yhk721I8R93N5MV2f2WRQLWEQYW0gBi5Xh2gBlxkli1kayPhj7K1eOUmeO3qABDiXmI69Gh06FHA3JUPkGEApg86P529v+32vymvRx8dhUtVgBnHqZzM7r0Lj2++qEkb3qppVNNhSMk4cBofZ1xrXggOqR40W1d2rJXYW6QGiXE6T3LE+QswWAAdloGCuqATRV664zhBlpOG2cWK1Dz9zwLD43GE8AJ5bSpSKipk4PM0ns8LKQAp+xRh/nS6mfL5ykTh+7iY6dwY4eD3/yQrNEIeDjMHjiGkzAQTyPQq4vwVIw2V44kgz2YsBpEIATOp7Ub6KOTZaFwlazhBr8MF5/u1ThU3G/avYjuWeLhIyljstsx8+aUF/80FMf0MhnXLJO0hfO//ONWRtuGwqTWq5dM9Ss2AjTDLxRJDTPcpZn9pXNiiipSaAj18kDFFiX7zHqMyZyRaFR2S4fFyu0JY2E206KGyMnUDNAzP4csfVpp59+OuX1f/vb37YkCnJyfvCDH5CC83nnneeEsa1ZnRyIDBzOAgMx0wm1ZqY2IgaQrBtfFnvsh8APlvUKOehhKeoilpeHE9umqNmin7GHlcdGJfsQuS5eHtIwgIV08ou85kMAp6ilFOS87g/K7BQVIYhtx9YWtW9iMd14CeHFCVblytZRNENKSeDEpySV1bGelneuWAUxWf/Fz1XwDQ4ZwBLCy+a6o3TfIUSMgFNVqd0drSTDTj07DcRUVHpqc21BLVcb1Dduf1E11YHOuP67pggU+QCBc3hwH4VklX1wQSGGYqxoVtvU8nFCxGxxVL0uGKgsB4v/xhg2VYcgGI5fh7QVu1A4JwfnZaE3oi5YONWp96Pr3jRShT3ZAKY4xCvqmIrxQTI/gMR4HUVEe+q48QNqurFMThgKfvL4SQAw09aKb3DqwProMDTNOIFZwQdAByIEMjEaTlOvalggc01JR13KzfLf7BCB9aHfqnpmm41YMrRrnXMthW2vD1PzCQnS49UVAzbBzPVyQUbIZFHWsqIA6RCwuCiBXC7BqrN9RLktz3wmhJXrWKq4jOhCUTZKMiRZwIj7wDWdaB3L2JocFqG2yMdjf/eegykmRiiV2RyTjDwkp3hpAHTKtjCBII9PAjYAGwuW+sg1bNritwxs2JLCmlV14/yGICiRf8eAjPw9a5kUB+CioHb8AmFk/LsMNZNFSzk0Tl6ZHKIma/fIsLVQON16NPRw1cID6tAzKDej/uavf/1r+rBt3LiRfmNDjcs1Azkf//jH1eTkpHra057mLP/sZz+rFhcXqVjn4WojNOvLM0UI36kpuGCjtDy5GZkV8MPPGsaRj4GZQUwChCJt+OwNTAoTcNJ8zOmW4Ww+SxNdtwDjEes795cZMw7Di61XxsqGp/m1hnxWqaxwQl69o6JWLgcssdBLXC6TLy39EtVV68HonNLcZdfb251Uly0cS+tDjpdfumAQYHCk/QKXACzECAgnr2ZYDrAuKwpVrHtqqrZMqmiUgC1manl9fjFiX8zWICyOf4eDr+vPaMlmOGIIeQOAwPqUe2NUrLD+RGXFDQUSkrNWBETkvdicD5OzxKFs7Dxx3RMKU5PnwSa969A55Bpxn69Z2a7uOHKL/VufY569da+xRNDB7S+Kh2qRgQoBHCT6L3Q1qMC+v9o6Qz1ly0+dtnhbeU60UINWZ2OHnXOEAKCOG9mvrlveSg4WQAMADXIDAG6wDUtto44Rf+cisWD1OCwMoZAANdPNZRIXQCFRLvyJkDcYAM9kY4V+Rwgbs4IchgMmsmaKtJpRNv0FKOqoXi2R6ebt5BhKlT2W4VUse92rUqHVk0Z2awaxivBFhNjpPvAYwTjHyQdBKVGEEncusYTBQq1pS4tfhPO2bB8L5mPlWQxoxerWhPabVSCV+hvK68wAFGiPw9TACPuKiFlqj8FjFJLRwd9pn2GT9cLsc9UHqAgWqbhhXD5QJNYGgFuEpeH+0yGgkjksF2KWBYDyQA3WxXHEWBQulixr3Pjb04QtgxXD9sh19XiFAZk8xhgTtq4MfV8tGDsEwJxv1157rRq2lQY5b3vb29Q//dM/pZZv376dCmoeziCHnQlIqTq1NCJMSFopzb1RYzaMFMyeB7Rkbg47606ejwBKRR8ReUDIWZbx4sjKGyo6FkXyathiks7yt9Cy4LYyhykw08/rZNX+WY0VGZ9gTpUzO5heppe7f+/tThCLwswHh2vgO0Im7jF5vX0ZSzDR6LPTJ2fOwRS4M8j42wKjStuAoCT8RNY7IUdGvNARyoZt4IByv7At2Bv9hxYUAGDyi2BKdSI9i5jM4LPp9T0nlYpuaicXTCocbIwhwBPvxwdDWlZZAy9sD8f/nIlrjQqaDoM6bWSnMybEoBmFraQ4qWEf7D507SI4O3q8tJIamwzDQnLyIzb8yh5vSJLbVcvC8iT53gog4Fg6IwR0IAIw2Vik+jjYN5gdgIiResc6ZPVaN5W/wbO2CLWBmAAVEEX+jWFxYMjBwaw0lkGwgBjCWofWh2HbDc0lagvHz7V39DWn+2rBFuVAgSXSyfouu6QLlFaJ7dLjy7V4dF976oaVLbTNGeM7zHjocZWOKquXSRBEx+2FspUxCXC4vVgtqJCkdLDNjKdlWYBD+3bkpMurXIUAjh+qlpfD4wMcK5DBjI0nGa/3Fxcc8AUAbE2cjNwSd/tsUJqEVZpJvGqi6MiMD4MaXpcL8PL1xHVlZDuhPpQBPjE2RDIosl0f/PiG33UEjBYZYFBkfxP1cPR7QYR8euFrHJZWM2AGf2MMfLBzxA4PKw1ybrjhBnXyySenlp944on02+FsADOLvQrlCsBw05KDCCChXDbHZ3GkgdHJYl2Godpm2xHhaz4rIs1hnIzggV4ebtsXKCgb7hbsawSwZAGYouDGzz+JFfBka3mANDb2tkhrRo6Sz/YEa+wchGdzO1L0U4ZSJcvdv/HyOLp+gMAEwtSQG4OXFP6FMcDhWjDIocHLGepnMAYvABp4IXEeD2b4ZdgZfue8ntAspg0J4eRfToqn2ildUlyzReFUhQQHrHqZGG9SaFOt5Pi8/XHom8y/8UNRNOtZpXwTO8aUl9MjdTc61n6dwAsX7Vvs6PFi9giCBtgbH7Pch94/cv8SGWnar71e3TwecopYcrZfVxcunqzmu3rctzQgsd0nQMUJ7jYxWgDJhHliRTtdH0f/my6giNAtjMEdJnbaGfNdrSkNcKoatEHCmfuL8w1bRF2dHgQE9Lkn9SeTHN2pGDDY0UBQ/96hsDXuL8LaAIi435CnRhsT9UQgwr1+ewTAZBFX2tYCNz7/CeiRz0QWLNA5Xj110cLt1B3GdqoR1XakmKWxqhu1ZwBsAhR5H2ngE2JEZL9Svwk58CKy1LIdua8QWJICA9l1oNJ91qAzuUeD20lQXZKPjyXtyxA1Pgb9/AdQTEQI7H49Jk/3K/SsTAQHfEAmQ9CiLE2IzSOGPBEsmW031UpvkoAAGEvdfw3CrFiHACoA/nwPFRVR4P0OCgh8ABRSYCM9koxJPBlqJlkcWCivShrJUAuBAbSFiQuMWdZ268pwiKt95x+CeK7f76vPfe5z6vzzz1e7du1SvZ57z3/+859fe5ADxuaSSy5RJ510krP84osvVlu26AThw9VWKFwmFNOcBEhatkSqpAmWhBTaTAhDjN2IOe6s7JYV9pZn1QIgDGYBW4SdGEZezzCsKPDJAzhyGZkFJWG1ueQ8R5grDwSyDVNlbRgWfpl7L2Yz+46Z7Y3VJTtTDVaHw8jwogb4QQ7JXHfMJOBrhxKMAv6equnZdmyDMDL8C6OcHlKZ6jt5NL60bCgen50M7APb+qIGABr2OAyACcXyM1PE6yXn3ezfqXPiOvt2f6YmDWxTXdd6AbjD+j+ZOVmdOX0jvcg5BA/Gx0tFG7HAThogdM7N3dHH685W8gw15+DoY8F3JCSPknMO5x5238krnTHzLQGBGuhop7xqABn60UwVluQCrszsIYeKauiYcwtQwc4ffe+B5dHXgwJLYvYJcFLvdYkZAphB7gwpqHUa5MhhLBG2tm/FgMRaRy/HzHAPRUITuW/JdvlFBBOFLFxLnI9hlJkMkOB6OrZopMfo8DXwq8XjaNmdxm5WI7kAoJ5iddzf02xNug0e8/RDIwsAZbUlC+fKY7Z5LEI9TdfqcWXX5f6ZEXbY1gzWye1nL1dsIJaD44scuABHs5EwhFcyE+M/C3x2R5oUDmAWxwcJljXi4que8AWzRS6rUiXFv4VOM1H7MwwY1gODibBM2FIH4btpBuWEyRnbVkw6uZcRguwzJtLkujFAFFJN0z/EVc5cFbX0MrueZWP7wXeAD64oV89MTq17O0xBzkte8hKKFHvoQx+qjjrqKMq9Wa2VBjnPeMYzKOFnampKPehBD6Jl3/nOd6g66dOf/vRVd+i3wWTVdC7QliVCAFU0ZgY4dMlPtucKv46ktGhDAxIX3EigIouLlg0Ji63HggbS/JyYXoG8lZDF+tKLsDr8vQzLJZeFcpHy+hgrYOqG+YW3TYGbAON1MACOHC8/oZadEmf9WFy9yaOg75Wemq4uq1pD57xc39pKTu41S9soHwOzasc395laOW5iNdZnQQLJgMh6ONkx9vpv5PQALPA9wiyIZlJEv1Psi+so8Tayr9L5kSF5DHTQd5al1ZLCLuCyYIFCnrrE6pyz8ToKnbvdyF4Cdwjl43A5lhFm0Ae2DPthuW69/3DuBIsakBKeEXxg8PSw6V+pXyyepM4ah0JbWvRBtmHHxIYBmvUMqwOxglHVIqnuZU8tihTXwGhUqqptQCXODeccga3isex0x6xzh/7giFnmlrZrLKuphiLHj3J2KjoUh+WkN48sWUlpgCGWlaYkaxQYRc4NqdYlM+zSWbMKdJWEnUj+TSSnZSiTdnI5RE+PFTNCOJ+uhLF/7TJ4EKxNipnja7TYC7/IerHcFx/MwHBOQ4yDXWYUPgmIC9EJR3XPAGMuzhuzLLZGqpP5y5xjywA4RcPEWCBBr5MRSi2udQYfNtySCot6+U/eNSTr7/AyDjXjtkk8owbZ9Zq6aUGLqvgmw7ukg79jfqNddsx4Ui/slsUpddT4vP17+/i82rU4qUO6IscaBBqeOIAvVOB/Z2W0ning66ur0f7NZiwcYuWilV5fChD4JsVXJHMtWenOIZircrjYv/7rvxJb87jHPW5obZYGOW9605vUddddpx7+8Ierel1vDkrpWc96FlUkPZytgUrbQoFFMgZZcwfk+Iv7DkwMg4dQ7kcQ8FTw8CjmFRN4ylk3xuLw67xsLkxiyXH5gEIeawzIFN2f7GOW8EKvIHDx+8j9DwERn8kpY+uBufFzcPISbW1CunEWSdLYSEojBwZJ8je3N6nTxm616/549lQKIXrCtl8kbQEgANhQIdnkzPjAQjouHFYlmRYYMzR+KJtcR87WhmaBEwCRBmPSQmpwSX2ZcAYb7xvjgxA62Lb6HIG8bfXZJDndOs/6X64dlOToCIfPhKfFzhcdv5H5RusY63uNX23D3uT+eB+pftu8BR1mFEqw5rFyZHpNkVGAG6nYxvuFU8n5UXD4IDYw1xl1QAjCcTj8BqFncAYBXiAhzVKxHNbWqSKcRxcX1UAHBVpdsEbPMgnY/OOwDlMym8+5S8lvvK5meci9FcUzOTTHzWEKX0fsGFOujuhD0bpHybEVe2JKVqbt54AIpkb33d0fnhF8rfjsnXOPGZaHlPyQ2J8nvhKZZQ+xNXp5L9hfvczdlx8uxvLn/nj4oW1+GF5KuEFI2zNjo2vPpEPTZPgZQMuSHV8/pCuRd75+bpN7zDk5L35ujG8AOLBbFyed9RnoFDWZ3B9iZUKAx1E3C/QvT/mMCn4G8rkcEGX/Te8fY9cX+T3r1WiuY5W+wKGYfrRhwwZ1yimnDLXN0iCn2WyqT3/60+rNb36zuuiii9TY2Ji6293uRjk5h7vVKZyGHeG0E6wdZ/NylU44Zp5t3RsXvPC/PmPCy6XjHnq15Ukv+9tK9gfhb05bpu/+foo+Mvxt+ZhigIaXlwFVfjuh+kAxizE3MuTMqcUT6Pt6e3wWqVfkO8V4OUMy2raRMaOpE191kUhpcGjx6oec9K7ulM17wb+3tjfoCvfdhFMJhogIx4WFBLgNcmYE6GEWIpifE5jJ9WvHSJaG24Qjz+3Kvsg2fRAjhRXckJq0cwtxASqyqTS4w/oAOn4uBjM44whPo7Fw2wmFp/mmw3KSvkwgNIzr8IhxKytXHNqG8kMoD8StFcKJ/I0+cpDqqXwOJE9zLg4lT3e1U7zc0a8pzrHBcszwArhsHdG5RLqdipppjWnFtcYKsTmyWCD3LVnfZWqCx+aE42gxChInMEIZDHb42KTpEEM9BjpsTxcK5RyZ1Hk0Tw/N0Jm2TAjYUBL/M47TBzfOduZe0H3UDiarYSXbC+ZHsJvy/IfuwSKhQyGAExNLkH2W+40m9osCnlzfJtVWTmFVK1EvQAyp79E13qfrhWvUYF0WAuAcEXtM3rUaAji6P/lMRAjgUF2qSl9tG1sglnOupeuI0SQCwouXJkrVuJH7yZKWzutbVpFTFiTgfchwtJixyqZUUePaOzThfCgwOYdpuNrrX/969YY3vEF97GMfI2wxDBuoTg7stNNOo0/MpqenCQQNG5WtZ4PUsmQjeLafnV9OMA85925tjVDxzmS7ZF358nZzaELgRprPboTAgM8iSZDmrF9AFS70igmtv1qQkAXqguMdlBxVucvy+u7/Xt4lGY7lARzdLy8cSYQ5pWfxOYnWnyXl3A+9nEOstHRy3XkBgbm476aryQlCorkNC4kkxsocGLme/7LzZ3F91kYaHBGEw8lCi7yejd33CkjmsT9Shc23RC0sAXDIx0F9GxSPbCAJn5zljq6xIsLckkTbJC8gXTsn/85Bu5yXw+fEZ26C5zxguk9plkHLIidCDKHEcvztO9syxBe5OADOyLtJanloxTQu8KmXmRlxyFMbsAGJaa6Vg/URusbFQTnsjQUNuA9+X0Iz5byc5KZpX7xtkvAfS9YmMN3vmnHQ5znE6ji5TIU1LMMWSzJ3k+fT+86rRyNFO6R6oQ8qstoK5b4VKeaZrKPBot5HOYfVZ3H8cXLC2zwxkmB7IodLqgKybLP8VxbeTPrjTuv5Dn8WI1Mm6R/LAWzoPvCLaRZgasrsM2u90P0h+5LKr8Ej1YSo2fXMPw5INJtxXSy/XRIjIJVGrdx2xNan/d7v/Z765Cc/Sbn/yPtvNNzQ1p///OcHD+QUUUk4Yhr46DAnlahniXAxfoSPmvWgVKQBRtp8oBMDMqHltJ3ND0qKgrLliRTY8CwDdLj/2Bfvz+9zDEAlbWbvN0s0IPY72pP7yyuWmqxXYKUi7XgO6FqDm6ycn5i4QTxfSoeqZYWnUQ6COEZmfNgpcIGGlilm5TDYsvmXw8lk7grWoZo5HmOSHFN8NFOgRjBAHG4mDYngrGzG6lccTsP79tkYHV7WtOFlLPvs1tVI9z0UAoZlxzf20Xfk5DDAsUnnFe0YSaUzzsFhRTUWGZAqaiEnXcf9d1W3oseC2Td5XEnxSRdM5VV95wKw+rvejzJjwYCKGR1fkAHb3dTaZMN4WCUKrbUqdTXfblqQs7G5ROFq+IzXWrb2jR7LPoEZhK/hN3SZ5aO1opq+1rh4Z5KPE2Y2uC9QSfOdaAZHIRARcuB2tabVpsaCnUmGaiAzOjokkcGPGFM/ET9w/2YpmcWKesq25e/+MYZm1kP3Xjen4KazXw+wN0TIoh9yFrIkbLNfiH0KhTTFwtQkmxMyGY4Waw8sJAyiFJRb1qulwI3cxvbTXEsStLNYhqwZU9R8YCK/z64YBctGIrYSE+Dwt83bT2ibmOiAsx9PuMC/qpm5ccRBetVgeB6tY06RLprqhsn5/VrXdpgyOeeee6668MIL1f/+3//7thMeOGLlzKli79WeIXZHyBPjgxAxYn/ISU2f4JCAQBZQyGJ/QpbFdgRzZjxQIQ3LsX/ZZ3//Wfky1RIha3lqcNHtCogg8P65T9ntcXhhyX44oR/ltylj+rrjl24cpIXD09w8HRniIUOpuB2EYSHHBAUsWUXtQHeMpKO5iCeADskn90Zs8UsO8ZGAIa+CeSh/wC43h6JD3XSokF9IkxkjCZbkfvA7ckqkSQBlpYLpXevF8ZtxsQnNpj9YTx+zBjjJfvnlr4GglZD2wIwVMxBhHXxufMdFMm1OLo9xtpNzzGDVZXbkteEoMgVC8Sjcjgoht1UXgK2XrE+FQuHQUSilnNWWydZdNdlYtqyLLTRqQlCgwEYhPyj6WevQvxgfgCAcN1igeVJia9gZ3iXVoGKkcvy6JERhwJWQifalnKXpZboAaJ6xQ71oQiM5x4OBbHJuPEAvQUhA5jnLdPux8Kz0eUptX6KGjQwzzeyTCfsMgRXuhw925D2UVT8oK19Ob6vZRdzdaVYxXLxT3zc6d00XIQ5NO+r7mfNtOMwSYwfVQjmGUWWzAMODf/cum/pdA5oEGL5TDyW2QeWiY8AltDwEbvREhn4u8e/0XQgYyL5Q4U9fqU7m9XhjCwAE1oZyQw17E1pvvdvhmpPzla98RX3ta19TD3jAA4bW5hGQs8YWLPLY71MODjvuMt9DO43mCvWATlZ42mos7/Upk/Fjx5PaxvQ7FWYXeM5kg7Skjz7QSIXNifZcZbpyYXAhhiP5ri1L438Q9qYIsCmSXyPX9dvthcKDKi7gSYdBhRPZrUPtARteBsfguvZWdWx9v9rR2kIOHtd+oXydSp9YketaW9UxzQPkmE0aAMEKZbp/vcLOVIo9CVxrXMfCZ4k4fEiPkxtu44MrWRNHg5aE+dFjI0ESy8ZWU7lD3AbN7vt9EcfE0tdSHCDr+pPnLBR6pZWuMq5Sev5w2Jnr3DGoTYWpeY5mcgwAZ1U1Ve0RsyPZL/18c2WRbXFOGs+e6tYSNSqucTPbGaVxRI4OhAgYyHBtHC0trdXXOIwN4EgXFu1lOneyHo5vPnBtVHV9HGRMjdRwnOEQs32dCfoXAHmx0lTjZphYnoHGIOep4deLkflEDIJkjpOUfY4xHnl5LXn9SVTfqlHWRk4kONe1Becs1FEV7ZYL1csTHfCvVylxPao6atm4QXxdYn2E0ba71aCwBO+TWRudX1OLAhufzZGWFw4n798sIJInQhD7LbYvXjcv18bmrGUeRX6f81Ti+qIgqM8i+UCGgZ2+HsQ7wQCmPEB+xG47O+GEEyjVZZh2BOQM0aCKxjVqQg48bre2CUnj0CCtwNJX2r2TylZpOWbJevjthm7bJPfHfUBlsSIh1iaL6SjCcMTkqwet45OAw0ru+DAYlGCpjMUSubNsEKGEPJNFRalfBbrkrxPLiwpJRTv79hgAXzVLyzL31d7upBMqA6d/Z2eDdYisYIB5GcF5P25kv026B2MhQ8T8l1GekICzzLt3QvVvZKhauMCiBiMS7Mj9S9CilyWz/+xkMngih1QUhZRJscjN4RA42GilFZRzloyTZWkqemzLXKNZDjXnW4UEDrLyL7h/icPpgyrtyLIgARdMttsGY/Xlbz0rrQt5Zh57mjk3SdxQUdPsDudZVSh/BiFrYH4AegCeWN7ZJpvbPEO3Dz6zYEP6rCiAOa+S7UtJMSfjcKAzRmGaLDKDmlF4xkulsljhTwkGATz1daUyw9rkNRi6voPqeeZ+TvafHfYW2l6yNlkMjDQLPos814b0dM0qjgkmEeGdzn4hJtBrJmFoQtpchk7S34EQOP4NCf6he2mqsWKZDv9+yGNaYoxFDJxkteczLaHt+Ozj/JbJceG+yfycOMtVUf0eAAt23FPK3Nc4Jl8gIdYG940BEh3DoRDHhX6vlnk6hJgrtne/+93q5S9/ufrgBz+YqsW57kDOMGLpDjXb01VqoeuH+yRa+Cy32ySHr69GxTO2IWpnlDX5qJaOfwhcFJGPDoXZFd1/USsKcHqB/fjFTiWrxTlC/Le/H5/V8QGc/+r2ncdQuI/f/qBWJmQtL1StCAiSYWswrulki/ZFjj0Uv41Z+o1V7ajP9MYpv4VZE6w73xtXi70uOfMsm4zwNe4nAE6o4F8umIkev8vCsNPFTIKUMWbnNTTTbWfHPRlr5YW1+Q6dnOmWTK2cYaff4LybvCQGeBLguGFlCZiRoS3NlKpX9sXh90G25ytM8f44vybYngB+sdAhYh+s091TNUq6r5Ez6Urii22ppo1Wq8JMOdcOWTL5N36uA4ep8cw5X6e6hk7HSkAzCwKwUxfCAVLRLovx4PyLi/cfq87adKPt88UzxxFzBElrYpGqXXXUyJwzvre2p9XWxhz1gcMUpeQ0xkYKYkiZZmeM+hjL5JxINijE4vhCBzH2paz5oaES3GDfWWF/IXOZtnJPU/m8SIONROrez8PhcDWEpPF9C1DM14pU9ALAYaW0mJPuMzaQao7VjJEO91x7RI3RtdNVG5p62lMCHoSwZTnotp6MlDYvEXoox4wV1/z27Lri2LNC43wAJEPU/Hb4b+c3sbnNMQwAK94uOFmiKqpyJCfnkDDk4iwuLqpTTz1VjY+Pp4QH9u3Teaxl7IjwwBAND8AR8aJMgA1e1Fq+UScN4xNvJ1QM1Pk9I1StqMJa7JWWB2iy2vL7HFM1y2Z9fJlp068M4DJo2F6ozk1eaFtZVicWbla0SOggeTd5AKeXAi3u7/LvPCEC6iNyITC7bFoGM6OT+nW+ylQtCeWCwbFDsj3+TUKx9LaUt9NPkv5DQCe0TDoisQKB1sGu6CKlU9UlfbzGMQ/l0UhgxExUiGHxE6K5zk0Q9Hiz/chZwnjRNn0vJyjCJPI5QUhX3ixv0Vh0C+ClwlxWjSRvLFJ5OTKkycgpJ05vIOFfOOYYTziT2D/9awAOCxEARMAAdiA6ACU1GOfkUL0cCmkzIYRG2AHG+Tc8bnmOeGpW3YRTnb15hzk+LR5w5sabnOPd15ogRxlgSraxpz2lNtcX1DLLaJswSQoh7Cu1ooTioKmHFBsrCYIssGCmxzMssxMY5hxbB3iAEB4/LE3eP2VVz0IWEnjwwdtqzKmRgzyafoNCzvia47FhyWdeLx2q1Vc3Lmywy+GAHzd5QN2yMJ1iHaSlwq7ATHbqlDvGIIeZySJAJQaAfFnqvHWsTDjXlklNBIZDxTgJRE4w5Cm0xZTVYkZ1bjxg5W8v83pCfT2irrZ+7X3ve9/Q2ywNcs4//3z10Ic+NHe9//f//p867rjj1OFkLDEanPWvKMvgAOA0SPWJwyB0eJUfhhULNyta/8bPTXG2Fapj/ust5uRzTk7W61DuU4aKyTazQEQ0jC6gkhZaN8TuhB18Xo+3i/epiJMv+xPrp1MzqZ+fa4PlobDBLLGEokpqRcwPY5MMpZxxg7MGh2mhP5IobRFDwWE1PTVeXbGOGXITZEVxvIg4uT6UB+PLOmfNOuf9xrVhuBAn+gVjYCHzF6TTxrPrMp/GAi1sYhxVKw8ccsyEw+o7b1i+tzOppmpLNA4h3kTWBoJBfppZ4piF5b7TLI7Mp+Lj95f5ppklF7D5bAgvB4iT+UkybFGCIx5/5DtoAFBVC7065dgAsGCWm7J8AIJMG9ONZQtw4BAC8PBsOwxiAxzWhu8MOqSDBSU1Nj7vhcAjP8OtvG1y/W9rztn9cE6QDjXsUejahvqSvg7EM4jqApFAhxCUiOSlcf0my56JnDIb6seZPyYkzmfa2KFNFc4syJbK8NLMGktGUa6oQlyeyRA8eUyhcNYkdFBf0/Lfue6ovTbwTNKCFgkTqLcLP/9vXgjnDsDJxm9lasZIxxvHwDVscF6Q79XuJs/LrG3933yTNWd4vZCIgHym+Hk5+M1J/E/VWXPvLd6HFvpIs03UhqOw6IbeZf3t998XLuDQ3lD0wXq2w1V44Nxzzx16m6Wnbx7zmMcQlYRioDt27IiuB3WEkRF9ox4uJh8MIVUiABwMuAQ4MMzbjVZqaryC2WK8tLQqWUwhTeadyA/1IZATlMV8hHN50p9Cxy/kpLMs1n7efgbpkwoIF/gFPXXfSzaYsZ+8fhJ4KRialsh2uwIQeebvw+9LHnArcl3TjHmlQ0Uqp6vLarq6RM46PgA4zNbc2tlgZtLd4oBUGK9fI4DDjM5EdYVCybB8udcIhp3Jf6VJmVfpSIe2Y1Cj3T7NMKSldMN5KX6tHMehMqpisZlnGx4jksV5/Y21BdEOO8v+vWvC5gy4cV7o/oyrIyEt10v2GXQ4REhTyNmlQnuqSx9K5jd/I5colv/B7aYZOJ+l0yCRJadxvY1BFtrIQQOgTNRaarq+rKbqy2pTc4EECTRwMWwgEsDFzPtCt0l/U4gbZux7dfq44+qe/6Kzymz2evLOPztlvgwxAI4zDuK60LVVwCgYAQFzHuT2/F3mToULeVZzr2fpPJdNypb9kJ+sfkiRBL4W/WtyGLk4skinZhI1sMF1tdJr0PMFIhYz7TE10x5Xc+1RIUqQhDrK9gBe+LNWxkwFOezI4RVFk/31sliJrN8lw5TFNvHv3J6/LMj0BBTW/HA9+aE2BDghkFXtWcBC58/k40iwEjs+fiZZ8C3y9NBO0fC929T6Q/ocgnb11Ver17zmNeoZz3iG2rVrlyVNfvWrXx0ckHPTTTepF7zgBepzn/scFfp89KMfrT7zmc+oViutvX7EtGkpXbA4pmBoBc5dL/mo5BNL0o8BCv8T+k0CKglwkNuS1Y5vAGd5F4wEXW3DvhSZr1tNLotvPouTzrPRct3MoPAntG6oOKL/kf3PAjWSNeI6NlmfGNiRxxDbV8hC6mpZ5oexxYDRaLVDCdUbq0tqS21BTVWX1Zb6vNpW1/kIxzZmLGj5zv470rIfz55KLyLOjcHsNcAOwsg4NMwHRb5wQOhlxcDJ6bfnfGFL7BeMUqhGh+8Iot/SQdeyz+ATtNvohxMB4HF4lm+JKEOH+oAQNf4Xzj3AHufo6BA7La3LRUIx1hPVli4iWukRO5wGMdmzuLIfaUcuScbH/nS/eIyynQP0W4dLpY+dnXUGL9eubFNXLh+d9Acz6b2q/RfnHsCFwcO20TliYQB48AGrg99ZRKAqioGCyZnvNAnsaHanpha7uubOQqfpghNPZtYRFvD6z//GnHEKzzQATdci0v/yGCPsaX9nXO1tTzkS7Azm+DsfD+9HMi2y3pBkLfjDRV5DwCMPiCTnotjTWF4X8uPvn8eVxy9VCNZTXQuNb+heysvzYWl6WfgTY4xrYb47SgCHQCnXZwok+/Pn5sVptWtp0qr38ScmFLAaywIEWR9pvpRzEUDkr+/3yd+H3DfnEsJCTIsUAJDjFZOiZuEDXx4agA//ElgJSFRjGwppVe4x4Fxx+NwhITxwG9jb3vY2dc973lNNTU1RMc4nPvGJ6vLLL0+t96Mf/Ug97GEPUxMTE6SE9qAHPUgtLS05eTPPfOYz6beNGzeqP/7jP1bz8/OF+vCd73xH3e1ud1M/+clP1Oc//3m73cUXX6xe97rXDXRcpX3LrVu3qr/4i79QF110EXXkDne4g/qzP/szdeyxx6oXvehF1JkjljjDcELGDcCxM/G5tWrSv4fYnCLG2/G/PpCJteuDnWoBYOUeQ9x6OZ/VWhbAsesExljmqviFEJPt0svzgV8Y2MTMgrAIkOH+5zE6vny0PC4ZShkLeeJ8nLzioE3VpY9mdtr2QyFq5OhoR31fd0I9dssv1U/mTlEP3HCF6SOrg/UoTItD1pKZ/OpATlgMAPHMtxZFcEOlQvU5YAyG3BC6fjQ8TTJD/AmFcLG1Dbjjbf3QGz5mWfgz5lRlgVcWPmHZWyk2wPtgR1szbNr5lv32Q5sIVKoagdSoGps5X1QLCMyXWY+Lc/I4yllau021Z0PMOMwMyxgE4TNufgezg8R/KtipdHXzVrdmmR1mcw60x3TOhe2XBtSUs5JxN0vnO6ouZkCSrpeSsAhsk7UVNVZtqcXuSOZ95Rf0tKAhwrLZBPsAyI/dC6HvgwoQxCzWXhHmZlDj5wePPYMbhAjub0+o+e6IWuw21BIB3yTfy80P6VGIIT4AOLHQNQlyVgOAJIiQoKRo/shq8kxioWdl22QAQblw4rz7jFGINbLMlTdm8m+81pOPyyrJMDU/H4cBziGVi2PC1VbzKYvlvvOd76g///M/Vz/+8Y/VN77xDdVut9WjHvUotbCw4AAcRHNh+QUXXKB++tOfEulRrSbPIgAcsC5o48tf/rL67ne/q573vOcV6sMrX/lKihLDts2mLugMA6hCvwaxSr+/umIrN998s/rQhz6k3v72t6t6va6Wl5fVfe97X5KAu8td7qIOB5udnVUbNmxQF/16u5qa0g9UckQgExpgRaoe45AV4uUqD5U/VYOCI2ll9hsTG8izPLc1q2hozEJ9CIWq+evnVXlXpUL4sn9n4ONsEwlLyytcmhX2lnU+Qs6WzMfxQy/17+ltWiKTZLlXN46vXg9OPJxIsCIwAKB93ckUIyNzbmRCs5u34Yc8Zd0/bl0at/00iyOVoZL2E2U1/Kvr/WjgEspJ4W24Lal25bM+WlFLDzblMKkehexxv/n6a1jmpmtf5JhAiRmLnfB3ZhTk73IsdHhUEj7oO6cyLEoCPs61kWPAht8c4QHKe9DXBdsNK1vI0USbvnPujJOoUcKMCTux7KgCWHBOBcQIkMfjx/DD4dHH0FdHj85aYQK0KY/P5mgFCnHKfcvzyOvjNw6H41wfBnQMgtg21N0aSaz8xkb1pUwopxxjlmR3ts1VwZSTP+49V9Z8AB5SHcyqjeMAxkCIo8yjkX/75k9U8POEWRwGOAhPA4MDcQEAHJYj530k+SBJv25c2BiRNh/snZq1XZ4EsrRYaFkonCzPsS+yXixvJ8usipqnfsjf/WKeoRydPLU2GeoW6jOdT5UAIA55ay201I9+9/3qwIEDQ6/JMixf8pTXvFXVRkdX1VZ3eVld8+ZXDXycu3fvJkYH4AdsDew+97mPeuQjH6ne9KY3Bbf5zW9+o04//XQCP+eccw4t++pXv6oe97jHqRtvvJHIkCybnJxUv/zlL9XJJ59MjBJIE0SMXXfddepOd7oT4YuyNlCUEBAewtXQ8RNPPJEqlH7gAx9Qt956q7rqqqto2dOe9jR1OBoeqJCD5tA035gRYfMBTgyUrBXAQbv8GdZ+12J+jkPgkiKjg/WBAUQIfFjwGWE3Ynk2vVUAnDIsTR5zM7S8on62XHbohewDJQqtqrSNwlqfQtiQs4G8EyTXcxFMOO8IdUNiPxcMpVl6UztHO1Bc2C3skPHsoe2LN8MdEi2QCfY20dxTqkqkhd19J0UDXUeXjfOP2Fh+mYs42vXElYN1AG78wpAcruavHxrz0HIGOL4BbODYATjw+eHi7dVPFk9VFy+dqC5dPl5dunQCAVItBa7XlY4oL5fhabSeCQtiCXGAW9oHnEwTinhLayN9blrZRE4+AwDfaedzIB1lclZkQVEJVk0NHcy+g6nhOHyIFfDvbK7qmgY4CJPzLQRwYr/xMmKGRBgcAzAfGMEOdHRlex63kPlgikFz2dwCP6RM922wQGEZjubLSHMYZ1HZ6Bgjmt+HyPXPxTeFwADMsrci/8pncHwL/eazDb4ccsyyat/Etg2BiRjDk8WUhEyGdGVtMwgDInOKfGYHx+rk9ATktYm19tgwXuazPv6x83Z8jDa/UYiLHE42OzvrfFZWtNhOngEcwTZv3kz/Ij8G0VsAPve73/3UUUcdpR784Aer73//+w7TgxA1BjiwRzziEcT0YNs8w7a33HJLavkvfvGLgYXMSqurvfCFL1Sf/OQnFQigP/zDP1TveMc71F3velf7O+L03vWud+Uitt9WG8VLMyMETH6PgRAIEbBTOwjIYMO2gzJBct2YqIFvZaWccZRlHzu8j6qX6F+ctUjLRqfXcWV7s/Ylf0/3NS0wIP8OqaplsTVFhAdCggZlWRxdoBZOZyI5m/RBKwX6L389XmJPFdSD6gqHLFHrQpI6OzRcW4f7wkwCFRgVLz/IPSOUbWdno1OI0+m3UYryWQi3zoXO9/Glj3U4mGB2hBoUFw2Vph1/TGh0KVxLOnU8u4xli72mzi0yCa8E3gw7oIULkmMAEPAdvZpgdELV4LPqNuFFzwDLD02j/UHCmNW1TIgPK2ahiOZVK0er45v7LPuk82oqqqU0+HHHI8kVSeSnzZiZrmE2fV9nwgEo7OQzO8I5NsnxJyyYf83Z5YY9oeM1M/S6zgdUJPX5J1U24dADBOF8U/6PWcysix/2Ivedvu7TNYdgXP8nxE7ZnBrD6mAMEBKp99kLns9YjlN3wDAzGfo2jLCxMgVAca2tNixOMqbJsgT4+RMFuLcunzuKzt/tp3bbayVUCLkM2PLD0bKAToixKKLgVxS0SMtST0tJRXvN58o+B7bh7ULLuC1Hphr3p6zpFxE1CMlFh0CSDzQlgyPX4fyhdW8DhJsF21BKnXDCCc5i5La8/vWvz9y01+upl7zkJer+97+/9e+vueYa+hfbwse/+93vrv7lX/5FPfzhD1eXXnqpOu2009TOnTsJBElDhBeAEn7Ls6c//enqFa94hfrsZz9LtTbRjx/84Afqr/7qr9SznvWssiOg9192g1//+tfq/e9/v3ryk58cVU9D3g6kpg83Y2loGVoVC7PCC5CBhA92pJrWakAOLG/7ENAKAZwipgUVygOdslb0EeWrkmUxHgwIdH8yXlSrEEkI7Te4LAJmiqiqhQBcDExm5QQw0AkZA52QilfStnEAzDKEpsHh3lLTiYSpEDThnADMwJgJuLG9mRLtN9eT5EUJWnibLHlpf/ZaA58k9wUMEofScbFQJ2RPACtWVWv3dD0TDV4SCWkGNhroSLCM30ZswUeSlFYdUVvIVZ6DfHKDQJGo6SIAuAQ4sXo6fH78EMxlVVG/Xj5e3XV0h9rR3qKLY1Z6ar4zas8t+oNjQS95nPxzd9XyUeoOo7eYEC9Fkrwcjoa8E86NgIFhgTOPdZZ6TQsGmMHBker+uep0UlqWgQGBYNWj8CN2eDlUjY0ZHJpNRnhfpUthbLSs0qecDMrf6fcJXHHYnBw36YRqCfBusHAh/83b8d/2XHFYVV/334oKiH3oEEINwvMsFConLVQE0taKEsygFInISvhPs4hJO0UBTij0T/drdRS0VJxzi88aBqenJ014nK+a26aOGZvVfadrmpW73L5xaKMjzCG+gym04Y+B3JtQ/o78TV4vRa8p33h9f7tQ8VFYqojmQBEi8XC5GNDx1/OvTTwbQsvz3vX+hESW0puVkj4EtJWHKSG9Y8cOJ1ytiOoxcnMAXCRLA8AB+9M//VP1nOc8h76fddZZ6lvf+pb62Mc+RsIFq7W3vvWttG8As263S6Fv+PcP/uAPSHHtoIAcHFBuo/U6MTwQJTjmmGPU4WKjFbwEq5ZBqcrEfaBScQNCVS0JvYqDnRAYGgT4hHJ//P1ltSuFCriuj1zO+yjKzvhAwQeDWQVPC+fDhNTHYvkuglWR7UsxhHSf9b8xZoh/LyP97CuoFdkm1Ic8MJad9Fx8u/TsepL/wS9eOHpH1zT1DaCzo7NFHVffT04R1QQxzsV1rW0kOw1nA6FbVm63tkQgIJSLwzVFrANqgIhkb3zWRyZpkwmJXpjvZPJ+ubip3raa1P4x+So8bjInQeeiJHkCMICpuf4YMSkM3hBKodkRqgLjhgBl5AXo8K1KEOjokMsesWq+IwkGCgBnsT9C/SF2C2G2jQWby4DzsK8zSb8j3Ork0d3muKrqlvZGy95ctqRZ+6pQWZJqYByq1ej3KC8CgALJ91ybhMGNlGGWTnwq9wRtGTZOx9lrIAV2BrPz6DdYG+ukElOl+4OwGe4by07rIpk6hKleTQCIdCD1eLpMj/3eN2wOF/UUAAIgTh+PDpXCuQCs8MEDgB8rDeL/DRqfYk86vW+XzYnludn1hWUxORII+fln9LsB/DLU09k+Et63GhbJz8OBOapuXHhWXINgcfh8HTU65/UvmaCQ+wCIsY5x301ih43X2861xevzfkJMIH+PgRn5vUihzBjDGGI3JCuUl+uTl/cTA04h5iXUlnxG4PoJAZzUcUcAXewYQu2wQMThZNPT06VyciAkwIIBxx9/vF3OvjyAh7Q73/nO6oYbbqDvRx99tJV9Zut0OqS4ht/yDGIDH/7wh9VrX/tays2BuhqAFFiiQa00yClqGCApK3c4GAAAO7QMGKTT7tS+kVRtwXwYC56GwPCE2i8CokK/pVkqF6SEHim+Ex4CTT7w8cHGoKxKNBwsEOol95Xuc3w7Z5kpoqpWCc7KhKnFwurkuWDHuJCEdL+vWuTo+LEN4RAeLorov5Awm35SY7eTyI7v17e3EghAaBQcFGZV2OAIh8AHxdQbgAPAwyyQrJOgQUjSB0qsF8nzDIIYzOA4+TCZIWIHlMPQaH8kLZ0AKAmAZDiQzzZhmz2dKWI1AJQYDNHY2Vl9HYqEkL+smP9QCIw0iBWk8pmMYzqqtHT1+MiKunT5hAQkUU5Jy4IYrDtea+m6RQA4rY1qx9Imqldz+/FdpFoFxsefxQdbhXwrjB0ke3VuSpPaxHJSSjMOv85XShibds8LP/EcRu6blmbW1wFYGZKK7gLouH0BqwNAA5CDdWBY3wJSAivZM+SxcWag42/DAIGP0y8wm24nCVXT91ACApJwQ66vFAEPkdpQodybsnVpfPaIgWbsmHyAEyr+mVX7Jq0wF35WOXl3VrK7amvhsAjE7cb3mbBMDqNMnlHcjrTjJ2asAAGkiwGcUZjTAh9WLi0Q1iivoRDrE1svL18oxvSE2Cfn+lSDWZF6OkWEDDSbmfSNlpnNs8QG+BTJKAG5TSxXCh/O0RtUOOK33fr9PqWjfOELX1Df/va3Kflf2kknnURpKL6s9BVXXKEe+9jH0neIjs3MzKgLL7xQnX322bTsf/7nf4gFuve9753bhze+8Y0UmgYmR4bZAUu8853vJPBT1gaNvDliuQPLsxQ6fG0QlTNs4xf7zBIJkOYXCi1SpFO27RcRDRUV5eWx/SfHEdtfdr8HuVjzHt5FmZG8YpqhujchgFN2v4X6liMvHRNV8AGO/NdZt5KukcMWkqF2+4ZE7kQ9yXfI5D4pB0fV1DWt7eSkAASQQ2jUs6SD689S42+sBxEDfEKhMDpxvpaa1ZbfnUKLJhH/QHeMPnDMNfDyVawSZiQUusHqY/yhbZDL0q8TU4V9wPEHMLi1vUErPvVGrGqbnKVe6DfpQ0p1oqihHH8/HE2eKz4HcZVASHd31VGNA1oAoqqBCY4Z/0IwYlN9gcYIfd2xskVdu7CV6s/AWZQhdmAtWDIbwIOBCDNgnAcjQQrOLYlNEAhJ+ijVzrKcNwuUlWZyODTNN6qd0a+SHDWfM4S3SWdSAkw/lyZ1Dfvqc556nV1PsD8+GPABjF6mFb7k9RwKm+MQJ8l6+UDGB7dli2lmmQQ4UiBCSqvzMa4m5ye0bUxpMSwCop8/p07uEc5vIvJA1yNLDRuRlJiN1dtU64gN8uQL7Sb9q9uKb+sn0Oct87cL/e1/L2Khfa/W/KKevEz+GzoWfxmLCvjHI0UFktDIpH25jS/dzX8zwDlkrD+kTwlDmNj//b//V/37v/87KZshhwYfJiuQI/Oyl71MnXfeeSQ8BpGxv/mbv1GXXXYZ1cJhVgcS08997nNJYhr5NGCGkGtTJE//DW94Q7CmzuLiIv22rpicI+YKCMB8p5SXZ+XFcCHPQWScV2NZoCjUvr8+1pGvJz8ErIgVCV0r0qYEGFlAxN13sT7G2okxL3mha6n8ISfOPB+oZvVbslJZDE6w3UBRVF4eelHq2WjM0qdjzRnczHTH1Ux3IgnTkYU/mWnhmTu+h8hJrlF4D4wLhsI9Wew3ySkHUwFAgRA3GcbC+2BlKg5x498BamBog5f7ziw55kYEIB0Gl3Yy5X7meqPUb7SxtTGnNlQW7YykK1ncDSaYk0NJRYPRHvcrXQxUni8GIo7iWmBW/+j6jNpSm1N7u1Nqd2cq2beqqjnDfFy1sE07DACk1Q45ihTqhtyXngYNOldGM4TguThUbUN9iXJg8DeLC2iQgtAz7bhgDGx+BZ4n5hB9J8+dmU4UsjDLDkPIGnJvuGYOwA8b9n/s2Az1JRnD5NyFQnwc1sSplRTP33HuCRPG5j8rYg6mL19NYYzMLEdyzqK5Mx4bUsakqAJ/l+3LHBwWp9CiAvIY3RC+WL9j5kuzB9cxxyjZLt0nzd7BLj6gw9VgR43OUv7V7uVJ87cOX+MQTT5i3ifXvYEdP7FH7VzSoT/NWpc+MACdrBC1IhbaNos9DDE0IQYy1P5qLYtBzmOgQtv7YC12HCHwJNtkwMlhc34fdVjrIQZ4DpL94z/+I/37kIc8xFn+8Y9/XD372c+m7xAjgIwzamUiBO3MM8+kmjannnqqXf/f/u3fCNhAkACqak95ylMIGBVlkwCmfIOUNKu8lbUjIGeNzAcl0umV330FtFDoGL4DMEnHuCjoKcLgSPPBRGh7Pw+H//XByFo8SiQjUbb9XFW1Eu+AUH0b3/xzHvttEAsBtyI27GhkV2wgP7SCX1gAIFtqC2quN2aL9/mOVWhWVUoRI9SLAQSSi1mJjGb7KPFYgxCsy8nw/swy9wvrgMVAWzLkLTgrHnM0WarUhAc5eSlm/8Ra9DUwA1PC+2IGRO/XleS1fRW5FzEnI8aw+WpovB8JzIgZqy6p5aqWlQbThJAfHMtsd0xN1VfU/tY4AZwTxvaLxG7INWsghX8XenUCPgAbKNCJ9Ub6HTVRX7HiAMl+u24BRgAdU9eEGTxZo0ivpxUStfBAclxj1bbOgemg6GdNjdbaBHJaNJOrry8wUNBRmG4sE9skc2fg+PohZT7AkXleMUuLXxR7UknGkB1umVvi3muiTRMqR+dCJNhLy8rvKAOCQsIeVOSVx4zCV8OJ/EUtqzZOVrHWmLCB/xy5dXnaCSu7xYAWiBHYvgtxlaONSAGblEOWuTrsPDv5H4Yp8q8bP29Q/pYej3zQEgqrLMPuFMn/ydpe9jWvjk2ofb8P8vlWBDT5BlZICjpIOxSKgg5TeKCoFS2ZiYKd+MQMYARsUBnbtGkTgRt8kMsvgQ6EB8Du/J//83/UIHYE5AzRKCE/IC5AYWfOCyodchaapWfhAf5eNH9Ggg0JOkLgxF9eFhT5bRZhXcqDk8BDsWR4GoV3cXhZMK9IDWw+YCnLvpRZL7htpRyb0yuQj8PGyfQhtsDuL5IwKh0JWgchfYJZgQgB/pXFIcnpN7sJOQcwCk/zAIUulqmZgK7nkOr+6xlxON/sCAFoce4PhA5Sxy5EDNAuwBXnDHGbVRO2wyFZdh6YQvb0cVIxx4pSN7Y2q/Haig0J4yKPVqLZ5HaE+gDDeDVFngaflyzjHBuS0SUlMg0YsJxlvS3LpWoEOtEfsE6kwmZyGqZrS1RE8eSJPTbHAcCAv4NFSWR9K/Y3AhdV890A2fluU812RtXGxqIaq7PUc8KqsaMpc0qcMTH7YZnxRq2lRkwIYbXfU71aS7W6YHOwzyqBs5EGzpsWLCBQ26uqyZoGyfochIt18v5ljhfJjYvrMq/WjF+bKWQsIY0xB8AjI8Aik/W1+ppvtvCsuS5CstUhYO+DiCwWixUH2XCNIMyRAI7PWpV4lMUkuPPkon2m1GdxpGUVmc0y+/wgUZowwODnHMYCgAbgmgUIsLxe03lg1sRQhSTwrTlsmAsWYiyP/L2oaIGv7JZnIdAQygfKAlp5Igyy36G+yW38/cix99v1C5Suexse8bbu7X3vex+BrD/6oz+isDQURJViBMgHQr7PIHYE5AzZpDhA7F4KqanFZvzzrIwIgQz/iklbD8NCQKmsFHXWNkVAUuLMr/0DrSwjEyv0WVacYBAmKJSXUzZ0rdB+DLDx61XQv2BuVE3d3Nmk82uMo0POnVld50hEwlt8R6HSo1yXydpy4jRBfMEAEA5R803m28Tkp60oAYfmCRWtJmYLSV2pFpW0ZZaK8zwgq4xQNRiDI71NRc12R43DmDA8sg9+kneZXAfKlcJRWKDvghsYAA1C1VC3hcdivgtg1yVW54TRfSQxPd8fIdnlla4eP076Z8AzUVuhZQAf7KRje2ZxdH0Szlk0ANEb+9AMNwNaZnL0esl2AFToB1gatLe/NUH7o78J5OrjRLiczBkLMykVHYYXcEZDifx+3ljwHAR+B+CNMXG4VsoYAyW3XyYfywPHRZxWVoxzcj/MdRgEOB5Q9xXZQiF1g4bSWYAzYDFTNukIg9FhaWnfdEHibAefc0CWO3U1uzyqpkeXU2xNHithnXlvokc65hziavvgPb9DYCcGlJw2C4Cc2Pa+5YEWuc/YuvJf2WYeU4X1tFpbWlkOyweRzT5ia2vnnnsu/QuxA9TmgUJzlr397W8nZgfFQ28zkPOqV71q4Bi63xaLiQ1IFbYsi7E7RSyLUZGMS1nmJtae/z3GGvkWUkjjfuWxQrGgECn7TO15LMtqQ8Xyin3GAMswxQeyzJe2zs5Xygoxi6+nE6TTctNO3o2XCwIDmwLp5JvaybOBnU84ZBQepSqW5fBzamRuAAEHCpPSv2EbMBAcCqYVu5IwODit1L8KWJkmrW9lvr2q7c4xGaEDtOmMnWEf2Nlj0QDLQBjHGSpmtO7IXjtGADG8LcZkWjio0nFndorAABVRjYsIxIwFFSTIhLF8NMZ9d2fa1sUB28R2TPOAFQmA3LWqL5PSGiuULXRGNHNjkrkBIMDSIN8F4WkYM2w70x7XuTiVHjE4ML/wp6xOD2NlN8mmWXBE+SAyb0WzScymTdZbaktjwR4/bLySnD8ZChc6/8gJ8gUntGiCyyD6FnKgYjPHDHD4fGo1Mb0u7gMb9pjBsEgHEYVW7T7NOhgb5EOlJt08xjAGNrQEegIA+Vrnf/2QRz02PGEnc8u0KEWe+bLZoW38op9SfKEouIzlXMnQtXSR4QToxMJFwdpMNlr0KevYc7shC4W3yd/8UDh85f3EwrZ8YJMFjkLblg0hizE+ISBTZnxYXIDbw+RLp6uVFxu1LoWu4Rpg+e/uEHOT1szQxdV28xA4TN8e/OAHq6L1dH7v935v7UDOlVdeScU+oYfNBYLYWOLtr//6r9XhaDFgE8rPCDnDecyM76APKiU9LKBTRF0tZFl5NYOyTL0SrMkwLCQdPWiOzkD7zwBrIYDj11GJAZxgFXBvO80ExPsGBxXhVeyUM3NwdWu780JmNoWdKU78xcsKy09q7FFXto6yzoyu56Jn5QEOKI9GtellhjYBXNgh0w68dvQQamZzPozTptXM0gxOrMYO9i9DdtjZIlUpAl26mCSHD/G/6KcbbqeZBThM2AKGv1lhTYba6TwjHQonAY4+rvLXsWRvcH4g/iDVxEi4wZ5n5B911bhasXlL2CVLScMo56VXp0T+6foyAQ0WAIABNO1ZmSRQBAcQ52D7CACndjggOkB5JIEaSFLi2zkGr6Alz2zjutXf9TWSzIrHQ9BkfpUMSat5oMYJGwsUn8yyvLyLYLhnYPbe/x5zBCUAxAcS35tM/aOkHzrEU++/msoF8tuz36GGV9Hqe0lf00CniKXD5bKV0lLbGwC4GtW4UMjXtpH5zNC1Mu2FAA5/Dzn0foiWvq61QEdo8oX7lmJzIv0tytY411ugfR9ox/KDJGAKiQFkbRsam5iQgFyOySzOheL9s19WlLE6HHNyDiUrmj80EMhBoZ7nP//5auvWrVTcRyYI4fsgOta/LcYMTarQZCAnx5cA5t/LsgBZoMhnQnx2xc+hGQTshFTVsoyZGw4nizE5g4gQ9FZZI2dVeTkFh27Y4XOpa6sfZ7eKOsUx+ejYPmzdCQCLft2wOHWHkbiylRQC41l5DlGDs8VghB0WMB0AODDrUJl+ARhhPQgP8Gw31rf1b5QOX+NttQJcAhA0g8OqZUn4Gzu4eKmDEYLThX00DLDReTfJC99PdJYz2AAwrPwmHYSNtUXaZsEAGgJeCjkwY5QXlNTaSZgEndjthmiEClPqPsVnYTn/Ccd5c3uTBSuOYpZon9k0Oq+9htrVmibQgvYBaMB2LJl8qrFaS03Xl0hgYaY9Rgwb1gO4odwE1OWptWk9DWr6qmuUI/l4nbCejAR/v78s1d3tu8wLn1MAqZDR+Q4xOVb2W8uLN4ySHI9DiMVJ5YAFQJE8LhjEMvz1+ZqxfaPlYWlkXm5nxAVzoveV/I0QRDYwdTZk2oK6tHCA/N3u10pGh5msLLMS3YKN4/s9r/Ap157ynx9xkCTfddVMcHjHqVvtclYAjNmtS1N2eyo4W+mpraPzas/yZJCpCO3XOt5C6jgWNhgNyTL3Oef7SOl0J1dFCCjI/jBwYvND6lImFumcO3FdGNaIDeMC4IFnAE0cGGU6nPflTsOCHUyG8G+Z+1bh/svCo6HcGx6T0DpH7PCx0iDnzW9+s3rLW96iXvGKV6xNjw5h8wUG2PxlIdEBye6Uzc/IshhwySq6mbdtzOT2/qs5xNwUBSZ+n9Yijyh7n/rfPBCUJw/t27BYnUHC74qEqcl1YhLF8sWBADHUdNGuM6SO9cz/le3trrNhclxgYGLsrDxelmY/pzW14wFjsMMGZkczNh07g2zZhQorTCUMkntsep3kb8hZN6g9ZnXkjLecsfbDl9DvEdMPFjDgkBY/VwHHBYBDfe1r9TKEsfE2ADrUHxQNVTqUTdcccgFOwmDIEMyIIyTODcYBwA22r6ulczFeYG7gtHD/pbKcDzAQXgYQw0plOtyuRyFr3aoOTwTAmWuPkqMDA7CBCMC20TlK9OftpHx3oZwXc82EnCAZcuaAUK6DFBAP8PclGT3f4WawY9XyzPHHHDJdmyX/yeaziNhGS3KLML6Amp/f3zgISu+Pc3021Bfd34gpraYY316gjwzE/fNUltHJCpErazLULxT+KPNY/Ov68rmjCOjQ9VxfSuWQxYwdfQCcEHiwYKOfnXTP2y1361qu2jt3HGYVAi+hCY2YIEFqmWX7dZ/lfkOAUNeaMn0Qz2ppWAcyzpo90b/L2kIANQAhFEJmwszy+umHz/F3Bi8sBBKTlx4ktO42t8M0XG1dgJz9+/erpz3taepgGzS5UY31S1/6ktXe/ru/+zs1OTkZXf91r3ud+vrXv65uuOEGtW3bNvXEJz5RvelNb3KUG0Ka3J/85CepeFFZA3jh8BOYlImWTE+heice0InV2OF25X5iy4YRdlY01yYGYMLzkvm/5e0zloOz2vAzucxne2ROziCKasOyvOPlccW/0hHww9KygE+R37gmC2DLrs60Orp+gByWExp7ialAUjucuA21RVJIA7CAw81OE5gN5IbghXTR8u1SjEsChnQoAtgiBiQyjMyRiTY5QFpNzIAqWQkezrZq26KVLBSgi1EmwgK6lo12PlkOWstN68R7ffwIS2NHWTt9MnyOc3bwNwAPwn4AcMDqQLoZTA47lwxuJLDRx+YzOvHwGDke+rj04x79Gq926TyQEADks2vJ+CWVQtxZcBrznhYZ4Lwn5Nfgs7c9QUVC8Rv6sKWJ8CjM6NYI4BDzY9gtSvznGWgREsZ/y3+T43JlpHU/IzPRdox0CCMvkypnzAbE8m7kOswycXhbMumRAADZfkpEIQJ4eF/ydwlwEkbJFbaQ++TjzA21FOF/MNSEglAHQJR/DujYhGw1hYUaVg/Xe6gvPPyDhq4l+81jdEKMB1+vMlrCADXD8knwG3J6AXTuOn2z/RuAnEE57KKZ4zP7xawO19PxQ6hi16p04EeRU5aRAxMK1coSEgjtg/si++CDKpqgYADkAQw+Pv+YuD6N31eS1TZtANw0TSgrscodM7FS61gg1zbtVLx9yWPxZaA53yZ0rLIvefk+68mOhKvdhiAHAAfAYVDN6kHtmc98prrllluo8FC73VbPec5z1POe97yoHvfNN99Mn3e9613q9NNPV9dffz31GctQrdUvdoQqrWxFkplCFlJLk8tD+Tch6elBZ+9j+UBrAXD470GAjm9F1llLNbjw/sy/3jmVQCe0zm1tobC7EMCh5UI4wCalZ7A3RYyS06m45AECO6TopZTa25m0YWYAPPjwS5r/RU4Kx9hLlTT3+PJn4jl8idkJ6cjKECyn3yY/R+enaKcuCRfrOiwNO3yUeO0lo8OwX4S5wSHUeUlJzg7nFLEDq8PaIMdrQI3IvfEBjm9Fzw/Wm64u0/n4/+z9CZRtW1Uejq/TVnPb1/JoHiCNRhQEMYCaGH/AX40mGpuREI2osY0iQ1AjGkxsEoxNiBEdOjDGxCHGHmMMMZpocKgECfaKRGkUkdfed7tqT/cf35zrW2uuddZuTlN1675bE+6rqnP2Xnvttfepmt/+vvnNnqSgafK1PxuGtaKjlr4X1xSsE+aOYn7K7CiD+sv9i7IG92xeFWDz8MFZd2W05e7ZvBKTHQAprCksvD3Twfmj5qgJEFh5FUFIiXHCE3hlmFKWKL9vCFjsvgATNDOnXMwCCDueRLGgfTFuuml7lTPW209Xza/qextq7V49tl4n/VfVIJevxWsS75+549VYPbe1lE7nP88+2XMTEOnvESbzaj6yWLKbsyn8nsm1BX8J40JANasCaPMSNxbSl96vBTIG0LMZrrxHkM7ftYUHI3kNjj1vO48SCBMjFToR+mbBAbj1x2GtAHgCcJk61+2mwBOB2koAHXkoM+7J7wvK0liDhdfI1uA9/MtBJfexoEfkc95h7TRunVgY5DztaU9z3/iN3+j+z//5P+6Zz3ymGwxijwvEy1/+crfueMc73uF+8Rd/0b3tbW9zH/VRHyWvve51r3Of/MmfLCDmcY973Nw+H/7hH+5+5md+JvyMjqyQ2f2jf/SP3Hg8TizqAGpQX9Q2Dg4O5B/j6tXUdrJUk1OKOnDDP+p1CXSppidnbvKmouG4xwQWlpGk5VElm7NijaQ3UM1YjZKzmt9/XG86qK0aa5Mk1gCxaUsmxtZyMOSPoylwt4xNXSKCJIf9XPCH6d2HdysIwWy8nMwWjkMuhvmCIQnzxJeZvqeuXSNvTuD7zhT6XwBEWckVG2/StID1G7Y+hQCF/W/E+tiDDva+AeixMjbbUyUCHO29glognANADucga4l5Z2wTxgHYA4vDdcsBTp64VTE4SQ2CeQrP7wE+H9+74q4CSCaJIY574AY9dXkTUOYL1lFbZNcYzM2VyZb7wOEFMRPY6o3EQQ0sDYwEAGKujgFuroreHr1ybO2QTY65hpBOgb2w8igCIFsbQ5BuASWkcqhrSdgKuSYdaRKKZIjvWUlbsKLOpG353HLmh9/nTmw5g7O4+116vex1swxLlbtWKVhHlDdStYF6ODq82Tlw7fWzoNcQX3FPB6masYZmzPczWs3eOXdWsyAh7Y0Tv1atPRwBWceCq0a5l03I7e+/P7722Lkx6orWqxgEghZJwr2JgD2XyMYpOLDb2DmVZFv2qwUjwrgERlkBVnHOCcA39T0ZQCuxIXY+tsDfzpH3HkHbdn9kroGyNbxeNAoAI0R5GxkehvDkhhVKzkFeSyVrFszgZ1rC93p1GcIJiVO5Wm38zb/5N93W1pY7EpDz+te/XiRib37zm+WfDUi/jgLkvOUtbxEgQoCDePGLXyyytbe+9a3u0z/901uNc+XKFXf+/Pk5D+6v+IqvcF/0RV/knvKUpwjbA5aoJGNjfNu3fZs0LMqj2JizAETaJLelJqBtAE/pePn8SmYETaCnrranTfPPaYUszRbGNx2Tx6lSoge3uKraqAVxSVuAedKjzkXN9uUob6N/xGzPG/vkL3/y+t7RnYn0C2FdrLA9AASdzwgsbG8QsWvuH4Y/hpSJkeWxPWTYg4bgBHHovAGBT2hxePS0yUMS4pDwKwjjH0IbHFfmYM4VIEmBiQckYjOtZggck0khn4jn4JBjJ25VFQxOFcCx18oGr5keV9870z2U18B4hHXwa8TbYN8D0kl2rgA4uKZ3Dq4HVguSHhxX6nV8wbY66bFXGG22faNPbwIhssapyg3BEiWARpKjuB7YhgX/lgGqakJbF6VaHyvlCgxQJlur2rdOotYmyc8T87yOLBm3ZrwmgFHVw0dr1CI447zD58dISatYxfxe4c+5dK2NhXRV2LWfM32oaWyM8/nj64+VayVJvDA401AzhjtWjMdnHekJhfjLvdtaMykix6rZLpfG5T8LsAEo8b2H5LUpeknFhwsCAArNPXMDA/te/pXbE9TlUjcwMTmjk4O//Lg5uMnDApy8lggMj1071CMhhj1t1ksgU6rHIaODdZljaPF7iePaz9EsAh/YS5/4uIVBzrve9S5RV+ErSlLuvvtu99//+393T3ziE92HfdiHyTZvetObWo+3MMh5z3ve44477rvvPjlRGwAq6MOD99rEQw89JPU4kLjZ+JZv+Rb3whe+0G1vb4sM78u//Mvd9evXa8Ea7LFf+cpXJkzOvffeOycXs4kwnmHk5gRV9TmWlamSujUFxrD704VtkT42TcYDi9Tr1NXhLHrs7gLGCIsCGytFqzOAKJ3PqozVOqLs7heTwjbApswOzAMchO2Fg0T4nv5l2RbyNJv40PmM2/GJe0jkZr53DdgXqXOJjlGi1fa9WvCelVYpK6TzEUc3eWqtCTulWYeeAcqTMZt8c7zYv2ZSNBAYerOAsB5e3oX7BbU1iO2OStV07Y3LVlKvh/nAjnekdTtZD5xFrKItCwfzB14n7m+bMIaeMd1Dt4+mnLLCnRTodH1CCmbMd3vHutzZvybmBY+Mzrjzvb3QyJMMC4DOHcPrUu+BfaRux/emsU+u2UB04GsepAks7iPDdilQiv2TwEzM1c9gXO/QRsliHjxubdPXCvBQSqwTe+8C6MoZqcYoHLt4vWvGKp27lW7mYQGYmHQYJz+CGwJtBe2z4PxngQ+3bxMW4LSzh+aT+mWsqfV+JEi1zmMMMgdyhBoXMwtKLLPRBGxs5GCkCYiTiQkgImPw7Gt53Ur4PWDlajl7VOiPQ7CV33q2GSkcEW1djpX9ca4W+OXnT8kfTSA4Dtgb9LZRi/mZAh0XZW+WrcLrO6Oh1PMcWOWod3jLTQdoboDxS++fxskKECd/+2//bWkI+mu/9muivkLu/3u/93vuh37oh+ZKTdpEfx1e1XWsR1286lWvct/+7d/eKFVbNQBCPuVTPkVqc77pm74peQ/SO8ZznvMct7Oz477zO7+zFuRsbGzIvyb5WUlCRuDRliXg9nUJd6n/jgU4+RxKMV0CQKyjkaiNumNXWWGvu5eN3bZOurYqoOk2uNAdR/AJaC77aBPKqqCeYyBmAdJsctbVZEgSiNTuNTTv9ECFyS0ZDhyajSPF8tnUhuhc41M7Jhs2IaOsisnbLkBRJx4LQEL+yMt1nZcbqcROpW3oHQMJmdSk+J4reWKmMjsFXijiJ0CCZIvAqJTk2uQXLA7ADY6by9SaWJs8UkOJqt8TKdDTmiG8rgCD5zVhzx8PfPA5wFpcm6GOSpkcHpOJ/YFffxa0Y12vTrb0ejuAxllSWM81AGCyIAzXCBKqfSNjs/dMzuKUGnTaOi2+bo9ZBDoZIMiZkBxgJeMZqZd9vU1YBqsuWESfh3U/y4FOqdEp97FzLEkiKVHDPSIW7+bzJ9tkdV1towngqCS1zAoAEFrnsjzIANJkRB946D6QTnIb1udIIu3USAOvg8HhuSVAhom8qcexaxWPX2Zb2oZlX7Rg34xj6mo4RwS2y9+z82lTB0QmyQYBBhgeskoEGXYMK8vjOlkwaPvV7I9jumnZGgAR1t5II8+p/v4TpzkrV/O/67cGo2BRT9YmjDeNgI5yNenNI1bWCnJmK8oojyNuVeOBV73qVeLgDBLh3Llz4XUQEd/7vd+71JhLgZwf+ZEfESCApqCID/7gD3Zf+7Vf6z73cz93oXG++qu/2n3+539+7TaQkKFeBo1HbaCuBg5qTbU0165dE1MBLNgb3/jGuRqiPJ7//OcL44OamxKQaYo2bmZ2mxJwydkXay1d2i8fw0rX0h4q8/U60fltOdDSxnY6T+Tt63EuqwOrWJMDxqp975rycdyRRW6jfVxhTQbiE2d7H83fu2AGLOuCeOvuUwTUSLPO4UPytPfaWO2JwWawzwfYG4ALMCnSL8YnV7G2JboJ4Xqxnw22O/B1OHFu6R/h8GTeryB+ZtE5k2IUxTPhZbE8XM0opcsTALAUYuErY2gdDhKua9Pt2DzUNM5knYKuI3rqKGuhCeK4mNgxuTzfhbucrx3qjBKJGmpNFmFvqqL0xHgOrFGWlW2ncrT4MxkbnvND43OSaGAtro43pb/I7cOdwLSpScG1sDYcw4JbvH62H5uP4nptuLHI2AiGeE/Isb3DnVwb8wCJ0jYxDvCOahaUVNkpl9iOkntbAMINYKFkW14npbJhx+G4c65zBZtkC5Is2JmT1mXj5U1OrckG2So4IALkWIBDIxF7LE18y8CuSaLWxHjVmRiUgvbxCnB67j17d0jtGEMa6850LfD5gb35XKNLI8Nqa0NcxwTZryUJWAkQ5Q5lc8DLzDV89VMI4KJQa1T6XhgWw8QUGR6/PWr28mPk60ITAgQBEs8HDnJ27gLSvASNnzNK3PA6t7eyOGGDuxOZG4DMZKpyt+m04w5HfdlG3Nl6U7cxiG5undlUQNDIu7qd6LhF5Wp/8Ad/UDQTA5sDNdaxgJzXvva1wn687GUvE0oJ8eu//utSy4JJvOIVr2g9Fmyd8a8pPvqjP9pdvnzZvf3tb3fPfe5z5bVf+ZVfcdPpVEBJHYPziZ/4iQJWfv7nf95tbmoiVhe/+7u/62677balAA4il6xVgR7L0Kiyf57tycdbpNjdApxgYuABQm4vvQ5wU3q9qnYmr9VpAjh2TDYwrQr757JkA90mjtI1rdsAAOtqlBaJObvrSs36rFDAa5MhAOGee3h6RiRoiPtHF9wThpfcud6+u290IYCK3AgAT/WhngoFzp2JfG/NBXJ2zdbnEBghCHhE5oSeMh3940iwlTindZx7ZHxGv/fJH/a3kiUEjQWQ0AMgAaRYJiYAKw9kSiHsj/TaiXI8TcrTJpvhusBWuguJWvp0vGQywJjv9VNz/y9Z92CL8Sldk/vfNIcEQGSj1JB0zZx75NCvtQ/K/VhzY13nEHu+HghP17HmfB/fU66G/XDN8BV1WrjX1AmsL0AHTnxYZ27DtCW/B+uYm7bb2P45FjzY7evqhNoCnSobbbt/1ff2HErnUccUiRzQS0T12sF4Y1IEOGQcwxyChXTZ2nt+LeZZ0aq55c1D8x5bVcHxQt+f7DOh48bfvOjlhADgCQX13nQljlnNIDVFFUCqKuavAj6sIyr1+yGTwu/JeuQ1LaWwrmcloFWq1cG/3YnWVebzpd06XyeQwffsBQQghNdD01AjScN7CcDLmqaSzQEzBCZHIDl+FeE99N+BVBksUC9+DsTkoDuV7ZdxDT2N4wnU3sNF+YM+6IOS13/nd37HPf7xjz8ekANXs+///u93L33pS8Nrn/qpnyoFQZCCLQJy2saHfuiHChvzxV/8xe4HfuAHxEIaIAu9bOis9v73v9+96EUvEpbpec97ngCcT/iET3C7u7vuR3/0R+VnuqABWPV6Pem5c//997sXvOAFAoBgT/2a17zGfc3XfM1S8wRoaGJyShKyOecz0xDUgp1QV2NYnaZE3PboyV876qhib+zrg5bsTZ25Ad5T9yUraeN7UXrWJF07Dktoe/51adcqYKepOWjTL/mSmQCe4LHPyu39HXERw9N8JKbSDNM7lSH5AZBBp/sL/T0BD5Y1AgsgxebesvnS5EySPGqBs32aaKxrTcIV+uMULKHxGupHdP9oCoCQRD48rVbntGvTQShuF8ZnpowBhC9I9CDBszU/kXEZy7rQ9MA+lY49fXD8mCwKyDEARxt+qsQmztdKXpvlhCWnKZHs1NQaVI1HhzLtRYTrouOLUYSfF9b3AKDRqT3sHRvX45PWTmS6CGgAZmyihZ9tPZRNzskySs2Qv98SpsVLGcmaUOqI32kERqWkOZFnVZgF8L0AeJK6lVmr/ZOxKoBP0+cvmB4YsG+DNU0ci2xXW+mbPQ7vP+lJBdmQfK/9m+ZAuNhZgylLE0ULeFLZYzcYVMRtC7bSLVgazKW0Hdep1Az0PXt3zh0fQanTodSkddzuGPfoVMCOyrRiXVsVE1NezxQI5KwIv5Zkb/nYeS0KX8u3sbKwvEdPCdwUpWq2VsY0TZWxPJOTWFBzvK6OdzCObBgYFtTUhPGT3+XqsMZ5EODACGDYH4d6GWFlwOL08XsyAjWCPIAgAUJ9tZUeT7oiRevhdW8uYNcmnMvk5MvUbnUm5yUveYn7uq/7OvdTP/VTUgYDIuM3fuM3JCe3mONIQQ5Q1sd8zMfMvY7X8N5RxRve8AYBNgAybAb6Pd/zPeF9AJ93vvOdAmoQv/3bvy3Oa7S9zs0TnvzkJ4t07fu+7/sEmKG+CNuBqQKYOopI5WERwNRFXluTJ7FVdtV83RoXrMP2uC7aOLUtUvPTJngsjBuBoqlTqjhMU7+bddXJlJgbAp02v3Lrtqmblz6Fxx+I6m1iXUP6BzctkO+IBE3qR7y86vb+9bkn2lJL422Z0evgsYPLHvjoHxrUq8D1DE/gZVx5uqfOW7jHhVXpTJXp8fIyuj0xYSI7QkMCPc/oZCZr4gve+RpNCGzyJQyRSJp07nD30sakZ2ReYCys4UBwXkMvGynkjwBG6ob80jHJJLuDoLwDltoConz/nZIkrQRw6sKes93ejlEFdMI+VUX3BVkb15XSLcjHRt2xGA4wtrxkj7IxcdjyDAEswnE/ss+QTd6Teg8PdgAGCT6FySPo8OeoiX28BiKFnKrMkOOE8cMDpXiMZK0q+/PUsRLR8rlNHY5lQErua/kYHNfCeBbUV41bNXbd+HpP6r3Nr3EbGubEe3PRhp8WaLTpg5ObfdhQp0f9XVACOBZYWnvm6JCngBBnMYTNdsZGSME/zCz8741w3CUYnCoGJQcLbaVwlhXJx6X0i6Al7CMPAKvnwXnm4KYkPcv3EblaJ5oNsEZmCrCFQ84i+5SfJ4AMAA7rZmS/jsoHxSwAhjGTXnRnozteBvbODJQJxn5sJIoZ4/erXRvLfi3Cqt6ouFVrcl7zmteI2zGMvCaTidTR4+tnf/Znu1e/+tXH1yfnJ3/yJ903fMM3JK//xE/8hHv605/ujirgpFbV+BMB0EIjBMTHf/zHJz+XAuyQbQK6jqhjTHJJWtV+abJdz8DM1d3UHCNnKNbJ6FjQ0sS8VLmw4XULBEv7lGqA5iRscIGRceolfsMKoFXFoizDrtTJ0ZrShHWYEPAYdRIP9L2pCiQNH7bxfu92xSSzJ8BHbYW33e5kU1gObAOAgMB7kIyB0cHTPTyZZ00HazJKBd32STwBTkhkTYSkwLtrqRFCLKy3zQv1HHth7qzdEXmUT7jxGmRRCHmty741tNmNDf80gTcgz0vebAIYEjUzbzU/8KxVAEbsS1IGOHnNVJVtshoxVEhjC0AH45CZ47UNiaCfIxLCAEqzQn6cC/ZH7QzWEQAGDA17IEny42YJANpwWtPEYP0Hv+dccB1EtubB1J2+tkfPJb03YoKm13NkDArmZX4Kqku1M3Ryiz9HaRBBXalWJgWU5foSa0iQ/C6oq0WxtTb2ulaYI+T3Ts7q5Mcik8Z/tEHnPU4WhyyjfnbHScPP5DOQjT8PkhcDOnko7xrtg3lOuG6h6Wdn6v5s9+75njoFAMHCeljVB8AbmJOJ258M3BiMT03tW4m5aZKGlfYtnm9mdGCBjpVyWRBBYGFDWJppBECWZeFcKVejRC9psGvMD+bGZWNR72xGoANmh65mds5ipuDZHx4b7A1YnDCnIJGOdXXKuin7Zm2m+Z4yWGP5OwPgBOmq1OR0poEdwvYqbeu4w8NyQ+jTuPExHA7dD/7gD7p//s//udTnwOkYhmCrYIuFQQ76w/yDf/APxN6NNTmgk/7X//pfAn5u5WjqF1Oyb0aI1EI0+SkLs2ifllz2xmjDGC0aOZBZprlovo/8jF+YFUCHx216jXPTX/8LaOHN99M1gI66P+M3kjgvJYBV0prwB05kS5psIJGFAxmCtsnY71x3X34W6YubissWQMtDo3PuQm9P/vgIG5SdfLAgZm2AYXAkkXZjAVMYC8eQeg/vbCb2wx7E4PUzvQNJhFgjFNgHD5bAKFF+ZvuciGlA/3qoEaGhAPe1YZM7zI+9ce4bXXT3DC4n24MtsuDgfCcW2lNKVwIgTU+O8ySxxOIkc86SMAEthc8GAQ5ifzb08kKtraEk0SbMXH+wM5wTgA2bUTJZYU0VAIyCTDYG9D2V/HZIWllDZRN0Pq3ntgmD54EkpWv8fpCwXbEfTAC/2bkkjECF9bL9yrFsk1LbzDTfL4+2yX7VtW3Ti6cOSLHRp4KZsWFtorQytzSvcnKrPP6CrE8eJYCSszhynKyBrNR7hvdM0u5DWBxInWZdSYIkkabrWoc1IxH4lmpTkvOs6EvTNnI2x9bT2OMmsjJj56znHI+d99lBfUoypnmIEkwEzBrlbmv5+ci6mbqf0rYAI9wmmR8/owL6O8L8Wztpe47s34OHJhy3al0BaAhu+LMNHEdeN+YHJzZuUbkaA0wO/q0jFgY5kIlBBvZv/+2/dT/3cz8XamZ+67d+SxDXrRz4aI2kZ0b5Q5izEXY7W8+zSP2MZSqqwMFR1eBUMTYl1iX5ldlQX9MEdOoibxhaZXZgfz6KWHXcdbA4luVTC1r+obDbNNeRISSh8D1VEA+Nz4c6FNZC0AQASQgaR9JxDDU8CMrd4pPhaOsK1yMkzPhDxOQNQEaOPRsIYMJrYlWduZXxCb3WyPQFyISaHV/7Q8coFlUnkjwvYTnXS6U7dHZK1tTUHQDoqbRNwRjcqADyAKIwDuV7tnkp14DOankS2XxNKZHSBFkZLCs1TJkfG3RHCg1Qs2JxrB2YG4zLeeJnSsb0iX+Umu3OhqE7OfZhjyOwd1x7XH/KEDEGAA7la3FNIvuy3dsLc+X13zeuebhXca/FxCmt96GM0TI8tPu2oEe3jxK8ZM0Ksi67j42S0QEBlU2685oRPU5hv6IluAdQhePnIC2fb76tBYu4L1lTZxkc9oqS+Vc1APXmFKV7ad7MYh7otGqUKsl4rIvC/cl9ue6UTSLeufuYVrUzOjdsNw0JEG2kOb4wB0bmFWpSCi5kOTjha00ytKYI7Ej+0APrThmwBwGW0aGUjN9b0wTKv8jsaD2bupPBySzU4BSkdOnnLLJJ9r25miHI6MK6dpLaHL5vwZmtD7JjyO8DWllnD4YwB9sgNB8zX9O8t9BJjFtVrvaZn/mZUlOPuhwb3/Ed3+He9ra3Sa3OsVhIw+EMxfynUSENqmBsGNbljIloCeC0iSq257jMBXK5GL4vnr8BH00gg0CnTVQxSDmYqXJ8awRkS0YbOVpdVM1/Uclc7rKWvLeQW9/MvXd8W0g87uxfla9I9EdTbc4GByykwEwWkNRqHxmt00CCySf/TM5o88yO9rbfjbVqhqU05T72j2DeP4eAwj5xtk/lKdEK9QcAC51ukJKxmadtzMlgshZrb2BOALc3tZe2ayVWx64fWKP4ekzo4zmoVA1W23ru809080g7zDe7dwX5mwGqYU2cgpjkNcgPRY6Cp/x641HGgjUV8DNVNypdZ3XTo6mArKM/dwC9OFf0xNB1sIkqAYFNhHr+M8mVLdW+aG+dFGhQujjwe8bjxOayZANyBjN3Liv1vmmqpUnnMi8pq9s+ZyfyY83ZShfmUTc/WlFTzkmAw8+CTQ4VDBkjhkpDgF67GqaCCUBTI1DKKAFwrDNj3oT13Xt3FdiQuH6JBCtjiCBz4uyjRK3rtnuHHgAMorOZ7QtTiDzJ5z5twU4dU8EIoGE6b4xgtym5sAG8cS0sU1RiZ/AVzIpljpJ55u5ulIUZwEPZammOBEs4blUD0W5v/m+UdVzjtpCi4d+sq3136tY2P9ZpnJyAQizvZYlAg9B/82/+zVJjtgI5cCU7f/58+L4uuN1p1NsdE8wgtcp7vLA2ZZlYxhmsjcStBJrCNp1ma2e+lz/3rDpO03j5uG3lchbcWECmx67evur9puOsO5ZyWwta7fk/ejZigpfKaP708DEB3NBggM0vyVrIk31I13xCSWDDZHZ/shmesPGJvzAw3bEkL9u9A0mag+2rYXrm5T/6PVkjmxSICxiNDnxihCf/rL1RFy+ViSGR30ctix8P58LmnOxdUydR2fTuYpyLztvWnKDLUFbgbuZvWRxbg5O/T618nvzkLE7V9Qw/+6f4uB4PjM8nVtl0zyOIiQ1DU2kHrt/l6aZeH8jS2NfG19fY3kGYs9boKDuS19+Q5eG1CXVTcLHzRg+Yx3bn0N8rKoNkRJe7rHeLkdzx/bwWSBM9vQds4uxa1NtUWTuX+ujk12JR+9pFGoty/BLjk49pWVRYu8vrDp+bWBuVS9QWm0dqCCLf14D1HNjo9/Fe1M/FvPAN4AbB3ydjw6yBnemG84T9eKw7C/e+MQnhPnhvFGRv6O0yUvDjP5ulYvo6c4+2ACdP3C0AyV3KZJvwsHSenbCgw7JBlo0qSeHgZ0YL6ORYmcwtBwpWCifr46cbjAMq1gfbAkjZY+Vrh9fBMpHlydcH5gW0iGbjT4Q1NqCZwSLX44bGLSpXu379utTl5AGTsCbssRLIQd8YOKehIQ98rGHtlgeK/PE6nBBOw1UW1jOB9ZTbAAEAAElEQVR5z0HDAH0/lmBz6hqENrmp1R0nd3Vrko+VAEmdlK3pOFYKt3ST0Ey61q2ZWxsJW8kprQ2TsygQu9GR1wkg+Qdjwz4qG90DKTTH96zVoGSNCetch3g/JMGPrZehKYG1EM73Z8KrdQLzK485wCWNf8QonWO9TOgKTpc0jCENP6PGn31A9Ol0bK7HKPa9MbedMjLzSWIuYeG2cb3nwYp9n05B1hiAAKeOxbG1QJTOXZqcDY5vlr2hhfP+dCOsMY6Td7YHcLQJsnzf1dqcTQNwyAQlib5/Os4km81gQx8dY0M+MEBb2Z/IwER77piI2vMEoDrTOUjAOHtx5AA+Bx+S9GayMuug1iSzYo0Vm1Iyui3qcQiycpCSA6OSJNG+xjqhUoiM0ruT0YRB9jdsjZ9BpVRt1ShaQWeytxzgkIF12do8efPhAHS0b9J8vYUaMag8zQId3J/ywKMmAWfTUFvDosfKCvTNfqUoyejqGB6b8AcbZV8zxMD3BBv8msuxwNzY91jzks+JUrYwHzFciYDGghjuQ3BhI0jKvKW1rckpnSMeq8ijoILldsKKFVgjziEYJhijAbl3/Lz5Gr5K89CW9WQ3NG5RkPPMZz5TTMxgPGDjx3/8x8Vp7chADhpvwt0M8au/+qtLHehWibpakFKh/dT0ismBBEAKanzsuF0PiAhomswJSiAobxLKYzeBq3x+BCglAFSV2I+CIUDcJgd3FuisEmH/Ariou05149nzWVw6Vu8612Z+y4a6hDVsE5gFTZKYjDyuf1kS4zt611VWNeu5943uUFbHJ0tInlikjmTprv5Vd2X/calNsJuJPI3sDf54g8FB4Eg9ATJ6zejeVWquaetrKIHZRK2OSdQAnFD/wRBDAUlAp0FCNpj5/iAZUyQJ1wwyFgVDJavnpihpwjXJtp9H/Z4ytdI2+f7oHcM/8nPJb0gQ9SvBjNbiaL2N1DSFZqiU9ukaYj/bd4i22ZQlMoEn6MVa4prDNW3a3fc9hzbDtdX10+TDmg/onLoRmEoN3kxMJWxyu2mACkJ6GHlgTQCWWE974ECLalgBE9xxHfA5IMsn92omIctBTMLymDWLx9REOIAFsJ2SXJUKtyNLGZL6AoCqAzh8zYJo+xpfz8EvJZSQlLIXDq891o2fg3B+0ltstd9C2h0qX8/537Bkh5vATXBR8ywvG+vSHXIq8sk0qU5AifwzNVxFsNUJjA44Ph2jK5I1jhcemPhmuPbPZqiFSR7clRn0JsBjpXEl4wECk7w2BkDG1sHAWlnWddp1m/3RXOPPOambsamGeQAlXmRFEGRO5Lp4pgixYRiXUu1LifXCMQi+rP21BVUBLHknt92xXg+cJ8EW5jCbps1PyeAECRtkypkt9mmcnPjGb/xG9xmf8RnuXe96l3vhC18or8HU7D//5/+8VD1Oa5Dzt/7W3wrfoxMpXA9yNgdMzvve9z53q0e3xiq5lLQH8GPeskl/AAIGHDRZQ1e9lzM7i0ri2pgalJzO0vlUr0WbRqqr1Bo1gYwqgHOcTMwqDm7TJet8km0qni4+efCwT5bhfqWsC8EMg0/vUXz/pwf3hGaONCBA7LtBaPaYy36sXIiOXpK0SXPOiXxG8OeakjTbh0denw3CE3zaRKtT1CxpcBg6t9eYC8AYoCQxS7Zr8YS9KRZpFIn3hm7iDjtgwVJJFoNJ5X3jC3KtkARi/dnriOeHfQlIkZQzuWR/GwYMJuh0R0maMDLdw1CgLmOhrmem15ZgJiTeoWFq7IV0aXxGxrx7mEoQaGls67HyJSGo5rWzsjsbrAkjEA8Sqgzk2esrMy9YRTMs8Na5RUe35DpU1NWQ4bG2x1VRdy/MMaX+8/2+gzvc9fHQPW37gTlzB6wZjTVoPECJWulzkDOBOejh6/p50msNt7xiw0/PwoWfRZaWSmD5esnMwdYq4X1aRSNedPGP5esvP/LhKlfLlk2ZkPQ1y+bE87GqCzIC+ntpu38QwE5gdsR4Ib34tnYnfy2PUjLP1/PXLLiRMQt1JXwf7wVDAtd1WwN9OCBMrK+xYf+bXILG+hbOGbWWNthoE7bPBAvWGCE3BICr29z6wJbaXCQ29yTztD/G3xHIUydJ81A6xhG0ca6YE6Vq+Mq7B8cQt7UGUHcSAzNdVVR3E4jy5uLv/t2/K4Zm6Jfz0z/9025ra8s961nPcv/zf/7PBIccqfEAQA6lazYuXbok793KcjVN/mIiXbRINtuW3stfJxDZKEjcZPuWt3KddM0yPKkjV8r8LAIyLJCZA1P+x7Z1N+syU2gLcG6k1KwNEFk341NVEApwEQuyfZ8FPN2cOXfv4OHwdPjydNv91eg2d3vvuvvzQ5WOIPhEH81DkVQhCQZzQ8kMgQnBkJwPEokpxEodSZaZ8E7ESlr700hRv+/HQoCD7e4fXXBnhp6lMYmbPMHu7ieMTbTJnT93OceKtbFRepq+SrTZ39pLM+m0T7sfmJxLzBUIFhHXplv+OEbu5Q0eVCrYnWuaSgkiQRD3s4wPriENJQSkmPluJI5eCioeGp1Vm2nWf3iJmU3KA4DDseDc5+8lBkGLlbRZ5gDfEeCk60epX7caLGS1N9Z1i9dAZU9lC+hS/Y01WciPMzd2xb1g55ODKL5378bDbjqM88X1A/OWgxSyoZRnJvOfpetY2TC2QfZj37frFKSM5n7j+znAsc0+wxrNuu7ezUfknN+1e7eAG8T/77Y/DN/b3l/Jwwc6pXF9K/78lMGPMsFy7a1MyhTyl6SpVVK1/LW6+px8+6qHUbZuKAFKHWVDhgNYYwOsKSNsx7h6sOkOR/o6mY9Bf5L01inPM/atsfMqsVCJ65txrwtzB+juYY7a1waMDdkdAiHMX9hKz+pgu3itqmuAwms3Aci5VeVqiE/5lE+Rf+uKhUEOa29KBUObm5vuVg4kwpBj2aj6M2C3I7ggq1Mn46oDNxxnUUYnBzVIJyygWKaJaAL2JBk2kpw1yNFKLFTb3jqxh858LAtw6qRriwIkC3Ry0NMkkcu3z4FqVVhtP/9IWclaGF9YkbEU3cs8Zh33vsM7ZLt3H94dEhEkj3cPrgb3MwAgJAvvPrjbO/DEGgw+8YeUTUAQrYinQ3fFN4Z8zODK3JPlnHV42ub97mJvJ+tTE61wY+H7fPH6MpK0RWyfuZ7LjsH9tZ6C96Wux85sKCCAtUVhezxx9QwYAixXcIjz5y0SNZH8aL+aJPwyUZ6Dwn8EAQ6YIkjgKAsMrnIeZCHBtsYFmCOu+W2DHemXI7VSvjEqxqeTlsgYuwdJom3d6+J6RAkj71OyN0GeZACrfT1vLhvuGcuoGzCpIN83pw19WuJaF13QfLNKa0qQmxWUGn/an3lMe451NtL5z2S8rNwuFt0ryKfjnnyfn4e/V5qka5RGlkJqXzwgtABHx1cpZcpaGFkfzTKmCtYJztic9rEbV9xf7l+U7d906VkBxABEP3hwzj1m86o7nOr9COc/BM0JErBj2B1KIm0iLtbExgSABfy2Lif/nVGqM8mj7vdMYltd+N0x53ZmXNL4PkGYnIMHLvwKoAMWZOdw6LaGI3dmeCisjx1b2CDTu4aB19SuOdvWAw72yKE9tbyG3kPeSc3WCcFUgN+zeamctwcw+AfQZecfHdbUROQA54JxJ73woCtfn5sK5JzG8YOcV77ylfIVAAe6ue1tbQaIAHuD3jnPfvaz3a0eeZJpk+amaNqWCWtVH522rE7ddotI2EqubMkYmQTPWmYvKj1rmtciY+UywvQ489s0z23++1UYlmkLdqeO8Wlig7o4NcPSlFiJpsCT0j8+eLwkKHxS/NTN+wOoQIhjl+u5a5MtYXqQ4CDx1V4pMbGivImSNvsUmhInFsnTGQt/3GxNCb6nHCfv76EWudG6uSmaAM46GZsm6+f5fVUete8TN2G2IBfy2nMkFVen2qOI1r7BHjjp2UIGRN2lVHamySclft1uCojovCXsm7f8BsgBOEUScba/H1g5JKVgbCA5wdgXeruyrhe7u+7S+Ky70N8N157GECqDi8YFtuZKmRkdm4AnT/61kDz2D7LXUdctgqLkexNiCx7AtGEgPCgKwMnUduh4CqIITGLTUp1DAiAr5Uv14CWfL9cjrxPinMUt0ICafCwyaGR5Sr8D2pgP4B6x/aPs63Isfw1zBicHOLbJp+xvvv+rgwumX1Bc9yuHW0lSf8dwJzSZRcAVTX9fpKxc6lbG93wNG6WzvjaPvV5U9mYAhDcEsECnxNbkx6uz2S7NbdidBqBGwFNicXg8FPPb98mE5PvwdQCcw3Hf7Y36Ii8DQJmZufeld5nuDxAhfzJxv097ofmmNoqOdTlhrr5GyM6RYAagx0rJxDDGM0zcFu/iOOMJ1n0scyMoCu5s8mDWG5N4yV0OLhPA405+3Kp9ciaTifTg/Mmf/En3F3/xF+7wMOYEVIwdGcj5nd/5ncDk/MEf/EFi84bvP+IjPsJ9zdd8jbuVY1rxASJ44XtVT9VzUwHbPwfsSnmfMuCpi3yfOrvonOXJt6szLGgzNwuU6oBPyd56Hb2AmuqmlpWpreLfUgWUui3qceqAMq2kJw0FzHTW0dfTRNJu98yNvww/a+1FlLnAdprN+ygtQ0ILWRP23fW20WQF6EhFGRKgyob5Lc3CaJsw3tW7GhLvPNGjQ1sdIKkDM0chPVt1zDhGWmy/SdmawzrH5FdqLTwTgISCLI6K/qKkSWUf2K7rDmepEQGTXLjpqVRw4pt6bgQ7appHYG4EPwg8TWfiA0MCAB8EAI6VUNFEgr8uNCnX5Jz1GhiHjStp/21rOLAF5Xgl2Qxj7j5OjAvIrMSaIDueBUGs8yGgIgsDd7ZQw1R1DWs6xdt5Uo5pw54TDRZYf8bPBfoDkQ3lerH+jHU4DJ7n0LCdFqxwfapc/MgC8RpR8mgNB1iPQwlY2NYAhpzJyWuWIE8L98Ks4x4enZH3Lwz3BOhgPACc2Eur624b7kZAYW2fDeixxwbTY0GM/83ka1ViIb/9mocdL03WDfjJXNny+xSJO2yr5TPL2kE/LsBOHcCpqo2J1ysCD64l2BwAnK2BYV3HfQEWkK91uzO3MVCAIYxKLzIs4ljW0cL/kuGDrKsHMjjm2YH2HsKYJZYL21oHOL0uUzkujk9gKc1ajSscj3Ew7rvDCf5p/yN5+JM5ztV97k5M3KJytW/+5m92//7f/3v31V/91e7Vr361+2f/7J+59773vVKnkzuurR3k0FXtC77gC9y/+3f/7rQfTiEO5el4WTJWBXC47YYHN9ZsYDKDvj3/o1wtoaoCG3XW1AQWOXAoATFbm7OOyK2j7XzqYl2NTvNzzhubNkXdtagyOWgrgbOgRefaHhhVPaliU1CVqFSfY9KNPUwzl8ykiQl7oUCyhnj68H5hcuRnD5rQLFIduQ7dud7eXDJlEzArT0JKdL63L1+ZHO/ONkLBNIFO/sS8XNdwNOCjzXg5oGzD4lQll9o41RfBe/CCbR+enFFHNJ8g2k72TGitbEjHisxX3rCRQEeBiAJQHBvMDEEp3cukBqsXa0QwHyamrO/Ba9iOc7m9t5MwNmQdMG86wbF2SBp/enlbPA9tZGprc7A9ADavdZQkzhfONz1pp8zKNp1lqA06Hb1Sa/O8HqEUod6sUB9kZXY27Dld8Q53qDejjbsC2mjRzWtqHwJYMIKw9VV2XWTtCw5ufC93TsMaHlYAHDW5iPeW/eyzRoq28lYyJ4DHgCJ1XOu5s/1DGUuYmmHpc57aRVNaZsfVr/XMijIpMuNEvsbA8RHD7li+L5kMJPU5Nb+TrKwM8zucOnemrwwra2yawjqv8dg8f8rJrLGAOpb54/Ymob4F0jWZz5Zz1w435DUAGZoNBLZU3tDXc6AVwKMBGrbhaAmIseePld+BUQ5j0/DB9MkBKCKIgdxuMJ0kbnD5Z7DEbJ7GyYg3vOEN7gd/8AelJgdNQf/hP/yH7qlPfaqYD/yf//N/3Mtf/vKjr8n57u/+bjcez3vRg0bq9/u3PPhBIllb5G9+T7EOZ7PTS8ANwwKcqsR7GfYm388m+1Vzb6rpWOT4pR4+qwKXVZ3XGHUAZw48VBhJ5E1G+X7p9cZjLMgKkTFsI1nDH/jKJDoAP/++3NeqrQ/RKf/hRdIJJse6OjGpRTJ20STIOmd9Wom4t/+wu2+i0pR7+lfmesEgneWYVoaWz1vPsd39sGyjxrrx2gKdqmhyWUNd0chvwqQSBhBIeMGa0D1OjolrhIcoBBJu6nYNU4H7gGxI0jdkNhUGZwKrZw864dIGAAFAyloeGkgAuKo1M5t69txZ7+5GGRvPH0CHAMnWBDEJ3p1tav8kkQlpn5xfvfLX3Mdd+H/JE8pQL+Itj5ko2logm1gqOIznHpzWDKjOq0twz+k6W1kVEyhNSNnzx4YFOtzeNi6Vc8vqhsrXu2xwcLa3Hz6PItX05xDqrcAICKOja6HyNJc0XMU68WEBa3TC5yEDdXktWDJHwwBJTysPdiz4JGgtgQqCG7J9iPsO08biMXnuujPidmalYamLnZgzmBobPUaUz5UiNCTNrLyjbBAJerxWAua70XSgda2Nt57O18HuI41M8ZBA+jtpvxlsPkbbick82LLAAuPQicyCAYzF91kvw5/PbR6IFM0G+8ucGx4IOAEAsm5rwZzAy86sK5wA12B+oO9DZpabMdg5h3P3kly7ruy7g+C52XWT4/uHd2JSkJklcE5476aBODfNRNcX9913n/TKQZw9e9ZduXJFvv87f+fvSJnMMrEwyHnJS14iNm9f/uVfnrwODd3P//zPuze96U1LTeRWCwIcyNNKAGfdbl6VdTMV2y7D1uQMVltHt6o5VZkltLGybhOL7lMHNuqu17L1PctGnVyNbE4OdJrYBf5hTm2Stc7B/oGnIcBThw8kYyLBeXh81n3E4CH3V+Pbou7edd2TBw/5+ekfsXt6+otN+nbw+P6JvhZm50/o55PLReIomJx1A6cwlmnSh8SWdU+Ic9093c6AG22Gmf7BB1AhA6b9aFT3zISUNTu4NiKJMrcEE2Ykz5oUKjjBPzALVyYqGQNrc6G3l5gS2OJ7MnritOdrbsjk4CulWOLk1h25/3X5Ge5jz/+pAhRf/wIwzd453Rw85JIg31tFzyrWdkSHOq3dYF8gHJ9MmWUBKMG08krW59gaIVv7w+05P441MWAsdxljAAwqA5YCHfuQAOtOB8N4r/gE3dfeaA+kQ8NK6TWHiQjvBc4xMHwVvxdK9Tf2PV2zCG4QYF4rXdpMz6ASuGHEBHniDjwYAnuC6wNwxMadCIAgMjkANxbYWMbQvhaPk9bv2Kiy/SajQzBiE/F58KuPoXJgRHYFUrVwv8k4vWgJ7c+3xNbwWKwTkvl49sRuC7ADSRclZoPeWABMv2+Aj9lftvH9dgiULEtCm2bZx4MTSt5Q54RtwazA+j7I0gxo4bzIlNkGogGsoS7Kmw3QuIBghq8F6Zq/PiU773y9TmrcqjU5T3jCE8S9+YlPfKIwOL/0S7/kPvIjP9K97W1vcxsbyigeOciBwcBrX/vaudc//uM/XvRzt3JsdjryL5enBZlQp5nBKTEA64gq0FKST3UXbDDKn3OpXltnr7qao9JYdazUumIZkFklRcvtwY/ajrrE4PA6sSlo7E2TNgktMTsh2cHLZtvA7Higg+3+2sZfzY0DoPLg+HwAPrCfrmUpfNfylDXK5nKM9TXLjFG3fR1z1p7p0XWnpffuLNZIIlEnAFDmJX3yiddpu53LkwBGsQ9tom2vHUKEsH936kaTfpBKCZvhG7zSHY+Oa3jibQNgCO9fHOzK1/AUVuSiUW71vy//NbEGFgbHs05oRGrrY/KGoFxeVBHp+cXkvSSxsucfXb/S7Wxj2XzdZC628aFnxmxvnjwswMqvK4EIvtKIwbJVes4RHIDRsfsr8FMJY7jmHZUfDZJmrwZ4eSt2Pfb803b7gMOuU6keh01F1U1vGEAswSnNBnJAJ+vade6e4VX34OG5OYam9LkB46FJedcdGGMCOKvdtXFNa3H4u6PkbubvuxwEJdtk18nW51hnNZoTyHr39DNj5WJ2/9ywgHNBAIBwTJxfnEf1774c6FjpGFmbbk/BAEAHAQ3DupdR0oZrOZt03MA3BE3XIK4Z3c7wGkAHrZ77g6lYQAMYuVnHHYw77szgcE5SZ9dS5Gfe2Y7mBAwBN37tUdtj14TudwBFuxPto2Ybi0rPnkwGdxonLz790z9dmn8+//nPd1/5lV/p/tE/+kfuh37oh8SE4BWveMXxgJyDg4OiXG00Grm9PX2SeKsGklhrlWwlYCMDAHIGpy7preqfs2jk8rRSwt1sM1xmWhYBM01jttm+qanpUcvWbCTr15LNabrmbSMfhzK1KqnaPECNQEf2Jxivk7AZJiEkSXDowlx8F/q5Tt+zTmBrSn+Q4/hlZuZGuaDZWNR9rrR/VSzaa6drZGd0CYOkysqwtN4DsrIoCWSw15BNwCW5BbBxIzftKqCRegSflGkTWMp+tEkrDA+U+YiJw7nevrwPORykc5yLNgqNkhawPAApeA3b4XhIilFzxaTyV698qPuk234/qR9C4oVt+H1xfYz8sfSeJM6SzGfXwYAdG5a9CWtV6C0TivQ9SMsthuv6ythjs0YmuT5Z/Vo+FpgnZSjU1RDXxgId/WzqPWKBXRgzqydq1/smBTh2G9YaKWuk7CGAYt4PB+tka7S00H7q7hpek59tLc4j3sUvmFp4gwJYQguADbUrXTEhoFW0ugdmQMWwcznYyOvSZHtrXBB6ExnTAiTj03lmZ55ZmQSnNBtkH+LxouzLJvqo/ekTDBgTgioji6Q2jL/fu1MBMdFoQ3vQsJif23RoSjAeBOaG79l7BPbNuGY5KKE9NJkWvlaqGyJTE62hZ8FtjcxO3ovIAjmCGjEuMKYE1nSBtTuWQTqxgVNb9c/XTcjk/Ot//a/D9//gH/wD96QnPcn95m/+pnv6058uCrJjATnPe97z3Otf/3r3ute9Lnn9B37gB9xzn/tcdyvH/mzq8PlhsnmmC3tXJBR4qgh5g/rKS9PQGoBjjQLWxeTk408bwI2VrFWBm7r98+3bAqDSdnU9fkqxTvc1OWYDIGkCLaVrWMfeNR2r6thNdTglkwILaCzYaQt0ktczc4LYdDJux6aifH9Z97PjlJ+tI6p65bStzyntF5k0/HwoQBNgAmyIsAhWHhac1VJpYYwohwJwAftmE1eAJSTPVuamTmozrVnp+gRdZGwxseY9QMMImU8nyrZkvqwr6Y7c23aeIt+Ppl33/114RwBbU7+drakJsq+5RpeRlYjrpYAQyavWGUVnt2RdfZKdgwi7nnlSzNfYWBPjq7TS7+vd4Cipy8dImpxaFsYwExgPDBavO9kkJNtge7Swf+p2fD8ZgE2cM97jvGkQoWPzOitjVgJuTUE3OWUK2QcnbcBqDQU4X36lO581F3B+u4cPz8pXMH2Msz2cJxNYc28K4FEpFxzVrDSS2+f9cZJrJzUvMWHWbbrapyU7Vg5g7FiYB0OTdl9PY1hMWlrPua35RL1YW2Tty6WeRl3g8P3+RK+pTebzSGt9/DX2TmUIAIkrh5uBZbHrEKSL3XKvJErGgkTMsy2WYaFVNL4X44HsPrNgxI41N3cvBZyr4TGghcCKAMnW4lim6qTHrSRX+8iP/Ehhb2677Tb3Ld/yLeLSzBY1L3jBC+TfKrEwyPmX//Jfuhe/+MXu937v99yLXvQieQ0ThGYO+rlbOVAIbF2xAHrwoWR/GJH1iHwNSUh1cpszEyUJW0h25ZhRLibvVzw1rgIIeQ1OVe+dpvEXZWWa5lUFbtqCnnWAnSa3tTZmAk1jtWV2quaRAx1EVbqi96FKKNuCojr3tdxhLTcnsDbVpfdkzjfJb+Nl2By7TxPAyRm1fFu7P9kc63YnibYHO3niHyVHfLqd2sqKhKggGU161dg+O16uomACSbefl62PCXUhpn7FHBPx4PicNAZlMkrAM+hG6RaL5HUsheYcIzRuDA1Lo/uTdY/jzwAgel7KtOTJpm1IymPQ9S/UGvgx8Dod0mwtylxTVcPUWHbFMkn2dX5lfRC2Uzaj665Ph1LLJL+zvaubFPRju1kEGqOx1j9Y4Eqgml7b1HkuZ/dK7EDinlZX2wn5o+lvJSBwNvOMjm/06VkfxuXRdjKm/dmCl9hLZ96MQOqvPGuy0VHXM1njIF2KvXOwH8AP5sXrHaSTvv4vb0MbP6fpZyhnsWkekDIOOGbKIcZjWbbVnN+0H4Cc1Kx4YNYtMOJVUqwAomBcYFmszsxt90cCDGwdEYEAa2QoZ6Msjb9fCFDQXyc3HiCo4O+mEoNP9s3+zB5g2H+7p6tfJcerCoKdseRcvibIGyugtug0Tk684x3vcDs7OwJyYCH9ZV/2ZUkfzlVjYZDzsR/7se4tb3mL+47v+A4xG9ja2hJ7N+jmQCndykGpkA0kn12fnAp744sG6+yeA4NiklebqFsWRo/bmUvqF5GO5XPJGZwqgJG/1yaqLLarts2jilU6KrDTxKS1qbMhuKkba1E2qAkUtXZZk/+WWZva4mNbp2P+CNX1h1nG+exmZm8Wk94tDnbIntkn5xHspDvbfex1pNRImQcm4kzCyZTo9pS+QQ1/hgXzkoTjH5zR0sJ4uqax6D8wClKrMSgwKM49a/N9gVVA3xsCBgCdADK8M5uaKigLIQ1RhYHhZ92zSZJEW5CRJrOWtbEsUQBN4vgWLZ7F6S0DMQRa/J7gxEoEuQ/rU9gDSPfxwM64y/GcMRYNEB4zuBLqkSDxo5TrA6OL3mnNggAACOeuTeBSB3lfPwAOHBs1Ok3MjVh2eyiW13XZewjXUht86r1km81yLXCukKyJg9qsJxI1zH0PgCerk8gfCvCeVXkc3PzmPxiQrylwUmkaG1LK/r2xMIOhV46v42FYxzSaFUQQMHUbhl2BiQHlZrnELA+VWQEYpCYEWkfkncfC3yaVnwVZm99XQVjXTScD2Y+1JwRKqP3B+Lw+JbBjv6frWNI7h59vbwNtwQpraqbTyIgIgOgfJoDGsiV1tUNx/pGNIfNi7aW5fc7alGR5uQGD3Z/ni7s9GBQs+TD2WOMWkqs9+9nPltY0f+Nv/A3pw/ld3/Vd4qxWimV65fSXndSP/diPLbProz6sNKdym0yqZuVpVRK1qkS91NjTNuhcFPDYOdrv6/rmtB2vZFDQZow2crc226xbxrYI2GnTf6cEdOrYGzv2okAnd1oLr5sn1nky0WhKUPhDY1/LX58b41ESOXtTJf0rAZz89TqgEx3vSvumyY7uY/f328nvjEmwEZZ9TF2hJE9eXkZgwsQ7r1sAqEEindcGBfla5iDGBpoicXMd96Thw8ZpK/ZxIUBCKo2E+bDTr+gtY2pQTAE8AQdrkRgBiPjToCubDVs7EnsyKSMSGBn28fFyNc7Fyuai85pJeLM6KQBFC37YCwlz/n/7jxUJGoBOCCmqn7onDC+5S+Oz7sDLwgB4WA+FsE1S7+prA93tTpSxVYVcg/DALa1XEvCIGXvQUqqByhuq8jU4oaFnVrRstr8fIqAgaON9QhBj5bKxTorJthoQwH0NoAD7sXjfjkVrfJXqpSDLAhydn3dpowWzqTXMHfzy+yfI88jWeGYHUjjW1cRt9dwInnLjAnFW63QDQ0SwhNuQICFfTwQZlaqi+xxE2K8ECdIAVxiX6MLHsUMt1FRZn/x49ndRkA762hs7X45DeRv3rQJs+c/2uPZ9/gwwte/6CQA+qXErydX+43/8j+5f/It/4X7hF37BdTod99//+3+XdjR54L1jAznvete73A//8A+7d7/73dI35+6775aJwfbtwz7sw9ytGqI1z5PACsCSu5nZJLnuKX2d81lVs89lesjk7E0d+5KP3VbO1sZiumnMZaJKmncSwgKdRZuSIuy+wiIagMPvS4AwZVni63mSncvP8v1Lyc6jqfnaspK1owJ18lTVAXTY+hM++Y6JBEKc2MC4yO+ECAhCr5mwf0xohwQAIgFSiZcWseOJKxtGRvZA+rLMNImwIMD2R2EdEWVAj+lfD8dmI1P0+pExfDNRjEGpGQrzyWLk1s/2vPQ9vy4iG07d1gAq7FeMmzNMFrwElzZhvpB8RTAjVtgBYEHiFmVzgSHzRg5qwmClezrvvH8P7bMBHJ+2eX+lgQLizv61ZE3k3PEkG6DOM1mQud3Ru55+1uHGJgYQKWOrsjfWyqTuZhbg2PWM+0cAirUAULs22ZJeSY+Mzpj7YhZYGICSCFymRQc1OqVheyT8+ecK57vRVdctyh/1OsW6Gsv2IPamA2Fy1F1u5iZJQp4CFEgh8xqdHPDMNx1NQZAFZ1rwr/e7BSgQR1o5mZV6kc3RbXUfYUewRoZtscevMyTI52Pft4CHpgDJdeF1ks9WKsuL1y61ieZxLeMTJG+hF1DXjScKdqwRAbcFu3R+qNJEy8zIuIYJys+fx+hkPXRO48bGh3zIh7gf//Efl++73a6UvwBTrCsWrsB685vfLM16YCX9Mz/zM+76df0DhRodoLFbOfJGoCpfqwcIy9R2NCW/pcR90b43BDZMiNvKwcgcrdo89DjiKBmdVcdYdpw6RsmmDiUWpwnw5O/LE9Gb4Dofd1h5Tem9VcatGgdJW5NLWzR8oE3zOKnLKEV+HiqF840jvc00x6FjG5NXgorKnioihtLkXp8Ua0Is8jPT6NVKymhzTSkZAY49nkrKxuI4Fs9TWRIdg58RLXzX42tir+cTn15bdkbXI55LwiLJWhyG2hduJ9bNmL+RcVlAozKveG78F+ZsAKh9XyVgYNPi/odm7QLDYcamK128lspM5feKLda35x8AlAE4YV0yS2j52V9P7HP/6LwAHE3ap8k/PU6aVPMfbMr5HtYxNBA29zsTWXseev9E8wF7H0udjWdJWMQP0MTeOzqmMib4t9UdyVcAkhzQBblWZiKhc9f9KdOyQADHszK2fMy4DgpmKXPLmSI73zqWozRnu9Z12zDEPc1YRAu75NlPgpZ8rJzFpzFBLnXjWDQLYNgeP7aGKJ/f3HUw9xId1TjHnIE+0XK1Vf/dRAGH5s/7vM+T+px1xsJMzqte9SoxH3jlK1/pzp1TL3vEC1/4Qve93/u97lYOMjn8VY8+OHmU6m0WbcLZJH0qgSp9qp/9Emz4FDQZDdQBHWGrjsioYB1x3AzOUbjktY1F5GrdCtc1y+iUeuswjqIJZhWzVCcBO8poOscSw1VVZ1MlVSu9nzduzY835/Y0m4gWPR1Pn6RW1VrlhgXK3vDJu7JAeKKOdF0SCmn+53/jeaMVGdo7mel+Mam3yTGZhlgnA5kRa0D0TxObZVISBrmM1opEhzHua+dv62yK0qmZJs9DpwyMvC+F+yq9IlPCsS3QoQRNQZ3/yuROHDT1NYIaSvsoVSOwYdJuzQssYxSPM0mYETBa+1NtjGfravLGonpt4/cwedgeQKam0jv2x7GB+6WKsbFW0TgWr1G4Bv582Y8IDNS79vWJbGDZSkYGxiAiBxFh3TtxHWSVjAwzMmye7eG+/vrBOc0eN9pV81ipPIzyNNbIUNwkTFx3HN3cPDgGmCJAIlsBgMPmmPK5kdc9+yJf9R7Om4jmMjw2H433YlovRDYHtTlkvOi4VgIcJTlx6VoEZiowSLHJJhkU1vDY8y7Jy3JAJSYAs14iSyNwolGAZciwbWgK6nvx4O2ERauRtOUMFYDziY91gJSbDOQMBgP3xje+cSlJ2lpBzh/8wR8U63FALz30kPbCuFWDAAc9cPT7+RqQKiDDbZreL8nd2iTQy/RmWQaElOa+iNlAVczLq1qcc0WdznECnBsJbqrCNqgtRQno2CjViSzb1LJNVAGsplqXdUfb4zVJ/3gOTQBn0RqdNmETgKp9Uue1eRYmgCBJarnPfNE5JV1p00UDQGR0fT3WdsSn9ZalSNYhGCJ4hycPUmhIkEuGtDam4HjmgYwk/BVsjSTQHrgQGDGRh6Mck08WfvP8kZTpvtG+muuUu9ax7kbqokziKmMnoF5lchsONtOxdofXhKAjr4NgHDq1mY7nr6ycjl3odZMBHLtuYiEOwwGfhHMtWZP1nv27UkMMLyO0YLHo1uYlZvl2qTkAjoX56FqVftfgtYPJMLAguuaTOXfIBCSFQnedUZR0xRoy3M+WtVEb7O48+5L0R7LNRs31DXU1EeyUE3XaqOvxMTm9v9MaHM61ro6lVLfCnymZs8EHJ7l8rVS8n9fg8HiWseH+lJUFF7fCe4ht07w2d29DiLTNO75xPDnHWSqVO42bIz7t0z7N/dzP/dzSjT/XAnIuXrzoPvCBD7gP+qAPSl7/nd/5Hff4xz/e3cpBgAMxxSKJ76pJ9yLF6pWF8QsCkRw8WPOENttXRR3rwzlWyeHqan5uJWBTus64I9GQNm6jX6uspJe1l24reWuKOsYj7+dTF22T/zaAbBnglgO0o4qSTbUwJRmbg9feN7rN3Tt4JCTQbOoo8zW/u951eHdo4km2g+5YTLpoBYzY6CItjid8obebNMgE+yBPmmcDkYXhHgyJoGFikKxbmVae0KPYnkYA7HmDsOAI/WZiTYj29yGoCA1Ss9qGUAsyw2fF95TxdTcCuHyqjnExhvSmCX2K4nlOZkMFXlOtUdLrw6fxfVMDdOhGThu2Ckvg54un2gQ/nBfmSFkewFUPbQiy2ifLrGCd8943Tx/eF3ombYKR8PVZ4rMm20cGx8roeH0wH+uyxvkB0PF7MjecA++5WEAf68AkKU3qkGz9Cuu+UlaL40lvJsMiClNiAIkU6XtmJ3wGzZ9l3qe2ls320dF94/bWcprvK2invfpM1oH3lgIf62Dmx8mkoWR7gomAYVFCAFgZ9onvi+m7AR80xQhGAKbWJ4xbuCYBvHh7aVt7o9dIgZNlbqwsz17rkrtaLmNjnxyCEwKhfDxhizI3OI4FO2jMi7bQaFaKUc8OtCYrP76d480Qt5LxgA04NKNXzm/8xm9I380zZ84k77/85S93Rw5yXvKSl7iv+7qvcz/1Uz8lbgfT6VQmhAY+L33pS92tHGzyySixMvy5ZA29juMvve+CAKfEkrSxxW4zdj6ftrK5uj5At1osytw1Wk1XyK3s+4tKsWrn02LfumPi9XUCnFob7ey9qvHqGLC20dSwNZehWWMCJokCcAoAMO9/ok/qO5Lw28JtRHAAEwACUIFjILHUWhkAniuT7fCUn5IsjGML/EP/FN8YFCG20KE2JdblhDXwiToBjpVQhflLMsrGpb6nEGtxgrxOk07bDJPNR5FEU3Ylzmemzw3HoCTNJuCsM5LtIQk1QCPflgwOE2WyYWRZCWo4J2vwoO/5P9+eaWLD1X25XtqT6ukb94WENMrhUubKAhyCFQZgK9dTHOXMelu77vcc3BWAFcfU+zWyKLDy5mtcBzA0lH3pHO2DKZVFJtes4n4NdWBSY9MJltLJ9qYpaO6gxvvKggsLuiiFgzSNwChvEqogIMoNrQyOoQ1C+bc/fSDRF/MMBSIEaXN1JrKrB3IeMFAeR1MESf6NfM4eo07GFcCGd2vLg408ua0d3/bEaRMEYgAp3anW2XB/y9JMJ77njmd38nkpuFGGuCSdK51v2zne0LgF5WoItKIBkfL2t79d/tkA3jgWkPOa17zGfcVXfIW799573WQycc94xjPk62d/9me7V7/61e5WDih46+pe2iT6y+6/iBMXkt9V6nH4WpNtcy7Ty6Mt8GljfmDnhe1uRWBTda3DV7M+VfU4+c+TFmBn3QBnHRKuUlQ15WzD0Mj5NIDGZXrirBpV51QVTBLI3uRyNPs0X8AIGI3ZVJIo2XfWd7uQhQHUTPvBIS3Y/vq6HTR8FPmZ9Ambut3phvRrEYbA15mQHaKJwZnOgcidCG4AemDby+2ZvADMYLy8kWUibfNubPgHA4K6Rp1kKZw3TtD9td5mYhqZ0iqZ4IYgBcEn+BqxRicvyI/2yMrshPqbsL2+h54yCDBBkSWaxdonP0dhk0xtEeZ5T+9y6BuEa5gHTSpUaqU1OAQ3cEDbnw0DoKFVNq4LxvvLw9sT8ImwBfuMhL2RRDQyEXONR33DbIS1o8bdqYAktdrOnQEZ/a4/Jpz7pMGnJv20kA5XZ6o1NAArW+a9sbFrJsPCa8hrB3tqK8nK2UD9Gq9rzhLisx+akxpQJQyn72Mk5wIrZgBAGBSYQv0gHxPHtR7utMC2sGZmmSTeglLey5ERigzQHDBbUhJGWRpJ5hIYg+UzAywZ/uG84a5GQIYmpRswRKAZgmlCmp/fTQFubvF4z3ves/YxFwY5w+HQ/eAP/qD7xm/8RveHf/iH4q72nOc855ZvBIpozVZk9tFtEvI6wwKO2QbotHZwM8CijkHhdou6tx1FrKP2x8aiRg0nNUrXvMp4oG29R5MZwTI1J8tGJcjy5x0S9xVMEdbBwoR5rRCLzGOu8Wf2xD43HAjbhVpCSLvGUssR56+AxD6dzt3Z+F4oFJ91hdnhMSUNDLUUU7ftDkJiNehFBkWZFtgzH5i+Ld5hzL+fS7IACpgEz1kco6YmadCpDA6/T9kNZU/URMGfe/ZkXgwQjAObBYwAB8FpTgwN4nuQqbF+aceDiyhn0wArg31lnKxGRe53z/jYvj/nunt+fHBvqUOcnqNnmfx98eDkrCSNWHsFMx0BV9K003UF0FjDCFtPxTqqHNBYpkrXKu11oiAkrh+/Uj5rwZNe41zelTJqCUiXWh291hsCRFP5G5uOipTMX9S9Ceq41ARAxy39rvTAAtbVFfI6XYd0rnrf8R7RMXBsGAPgeDALoIX09YlKORmw41CpXbmgPw+MydoZ2kyXamxKYQHUnKMa7u1uWo9jv64SBFS5NXVJumbrdCBhs/tYKVsO9JqMFk5qdGYz+bfqGKexZJ8cBHri4N9ptA8r22qTMJfqXBY1D7BxVMYDBDqLnl/baGKLkvVZ8rh1UrubOeospdsCnaooAZ11RpUcrG1wPtGFp/0+ddu2YY+OAuAtCrQSEGNqXpRN0ffefXh3qIG5Z3BFnibDhQuABMAEIAdJs0rRNMHD93iPNr62bxJZD/setkWwoJuyKgaOZZNVzBCsD3vP0FQA7A2C4yFs7Q4CCTrlbvK+L4YXRiSR50RbZ/sz62yk9sQDDBaO571vWEfDhBuAQxkPBTZ2XybrNFYACNmdbSQghaDIFumf6Xp3uaypKK7ZpnF/w3zJ2pDF0f1UPsjv4zoNQ8PQhydnZW3fN7rd32dpHxjKgZJ7q6LxpD0Xghld3wzoKN+RJJ+6puVkvlTXo/PTfbgutnYrSWxnYG/ALkLOxWarqRuhjp3LyyNjI0m01Lz4/jSZu5it6UnmbeRpOOaFoYJRsJQCeApgxCbuQRJmgIsFZZZloUUzLavz3jylsCCqSuKVMy0Js7QkgLCghccojZW/Jq5sHpjSaACvVRluVAG4Ex23qFztH//jf1z7/n/4D//haEAO7KK/9Vu/VYqA8H1dnD17VhqCftZnfZbr9co+8I/WyB3SSixN26S5qZCf0cTerAKKlgFENwIULFLzc6uAm7qwsjU+QZWfZ6sDn9XnNmvFTNjvrWvZuoBHvu2NkuPlxywBnTrwZ5+wI6nUp/YymmdVVI4FWdefHjwmdJnnvqr1j/Iy3BtoKjlnPGDYHTUg8Il/mLs2zGRyRhe0cA6+sJ4JLIEJmZRJp+vO9TQ51NlrApfXURCQYa6s0VHWgfd8ZEYIkGw9jpgBeNBle7hE5zeAvgheLCAJAMcwEtGuVm2kOZauSQRJnLPK1XSuh27gNlEVY5zTgiuYZ2WkN45J3koAh/1i8iQPgBBNV/H1A6PbAlgN0ioezDAf+X0VrkcNm8NAnYztwRPm7OuyeB/odYpJPo8X6sDs+psGrfk8OBfEwUwBDt7fkntEAW4815K0rJxwo+4nX4fYmDMFPlw/a3DA7QFwbBPQfH2ZnFOaFR38fM2KT/CtRCu6oaEvDKjOvrJCNdetdI5Nr9UV868KepreS0CWYZmqpHP5XG8qsHOLxSOPaL2o7Z0Dxdjly5elTc0y0QrkwDkNB+P3dXFwcOD+3b/7d+5Nb3qT+0//6T+5Wy3yhLutHC3ffxVw0wRs2srj1pno19liV9lOV23fdt1L+9St66Ma2OB+CWYXrlhTRcCTA506i+LjTvbzhpdaXH/0x70RoGaRnkF5lAwJ9oPkVZPq9x7eFWpnkv184oVk//JkO9Sj5FI0/EWQn8z7whT5XiBIMAFUmPDTXliPo8CJwCc8MTfAgswN2aFBVotBQIH3kagre6DHpDEBXdhk7qEoXveBvMvaS2szZ9+XhMyLcU1j8psaBOj5gFVR4GbBkZVjHQpQ0/448ZqQydFr4t3UAkDUuiQsDcCQZX2uTbbkPAHKRNrmzRh0u7TBZympAwwFkwQmj2CV158psVotEyCpnXTP/pxYP+t58lrZ4PEPjKkB2ReCaNwbWrsTwQLBUgBPxqChZDNtx7bXjnPq9WOdFORs8p44fPnzEMDbqa13mwcjsa8LpGd2O1urZFkjvC7WxxUNPPPCfmuRjLAyNNSpcAx+D4ex8YTrqP1tyOhUMR123erCbmsZIP5bt21zaW5zrnCZvbXdxgbnNrsJpGu3qrvaG9/4xrnXYG72T/7JP3FPfepTjw7k/Oqv/mrx+6r4v//3/7oXvehF7laNtgl3HqvUtRDYVIGfusL/tqxRUzQ5y1XNo+r4i86rtH2bfU8CuFm0/sdu32b+aR2Yjcjq2CDQidtWO3m1cRxrisbCf/P9dIXC+0dLLFMjRGcoSVY9g0PHJi3s1wQfr0tdR2fiLk3OyLaQj0lCA8ZCzAeGYZ9g3OBrNmLfFDIJWmfD5Jcuaz0DcPCVoETBz6GbzGAuEE8U72Nb23xTk151FrOsirBAUwU23BbF+axxkX0Dc4JzGsoxEfK+OEzFJ/1BquYT7EGwXKBtdKzt4fdkdvbNudv6EGsvDUYmAJ6swecD4/Nu2um6zd5hGGezP6oENrnLVJ7w2c/KY/pXhMWxnyNen1KPIgIdsDKsy7Guary+NvL+OJZ9gW1xAE4yL7rwRbMCG9aUIIzfQo4FKRkATWmsfF3y30XJgxVh4kzfnKxxpX2dDJquCS3YtcloDnCq5GJxDdOGl7oGftsOanL6oWEnHMuY0IPFIbtzfrjntnp63+BcHznclrkQSNU5kvH8OAcczxoDWMYpB0J2bRaNJuCVg6pHDUtzi8rVStHtdkVB9vEf//Hun/7Tf+qOrSYHMfOJE6zdbDzrWc9yP/IjP7LK0KexQCwqSauytbamBjc68W9yZiuxTatI1m70+bad06Lgpvk4bPw575RnpWz6VhlQWKZnmV4yddu3K509jTaRJFUmSeT6ixRLWJDIkFC+FOoekGyj9mTW92AISb3+GcH3SHzI5AAIsMlnWgA/ced6+16m1ReAgpAu6D6Jp7sYt+drSPqV5RmGeRIckAXQRJT9Z9TwwDqUWUaEx4OzG8YHu0M7ZuxHKRkYrYu93XA8C0QUeBn5nWexCFBwDAvK5Hw63tFNWJVoRsDxwLJgPc5399w9/SuJBI2fMQBRKd7Gni1lRzIHYwFt2TBbOG+vF2ui0rExCuaSjktJWrKt34oOebGmKQIc/coeTOwFk4GjzNwhP79YE6NjWztr9rKxQCI3DojnEWV71jpdE/j0NxIYJ3XaYwPwWfK6rcWB8yCMDiz70gQC6HDGGh3pQ2PArAA4L1uzdTxYNp4val4CC4Rj+8/zmf6h60+m7vpsI+xv62zy9bKvoQaGbmdtwNEyUXJcy78/jVsj3vWud7nxOP7ePnKQAwDznd/5ne5P//RP5ecP/uAPdl/7tV/rPvdzPzc4sKFz6Wm0Z1JWYVFy9sb+PN8Usnrb5Gf5Pbn4L5Mmt7V1J++l/dbRr6dNw9Wq15bpV1Q1t3XVDLXpm5P3JrI/C7PD9RUL8jQG8jQ+gpJpC6lbePJstm8CNVViiLrj3OyxKlvFbvbWNvq9oztNHYPvpo5tpt1QkI6kFAwOi/+l0saDFthHIzHdnQ2lRgeJf9eDD/ws87ZJM+Rp0nwyOqAh+SfAoRVy6Dfja1fs03cW1lN+JDbXSbPNUVJXwfocWC1zG1hgk6Gxts/CugijM0jc0Vg8f1f/agAldC6zT/FR25LbRmN/ACO7DtLI05gH8Hjb4qTmLb07CnrwWilwfDbzXDThU6amK4AO53P/6ELSDFYbqY6DPG93shHlXp6xEikWAKCVCHl5n9j6Fj6lvIcE4HlLctnXrx/um7hGE7EGpoRN17r8m4G1ZjpWNC6wLmiynWnaacOydZRp2ve4ZvgMiuTMS9IIbCxrY0FRGMPXg5ExwdcAIjILaVszkrBxHkhwvUpOZ2RignRM5Mla1E/HsaujrTAvdStL2TUaANgouZQFwDTphoJ/Ajc85Fi0Z04pbE1SviZtQwwK/Pxoxb3qvI4rblW52iuzmn8QKR/4wAfcf/tv/8193ud93vGAnNe+9rViH/2yl73MfezHfqy89uu//uvuy77sy9xDDz3kXvGKV7hbNXL2YZm6kKOK0jFXaR5aF039c47i/Bex4V4mFrHnXhbolGJVANwEfqctrmHeF0kYnsJydxdoLmoBTr7vaaRrtKjDWzRkiJbR+jRbV/n949vUbAA9aQzzpjbPvVBkT6vmWBvRFQbHJnJqSIBETKVfSOqjdMvL06aDwIKgkN5KtdgPByBp29e04H0k4NKM1AMJmhKwFkcYka7Wbeh6+G70ptEl++IIAA6sRXwaaNki7ANjA+57dboV6j6w1jRGwAwAaAAEIXFjc02ej55Tej0IivIACCNwkzEyCVzVPmTVFqmhsE1ccS7Sa8htRImWv97WHhxA1oKWXL5m9yHrSxBUxVDYmh0m+Yl9uTSf9Qkz7kffJ0ks6TPJWw6mxMjbLwkBDyIHPClDYMdMmZvcnY7zZ6PO9Nixli0YdwBQTntudzwM2wNcwDoa28B4gOCH58T5BUc1Ggv4cxVJmqnX4XbsE8PXuU3JShrrjte65rhNbEuJqUHtD0IaehbYnDqTg7bHs2uzKNCR84Zk1TcM5b6jm0HSdovK1X4nq/mHVO2uu+5y/+bf/JtG57W1gZzXve517vu///vdS1/60vDap37qp4qj2jd90zfd0iCnbeKdA6A2SexRABLbKPIkydXqWJ38Pf7cVnK2rvNqYkVKLM8ycVSAODJ28+dBRkbXNAZBTxv3NexXVcOzDKBpU856o9mctjK9NnNctLbJgpl8eySJYCbum1zwxf99YRGQaG10JsF8QHT2kKK5gevhabsv/hYg4k0DWKuB4mlIkzDGtrd6BmjCWBd6e8HZzNaqgDkRiRCkbD5xpEU1AqCGTSjFQrqrNTTSXwdJr9QJaW8b2ifbJp1Iua5MtuV1gJBBB71m2OtGwZO1jWYdD8I6vyEgE7M1RFxHgg/IyfLC91zCFl73dtoERGlPonkjhblx/TFxbfK6mzyq6m9YwM81psECxsPvRB6R8kIGjQE4D2V69DUrabPflwCOtcAWkwVInYzTXMLYzJSdAavIoBFBHnoeXrboRr5uKwWAlLkFsBL6DKUGBgLAPFPDnjqMUCdEIFOwnhbJmrBacd74jGxtHMZmotO+sB6yImzgiQahpkbH1pnQEtrW/VCWlte/hLUy++NYVuImx+HfzCUf9ecsS4kByqN0T1QB4aqankXnK2tlJIvBha3iAcJp3PhoU/N/5CAH1NHHfMzHzL2O1/Deaaw3VgU39X1SOkvX9iSuXEeUWC4LWpqA4zp6+SzqbtdkDHEjmB3Ox86Xv/5rWZgGm+nSvqsAnEXCgoPjBDyL1CEtIj9b5hwoT0OEImnftZ4gwAbkZUgCKEmCcxeepmu/G5WQWdtjBAvPsQ1c0GgYgN4y2BbgRWyVZ2oFfXfvWpybKdgmwMH8RL7mUAvTUynXVBkeOJOJjbRvBsrmlRIzlb8pGNNaGnx/eXLGz0HrPhTU0TFMkzKMgT404grmJU+WdaGUzDatjHUzqYMag8kkgQ3OF2NSGqdmDPVF8zaZz++rukSv6um42lPruod1M3IsbiPXJzQ3jQAkldul1t9hnn4f1OrY7VnLYx36qnrs5DU4gUHK7KTtnHi9Qp0KH9JlZgj5/riT+l46SKlcKhmLjnN5LU7p/K2MLKypgJk0tL4mN2ZIQYNs5+tjOLaVgFk3MyuZnJuTZU6cNtTEZ4XSrTbyrXxei9TXlJip0mt18657rU2UXORK1++kxa0qV9vb2xOJ2va2/p368z//c3Fce8YznuE+4RM+4XhAztOe9jT3kz/5k+4bvuEbktd/4id+wj396U93t3I0JZ+L1FwsKpEqgRm7fwnQtAU1TQ02l2nAmdd/rLqepX5EVWDmqFmq0nWzUraqbdqCmqOaf14Xs8jzrnzb3KloWXAzPeGAZy4JXdP5NM03l6oFG1kHkKHuaRjjTw4eF2spPCjR8UVg5pM8bUopYGbaExYlSJHCE/jIkqkRQXz6DVnTqKOg6ALkan4VUDDPPjBM+uXYc7+LjPzN0V1tHOp1aGMNcwAE3ivF1elmOLeLvR1jTOABWGmd/boEu2EX5VxBCpdcY33yXgpK4+z5lsCLvWfQ52PVKCWLBLqULLIWyzJJeB/X66HxuURCpmfp5W2ecWGyi61U0qYubIFFETOFyBjIex5gWsBEkDQQpz6hVCKANgwM1gpAGsyHleapGUaUx1HyRpllXsNDcwG1Co81O2B8yNbQ6jmvp4n9okouczou5shtUP/Ba6s9eeY/7TjStDsJQAf7cH+CDgtwdB7mfvH1N8EgoIHZg4yN1tYqjxskBgJ67HkAkh8730ZqcTL2OA9rYlDl9NfGeKG0fdvgGuWSvRMft6hc7dM+7dPcZ3zGZ0j5C3rjPO95z5Maf5TCoFQGVtKLxsJX/pu/+ZvdP//n/9x90id9kjQIxT98j9e/5Vu+xR1VXLp0yX3O53yOO3/+vLt48aL7wi/8Qnf9+vXafWA5B+c3+w+LZ+Mv/uIv3Kd8yqcIcrz77rvFQGFZF4c2geQ2/1e1XVUQoFiQUgItpffrwI3KFvTfUUbO/ODno2CDrBFBG8BU9W8d0eaal+a0yvuLhkrUmpPxEotT+kWyqMta3ZxW/RMlhcNrvq+TZPUY64oswMnBEJKrdx3e7f7f4WPcHx88PiSAQVbk2RD7lBzJGJtngtVRa2XdLjphqWyNibxYQPs1xdNhNgxlEvr04f1aZ4K6k+44YS9iItgPjTfDuWmqG7bDvzt6O8k29px1a/13vrsf/pGVItio+kf7ZXkSj/oLFPWj7sX/nD8l5zb8Z1kXggcdMzrSidOabKvHtO5Vi1/7+BSfP9cBHM5L5FmGRSOAjRIzL0+014nn4L/a8+T8eX58nWDDrpcdz74ma9mdCFDAP8ojbX8bYb66/r7zcwzHQr3LdOh2J0MBKhbgwLDiYNIPr+NnbHt1vOmujrfc7mQg7+VOcFwLlWLyOun9LzU7oYYpMnLYhmAFnz+Mq7K0vtsdb4TaG1pHI7D9sBePgZ95v4G1gQRMTAMgNTMGA6h/sZIzbmu3wWswAEDtDwAOtpfaH1OXkt9PTfdcGBuGHd1JGFvm6++P/J62rJMFOrkMLf+XXovVPy8i97sZaY1bMH77t3/b/c2/+Tfl+5/+6Z9299xzj7A5MDv7nu/5nuNhcj7zMz/T/dZv/Zagqp/7uZ+T1z70Qz9UXnvOc57jjioAcCCH++Vf/mVpTPoFX/AF7ku+5Evcj/3Yj9Xu98Vf/MUJ+CINhphMJgJwsJC/+Zu/KeOj1mgwGLjXvOY1S8+1rj/MIkXpi1pD2+NwDnWAptUcsuLz0nttownI8P1lmKES21Gyyl5XT6DjjKraozq2atn7qlXtS4NcTbY5psdIJVBW1e/iRsb0iAFOqL0wTywFsLCIX6Rf6jQk1si+yBoMDptyRivmKCVjoTp74tBqeCP00wED1BFLaNbRPGXwgD9+ZENs7YQE+tP4Ivr689Xzur17PRgRyDl6RmIo9T3RPY3nXwTd2ZN1SrMgqFK+KS06r4qEecLaifIfUiA935zBWeZeLM2hVJdgk8W8/objWIAT3jdNT63MMCTzpvaEDKCVr+W9YcJ7YrmtEjUU/Ft2JgcU2Hbb9/6R+9Mn+jKuny9BDYv4o/01C8q1tiZfn0EX98JMmZM5xgJ1WrompQRf7nPfV0oCNTOeeVFZ2rx7GN+nmxqATTAo8DU1BDOl5pxWwibvG2mVZW+s2xr74nAucFSL7+t7Mr6fJq9lztTkcjI7v8AG9cYCagSoGacyvE73Mu5Tuk+r6m7yqNtvGaByM4Obm3jqS8fu7q47d+6cfP9Lv/RLwurAfOAFL3iBgJ0jBzkAF1/6pV8q7mo/+qM/6o4r3vGOd7hf/MVfdG9729vcR33URwUDhE/+5E923/Vd3+Ue97jHVe4LUAMQUwos4h//8R+7//k//6d7zGMe45797GcLM/V1X/d1YqIAmmyZuBGJ9CJJ7qIAp+n13E1tZUvsBne2tlEFdOreL8W6e9MsElUSx5Ihw6pzmx7BfutkN3LHttzNjXOpSyjXYU6waMJaWh8LxFadj31yjwRUCvxNHY3Iizyjk9cpAPCgN0wobjdNNLU+QlkgsBYHhq3RBFGdxu4cXAuyNnnCjnoeXysR1yrWs7RJPjgekzCcky3SR1gJWugfU5AIla4XtrUW0gBNESTV37WUbKnzlpoBKMs1L0dbNkp1W3VmAxbgcD/L4IRtvTQPqzn1YERYHP++7ZdjXfIC0A0PVbJkduavvwFYvE51iWpiEy2F/3osy9rkACcZz9h85w1XbX2NXctUepmCtVCUHyRneV1LZE3s+AQ32g9nJkzH2NyLZHoSQCRmA3EtchZE5+HZnZ5+hsHk8H2ADyupk20980MgBOMBAJN83drUznT9eZzrq6X8tfGmO5woI5TbbdvxqyRoJbla6dzbvL5IBDe5DNCd6MCDyCUecs+NcZMFymFAnnz6p3+6+x//438EI7MHHnhAVFxHDnLAcPzMz/yMgJzjjLe85S0iUSPAQbz4xS8WhPfWt75VFqQq3vCGNwggA9D5u3/378rcyeZg3Gc+85kCcBif+ImfKLq/P/qjP6pkpg4ODuQf4+rVq3PbIEm3vUaQhNZJ06qkZm16vyzy+rrqZkqSsxLQWRbwtKnZWZZNWyVOSuPQowI6VVHlrFYFcPI/gUljUTtuy+naHjwEO/a1quM2zXPRWCaBtXPK+wctWnuT2gHHkd99eJd/L3XHsg0UkTiirsX2l+E2NuE/39uPjRKnXpoz0542lDttdOhkpXImum1xmzNdVAflErV5EFA6fwuMdN76U1VdTfvx4jZM6m0Dzrit2mLnlskMOLtR5kbWZp2sYRvQaxO1HODgviDAKY9P8NN1lyZnE6CDr3DJC8fxCW1M/iPTYpPW0N/I18tYQEuZI2tmIhBT2/HElGBKKSXsyq1JggVqkb2RY3qHNL6euKAFmaZJbjvzCbl+nV8xMhQAN31bfxTGUdbnYDL0bl4uSux6NNVQAKSgJq5jqWZHz9U4gol8bRLBPgw/zH3JPjVTD2ywLcB2dFBT0IPzUOfCFMToOWqz0SidIwukX6+MtkLNkLwuclU1PQjz9PsShFVJ06qiytygiRHKXy/K8Rpqh07j5ARKYT77sz9bwM2LXvQi99Ef/dGBkFhWKbawXO3v/b2/J0jrOK2i77vvPqmXsdHv993tt98u71UFFutJT3qSMD2///u/LwzNO9/5TvezP/uzYVwLcBD8uW7cb/u2b5MapLrE2oKbRdy42jRtXDWOKhm2jUBPoixsXc1XkdrZwDmvYz0Xndey51AyqZguAGwWP1427pLj5aAmT0iO2hj0qBzimtic0nsxsdWkEVIu2hAz4bs22TR9aCbamNIzJFbiZfdBE8rgROZrdTSRgzRt5CadCKIAdBBqzzuWmgf0nnnK8EFjWJCyLaVzr1uXRaNpn3lb87RhqX2CXuWCZiVpbc5pWaauLnHLjwdIad9LapiCw17qOBZlXvE1Pa9paPZqn9hrnZbeFxFwegaxYKdtmRdIqVivlSexpbqYoozMmAnwfcjSLMCJ6+Ub3CbSwgh4uF3OmAlA8WwNwZIFSPbasiEoZHm0gE7YlQK4sc5eVYm9/Z7ytmT7TE6GbWiAEMb285PaoEmsBcprW1Rq5kEsehH598DgYEyMPRaQo9uXCvgtiAFAosX1onU0tjlqaS0WjTpG6aTHrequ9lmf9Vnub/yNvyGlIx/xER8RXgfgqSMz1gpy4KCGGpff+I3fcM997nPdmTNnkvdf/vKXtx7rVa96lfv2b//2RqnasoGaHQYYm8c+9rGyWO9617vcU5/61KXH/fqv//qkMyuYnHvvvXce6LSsvSk1aWybmC8DWNaRkJcspO1rJwncrA0ctLClRpwEpqcUy4Jn1uC0ZW3ajtf29dIxSsdsakC6jmT5uFziLINjE7G8DgeJ5J8cqBxXi/g16UOidnt/R14/5/Ylubx38HBtnxUkA0xeH56cCe5mwvz4RpW0hRaZUSYfg1PXX9vQh0NiZID/BresKulr81PWdSYlJbvdmMDW9Pvw02sLbJrea2bwOo2vWatwvp/W3pTZqOJrOfjL+vnQHjq4rvlarZzJyeca6nG8RGuuNss89Rcb8O6kUpoW52aYOznnecYnl6jxiT5ft05ownbgazcCm53JQFgTbgOAxM8fACADAAfztdI9PUasa7I9cGyUP4PdxIgAX6V2TmR8WvtCORqBzsA49PH+3ENfKy9Vs8e3BgBWuqXgTOtxAHC2eodhLGFvcAxjnFBiW/i1ZHdd2i69Xnp92DdoEXDT9mEAtzltBnqyA6qrvMQELmvLxsIg54d+6IdEOvb2t79d/tmAe9kiIOerv/qr3ed//ufXbvOUpzxFThiaPBtwQIPjWlW9TSme//zny9c/+7M/E5CDfWGYYOP++++Xr3XjbmxsyL9SLGMqUNfLxsaJTZ6PWCK1StQBk6baonyMtr2BbpSkremYy7KEBB51NTFN+1fJ1ebnOH9cd8zMyboBzjKRz88+TeZ77x3dEdzJYn8TlVJpo8fYgFF7ycQnq2Qj5LwoOzKHvLt3XdiBe3pX5xJONBXFS/qUm/UQY/f4/iPxCbupUbGRPznnz0hcmxL/RZidRdiTNiDqKJ35SgYSbaVpdpuQ0Gd1OPpaGSzc3rsuFuKorWJo7c0s3lOe2cl7skzMvWMd0TgHYVjkvkqBWCnCdtNonJDWw0SmhnUvpZD7SLZTkMF1zuVbYCksgwm3tWuHm0FqBnmaFNj7fQBmqkJlXVEWpeeTStPs8pOZofOX3YcSMdbwqIub9qTSY0WpGNdIgN4MzJuaDND4QGRqfh6R9dFjW7Zlsz8O86TjG853Mu0ISKIRgRpVRMlfsgb+d0sAUOb3VdUDFTI99p5YxurZgqk2n+Wbgck5jfXFwiDnPe95z9oOftddd8m/poAuD57ZAFVgjxC/8iu/4qbTaQAubeJ3f/d35SsYHY77r/7VvxIARTkc3NtQ4ITmQ+vsj4KwEq469uaowjqlNdXYrLNG5qiaha4apXnlgMZus4whwiI9bpoYpjo5W1tQVdX88yhkavGY7V4rbVM3B45RtU2dy9pxO6/ldTlzSb4BXrmD2rtHd8r379x/rHvS8KEgNWOhtzA3PinCe5CVsQD/DBppJseL4GZQ0bsmNrHk3eFte7170739S+7944tu2tFjI0lGs0/2r9FCfLBJSD78+ReSovxc12HCYMc66qhjaNocvwRkq4BAG3BTYnDmJWq+HmfWcZfGZwIItnUxKitDsj8WcGMZnZK0zLIvIdE1PWk0Kc960LAHUZWZggAdc/6ZQ5pNaHNmJxzDgGy4Aep+Og9aS1s527nBvgceveT1KoBj5X6x2F/BVZ6s21om+549/2EXboMqH2VgXYPrnEhIda3xIwALZWrYb2e8EZgbghgEzAesa5uyNQAz0fmONThyvtOe2xmjxkjHgHyVc7cgNwAVA3AIblCbIzbY3YkcP2W65q9hVZS2WVZ+djMZDwihtaIsYdX9b1mQYwOdScngHGXAohq9eGAH/QM/8APi8vayl73MveQlLwnOau9///tFigY/bVBbkKTBXhoObHfccYfU5KCO6OM+7uPcs571LNkHHVQBZj73cz/Xfcd3fIfU4bz61a92X/EVX1HJ1CwSJYDD76czTVgX6ZlSlci2tRGus2i2JglNsUiyvy6AUzX3urmscuyqfVc9n0Usn3NQk++7in10armc7l8CDayHWUaatgyrtpBddWEbcdo6gcynXfem+f3p6C4pFgZbg3jaxn3+KTsLrGkoENmZPz+80z1j8/2SmAJ48A+7gBbvuoZZWEaF/Vuq1sy+pk+Lu+6J/UeS7XV8PbuhOcsc3OQx9/4RPPBZBDitcs80MTIcv267kiQtfj8vTZPXA6BhzUo0CsgBDh321EYc1zKyfdiFAAch95phYdR2OR4/Jo1lEGDrg6wBRv220pUpqbtZxBHMAgQk6yXgaN3QEMroRKmaNfUoMUbWRc2PaMwCPAtVuI8ICML8uG1n5s70DgWwkLFlg1Lt1xOZJM4ZTM9WbxRAGYwPCJ4gN4OCD7U4u2M1BymtG7l5mTv+b9YRzC9e3wXYydz5GGR4SudJxoigCjVZek26jbVIVaAmAuZoo93Gsc3uf9MEpr7qr8KT9+fv5gE5kKz923/7b92f/umfhjqdr/qqr3Jf9EVf5I4q4JIGYAMgA1c19OuxzYEAfGAqAJ9tBOyfYQ393d/93W5nZ0dqZrAPQAyj1+u5X/iFXxA3NbA6qC/6vM/7vKWbmiKBHM2q4XMud7Jgx4ZNWtvUjywqjaoCDIsCndIY9r1Vwx6j7jgnlSla1qa67X6LXvc2jGHbmpgqWVmRtZl7Yl19n+Wgtap2p2rOlNTVSc4WfcB1FDI1kY6Zn/M5vWt0h3dD0qJ+ABb0vbk02TbGACpVIQjCdh+59V5hcmTevs5haJIGSXGzuhILdHS/eaZFwIi/f/A02UYdkFmU0WgCRcuEJrA6du5Wt+rxqmqnqqIEcKqYG2vHXHw/BzcVgEh+ztzWLk+2xUWNzAMlbtLo1ewXLMO9dI0B8WM6n5paDTeZ65lTTHKNsUApIpBILZnt65SXWcOAHCDY/XKHM4Ab68xGQJO7uXG8AGq8zC2u97zhQM4iAIzEhqJTqaOpOn/I5wJj5BuVIvYmw8DUcByAu/1JP2FQADS2+yM5Zi6To7mBNS8AyGLT0SB1K1ADfE1rhzoCisAS4VKKa5szjmyFZqRNRgF8LTRBtbK78LupbHCQj2Mlcqdx60R/GYs3NAL9yq/8ymDvBitmsCR/8Rd/sTRAaAo4qdU1/nzyk58cmCUEQM2b3/zmxnHhvvamN71pLXPUpLP0B2u20hP744w2NSm5hKvqvVs1VnVJq7vui7I2ta5+DWBiUZlYDj4WYcNKoHkRgGPZnCogUwdWltlnmbD9fJpC+92olAgAB3Kw23v6EAfx4OSsPCOnWQCSUG3qSavmyNgsC0AsCGgDCI7CEW0RKVgVwODcm85h0bHteCW772XCApyq88lBSy5RK20L0Pzg+LypmwJzoIl+sHD2tRdM9NVpTG2lkxqdSUygbTLJe5GgB4xAmNcCdRM5uLPAw4IHG1Z+BaldYIPQ9ymAnhR4gL1gak+XstwsA/uFxp5ZENikTUx1+1ikb5NzBRSWdQrz9vU09nzRm0rsvQ0YAoODfa+PtY8fxmMvHASOawEOwA22gZGCStlgSBD77aAhK84bcz+Y9KWep3Su7DUT1tuzX/KeH2+7fyhzEcnatCdytaY/hfPXugKcuHnL66TXVUMowOu6g5uA0blV3dVOBMj5/u//fveDP/iD7h/+w38YXvvUT/1UkYAB+BwVyLmZo/QkO4+8XgcJ6lE7lNWxMTbaMD7rAjeL9uNZNBYBFG0jn1Nd3QzfW5W9q9qW45C1KbE30wWv/yJ1MFyLddwPbet2SvOxYKJtL522gKaticIiAFKPHXvnPHlwSfudhJoJ36zT173gD//je1fcfZNzbn82lKfkkoS61OK4KpHQ91uc6xKfj9I6To+A/SqNfZQSxRJTk9dPtYkmRzmVk9X3urFjUZ5Wqr1BwAkP8fDkbLBxZogkTRy6lLEh2AlAx993G91R6J+j7CKkbHpsyt5sUspxrVOaZQro3mbnjbudBgQ5e2KvMtmX6NYVi/TJvNgQZzQkyTOyVjqvkqQMrM8Qhf6GAbJsCs9fQh6spHU9cY4KWlifA4BBQwHK42wjz7GXuGlDWwCgCJ5o5azXaequjjYD48Rmn7kMjC5lYFVgJqDnZlkq75rm50SAQ/aGxxYLaQPwuA9ew7iU+BGoAYCdcwdhjQGYqtzlwly787bi+VoGCaA/p1wW1xRTY8bQ9b9DT3Tcos1ATwTIgSzMNuVkwBAAjmensVpIkprdm6v2dWmKZZLdo2JubJLcJFNrG5YZy+tZ1uWE1mYN13EN2/YgWtTYom2Rv45XvV0wLVgT0Fk11t7TZoFTqlunKgtsba6pNqdDb1s7N27WiBFP5O/tX5bvkfykvTzm9xeGAPcHHqR0jmdN6/YpAdG2sa7a2mUND6wEbhG5Wp0MTa5PA8ApmQtY+ZpaK3fFFAIjsemnzpl1Wl03mqockg5plKEJWBYmMbJnNikXhsa/B3OCsB/YRA+YeFVZyWNZnKpGqxYwAezY3jextiLK0+J+MVG2tR36byKMjayLb4xJS2YLOBIGx19XJus8hnUMzAFOKr3TWpSuByfxHMBCpAl9ndmAsmzqOoevB9NomkDQIuCpp+dPeRmK/m1DTwSkYzw2AReOQRc5skF4j2DHMkRyTFxTGhJM+jKGNCgNIIjgLH6obV2PvQdyeVrJcjq/lnIepnHponFT1eWcxo0BOSjSB5sDyZqN17/+9e5zPudz1jOrR0lUsRLLJn9HLWNrw5IcR+Kar1MiYcqS50VMB26kDLApFmF2Fj2P3KLcSrPm7tEKMFNXd5PfN8cJbsK90llefneUAKcuga9aa2wPZzJ9vfqgSLie3L/sDk09hLWFRmphXdOsUUAdk2NB0nHYZq8KcBaRAJZiFUe3EpNTZeBQAjgBKIghAD+n2ny15DZXAjbWXhmvXZtsSS8jBpgJ9DxCo1YeP7AnkkT352twsnOgcQWZHrBDkIQ5Ngf1TmwCCrIeOgyb1NpElwxOnJM/LsCONT4I+1ZfaXsMSqjsOcg5mdoZbsPeNgQdSOR7/vyQxHNMC2ryBpxxnChb87NS+di0mzX3VHCjFtBq4S4gKjs/lVjF/j56/hCqzty+kQ1CKmb753A9KJsLPXZEuqbSPDI4+MrzZL0Tjgv2g+euwC9e080++umMkiae1rgB56aAa+w2/TYARrkTm72289fagltK/iKTVwWU8vtBr4LOob3A7cbFqVztBBgP/NIv/ZJ7wQteID+/9a1vlXqcl770pUmTzBwIPdpDegsYhqMuGa96Cp/XUFC2lkudjhvo3Min8jnYacM4EQzlzVlLMsB1rueqcrpSlJi8dZgOtLGKrmNwSrVZdVFKRvPXmtZvGdbxRkVd0j0HFDMmrY1BQt4c1P5BDyDG9uOqADYnoS/QMtEW3CwCYnLQkgC+TrNErQRwcnDDbdCHyG5DAENWJDESMMkzjCcssAFIYZ8bbGdlawA43JcSMp2LtTFO3cHy+dt6GGU5IqOjxfkEW56Bygq821r+sq9TidUJjWcLblp5IlySj+n48wyndS6DS1x3NhMZHpt/zs87NU/g8Qhq4jrGvjlxPZQ5ifOPNtl0UUOoSUNkl7AfGRXLrAAwIABYUG+y4WVc0gTUSO1i0X8qKQQjxGOAgQkuc7SK9kzQ7ngjyO8IdCj/wtcLgz0BhQKY/PwIrACCKIPT6wgGef7a2XqtEmCxNtjxWqT9dtLrVI6SRPFEBqa56lRvklM9cSDnD//wD91HfuRHyvewaUbceeed8g/vMY7aVvokhk1Ec8ahLgmsKw6vS8wRRwF2SonmSTAWKB27LtnleznQSa2UZze8Nitf76Y5ld6vuh9ycDMtSQM7Fb2TSglxZ1nJYDmmLdnPhfs6GdBwFA1Gm9hEXdPmMRIGLD+lGWpwYrKFJA0ytrnu9NkTfzA44r7mr20eOYA66WCmLubvn/kTtmtmXeTaOJ8loGVW3ccn39dK16rc0xJGJ3NKs6/p6x2pvYIrmp7T/N1FgGNrbgCI7M+2eSvAkYKrOFbO3qRyLG+r7BNgvR97ob5Ga0qqZUY2ibWJqJgViD8AejP5PjB+rnFfzmF+LedBT9oTJ3/dczbhGthaG5Wn9d2ecV6zUjJNkqfzANDXwKmv4bzBhQWKlLzRphpBwJHL5xSYppbxHOfsYN+vn4IRzp/NSXMpHNY1vS763kb3MLI+U9hRw5ktApN8rcViujcScCWyOg/+ABK5D1ghgKM9AwTlnAzrw/GUdYvXugSQWYeziFFBcu0Tdvo0+y/Ft33bt7mf/dmfdX/yJ3/itra23Md8zMe4b//2b3cf8iEfErb5+I//+DlDry/90i+V1i4MEB5wLP7VX/1Vd/bsWXEsxtj9/koda5aOhY+KiZ9Gu2hbl1DngtVUT2ET+FUTdjvfqifqdXKxGwGAFgU+JfC47Lq1Ok5lUpRK8NYBcNrcOyWGoLZ/jQEKywCcRRLounup7TEbHd9a9N1pirq5LXpP1Fqxe6CEp8uMDd+lfd8knNp8MyaDJbamrflC7bwLYLHJiOIowjZTTV7Pzh3gRuZmnqhDXGOboObR1v65Kapqb3LntKKsrQBuEAA4ljGxls4MMZ3woIM/W1AE9z1I2VCrAzMBbEUraYR1WrNzpmta8nvEzJPStek0mhHk9RVaB5MWyNu5hbGtXI0htuZeMmVYrNTOuczihOtmgEuQpEEulgFOW/gfx/bgUGpssvlmibtsR6DlGZ6ELfN1PqHJJ8YIkrjIWPHeyG2twfoQ2GDtrHMbAkCl15tVNm2l0QTAHY+jltHeGc460BmGxQIPsDi0hlbbcQWLZ8xxt/sH3mVOj4l1s+wWXebAOpWYGHtsWEhDpmZ74/AfX5+7fwz4FNA10c9RyTnupMWNkKu9+c1vlh6Rf/2v/3Wpr/+Gb/gG6SX5x3/8x9JehYF+ldZgbHtbH7wgJpOJ+5RP+RR3zz33uN/8zd90H/jAB0ThNRgM3Gte8xp3I+LGQKtHcbSVK7U1E8iZh6NK2GWc1u5AVQnCYk/b832XAUmlxLjEjORrbdeziRVry2ItMv+q+6Q0l9xevPTeste9smfSLAU2dts20S3cnzrPapnRqiBZ9k8kWxVgvHAYnq/9ORm75dSWPYc6MJzPayCgBo5IGklat+Lf79bnWQCPdo7rjFg/xgTJHCsBjNoPB6/t+JoUOn3ZkKRxkc/LgmtqZWlxnlHGVOyV47ru6nRTAAplWwAEADaa1McEOT+fAGiMdMweU9priplFT1gKsDjb3QMBO1amRubGJuTxnMqsCI+fg65cemTnmYcFZYhgid7VJF7e8/U5Yo7Ankemrw6bc468XXQyfun3rJeByfw82BkVwJtNyhEEJzyuvYaJeYABJvk6ovhfrJw9+5Um6KkJAedqjRJYo0NQk4NG20MoP/+tLntoxV5CYmRgziEYNsCUIGtAWwIWbASs90889wQo+Zof69RmbaztMfizdV2DkQIZnzAuZXXGSIHHDdfNy+PATIF9UgBIvu3WcFe7evVq8jIa3Zea3f/iL/5i8vN//I//0d19993u7W9/u/u4j/u4BNQAxJQCZSwARehR+ZjHPMY9+9nPdt/6rd/qvu7rvs590zd9k/SvPO64mZUKJ7omZ+EkH1KIwr8wVketpfPga/yKpJf/Vo28rqhum6ptqxzS7Hu21qZu+6bI197OR65NYT3tmpbWbVHHuUXsuNusb+k6lq5x22teVb+Qz8WyNm3mWRVVDCXBztrdz5acbylpD2twAx/8zbFGnfhvIE+3C/t0lv/Xdk7HxdpagCNuVx7E8DWdj36mUHa9P+sJwBm6ifyj5XY6/2oWB/vy3/6sX/yHJE4TuU7xH8cSoOL/2WMQFEAuxn8YF/Uzlydn3H3ji9LPBo5o1hSAiVtJqibnL/IzBRtWtmbBDo4PcMNxVRYV5V20kS7VGpWYLAASOK2ByVEp1sQbEcQEvK5GIlhJB2ZGmSi+DlCB+RzMYEWs3+MYYDM2OqNQSyJz9BbLLM6358ZztcGEWswATI8c/qyyLx1ff46yL2VEmMzDWKDv9mCX7F/Xr5bJMuts3BHxPQGPBSLbvVFI2mmOIOxNkLLR2nss257tHejaGzkm58Brp5b0yirlwArnyX9neocJUKLdNORpMDc4P9x3F4e7oY4Ix7k+Gbqd8UYwHAhrLA/lCHaiPXXp3rCW0LYvTs4IBlkb6tqmPbc7HshX9iYi+An//PWjacWt5rB27733ugsXLoR/kI61iStXroQelTbe8IY3SHnKh3/4h7uv//qvd7u7sXcbemY+85nPFIDD+MRP/EQBWn/0R3/kbkScMjlrjKT2Y4WkkMl4yYRg0YaPx21GUPX0vA0bYhmXpcFigRGqS/6b5IDL9H2pO9e245Tm3MY6+jjsdvOoAyr5+nbXZB18XFFkfY7ZHrtOklnVgLX0+VmFaa2bV6mWa1U2x96rBDjxuLGfULpNR4r596d9t+uGbsfLvO7pxSeZtlbGgp3/N7pbvl7s6h9suJFFt7OULaLjF9NAggk7tgU2lr1JbJ79HLg9XNEsgAlGBLl8zCTEuWRN10D/rNs5MEKNh0k8Oed87AGf+ps5cM4ERBwznIdnJ+z6lOZgz4k1OYxwLF9jJMmpX2MrZeJ7ui2Zlm41Y5NFDr4AkHjjaY8g/V6hY9dNhSnqVTBdaR3IvCtYt2AEkMqqBLh1x26rpzUyuM8O/CRKdSQ0D8D6bfUUpAkg9BbTOMZGAq4UnB/MsI8HgeZejHPVmhoAG44TGBPT5ycCoakT3tQfh+YDHC+608V7g2sbgExNDkNGx7I4DGk26gMAh8YE+ToBANHZblrjzvdolKu9733vc+fPnw+vl1icPKbTqfuqr/oq97Ef+7ECZhif/dmf7Z70pCe5xz3uce73f//3haF55zvfKbU8iPvuuy8BOAj+jPduRJyCnDXHIklsFTgZdLzbizT4a77T22yzSjQldYsAkkX7yDSBjCr74iqg0WatcglY22Pnx19E5tbEALWRN+YSnJJ19Pw+MZZl0AhWSqDFgvZkXnAxOgLgVXWOiyb0bRi5ZhZu/vzaGjA0xTLSyaMCZkVgVXGoJvCTg5uqyOtsGAA4cCdDgowidsS7Rnf5ecZC8nPdPXdtuiW2ykgMUauCpO/ydFuSMXRSZ2JtgYQm8qlVN8GETeptv6KkeWhmLGD3mW/mGZ9Isw7HsjLcLq3HmR/Ljm+Tc/bC0XE0Wca/Uq0QGLEEgBnZHF5nIg1GRwvlPaNknN1oUsA6Elk7XKfuKMjSctAmAMo0fFQGTOs89GfLPqtkja9ZBsCGsi9zL0uvGJu4w5ChZGpAZsVaLdPtjA0yySDk9sd50b1ldMLrvuaodGyaA5izUanjeFNADs4fzE5cr44yTMaxjdfPGk4IEDBrymOQUdH3u1JzBaAg9tN+ftjP9hxi0AkuPz8BSIE9jCCKZgjWoc6aEZDlCceddoOMDWwOvm73R/JaAE/m98R0ggcAzo1uBg9pTH/VtM7vf/78+QTktAnU5sBI7Nd//deT17/kS74kfA/G5rGPfax70YteJCZkT33qU91JjFOQc4IDzz34dGQZIJNbT1smYBFNel0Svgi7sIq9chvAsIq9cGmd2kQdAOJclnnyn4OaOgC4TKwKLmwC362ow8m/J+u4CijPU7ejeiZn13aZdS6tSZvt20TpnNtYTh91rGrvvQjAKfWQUTmZr8UxT8C1jkNtl9Xy2LmHJ2el1wvADBNrW9ytY8vz+yJzEhmNEssWJWtWPiRSIZ+Uxlocw0YZxiIHKbT0TZzSSvMCaAD4EFmfStbqGB21hYbMbKzNQZHoFupjsC0BUG4zHVzI/DWJ+yiosedJIIOGoQjK43AtdJ88sVcgNPe6SxuGaoJNtsclVtz5uKU+O9Okl4wm2rEpqLdfJruT1bxwnnZ/JuT23PMAC8FEHgDi2njDHXT77mJH2UTK4Hh+el3S9cRrgDScb85S6DWeCRs1Tq5tboUd65ts3QyWoCQ3tGuo7nQKdOJ6RcBipXi2diYxOPC1M91OZHuwHcEWx6B0Lqyfn+fZQXSI43g0RrDzxWuzwvU7jRgve9nL3C/8wi+4X/u1X3NPeMITXF08//nPl69/9md/JiAHtTq/9Vu/lWxz//33y9eqOp6jjlOQc4Q1OTYaGQ6b+MmHk9aU+mdx1eRQx1r/k1wCphLTkCeHiyY/1kigFMuudVWsYtqw6trma9U0Xlvb6WXumVxyWFrPYtF707gZc9kmMa8yKSi9XzWXZQFAU9JeB16b1qeNFLUqutn+dUzdMnGUYKnKja3kmFZ62i5jSI8Zld7YZBtAxtoZa5LrGy7ia3Aa0z97Pe/shN+2YHIY+J7j6m/iMrCQ1K7ocKbJfm7HrMdEsozvIouDWhqwSuk6Yb6pqQAT1FgkPp2Tf6khhQINsWM2bERwXjM20gyAQ8wX5z7pKOOjdRzalFRm7OVNLpObJfedtUrOzQZCHckoNA6dMxuwznAmSbVyJjJ0vB6Ursl2GbNjx7dGBQxbM5NbNPMc6UA2oT2xS/viCKjBdr2RuI6NZ/0gj7LghwH51pzFMQv9Z123NxmKZE3W39fVkGWS3/vG7Y0NSfGV7EzuMsd5AOiUZHYqPUxZPiv7CiyOyMG0DocMlNRJeWCH9VaZmx4Hc6I1tgI2BU+21w/Pm6DI1tuIWQGto31PoLCGvXHo08NxkvX0DyDCw45ZR4wHtAHpSRdJ3xh3tdls5r7yK7/SvfGNb3T/+3//b/dBH/RBjfv87u/+rnwFo4P46I/+aPev/tW/cg888ICYFiB++Zd/WZikZzzjGe5GxCnIOeKot+ct19NI0lIBdML7K8QyyXzd0+yjAE+IujqgNvbWVXM7it44VdbO63ZDq2suWxqz6p5pk/g3gdIcgHQr7u1lbM5XsTwunfMqgGpVxqzb4rNfV1dXVaNXtW/p98MioKq7ZiDUBBbtWHWNNnUssmvqhpXXv9hmlUhSASDieKkVrwyF+prZNGme6KYb7nx338wvZ1Xqzz43Rkjey13K/Plsdg7dvjPOQ7RPNkMAlIgLmGc+CAiCzMxIw0puZVwnwJe8zgfgRg0QBrK9gpSYzOZObTYIiCh/C8Aoc02LheSxnscGQZsFb2xAqgl/CoySfT1jlda5KFOSXz8raasLAggAFF7LtMYHgCK1fU5Zivhbp6qOxzqCcZ9pLybiup9nMwASPOvD9QwgIhgtaL2UraOJgN3IxoxkD68pINQ55m5nACWc67nBvu+PFD9LtMIu9SdiPQxC6mHm/j5HUwdbA8S14JgEKNyHTE3cNgU7XFcrnwMo0vW50Zx3i6DLyqpjLChR+7Ef+zH3X/7Lf3Hnzp0LNTQwK0DfHEjS8P4nf/InuzvuuENqcl7xileI89qznvUs2RaW0wAzn/u5n+u+4zu+Q8Z49atfLWO3qQU6ijgFOWsMqbNpkfDX1eMwxF3NQUrBDzb+MEwWloutE4A0JSvrKmRmVAGZtserAxT5ulRZNlft3+a4TePmsWi/ldIcqxLiEhNYSurzHi7VwLb8fenYdfVEbRLqygcBDeNYsNPEBLVdl7bXpem8FjELWdRYpM32bX7/1EVuINHWKEHHLhwvMxewxgJ/NT7vnty/nGyvfYEm7vJU/3Aqe+OlYCLh6YWEmTU2lNOkc4UTWDwDbZDZdfeNL7jbe9c9o1K9FmlPG032KckKDEjF3Yc5AVwpwFDZVr69tYvGXLG9gJqens/IaS2Nuo4pCOJ5Yhy8BmeyYHjAZo6+X06yDp2xsi/+6ooLW3D2mvi6JT2nKEnD3zIARuPWZiRtPW9ewPcQ1yebwYXN9v1JWCsaEPhaEhu23iIHYPZ7OryhP0oJ6FSxOdFGO74ucMUYNpAZwRsWMG32tGZnKoxOVxiEpDZH9Fx9ZTys5bE5FtacxfqY57w/YFbLgmvQgylCf86FTdfRS/FsHZOYg+h14j2B9WKNlm0cKgBj1nEbnlXBGhAAlizHAbhwLNQCoU6JLI1I+UytEp3QUOcjLJbfjuPSsEH2NeCL54152evHa41anc2eglEcn/eJhEjivLHDaSTx/d///aHhp40f/uEfdp//+Z8v9s+whv7u7/5ut7OzI65tn/mZnykghtHr9UTqhmagYHXQXwfNQG1fneOOU5BzjMFEb5GkhckGAE9d0t3EFqyLQVgkGV8kUV/Uxay0XRtw0rTNqqCQADZKiBarf6ozMmg6roT88VK77JKkKY8qgFP3GvdrA1CKtURrYiRLUWWzPs0kXdOWMje7bZ0EM1+nKhOGUhyHQ+Ki0Zb5Wecz0dwS+r7xOU2AC1cIjT5DrUsiIWPSHWsyCH60riGteWFSBWbEStNGbiAWzkj8zxlWR0NrTSCbsskzAAiOCaA0cGNlPYTdmAc+luXBPlIw3j1QWY9PRsnaKDODdVArZUnUTKK/Ox3Kz0hSyfDgPKz9dKi3QcxgBzx1m26UOJTpeuCBhGcqpBktm2V23e5MG4haNocJK14n4NjuHiZMjQUfaDxKuVrogZPVFIW5zBmpqISP24UeMzPfV8g6mGVsEwv589fnzQr0dcsixH3UjIChBgsRKCAABHoeDEjCbdiEYCLhm2luFxgxxKB7GGRk2kjU/B3Htc2ac8o95CVj8j1tnD2I0JqZuA7cPrnmYf2VeSErBcCkMrnyXO1a2V5LGH93PJTz2PTrQVCHgHSNfXLkfdbywI2tB0mc1uOkznQ6x2AVHZzgoixQmaGprK/OrVPbu+nEBk5n1T+PS8jV6gKgBg1DmwLua29605vcSYlTkLPGsL1KqhiWtpKTPLFoSpTrkvP8vVWbhtqoe9pfAkO1Hd4LNT1V25YAUZtzqtqmaf3arhe269UAnaZx2ji51TMj+EU+D2irarpyGVdTDYyNKucwm7RXGSjIOhXATttkf9EatUEG+FZRZS/eg6eBwVsDwDlqWWYJMLe5R5oYnOQYxhoa3z+xf8WMk/9uKA/Geg0W30vDS1tX4+2fIUDaTwr3NVnmE368D3MCJOIXe7vFIn99PWUSdK6anNqxcXxhF5KHVehZM5Rt8dVaJ0tdDR5tZY02ASCEwfEAhiyOjOWL960LG0DayPfgwT+eB7dF2MSPoAohbA9mQaDlE1i6f+EaMLkFqAvrHowNtCePMEmJqxgB37y0zmoVEvOIADhS1kBfx/VNVQ7iuueZKmEp8L5pIMr7gfdGaC4aHNMKD9EAiERhEVkX/V2gkjLM9yAwFyq/YjNN6ybGhBxJPiVXlLjhZ4wx6vjamvxznUnBkjENoIKsLQAP/i42+0p9jJHE9fEgyM9ry/fokfU1oNzWFRE8AQRxbDX16ImBAgAOwAb66ljZ2+FEAQod1nJpHE6X4IhrLo5u6H/EuWJuOGzHyfjz/Y90LQl0civqKsnjSQrMcOWanHVN5iaPU5BzBCFNJlveYnV6++rEtLOSbGrdNSltznUVKdZJiEWATunJ/Dplg7lr3urjaVjQsUixfrfhns0Zxap1PGlsxrIsRZXL3KrM4zKf23UyuPNjp4zVdAnTgZLhgGxTCfaNxt4wAaVAkg5J2NXppiSwUmgf6hCis5j+PA0ACKEMzp4AFAsINCHVZO/h8dm5QnmGTaLB0OD3HwDEjtsIMjUcGxbWNvFWximaDmAelODZ4Ou2RsGyJ9Kg0zNAfD06w8UakuDW5s+dLI4AAwNY6LoW2A0D6pJxZ9oQVJkjldLBqIAsDptRRjevtEFkuoYpgxFrS/Q6lK59bMY678jGNWZirQyTNxMgy+fXoVTQjntB3MuMbC2+HiVYZGwgORsWbKMTFsQAJibx1lIZp5y7k1mnsTmgk6yDl3pl4KQUBC0CyM01kL46xiiANtE4N4LceEyYJsAMoOvODg7cQ/tnkvlBRgZwNZr0RG7JHjfz89YQ2Vk/ivXssSx4wucxH4PSODJEdv06N0GfnNNYX5yCnDUGEhr2uAl/OFvs0+p91KEVnuS3TXbXyd4sGusANUfV42PR3jNtQtzmDIuzyhwSNmbBNciv+SIsicSCtSx2/yrjgdrjLRh1bM6iYCp/2NAW6NXVAjVFzvY2rVMJ8LRlcI+K6VnUuY4AZzrX7yatw8kBjf0ezmqXJ5t+nPTJfNLTxtfpoLGn1JfM+l7G1UvslVVmY9gEsDN+ezV8ifKvUMRvkvT8mFIH5IEJvt/1dUOMa6aHjC0Qn6sXCoACyTdrVPxxbbNR47ZmG4gmkjE6lXlgJ+dvAVpmXa22273Ula3TndvOskOAMOE4/nrG+dLxTefGFWNfHbum+Tnp/RErlUqsmrjphYalXe/6ZcBcZkhgrbit9A5ARwGwd+cKSXo31Maw8WyVSxcZieRnE7G/TmRHou3yrAK0eJkX6stoiGCK/y0oi0B05saTgen9Mz8XggS7jVpNc61mwuyoCQTXxNeeyb2r1xPnATAEEMMants3dhNWRsaedl2HTFdXAacFa6EvTwfMT89dPtiU13KLaLzHbRHXxxsytrWYjgAylajZcz2xgb9Hq8q5j7h/4s0SpyDniKIK4NAxrWr7/P0moLTI0/x1PtVdJGlqI2mr64OT9yy5WeIon6K3ZcbWCW6XlXitk3U6qigZNSwC9FZhoZZZn1XXcx33xKLPQy3ASeVL8wCncgypQVEJWjqXNFnPX0cQ4FCalgOc3HHLsiW2voWgwwKdUuT20pbx4feWrSAospbQQU7lv9PXFDBYeZvOVys3VS4X14PAIwVUqfNZqZ6F87TvaeNPZYD4Pudst0FQ5of9weLE8dWcwIY6g3l5lWdDtHfK/JqR6UJtD4OOYpSuYT5bftoW7OX1R7wPkrkICIzsgNYaleRryurIuppaGRa6hyTcsAnSSNPXqECWNrZzB2sTmnDaHi9I3HEvKiiiBXOQbhmLamvDHPr7mPssZ5Xyaz7nOtfRpp7gbcRxzzjf0aQhl4BRJqZ9biJTh+1ms46wOLlFNecQDBXEjtq742UACPNB8080/QTgs+YJsha5g6EHPgSANwHEuSEW0o/WOAU5a4wSgIk20PXJZhX4SbvE6/fsS8MYSEO0+ju6jctXnmy1rV9pSpiqiumbXlvk/baxbkZrWfC1qOSwZJDA16oAT13NUt09kB5nuSg5rPG4q7rX5cdpslhed+TyvvI2i3+OVnk4sGisKoOLTAyeoOdjt5OnEdzoONVrQRYHDE5IHr2BAFLBy9PtWH8y3Xa3d9UVTRzVpFh8oP1fPHtBwGKfxFtnMysPI4vD6WnNit2+UC9o2B2pxfEGAsk5mUJ7+30EP55R8AySJPamBxC/JkDETwXsip2LjBm2i0GHM2WIdE6w3Lb76/pHliwwPTbZ9dIx6YHCHkTiBKfWwwgxGwjGBzjn6NQlf3fC03cm2xHQ0SlMzQ3UQIHOazbyYnor3dPCfA+cvO2x37JYK9bLkn7WiyHB5nysnTSuhjqceRbE3M5IsCl5xFl3vUlAZCIUIBEc5QAg2CKLVXRkkKxFtRb1R2BFoKBzm1UyP2F9RX3gJZyF7JiA88DU8YDxsS5uds5aE9N3O6Oh2zlUa/RhfyLrblkrC8ikbmeihgQARwBEve5UwAzZIRyTZgZSh+Z75eRMWB7WpnpmwPFpPPrjFOQcUeCXXlMiwT9jbSLt+ZEmvm0LsKuSKiZr2misfqyjADjHGeuua2Aiuogz3DJRunal+8u61BEItZlXVY+d+fqaauDTBDKWle4tKxlcVxRd1grnugyrWhdHZdW+SlSZV5Qc60oNP8P3FQCnylAgNNeE45cBOIiL3V1jLMB5amKPkKaYwZfLH0eAhzqixSaR2tGefWeQmAqYMCxCyeq4FGkDUZ9YG/AQmCc/Ngv+pWdJxkBZFkP3NYxMYDbm3cn0mJNgBQ3TAu5LoEBWKK6/ghMGAQ/PG4ChdJ7i+mbka5QDAujmxgxp3U03qxeNdTq5FFBqejIGTGqRpI+N9gtismvXTK+hkaQZcEmQV6rfoSMbgQHuvzM9dcBLQnZVVgdJPB3KGDmzYB3DcpYiJORGwhiYErE/VlBUFTx/9pypK7anQxm24b5ioGAkb2RuLLCxYFJ75MR7HOcNcMNjgrXZGo7Ctsq+xHoczgvz7fvXuT/OA7U3BH2QpCHwGqyh8/XLw7I3HF8tuW8CigNTXHWaN8FpHkecgpwbKFNqkq7ZJ9TlDuf1tRxVmvw6PX+Ta1WpjqBtQtmWcVhntH1iXbcmyzqiLdIjZ9WoYnZKr+drj5+bmonG7d3aZVnF+zBJfFNnORt1NTml4x81g9N2Lm16QlXFjTLuKDYZFSdBP6eMsZnbv1B/kycpJcBjt2XzT7I0cW4pKMC+FsCwOaWOEZ268Iz5cKZJOsEGnK2YBOtT8Si5IdvBhF3lb7pd+r0t1k6dvKzbWzAayJLyEEYWZ5t/cjv+nJsLMLQxp1pGE+DY5B7ngn9gujh39u2RNfLbM+kWuRrsqo2Uj9vZNaJ9tq3ric52sa5HjA6yu6XbM8YEfsy6RqBInjd8xQyYDqyJWGn7XjkWENox2EwzB2MSImOb/21nraVjvxzfMDQwJ3BpMxIyX6gfZFsiO8tc1wyjYQGSHmOe2ck/N8GowGzH620lbTRI6HdnaopAC2y/LcEUTQtyFzV5pztTgwGcxwRn2w/HAAtz7RBmGh23Pxq4M8ODMK5llWztUPgZc+2NAmtDWR5BIsANzuH6aKOSsZlblwB0zN/im8B4oDObyb9VxziNU5BzJFGVTDXV1+RJxCJdytsmeSW5UOkY9dK61RP2KmCwzuR01XlSIrhKclzFfLWZWw44F7VNbjPvUsLc1gjhKOtPqmSAbcFY6TilfZvut9Ka82fIRBcBwHVsXy5Nq3sgsG6Qs4yEs2Q4IInibP79vP6GsjO+N9+Dg8lytu4e4NgaCX3qr6CBCT6lReV5xzEtEInH8IYBAYTEupCc3bDSLu0aH/exTMPASM4SO2sjS9PzjTUeBC5Id4MkrSivi0luCehYliZ0vLeAMDtPyvMgybOgiywUpXz8Ks0rxZAhvh/W0gMw7SeE65zeMWKAIMeMbmgYB/JCXL86YJMDFwJMzhmME7eRc5Immyo1S8bxUkIBOqafT+ir5H+yweaxYqPNOhBuGQApaBetW8kdyJi0W6bB1pUAiNgaG84zn3fqPpcCHDqz5Qk9wdC5wb67NtKifoD/q6NNb8es71POZ8FTbPSq/YBs/Q5kY9Jktjd2D8EwYHfLbQzG4o62P+47Z2R3lLPZTx/G1LqmWZCgIQjOZY193xyMQ5BYZHBgaBCajmL9J0GGJ2YMNY6Mp/Hoi1Mm55hi7mmVeaYXXuvUA6E2T5Crm/aVk8uq2om2Ybdv6oVTl+S1dYlqM79FJHX5e3adVm1WuagbVlUBfFUfmUX6KC0z5zwWOca6TBdK90wyx4rp1vURWpS1y9fc/rwIkF627qyqf5TMp+X6tmmM2xR1ILsJfCGJgeWzBSt2dkyYEmmTlxkRBOnXqfSUiXtG0GDlTdhWnbs8+yM1LP5+mVlplhoRIK0W1sLLtRKwkzE1PBaCrE5SVyNMU5R5TeFKZiVnnRTchO0MOLIuaSqfsyYI8Uk/voccDcej3A1hE/xcwhbqUpD8GQaGQCc2UY1mBRYQsvcOvmozzVG4fpah4pi57Cwvgrd2zypzw5hjkTqplCxluEqNQ/P38946Mm/vSmbHE+Dpex0R6HBuBDrsczTXSFJqYb3cCjI1Y7UM9kPuOAGBsRZG2MMMeGD8jS4tkcEmdg3IiTU21ulNTQfUTlqbd07duf7BHDsCxoWMCAKMElgZvs6GnI/ZvFZtL+3d4gASw3r6z2bO9Oy5gbu4sefODg8EiDy0c8bdvr3rNnsHYU6M7f5BaDaKuUi/qMnAXR1tCAC8c/O62x1vaOPQiXdTM85spYgmA1GiJtf+JmBvklCf9NXHOI1TkLPOqE/U+Us/1SPbaGM5XYq6wusm9maZbuslwNQ22aoCOm1BQN1T56OzyV08YS+xCFVzs++VAE1To9hVw86jLoFexG57kbVq0yB2kUL7o5QG4lrY8atkZ0chwaxieggw8vup6Ros+tlIQXV98H003JSn8plLl87byM0q3NHitjEZZ5+ZupjvbO9ZA1Osr71X5mtd7BN9y4TIPE29SRX7A8BRcjHj+Kz9yYEO58keOUxuuX1yfkH2o3bIFqzMOamZfWwiS+lZzorkIMTW8WA9IO1TEEFAZh/mRMaJ+9s6HkoC7fW2UjasbthagB9lhikgnFuLzEWM7I3MwwCMfK3Z8yh3jlOnusg8JF8zNz5KvgSM9pS9GWVrwONbdhK1LVZOR9kYvlqbaZoIsHEoP11sHjrsK3ApGQBsdMcJYEJQaobaF4CF24a7bmcylO0Agli7EscBSEsbsep9qed2bXQm1BHhddTddKfKtkCydmV/yx30R25rMJKam9AoVeRz2odHJXTqunYWsrRZ1z20fzY5z1x2VlePo0DINCs112F3Gh+SnNQ4lautL06ZnDXGWLxr6peUDE6VZfQyUeocH49X8XR4BSeqpiSyKRGtY3TaPHE+it42bWtHVgFYbV3t2sR8rcw8UKqz9JbtsqT4OAvaF20ga1+z91d+TQjU6iReTazhOoDxOsFO6fNkX7PXMXdeXPnYLcG0mG/MnBtl0jSwN5rUWlCmyUp8eo7fB77OpO7aeAkOah9CEfucBErHtkClSr6G/jkPj9WOWhiR6cA00YwuXviZNSs8ptSlOC3qR1jmJg+CBI4bamtEzpQ2xOTx8iTcjmtZCp1PlIZx28RMwG9LUFNlbc2xCawSMNeZytokfXgmUR6nrFBmLGC25XHI2gRWxPfesaYEoWan03UbTusztM8Re8qkQCp8n/WWiVIvTc7JRNjrkvQJ8kCLJgb0opPtjFFAbNqKe56Jtre/zkBNYDxy6SWZK8+SxOtcql2JkjZ52R8i1PN41zOCga2eys4Y6HPD84BEDczIn1+5zX3QxUtS/3LlcGuuf4yV4hHQ0ARcZWvMZToifQNgw/HZFwf/0Nume/5q6F/D1/Hv/GBfABj23xkPlVU61DVAI1FwqbszHavkYMi1QQA4EWTlUjsLbnRtYZ6xVxzvNB6dcQpy1hglwDInSZMPnf6azN8nAGqKptodvla33TJNFOu2r0os7Vc5bigmbu9Gtkgdy1HHKgCrDszk7zWB0DoJG6/9IjK/umuxXqey6uO07YdUBdIY+f1Wuv/qjt3EhNzIvj/L2lEzKuVmCzz0mFYAnF2f5ClomUntzc50OMdW7GMbuT+ROKMDh3X3Ks+PyaP0z5hF6+McPOXMi20eCBmWghdtCnptsmWaieq+1gLZJreItH9Nds8Zty5liXSOvSzJt5bUSLpUBjUVdsSCFGsXbQ0NLBuUNwvl91owXpZy5fOIbEw8Zhjb20pb2+q58/bMjTVqkPXLLK/TxqL+evmvVt7HfSXEoEIT5E3P7yjbEnvqiBuYBzeWFalzvuP1ywGpNUSwYJP9dOQe6EZ2R++/lFFk/xgsU2j0aYGPv4a67uV6GbAbOUsRrauVeSMrBHCBe1sdy1Q+yPkxwCqxHgXbYN8Lm3siAUO/GcQ9W1flK+YM9sNadxOA5ewgZXUWHGF+HBOmBJgHmB01VOi67f4oAB4yOAiArbNebhckatYSnOee1dVY9zRbd5Ove7g+3YnbKzjpnbjAKaz6Z3d9f7Zv6jgFOUcUBC/zAKe6Jse+vmhvkCaZE95fp8QpnXPZqrhJp7/o0+4c7JQtjtdzjkfRwDMfd5lEuXQNc+ZmagCOlSvm51Ra99yRzwLYda3JcfVEKt1fdfViiwB+rmsO1o+SDasCV8uwN9YKvArg4L6aZkCGP2/is5eBG0rSbB0M4uHJGXkdbAieyCMJvKd/RUAHAEvTkuUsDBkdx7oHH0PDBqlzmHIuifFB+FzoXG1/FwE2QZKk0qXNjrpDhd4spjeMrJ1vMCoswMz0ZZHku+c2OiO3YUCH7cOTAygyIVUgRQqoC0DHuraFNcp+JuCyYZmIwFIZeU8uKwtGBB4EEBQkEiKudWZ5bfvqsGdMzozZ4D7WnEAlZHpsaS4qQKw3t0ZVkQAfv60eJ+6P6y/zAWjyQDUwQVgPv03sF6SyvZGwFamsjj/nSXeVwxjlarShtrFlgARqYLg99t/sTZPrOfJyLErAKNnC53N3MnTXR0ORqZ0f7svrqIO57o0HLGBJm7Gm8jUAFIAQgAupaYNEky5oPZWbiRwNny3P+OX3iTQKDTbWE9cVu+vUmKHUsDQHL9gu9j0yskQDygOAdCrhO/GBv+mr5mun7moSpyDnCKLE0pTlS+tz+VjFiW0dBcpMCPPE8iiTPstanNSoYwUWYagWafZaeq8K6DRFMGGoYRDajlkaq66oftnI2cOjjqM8VpV1dqt9PUjJf8vk/Wyq9rXHz2MHT/ntmCIp6rsHJ+dDgpa7l12bqSwGcd/4gru9d93tO3VlIkDJI5cgMfhEF4yQjUOkqF7epCAnNzmoqIXxYIXH0maTMDmgSCfKmPKeNOw/w0jtl2dqZ+yZkxx42DlJwuzNEHILZ8rnEpmaTZAz1zaOmazlHHDq1Lq82UL7Qxd7l5DlqKqfsutAcwM9vgLfc719TcbRLLRQO1SypLagEMdlY1CwHrA0tmHrcarCskwhJGF3tVI+rf1R62uAdJUbqgzKWqKHfYw7GptZJudYqC9SOZh10osGB9LnxYxB8MH9+p0IQtSFrOc2+mBv9AkF2BKwJugzg3/D3lhqclCnQ8cz6ZNTcU2sBLCLtffmBnxfam08wLl0sOV2DjfcXdvXg1GAdViL69MVpgpgC4Ao2E0HEwF1beN+Abh0Zu78YC8xFWBNE9cN6yMmEJ1ZMDeYnbqr3VJxCnKOIEomA+uOujocu82iyXEumVrUtnqVJoeLhmWs8t5BR8XELBuLsjarArj8qf8q61Fi6ez4ixa6J0YLNYBn0WjDqLRtsJnXudxo2VppHsuwN4lk1O8O5o8xQrGyPPGMAAhMDRIGJBOsb1HWJk3s3ze6wxfzqwMadf36ZFzlT7F2oesuTc4Ko4NC4JG4g6FvjakLICg27ld5pL100B+lL8nntelWtn5x393pRjAuYOJNgMNmllonoYlW0hBTjjFIQA+mYPcPbliuI+dGJgh/F2i1TLYG80Kyrwn82O3PNhLwYp3USiYIiWStIcpGB7EeipIsbiNrwSL7jHVizVMiq5pFlos22HnNEmWGalOt8iquZ11QPqffa4NX1OxwjRRgRIMB3hfBfMDUZdmaHhv5+sp5Z9sS6JT2Z5SMDshqzG1b+v1hGAgCKGtaYAFPdCXE55YOcJyHvrfjm2jmx4LxwOXDTWFU7tzcFSYH9TwyXwOyY4+krtTl2LkQ0FhpGQJj3b6xJ1I12WbiTRJ67KfTF7Cla0NWJwIYazSQ1lmp5I7SvCipYwNZZYVkfYI5Qk+sqRH4HQO57EkPcfZeMYVZdf9HS5yCnCOMOqbmKAFQFQBow9TY7ZdJsJsboJYT3GXCOsPl57mIjfS6YpmEty5RXpWhWqetdAnoVNXHnDSAaWORPjNVjVKPsx7Hrm+VAUdpva3UrARu8JomhmoOQKtmJDJXQ9+Qmbtvck6S2bt6193lyZYkppen2zLOuY7KXRjnenuSsGryj6RWJWAW2CSF667n3j++zd3Ru+Z2ZkORs53paNG0AiX988R9tAFozvyxHwYkZz0pVmZdTVwLgBXjijUnE4sNL2XeflsrT9P1VolYbMAYk/1QO2F653AfGgjQlji+l0rE6FqWA5u8DqhkHtA2SkDHRs7m0LUMtw7uCNtcVFinLIXIE+kqtifMYaaGBrhvCIzCNhUOelbm1uuyNkulT6VmshK+WF73H6eAxwCkuaayRq5WNy9sMyEwmHM5iwm4jjsvuyKYKe2fOLCFep4YABkAEspoWKYlHh8BRgPfA5DwfoU5ANgdAgMwQOLUVvlgJ0rYCKIAlghypO4HwMaDOtbiCCvjZXW2tkjm1VUgJN97yeh8XyDI8mD+EV8nQ6Pv47OoQDawQA5ubXENUL+k87kJvJVP5Wpri1OQc8yRu6odNdipAzh50rQsc9CmcehRJImlnjKM/DyOg+Fp66a2yDzamEXUjXVUlsaLyMwaewNlQKntXJfpF7PI+NY4o41t9HGCsypgo+/Nz2skRdxgYCDlAtOxGWpXdNt5W2QbD07UztX5HjVgHx6cKgAC+LD7hSfP1i7fPInH033LPFyenNExu32hjwbeWABgimMAPMANTddiFqRo2x0RqCkb4wV0OKedKbquK6jifsl5dmKSzaSST8bJsOC/rMPIwyZi7JNDpieXVuW1GPEapmYAuRtUXs9ipWu2rw7rcqx5QDA4qAiuF55wk1GxoIpmBkzn7bHtz3SMs/O1QfvoOtaJcj66xDHs2FyH3B4bya02/mTdiUrgLNBVhy4m5vPXUm3F2U8l1nXlIIn7C9il+YCvK7HGGDxmbrccjx0L5KMkD/vF+7AoYcvGVlA4FTlaKcCWpEybzl1qXYQh6SfAaQvrGOqPYm+feD1MvZYBSvgK22eAFeyDPjcAPjBDAMCZoHEn5WqGYQOwKbE14bzNezgXcZMzNUZgm7Y6/v6S34+2l1AEsTSqYC3OlZuAyTmN9cUpyDniaAIxi4Cdqn44N9LtCdFGFlVlyZzv12TF3PY8j7q3zLKxSG3OKjbfJyUWtsZe8j4+ChBX17fnKI+dRxO4yQFOFWMDt7NLk+1gCpDXqyTfVzReTGtC1HVKJVem1iBpSDj/ey1YJBuWB3HowQmYkE0Y8ksirn+ipE5lAiahHwwFxA2tu6dW0ARh4cl5PBeMec4/RbbnOQ9gNNkfeievaVUPnVlXmIwqyZKVcdkaD32yrTbO9jUCAJgU0GXNrjetn+O6ewvqCnkVn7YLoMuAha2TiuwATBN4ndXxzY5nz5/JfqnGiGOWGpDmzVDtnErb2/0kMvBTFWSgKDskyyafhWCcYAFHGpS6CXubN1Et9L7heHLsTBIXbMGtS5hxAMvZHbqaJfMJZjKxV40CAs+0hXENAPJjQNIFcKAubxEkMWDjLM03DzddfwPs3Nj1vdytilUiyAO7xAa61khhfwL5WtcdTPrumn8QICDHgBaOQ/aG8+Y2qL8REGQkfpjbBl43IAl7E9gA8OA9ApnI6KWgDfPuG6b1pAaWfdX+pTdb/9OjilOQcwSROlThg8o/JuXeOIvaRpeS9TxRbtMzJ6/raVMH0ph4z442GV4U0OXA8DjlVKW5LsJs1TV5bROlZp5t2bxSHx6VQNXcGwXWoy6OwnRgnXEc5hmLApwmoK5/+DVGnrnBH3yAG9tAMwc4lF1pkmx+P1Hf79kNJuSDkETGIvm5An9J0FWyFiVsOqZt1GhZJLA8qJnB14u9XR2XspjZ0DMjrGXpucuTbdk+rlcs0rbJeHT0imyNXYtYdwCnNGUXLAOj55paI/N4BD5Jg8uKW0brfeZ/3+cSOwsirLW0taquMjKwjEgyz2zusfg+bVIZer8Ya2om1FG6N29fnUu98kiZoLT+x4LpEuOTuJD5NbHXMbJvsT+SroX+zPumBHACk2c+a8JoFeRsuC/UOU9ZUL6usslMsmbc0uzaao1ZBpQKr+WMTjpnHG+SgCuZfwdJnboOqoOZzhXgWpptekYFm14fb2jx/lB71uAfjjktNFINUjb2o/HSVhxX5GZeMqdOaVN3MHHu6t6mG/Qn0gQUskIdz/RI8j8DFPGcaDBAgAP2BuOfkd4/83PifmB0kocr/rOMOXM8OMth3h7Pn+w4lautLU5BzhFEdd3LauCmKtoklXWJcpUkqs5a1m6zCEPSJL9qU9OzSNLP+Z0kFqdk0NBUm4PzqFrrKuDWZBE9t30FwGkLopZt8Fk1Zi5HO2kg6KijSQZnf3vwN8vIsjgz5y57wGB7nIReIiFR9b07cjDCeSRyJLVKLgEbApqYNGrTYwIPPGstgR9N8FDrAZvpw1AHwfqeOA9tHskEN0qL0m1kbC+l4msRpKUAh2ElXwkrldXIEIxYFy08+7fswpz0z8jIOIZtfol9caZ5ch9qiLKkzgIBm+wnMrDso1IFGGwReV1YmRzHj4xcagutLFOUwNn1ixbVEZQk88yZg4IzHq9jfl6l7S3opBQP7KCVo5WSZ2VONImHXTXZmNDAlrUe+F3ptyPAQYCVQdNaJti2J0yUec2bCcRjd5xUtXl5lpWrcd1xLgIu/FjKUqij2nU5XjexhMbrV0feCc30nCH7I/bZ4Rj4bGJOuD/n8xRbG4S5UxqH2hwdZ+oubu+FhrGhEaiwjNoXR+aEGiHK5vz+nB8ADraTprmGBVW5nO6DnjqIC4M9AWkqmYvMGkIajU7U6ABjHtYwgafx6ItTkHNDgU+9VG0diXnrhHVJoGJ/XmSMGwk6jtOBrUqeVsXwHKV8kMetul5tAE5uFZ7sn72mlReLrXFd086TBnRuhLlFPFYaFtzYKNaTFNZQwI2bpI5aJpnW/SIgscCCbAzHCeYChWMg6KwlrmJZgk451VzxtTEysIyUBUocJwdp+dN+uya5LTNZHcrIJoVid4AU+zSa58baHAIh2+SSdRx2nazjGKMkKwvnWkg2bbKf9jJJt+O5VwEau47xeLEJpkTG2NA9L58bDRYwB5hJYL+870tyjGys3Nqa87df6x3jYgPLPDSxnzrwdHP3pZFOWlYl9FgJTmZ5s05abk/ngEqUSmW/7zOAE7avqN/SMbUGh3Um4nJn7LPVOlrto63Ui2wOmRbOW2pcfADEHQjYiHIvbov569pHeZ0N9NhBoA4HjUDB5IjV+FS3hcwsMEj+2ARFBFd2TgR07H9jJWrqjKf3CowHeoOZSOPI2JTksVKHJAAwmjKc+MApr/rn5MY/1z0RcQpy1hh1iWqdTKpNA9Blo65paClWqQPJmYY2TFDbsA1Al5lX6bg30gmsjVytdK5N13ER8FRqKlsXyfaFmpUq5qgkkbOvWfDS1uLZ7tu0zbqjdC9WGV3YaHuvldZgfg1TgwGAG8jTUkvljhSX2yJ1nTeSvPg0Uwr2fXf7kekLw6fyBDdJPUfGBshvsJxxSCRhAAF8At0vJuhMtBNJm5G2BdtiA4oswOFxOKY9RjjXDDwkDIxnKihL4/jBVtq8LgClE5kdaz5g7ZXBoskxvFSM65wfO/bFyYFlNBeoC65fXHs+yMlZoHl3rnyc2OcoZahw/ZRNY+PNFJzlDFpuMpE3RJXr7tfKmleAraP5Qc74lJiaksHCoBMZSj3vyNDlTUwJZTXpjvK0nIEicLKAhc1Au26sjnzeiADAwPazCXP1DUADy+WZCwtAEOhfY2t3eGzsv+1ZEAVHuj3mrLU3ysL0enod+Vpsvult0aX+xjc9FQCgjBE/wxYkEYSd7+8LmJBzC/K0buKupvU0s1CLA7ka3NZgQgBbae5HiRoD+xGIlJp1htfwvnkdhgfwtZ4UDAf2IDn15gaQuwV3tQoAfJKiM5vJv1XHOI1TkHNiWYN1Mx3HzZw0yeNy17e858qiYy4bN6qvTs62rMrkrLL/KmxfG0mcBTVNEqxFgcoNrZcp1HsdRdh7sw7k2sJn+5p2ho/JM17TugZNHIL0zCTo/DkHODax1cTePH3PT18c3WJiG1y7wnmlEivLJIAtUh83WzBeD2By5qmy0WXFe/n7tjeLlQjZY9m+ONY+2lpNk+VRRqAslbFP7nOHMXvONixYsTLBUlF9icUJTU0lsbdrQMBZuMfI7pilj8XzsWbLRg5ULEOU13HZ8w7GEJk0rg6ohfvHgxSOj+TW1kzlwfctwLHXwdZcJQX84s7HYvr5Gh5GlUTNFt9H0BXHz13OAEYUdMQGpHmwKB9nSrjAMXE8AkphWDy4CecZ/h6qg5pciy6klLBrnroroy2VmE1SsMKv8DokazPoqcUz627A3rCeB9skDI5hbHgOUTKXmjuoAUEEwPIAxRgvsGaKc+f543uR1s2t2Gk8muOUyTniSOVCaSdj+7qNk1A/ctQJs03WFmEyVp1bc+F2ewnSupggjpP3K1o1Sglxne12XUT3rnnmJAdsVTVpTb12btZYtOHuItFm32j4gEiBzu29XSOz0QQgNtkkiMmSag9OkKyi1kKTIspY0kRxDiRkdSGRATFNJxlZBXBeL7M/ZyfcKUqcgiOYPL2PibS1isax7ZN5GzFRSh2raFk8B5zmpGAqbSPgybcH+KHhQJUzGACnTdry+dnztmHX28oGSxK1PLkP3esLLBy3z3vE6H2RydjsPCs+yuk94pkTL2nTOabHZel8ck39fFjbxfkk9SyB0YuvlRic3Pab61cCDqFexYDCWFMVtxvLmcXak0R2Z4GEfz2wLMaOPIARX2sT9ydI6bmdccqi8f3o5sYaFwXaqEUR1sV1hFVhrYvW48DBMANuMBmY9EOjz7ODfWFxHjg4J4wNAA5kaTN+Hj2o4Wd9NvEAo6f1Mdb5DQwVAnOAEYDaexP4AEz58zDz6pn3uH7oAaR9fyLbFK4tfh/jx1lqv00r8YNJc/PZGx6nxgNri/JjlBMYly5dcp/zOZ/jzp8/7y5evOi+8Au/0F2/fr1y+/e+972u0+kU//3UT/1U2K70/o//+I+vff4EMkfdF+dmCxbUl/4d1fGqYpkn8cs+vW9yOSslzjRQaAuCc6bBgp4245S2y00TSqyNZeWqfs7/rRLH0admWeZvGYBjQV/V+uBa4pc3/zHZwvcDAZP6b+itY0WWAtAyG4R/cSy1rpXeOUm9ijcHMLUI8+cXQQyfEJMZQAKlTUXn/+VhpWslC2Mkqhxfn7JHSVVcKwUIZJ9Yu0NHq/R4kUVi8qTJdvxH8JFItpAgdkeJzXOoGQhNRT1r413ZwpoUGAIbnI82KOU41X8vQh1NocmpWhLHxDB/f+7YxlEr/zl/j+PHehz9XuVV6bwj6xbBNMEpz7MKvHE8G6GprOvK9SUw1uatCibz9RVjB/MPYNQCWAVPTIa9hbS5B3L747i9ZVx0LklvHQOcSv+SsY0Vsz3e3HGmcDPUuhuxRPaMByPW98Txg+sZnMp4jv58Ocd0zgpMAITu2rzmzvYO3d5k6O2ovfQV1683kX9kbngOHdwLfE2kcVGyxvMBaIFkTswA/OtJTRnkdd5YAecqMrkp5YD6sAbvF+WL/hqK7bT5p9cpta4+seFLvVb6d/M+K781mRwAnA984APul3/5l91oNHJf8AVf4L7kS77E/diP/Vhx+3vvvVe2t/H617/efed3fqf723/7byev//AP/7D7pE/6pPAzQNQyoQkNk6DqP0517xVlKAsm/DcLE7SqRfKy41UxOnW9etaZ+C6T1Ofzbds7yK7JqsYQybqat0tjL3KOq7Jhx12LUyUvPErJY4k1zK8HgM6hvw74M76B4l/XcZuhmL0jzE7P2L8iLk+35Cv6zRD8lJIHOab53VVKTgluwrxNoXSsVYlP33O2ga8H5safIhLXfW9lUWI7kjmYp/NoglplZ2wd13i8EqiwQMrKx2iewEaVlP/ZuQEQydzhcOed6SaFehtbC4PIG6xWhTBAhaQtl3QFdqSQ2FqJYl1Rtm3oahm9hO1hk1WEZ3tyhof1WbVW2wY8V4HinIXUsSNLibDsWt4wNJpLmL5GvjHoRMwl/HGN7fcAnylzP3BfK5GSRB4Ph/j7Ys50wP7uXux3hpW72WsFMKDmFp3kPTqLcW2Q+OP4YGq6PQUbuKctg7XVG8k/zv3qeFPMBQh+sHrY154PwBNlbApiwBaNPcDRa2DZGAQATjRR0ActuctcOMcpGKOUlZHrRWDdyWrbPCtLdznK+7AeqA06jVsnbgqQ8453vMP94i/+onvb297mPuqjPkpee93rXuc++ZM/2X3Xd32Xe9zjHje3T6/Xc/fcc0/y2hvf+Eb39//+33dnz8bGcQQ1+bYnJfKEPU8m64rTq/Y5CVHV92cdgGcRG+Q8lknOLVPRJtFtYnEQbV3OcoDV1HOnzdhttlkUNJ3EuqiTGlXMVNP9RUYHJgTB4pY9sKQ7OmRGfluTVIsDlkkQkuJ9n7TqU+p5gFPlmlVMVAiSOk7qbTTpz9+LyTPS4CpAU8VwVPVtsYXr/B5AogpA2O3svlYyp0Ail7ilNSuagKXNUsmc6ZgqzUkNEDBuPbAI7xkgaeVUyZra81rxKXZ+LPs6z5f1WwkILsjbrOzLnlsdqEuOmYEne6/Y9czrwOR4iUwt+3vpDTyCzE0AehqsWaFZgZWE2vE0KY/StPx1uqrpa2lNSjgW3c28TIsAVpiMuaarpAA0AHCsgxnmQeaEfXQgs4tzMmyKBwYIsWb2bmkEGfxHJqc/Q0PRuO4AOecG+369oyMaG6Uq+2evk8rMsK4l9tDOK2d+gr02ZKm4i2QbrftJa5pwz9wEzUBPjQduLZDzlre8RYAIAQ7ixS9+set2u+6tb32r+/RP//TGMd7+9re73/3d33Xf933fN/feV3zFV7gv+qIvck95ylPcl33ZlwlLBNlaVRwcHMg/xtWrV9fmmJYnj20kRVXjlL4/KYCn7ZzaMlslO+R1OuMdZ8K+DEBbpUFqu/Gt1n96JD2Iqqyvb3S0dawrMT1NznLrCG3SalitiqJs1riAxYlPPGfCMqhBgSb9sbN7Wvug46esS2iGaba1bEFSi+DHFsbD11rABcvWkiR1DzwPAxrsnPJ6kzjGfLF+3E4ZBEqecA5kTZQJ69XuG+RRvpaEICYmz525+iO8RkbH9svRsVMThZy5sGtYJ13Lo8Sy5dbaJYbEHjN/v8T2xGaYab1KDlQsUzXvBJfV/DScZ8oATYoPCHIjBlxXgi8aElhwUbJ43iiwXqFeh8YSZpntdrlhQF7zghD2gs1pKX3MjhkkdBWfado704kNIGLYVYtmgAXW46TnpmMRTMSi/Z4wUDbYO8eCF87PyuCElcnsoMEGYT45cAprWQA+rKHJ11QewxibaF07bhfXGu+JhbaXD2I7YZCMDfVf7iyn1DnWwHRX/bt6cv6E3tC4KUDOfffd5+6+++7ktX6/726//XZ5r0380A/9kPvQD/1Q9zEf8zHJ69/yLd/iXvjCF7rt7W33S7/0S+7Lv/zLpdbn5S9/eeVY3/Zt3+a++Zu/2Z3kqEpkl+lps2rkZgs5+LPArs286piaZSVndt9l9z8K8Nd0nqs6s9UxPFVA3b5ecsrTbcpzanv/3Uh773weq+yzEPhscb5z9tse4MTkrvAAQAwH8I+OUyrTITNx3/iiu6d/2e+PBHX+yXcstC4zOMXE1G9iE2DpCp8nsiwSrqgRIDuS20MzWY6yIp6vH99Kp/JEP5grpDUreTLJeh5bf0LbXnWo88mfn1+VCxr2sXU+TWFlfsI4hRqkfrJ/Lg9MjltgcVbpEZICyVT+Zo9RB3TaRImJKt0beTJMK3P+bF35tKA9ur9Z9zsdS+8xlbXlf6+iDAwNP1lXlQMjPW6sibHgwvakSSRnnr3IO18F2/QGF7m4HjRp8E5xVvpoAIqdM+bXxXxNfY4rsE6cz7Ab78spHjygLsjX50RZmAfIHnTZsOPazxQtt3l8StfIlOnxI3CU3jlyveJ+BEm0zaY0D+93/UMSWl/bnj2n8eiPGwpyXvWqV7lv//Zvb5SqrRp7e3tSu/ON3/iNc+/Z157znOe4nZ0dqdupAzlf//Vf7175ylcmTA5qgLS/9+pxHMzLURX2Nz39x2ulJqiLSOzabLtqgpw30WwrLeNcmpLbqvlVGQ6sCwTUgd46hsdeq/waNjnl5ccoGUuU3NsWjXUAo6a6m1Iclzy08p4xr7MmR+eldThIEC5PNwKw0X3inAFw2Esn1kLEGpr5z/J8ElouHk8ZFVuUHaRy3ZE4uEniaZgC6/hFR60mEJgzApFVmZe+lGRg+TlJdHwD1MzZDZEaEkT2poqlSK2s69kMMkR2fGsAwWSyVP/UxISUolSXk7NrPMc8wa7cPgNF9vzyNc+bkObnQBOM0BDS1zfx+AB+od7LrmWhdgfJNySaef0O2SFInizToy6BKg2Tdactu2+gi/vyAKYHvlgeyXliDW1YBJ4fg4l5cq/ba10AUjR5sCAALMzA17gwmQ8Oc/IAQYEMtrMNR/k6rycBfD5XMTfwr4FVwTji0MZ7juYJ3VgjJgDEmyPYc0VgfpivrXvi8eHgFiVxep+PJ1yfmZtOOlJThCC44pgIMEgwGtjqHcq1x7bomQN2a38ycBeGKqE70XHqrvboADlf/dVf7T7/8z+/dhtIyFAv88ADDySvj8djcVxrU0vz0z/90253d9e99KUvbdz2+c9/vvvWb/1WkaNtbNi2UzHweum9qgS+9FrbOIlSs2UBTv79UdR8HCUD0KYhaRsp3Y3ul9Smjiu3PG9zDZuumZW3VVpZo9dEjQV1VayLeVvm3snPp2kdSueyikNcXSNVAByAizu6++7QJG5Xpxuh8WEin/IOYyzWliTO9D5hcin1BBVWx8ncLLjwbIbWQ/QSdiSv+cFxAIDke29AkNR7ZJKusF2WROq+ZYbFnnM4t7BukR1SgVuUwsWeLSlbUQQK3mQhr+/Jj2Nft+eI8QACS6yFXas2jEcuLbNr37Q2yWthfRVY2LUrSY1KYzbV3eRsH7+355CvgbqrpedSMidgsL+RvUdtrQ7HtdbSwkQaoCOgwbOklEhxbF2PZoCTzNfLOedsrA1DEh3U0m0g0wpMi60NEkloR1kb/3qwnJbpeBbMj783Gci2Ond9zVpy87y0saY3NZigNmeCvpxz2/L8+50oo8uZHwATjIdz2OzpOUg3HAE9/dC8lOYF+Wddfl/1FGgB4CjwnbhdutFN+rL/HcMd946Hz7kTH7hdVv2TdkpY3XiQc9ddd8m/pvjoj/5od/nyZamree5znyuv/cqv/IqbTqcCStpI1T71Uz+11bFQt3PbbbdVApy2UeqHU/W+bWu1DsBT2m5dzE2T9MxuswqvtWwtUimJXKXWI0+el1nHKqZn0bmUjA5WZR3Wed3z8Zexupb9ZzdWwsbjtDGIWId5RrHpou990+Z4IlEx9TgwHtBt1E7aeae1wxlMBvDkueMu9vbdtelQkpKR06fQeA5qAQ0AjiT3vvBak8VorVtKVGP/HDJzkX0gO4SXbG2KNTjQeXcqravpJmaTYNRb5IDJfq/jRebDFuwzmDznUjKySLbGppR85z/jK8GKrkOhIN7UvSRggw1F7d+IqkTdM1K5uUOQ9pnX7bm1lY5xHtbtzY5hmZ05mRmkRx4I5desBCzlPL0ZRZVzn91Xtk8admrT2txNz95rc41KjaW3ZW9ykEW3LvmchKa6Thz/kJjDYtkya6UanKLrHfs8mXkhKc97QW31DuRhBY5lG3ZaRobrUZLRBXkabal9U03WzNh9hl0v+ZLX+Nsljk2gZNkimcO0P9fUEz9bhzOCkFLTTzJCbEJqwxolbPQPpO6IzM0jh9uhPggW12TRnnHhPuNE5+uQ0M+qV+5VdRqPzrgpanJQSwOL5y/+4i92P/ADPyAW0i972cvcS17ykuCs9v73v9+96EUvcj/yIz/inve854V9/+zP/sz92q/9mnvTm940N+5//a//1d1///3uBS94gdvc3BR76te85jXua77ma478nPLGoIsCgirGYNlmj3URW9TN/6EtgbN19gIqNcksJZRVCfU6a2tKa7mswcSyIIXb2/2XGeMkR901rQI662rKehyxyFwJdrhP9X1e/eCOr6Nnjo6pPXTOdQ/dviTiY+e83CYmcFXHseAKIEgTlzDfbH8AEHlaXgIGZrnrbKGt9XTx/bzxZ1WCXLHsJYbD/px/vksNMmknbeeb7JMl91HmY8wTjMEBDRC4rZ0ne+4Q8M2BNbBeLWtvCDADsMxlZJYlKtRqcd52vvZ6lQBxwsCYwnnLapCBqwJD0Y47snicE2pm8qasJRtxPSdlZCzbU+w7RImasZOmNDA0mvTTJxCw4COZe8ZCVNWBIVg4r+dFhqYMZPL7Ul+LTIetRTnTP5AxCDAY7L1DxzXOT4r4uxMFIMK2232UaZXz9owOjnump1bNUVI3//kV8JsxryJP8yAL32/C2W3WEakZvqoNtBo/Ya5XRxvuYNx3l3a33bUrW25je+TuvnDN3dbfdVcnao+vLnBgYafuzs0dd9Lj1F3tFgM5iDe84Q0CbABk4Kr2mZ/5me57vud7wvsAPu985ztFlmbjP/yH/+Ce8IQnuE/4hE+YG3MwGIjb2ite8Qo3m83c0572NPfa175WwNS6Ytl+OcswItogsJwIrAo8mpipdUWpNsMm8FVPzNvI23IgUJVsNiW7+VrUAZ2SlMm+x+M1FezXgZhFwNKi9tq2liqXYK4qv6x7repaNgGENrK2NiDjqABP6di5WQBATc7i5POuW3nWFoDJwXZMYsDm2P3A1Gx2pu7yFIbOY9cNvUU0qbKJ65nOoTv0si1a7Opc4/ciszFPzPH9kHPJZHHJWfD0Zb7dyvqTdM2mc/U7ec8YsjBNCX+VFKzU8yffJgcwWLNBN002rQNcnBcZrfw6K9gLjVU9O8H52PMnOyIuc8Yxjj/nMSfjkzGVBbNOdtY4wDblrOtNVDqeWmf3iwxZKeEN9tsW9BTMI1hvNcIdbMZh3xsJD0iShp7+HEr7lGSH1va7NF9aLktTUwE6kUWwAAfggK/ZAGhB0p3fn30U/896wrKwXw2bfybF+Pb3gUjY9IGCBUCUpnEekH3h80rmREfX49mA9TPlY5CvkbnhmqXzjTU3amaAc9cHIAI+vSsa58CeOWNKycb90LDzYKz9ePD+RmcsMjOMg/qfuzeuSc+e+/bOC7A52z+Ur+jN89733+ncfs/N+jN37xMecM+7/c9lv93JwF0Zbbnd8TA0I31o/yZ4GHhak7O26MyQ3Z/GSgHjgQsXLrj73vlEd/5cMzuzytP/qvHaxKLHXBTYLDJ+G0CSzqX8i6kqYbdgKd+3bW1HFXOz7LnXMXdVVtltZIlV55q/v06ziTYAfCUJ1xGYSTQB3FWAjb1WTdetzXlYkJPX3GD/kTQbbJJ08ngaJYiBZOeaSGD06bD205lmNSF9SbqVlTESsyw2vZuR7ps+3Uegf4XOS5N4gi9a+lpjBES+fykIbpBMl8BMbodccv6qYgtswbuccwNYIuiwCb1ld0ogiXNBITzWocRCiRwvk7/xnHm8mJj3w8/S5NH09rFRsgQP783VO9QDHO5TAgp1bmh2HqWw16mq1iZPuA/99WJdWTIeC+dtM88M4Ojc9FxYh2O/ch+dQ8ddn2xKIg0gYKVWuWlEwoBm90GUmqXsDdd/NO26nclG5jaW1vrsjje0l02hxkfrYXRMC6qsbXO6tvoaPstgTyhLKzU1Le2LwPEAqOy29vwJ3jC2Wj7rml4Y7AVJJ+aH9/g7hb+X8DOak14fD91DO2fctb1N10Et0UPbrnu95/r37rjH337ZPfv294dmpg/tn3X7qMvpTt39D/bd73zWa92VK1fc+fPn3UnMJV/0YV/r+r3VSibGkwP3v/7oO0/keR5n3DRMzqMlmByuk3GxT9vbHLvtcaokalWvLxKLWAnXRZvmqFW1LFXvt0nsVz3/HOhWgYDSOpUkiVXOZnVjrxLrBOnH0YOoba+bVaLNOi9lbJDZQ+MrkoaR2Ban24R9PIuTHjsfV8e7iB4uoTt7fE8Aj9MGfwp+1HUq2L0aWVp4WmySu6GpYxGGg+5jc+wFC5zBhLA7uyb+/D49N7POcL7ybE3JrcwWfFtzg5IrHOtL+JrMucLuOQdKueQtl7rRREHME+RIaZLPxDuv2SgdS7ePDEkAKlLLcpiMSZamyvK7xCSRPbHMXFUEBzvDwpBRSiycPfNkWSwJIznLQQ1YplJYNiZPsnnP6HbZ5zGp3ykbRjCR5xzxqoxoZGrcn31pNrxOTfaFzXLCuCpgsC5g4TPjnchCjVhX13HDnwPmpEm+GhpYgEOgAPYD++BzB6CFJB6v5a5jBFO2OaYwNB68WItrkYUVQA2C21lXtnCufk0om8sd5vrG3IBmApwr5oLXdsYbge0hyOJYqLfZ7h+6M/1D+Yr9tvsj9+DwjOyzecfD4sx239Xz7i8fvs09946/lHPHuPfvnHMPXznjpuOu606vuxMfp0zO2uIU5Kwx9A9at1ISc5SSr+OSk9Ult8swVFVgZ9kktOkJet24dWDHrm9djVLdfumxpgv3o0FUuZOVgtstKlE7jrBzWySqruFJ6KmzCivXxjHNgh351+mFep1ukKap8cA6IGioy2GXdQ9GSh+h0IU8s1/me5a5CbK0IHkzxzSuZrFYP0u2/bgJaKlwCZurs2lRcB+YDA8eklqR0kOfCiBAliXacOtcABYt02WlYfo1LYyOAMYm4ymoqnJIsyAkt2nOwzrA5U1L8/EScJPV9tTVLtFhL+mz44FOsgaF65nWAWV1UhnbpDVLrGVJwVK0gDY1QWE+sQifr2EcwA4BPLxmfn3kWvpaFwAScGtJJKzdrELmpp+d4NrXmYqjXqxl8XLTngJuACuAGtTVcI7nB/vRVawb+wWJzA0y9gzgkD0JAMIYheh2OahSkMJ6mxzIxW31uARZdLCbk+pNfd2UBzoAI5yDXrOugBP8o6HAQ3tnZK3PDQ8E3GD/P3nwbnd42Hfd3tQN+xO3NRy5zcHIDQdjt9U9FLkbxsav3l4P91rHTfabGeIbHqcgZ21xCnLWGKVajVXGWQQwLMIutB13mXmsUquhjQ2PtoC+qS6nyiY6X9+qa72sCcOi90pVrU9VIt2G8TqKaDrOosl/XV1SHdBZpUnsKpFfl0Wd/koua/jZsjoS+CLHQPIZ++XoYxet09mXxCWOw0JpleLE79NjRQmNdD+XY+dd5vWYrGOw9TdnuoehRuhwOhSw0xPAYx2vorMbUl19LbI6ZC2YfFO6VdVPxNaS8D0m5XVW0rqO9jOun/oEEHi2wkZJxlbsA5PVl7DJZwQxcW1LLlxaa+MthMle+W2QFNv55Odux7Hnh6C3pwUfUZKV2m/bYnm7vw0CLyuv43oA2OWSvrxnUe6ON7fehfnIevoKEwITrpN1tAthandKkrX8Z5H+ibwrrWtjADTodlrIHx8QmIdZRpom69eZGYYvggzbaBQAYLt7qA8QMgket8XsMT8yQAczdXzDZ9GaC2D+YEwAagBYCHBQ00KglTdIzcGNlaAxBKCghihzVgMom29a6t/zgAxgZm+M2iqtw8FYcEvbH/fd7ngQ5gCwgq9Xdrfcg1fPusddvOIed+aq27myKbU4g4f77vrZqds97LjpcOa6dx24/3vmie6eratSz3PP2Wvu9u1dYaXf/8DQ/XnhGp7GozNOQc4JixJj0DbqaoCatllkvKZYh+PYOkBMVRJpt2lT9F/Fvqwr5gGUnUdZ1rZK/5yTAHAWNY1YJapswNd5zCq27Dh6WxHodM3xB52Z20dCbg6PxCtYvvr+OQP52nH7Ig9Z7r6ITmyQYvkaFEmYZwH0bHbGUrMTpEHyRF/rfLg/fmbg9aFnQdROOtZDaLJHaVTqAiWRWRDPyb8y2VHey8cm7W3qUarqenLpmp5TPMcmZkUcrXxdja5uXjvSdfu+JqkqhIUo1DZZoECAk88/365uf9vklHO3zUkJXkKdiWnuWeUMZh3TtFqrALayWqe8jqvaEc7cU1Vsez4f83uE9UCs39G5eAlXbkyRAUMyniVGhEGbZelVJYxPHG/kAZVKwyJbJaDGNL/E+onlsmeAwJ6AGRFzAN+Xxloux+aqbBKqoAYgAUBJ3N1M09IgTe0qc0PXN54vr7etU2JNELbBXOQchFnT7fEaAvUzj+xtC3OzNRi5B66cc4c7Q9fpTd3Zc/sy5l/tnHdPfPzD7r5HzrvBu8+67rjrDu6euM7ZkTzvefebn+w2X/hnyiT3JiJle3D3rHvofnVcO9GBpV31z/TxK8pPZJyCnDXHSbTxPar6iTr2aB3mCsuwOnb7KtexvAdK6RhNxfpNgGcREISxUhezCLp0bvNr2QaonDSJWl20BQhVNUqlmqQmpiQHV6uyiIsAmmXkdVbClhsT5A5tWrcDB6p454BRAfgJ7wsDo/uB+RFmx5+DTejoxhQNCayETmt3JKQPT5RnMVRf33PbXU2sxCK50wt1O0jjEZen2/L1XGdfXNm0JqjQjDQDKjYRJvNiE+/aRqC5KYFhFfLI+/nYHjFzcrCsoN/2/gn9ezyAo7FAsQ9MgRHScaNldS6Lq9s/f50AKe8jM2e5XLEm+RpbowPWtViwoPbOfmyRt0WQFqVrvdS0odBIk+OnYGLq4BPINbHXVetaolFBLsWzYEV/zswG5h6UaCNQzgNAhA0tS01yLbCxzXbTNSaAANtZvmfls+dreQTYTJUZQy3L9cnQsyq+H46/aDQsIIAAM3MIGZdhjJStiUzTdu9Q1oo1OKzDA1AgA0QHOYAgghsCKh5X7gjPLFK6hnU70z0QcMTjA7hhfrcN1d6ZY1/e23KXrm+7g0c2Xf9qT5bo+qWh271rw91x8bq7//0X3eZt+2738VPXGXdc/2rX9R7YdMB+ow/ddY/sb7lBb+LODg4FNF3e2XKdQfVDgZMSpxbS64tTkPMoBzjrjjrJVmnbheRa8nQtBR/rkK9VFZ0z0axjctrUs8z10Qh/+Jdp+DkPHKuAzqJxM4GeHNDUsS91PZLy9a9rVnoS++S0aQxatx+TcpoUDDywmWe3kHDgiSoZTmj4I6BR1gefRd12xKe+MqZuu+/ma0wQTB53pwMBQUhedieajl6dbgpjw/1ku9nQnevui6W1ghat56E0xz7xtrI2nc+8hCoApMwdi+/ljR/rEnwLmGJ9Rgpa6hzDEAQ1dm2a+tNUuaSxkN8W/ucR+pzQtcoAkypZWinagMaq2iC7P49FwJYbEgAG2dqX4jkV5kB3O86D9tgq2VOAQ2la3vTT1jqVJJvyemaPbu2ht8ROwoNgfx0CgxPc+RTY8Drk/Y9K55o70kndnT8XgAhI0+C+BuaGACeXvwHQ6P6RZSHAEbamg4ad6sBGJzaAFTIwFqQSKHFsjHF9rC5gYH2sVJJhzUjILrGuiP11aKJAxzc5v0lP7KXHk57rDKdueLnvoMrcf/xYVID3/+VtbuOBvhttjdUkYuxcd9Rxo/MzNx1O3e3n9uQcwAQJYzWt7pV1Go/eOAU5RxSlp8pVDUDbdpM/yrCJeSmqpV/1tUB1RfWlyJPQ0joeN5hc1go5X7Oq672M9K2qb02TS9uysW7b80XXvS1LUlcDs8g4i8Rx1PsQ6OSMTZv95GunJ6wOQhicbJztTs9NxbHNavLTsSRJdDO3KcAJiZ6CHWyHf/BkCl3hff0I98RPiKvTjZDk4iue6DJhvKO34y5Pt9y5rjYqvDZTIIQE9GJ3V6RwOnZBZpYlrJS4xeakmlDRpjpP1G0diq7XPOjh+8EJLRzHMBemz1CVjKuUoLM+J3cawxqD1VI2IDIlkrz7fjilppL22Dnw4Hsllqd2DbyUL18/fk83Nwv45H2/r7jKGblTWJPC9dDzTU0lUle9VGIV5mlkjJgnAEAObvYBDIysLRT8m/4xeZAJsuuRJu8KzKwjmZgSmHuHDE7JSrspCLKCLM33sIG1NORpIv0ykr9Dw9LYhwKS6OP9Sc9I0iZu2BsL0ABQwVgYU64DDQsgaZ2Yui8jfRWWaNJzD47OyDneubkr47EZKOuVyAJJDxz0xPG9fx48OCuMC8a7MNx3j9266s4P9tyDe2fc/sHAjQ97zu32HC7Z6OzMdUZd17m06TYOOu7gMWO38d4th9Km0bmZO3zMgXvsPZfd487qGJgzeuQ8sHvWjSddNxhM3CFcWk56nBoPrC1OQc4RxjKSlFUTyZJrVVWCiz8tbROzdTrG1UncGFUJeynJq2scWdc3ZpmktC2zs6qETcfJmYayq5u1JW/bt6bNvVH12lGDnaZ7t/Q+X2vbq+Yoog3YWdUFbhlGZ85UozA/St4kqbFytNywQhLGmWeEUOSsr1tDAytrQ9KIhIgJpvbbiUmzcEF+ewAc+eq7lMd6ham7Nt1M2J2koNsnXHkNjD1N6Z/C+g9rNV0AS+n5pkxRwhBV2DDzGBYYJGOa2qH89UFozxh7DZGVYDF9fvxSJEDEu57lzFN+7LwWaW4tClK+vE6Gkj6RJEoyrixNYEoCix4ZDz2XFHSV1jRloFJjhlyqp7UgCnBw/XjuWjfie+D4a48VF0MNw7BUObJRZjbHsGT9a+Z69fjvB4XC/VLk41upHRkjzFGsl33DzGHWA4frHWVisQYH36NGzpoLIMSYwDM4CGsDDVkagQ4lcTxn1LyccwfyOuppeAyMi++vjzbctcMNd9vmntvuH4gD3OXRUOaLOe2OhsEA4eJwT4DQk84+4vZHA/fItW033R67/SdOndvzwP38xE0mYKpn7vCOiescdtzs3Ng9/rGPuCefvyRgDWvwzkt3u2s7m67fn4gL23hn4GbjtGH8iQz8Qm3hBNk4xmmcgpx1RtqRvPkGO6qkMU9MbGI+zxq1T/jr5Fel5LuJwakzCGhjlhCS+07FNtmwXIdFCs9L8qYb5VS2qFzQRp3rWj7/47Ijr5rPImtqr+kyzM8yfYlKMrc2DOO6bK4XZXMW2c/W97D2ZzQ3byROKlWTz55/m4ki5T7qxDZzh3yq75++ax2OeeLtHcWEpRDwZJ3XlAOShNSPD5DEOxTsALYZekAVZEmBxYj3cl53onM0vzf8lKyUzIIjCZyrP4952+JYn6NJfA3AqUnk46MMnHtcJwtSmiJ3c5PeJKGGpKpfkTlutkaBmfFsWG4xzfO04IBGAAAweX2Wfp+aSNjjyTnM1SP5n7kkAEmZY10yjjcBkB495p4orhcGRb1QBtAZOThJrLGNTI51N5bF0dfjfjkQaYo4Jw/oITfF7z1ftE+7ZjueZZQs48LXYcEM0DI0rIplb7i9ZWzw/dm+AhnW9CAAajZ76HczlWJ3YcsAvPyxHjnYcpNp113c2HOP2bwqjBHYG2k0OuvK+5eubrvx3sBdnp5z48f13B1bO7J9AFKPDF1vr+NmvZmbbM7c7MLE9YYTAQLbW4fuzrPXpe4G8/gTD2zGo56787br7s4L191s1nGXZ1uue27m7tl8yL2v1cqfxqMhTpmcY4qStfBRJJOlJ9glgDM/n3bszqJAp26btklfncQvzrXAPHjws1B/kpaOYDeykeq6Iwc6do4lILqsW1+bKAGKIqNX81oOlNqCWfYgappLadwSY2j34zarAJ1lwc2yMZCC9q7I3A5mYDT4VDoCOqnHMdOyDm3WlMDWQTBU1mUd1eKn2LqKYYyLvb3Yv8Qn2AnACPepfSgRt7EAxPZq4dzyRqIlcKTjl78PY5uoc2mzlta5cUJp3GKT0IIdtD0u98kdx8LPxoWOxf+h0L5g9pCvS9MaQMqYuK1lRgGct9opZywcmelQ+K9gdu7YmZOeBTL58azcMABGFvNn7Ek4H/t7z8vBLJBj8X9ed2PZnhwwleyl646r56rHuj7ZFIAgr3kZmX4///my/Wv4FYwL5njbcNddHOzJa7u++Sftoa+Mtnx9ziwxGCBI4nZTadSJnyfe2KAnrAx+BtjAa1cPN9yVvU23NRi788N9MUi4f/+8yMf2RgM38b88ev2pG3dnbuvPhu6hM2fczsHQTS92XKczcx00Sd3ruN4B5GrODR636z7ozodlTu/4w3vd3rVt9xdPHrrH3nFFTAp2Ht52nXHXbTzQczvPOhSHNoyzuaEs6eHoJkh7T+Vqa4ub4GrfXLFM4l4nM1qG7bFAp4rBWbbGYpEkreoYqwCAowQIR83IcC2qanNKsWhflXUDnSaGYtn7aFUWs042uIxUrYmdW9WyexGJ5ElqbEqwo9Oev1abHdQ4oHhZ2Z0RTAX8ZmBwGGBvMMb+jHU1aU+OYuPOUBhf+l0Rk3HWwNhknqyD1IL43izJ038PdNTC1vemKYCjkoV0seloZpubg468joUOYiUnLrtf6PHSiQwPQQl749gk39bszM2xwJDEcylI8gq3oX2vBNpKYVk8ne8oAZ05wCyOkRkrVDFoxbmaeZTqkHJwQ/OBHODk38MRzAIncRfroC9UBq4Ms5nOp/pzbtkejI1rja8AOKxtKYGa9DxSBsf2vDnX35f7aW8yDGYC+Cr9aszcxYkN4GWi9+vZwX54Xd7z5y1zFlYpurRdHw3dzuGG7DvpTaQ2BqzNw9fPuJ1L265zvedmfVgyTl13Y+y6/anbfdLYbfQUUH3g2nm3uzd0h7sD192cuc1nXHHn0OizP3F/8q7HucFDAzcEbsHh+1P3Vw9edNPrA1F5gfFB/c7B/Wdc/+KBGx/03eyg59A1eboXa4tObuAkVv07cLL+jtyoOAU5xxRNyeAyzSTrxmxK9KoskBc1HiiN0Saq5l3lVFY+Zv5Lvn4t8sS1BAbXEW1ttdsxX+1+Udlx29QNLXavNDVQbZYp2pBjSYKp/6vbvi2Ls8w2ix6TTE/T2CU26EbUCK0aVspKVse+Ht7DE25/j2ziXw81DTN3bapNCKUuxz8JVovpivUryMW0LsW5a9MN7/CGBoPeMlkAju7z+vv/lnx96d2/EYbLWYdSDQvZASmaNy5bJVYlNB7N6j+070+BZZhbzwhULIuTH4tAp9jLxi+9Mi2zopQtT/Ztbx6dt2lCSieyQs+eXDpXdS52LLsdGl0SeKr0zvyO6kSWRsazhgTByACAeL5Ox87Vzi0HWrGXkvn7xj4tyfEikyPzgKlA4fduzsZILY+wNk6cwOYlagUZdgN7wznQAAHgBlKy6zAY8D1uUDPDWpu4DgpOyO7QYABf+R4YFjA4Wz0AsZm7Ot6UJp7Sj8ish/0qfXX88TD27nhDmBy4r8FZDvvus44H/gDjgbt/55zU1yAec/aau/f8ZZkrJGwwFjh324F7f3/i9i4MREY22u+76bWhc+OO65wdu35P79dr1zfdBKYDUBLedeCuXd5yV8dnxHigi6afGzM3ul0la/0/P+Om5ybODaduNvbg7raR62+jZw4kHR3XOzNy/cHE7eMXymncMnEKco4xqgrH820YbUBRE9CxY5W2PWrpVJvx1yV5WlZGdSOtlReVr7UCEBnQqUuw7Tbtjr9i4fwJTvQXqQNadvwqOVxJ+najGZ2qBx7568L0ZD+jyajrTtw1X7BDoCMhvVBK5geacBIQIdVhfxEk8UiYd7zj2sWOFg//1yvPcQ8fbrvPufstobYHoTa0MQG2LmQASOq9lYN1yIrKUVfwn9pPF5Jjk3wnVtCG3aiqh7H1LzloS44RmK0U1FggkrvPJQ5suWSvAFySHjjmPduQNQdqc2uVNGxNrZvXFdF4IrXdVslkCq4InEOIk918qKNZZHjUHU575UitSg/F9LivFpBGF7YNhgHGSW13OgwuagQcso2plVHL905iMMD3xT2ti14x+6HJqEjUzDqkRgf4rOocrC21jAv5Gv5NY/3Smf6h2xkPxb2M4GajP3ZPOHtFQY84m/VEgnZhe8/dtrHnnnThEffey7eJdExEZH4phmcO3aA/CcyRw/UDawhgA4e1TbCCMze41nO9fScAaXTHWJzXHIwIDrrqgt+fud7mxE1GPTfzr4vkb9pxs0k09zixcSpXW1ucgpxjDgs0LHtT5Wa1iP3yUYKJJtnUsgxQ2/NsSvzyeoeSU1vpOOsGOHXXpo69alPLtIzhxCqR10/F5qTl67DI/XXS6pIWYYdWla4xLItYVedzo4HOMsF5w5Ya0hP06NmdAagoq4NEd1vASwRAWkQd45rruU1peImaoK4CGC8/Q/KGxqF40v/Xtv7K/Xn3Tnemo3a1DIy576VqeMK+2RnNJYYWTNgC6/B6wTjARt7s034tGQxUWTkTxOSubzrfNCm3+9qvajGe1uJIHYw/pLAMssZgKbTeiZbPuRTMzpPb2HMJzI+X0GHskilC3jxVneKyRqmztK+Q9kkxrELp9ve9aErXJgGcchxvBIHaD38/RJmfZ3UsMPXrkFt5x/mwp48CHYyE869jaNqE3f9gOgjytL3p0F0ebQXHMys9Y61MeN0DHAINsDeojbkw3At1NGgYijUGC0NwpGYSEdQeuo67Otoyc4vHAGgZd7uuOzgIySPMQM71D+TfXRvXAxv15zu3uQd3zkrdDcDMwf7A7e0P3AO9czr/7tSNAEJG/jr2ZsK67O5tuPEBXodnNCbXcV2wPNOO9MUZn5m5yXAmzT83HnFufK7j8PHujbpusqWuZB2Amp2ebDM9jwY6uJlVptrp3QS/U+Xh0IrzPHVXkzgFOccY1RKxZmYnlzk1bbNMLGInvciYywCdKgOEZWyfjyuhrjpOm+tSdW8sw0gdB1tSZ0hwI/o81UWdDfUyIHdd61wniwvvSaJ9E/xRLgRBMWRukLTBvAAnxH4/8R5CaE0Pvpf3ZwBHTDRn0mjUMhkAOEiakQxCFgUQY2tyxMY6+ziqzC3tiZLOF+tcbuZZBVSS8TMZW759ybq5ZNWMc7Pv50YCpX21tiWTpUnfIwUpVb2B8sL9HLiVgJzdTuuGxo3207Y/UG4UYM9X3veGAaGuykdomunZowDwatzmCJQsa8daLDWfiDVB1mAhWE6Ha6r3S6iRknq0sZuYz3DOzFTKMvP5GTBlJWrC4ngpWM7e6L5R3qbr00kMBgBytvuHSb2NdXcL0ji/DwwU1AJaDQXiuiszdG20IWsGkCPs0GDfW3X3BDRx/2lo+KkF/8Pe1B0cDoRhGe/3RTomy4rrhu9HXde73hUgM+ptODfANeu4znDiptOe9sWZOdff6bjpYKYytM2ROxz13PQvNt32+3tiSACAM7zSdePtmZuC8cEwZ6auM1FXts5+13X2+rgBGq/LaTx64hTkHGMsk2xXJb+rjn8cieiiydkifXvILPT8k8LJbDoHqKqarzLWXY/T1ka7CRCsem2qZFB12y3qhsfrVAKxbetsbhRTsa7rflR1NvOW3idDvrZUTx5/Lkh8Bv579NhJYoYkHHbQ8fwG0uwyBQVM8GDrjMQa/+4dXnJPcg+5Bybn3N29a0mRN4CPZUToZiUJbF6nEtgUNSKANXUpqpzO6sCNlYKV5Wy27iQmraWwUjfKrHKQgMhrf8IamHHIqNQCt4pztfuwso7HKAGq2nPJGDAFX14et8DftFLNlV1LYbO6yjzJvMF0dEZJw845SZthbbqF4w0M4LC9ePR9C+bKYCj2s1Fghe2s+xvmivoX9K+xLI7ui58JxuLrBDi0lk6uVTjXjjuYoDEvmB+t9bGMFiWjYG4OxtqHR6zavTvb9fFQ3sPPsJWGXO3y4Zb0woFd9MwzSjv7Qznzw4O+m+z1BWiIBA1AZgDmBkvccbiFp90IesDgdC/1XX/UAXnmxhfHrvOEHdcF+AFQko/ATIwLDp6577rv3RJADJZHwZMTaVv/Ut/19jtufG7mZt2ZAJ7e1Zsg7cUDoazOb6kxTuMU5NwsMe+ONv+HqU2vjrhdlYtNBA1V71e9t0osytC0B0PTVrKudQCd45Rg5XNexDZ50XMtucHlgCcHl3XHLoHZKtC3rHvbcYGio2bPcme2kwp06voLlZzl+LsKX8neQMoU9vXnKU/QocGfebma6VAvyaApPgfQuaN3PR3DSM9EsWLASykJtQ0XkfDmTEpejxKe9FcwPSUns9x9La4Jm1TOS974s/ad0WaYeZ+ZvB4mH9u+Z+to1h15j578HBBk3XJAF6R2hRqhfBxum1uBW3Yjbo9eSjC9SJN5sjpsJivXHzm42deaIdhgvRiD91bx+BUmBNEiW6WcdE0jyFBHNICWnhtnc8/d1DgnythCY1K/Vrm5wO5kmO5r6uEQ2g9H2RmOR6C1N1bTADA4m2dGwhRhW9hCj8Y9BTljNb3fv7Lp3H7X9Q71+AAbOERveySAZ/rghjIvmxMFQPtd1z3oxs8tsDxYnv2+G26O3bnze257OJLjXbo2cG6/J4BpujFVyRvAEi7jQdeNL07cbLfrpltT19key1WYeCvpEx2nNTlri5sA0j46Yt4JrF5735TYzT89j/KPRedSB3aa3qsDPFVPoI/iyTTBlx0bScAIyVGy3fFR1W2S8yor7VVZhFXOs8npr6qhbPvxywDnuGLRtanqv7PKmIsePwcKxwF22j40ad1nyjQZ5bj7kEslsjW7vSYrw5kWTjNpg4wNVtSoLdmfDZP6kIcn2kOEYMdaVct4tneLuMbx94MyPXwynvdbISvCn3W+aUE/97MMia3p0PWxSWo148Ht5mpicmtqX8tjndfymqKquiLrCkfgaN3S6mRgJaCnR0rrcKpAVQCRWVPRuv4++Zrl9tNhm3w8v88Grm94iFfz9w0MjWdB0nHTa82xk2vizQnmx/TrldXuiEugrLkaG9DunEBDHdXwXqwloxFAKXCvD9GY00jSICODDTSACJuHohEowZ0FRTq/rrA0+Lc/Hujnx78PcHM47rv9Ud/1e1N32Om594zvcMP+WF7f3R9qnQ2MD1APc9gT5kRuz/5M5Gazwcz1z47c+NrQDR/sC0CZ4ON3rS9MS//eHanJmeDF4USMAzoPb7jeYOr2rw/d/v6W2714IE1At+/eceM/uuAOn3Cormod587fuSPnfu19593dj78kMrlzG/vu6v6mu7q36fY+cJr23kpxerWPIapqS5qATl2UGjYedSxbc9HGpakKCDUFgA1Bl2WZuJ45GDgud6/VTB7arfNRs09NfY4WNcxYJqpcAdfJwLWNvGHocR8bUdVv50YyPE3rIO/72iLMmzU5aDKKwB1UcjWDZE2ajRaai5KlQZJ4ONsQFmjTJ3aWzQlz8OtjE3Ik3lWyNJ035W2+E3wGMAhw0uPMS8CKibhxUpurSbFMj5GlqZwqgjBaQQ+6ChTY4BRyvrxx5vy5KXOGcejGVtdjJ+4z3wcorQ1SsJUDq9xeWVgo1FplvX7a1jARJOXrb0FHABQYGk1tC6CJMkXum/duYtgaFR6DTIt1iKuSpSXHrPjdaB30tBGngptY6xId0/K5BTMC3wsHLmoEMAdGiibjTA2rYww3ZBzf0BMAB8cNc0NNznhTTQRgl92fyH2n74G16bv9cV+ACR3NZuOuyM9QDzMdzpzbmrre1tj1BhM3nXTc1l/21R6679zW/V2H23z/nqm8Nz3ou+7m2N1z+1Wx537gkQ03emTDdQ67bnZm4qbjrtvZ3XA9AK3bJtL/Zuu2A3e435fX5NdkbyY9dc5v7Lv3PHSH239IzRQGd11xJz5OjQfWFqcg5wZGmyaLdT1XqsZY5glsE3uj41ZL2PJYVNKWP6Fe5BxyoBNCmB1tVoa5M0G0/T/WFcuaBbQZcx3jVd9Hy0mgmpq8WmBiwUjburI6o42jDM61CkBZsHHcIIvHLwH1JqY4f22d82m93SxaTOefb3UHi4BGX1PHNcj094W90afcYHKYQF7s7oqz2tXpptudbrinDB80T909KDKW1XlzT238qckgEt5QWO4BgMzX9+SxoKdKlpYXsc81ujSF/tY5LQdQydjm2HZsXVfUguAJvU/WO2nibi2pLXuB19FjqCQDs0xVzjTRrc0eYxjYCDURIKNTYpDycxEAZ0GebRpqWKE68DV3jCAvTGWG5cauMdmX8yiwQMn6iByuzKwpK+Vd5vKHdhnojKyk1t/AUU1tqqNBAwypAXSkD02h+adsA8bEO6ttdscB4ICtIfA50z+QbVHXg+af3J6BmhwwPTbgyoamnnuHA1kTGAggzgwP3Rl3KAAIrAgkaaODvlg8S2BY6UvjgpPZ7AIafU7cxtZI2B84rM3+YtvtP3biunva82b/rqkwPDP0uTnsiekAetrcd+m8jn1m7DbP63nsP7DtZtc3RJ62cfeOu+vpD7rrB0N355kdt90fuT+/fJu7fn1TQM6l69tyvh/x2L9yu3cN3KX9bfdXf5nK9E7j0R2nIOcYYlnQsayM57iYnTpgdFS1O22Pb+eg66FylComZ10J67oc7taVkDY1U131ODmwsa8R6NSt6yrnu26AUdXDZlFW50YwPeuwgS9F1QOBVc8tGBME8KGmR3iAadmaqk8Tt2Fj0DPdA/f4/uXMZnh+Wz0We5ykErVwbt4Bro0Bwfy8lGGxLlZ8fW7bmsTdAgxJzIMULbV7LoG2HHjMNUXNGA4Erbb5PsFKm+BxeE4AQrl8LnfGU3CjMrZSDUu+Zvk6NRkSlBqGxtqq+fXga3mPItmfICmvkap66FeQpvF+sCBJGRgFugQ4PA6/t45lVQwOm31CgoZ/ADjS/6erbAtqenDc7e6hG/X3k2Ph2Fc7m2463gjW0+yHg68ANVcPNqUHztmNQ2FV8P3+aOB294bCqMwgK8OpwjStH2vnumBUpl03GI7d9uahO7tx4P7y/tuk8We35wTggOXBMs/OjV1nMHWdR4aCkbobY3e4N3D9jbHbOnvgzm4eugPU+EC++vircmzU/WwOx+72zV33lPMPy7o9tH9GGB4AowEkbZuHwuTcvXHN9bcm7oHhOXflzG3uxMdpTc7a4hTkrDE0wU2f6LcFKqvWNawjLCOyjqgbqwoALXJedvwq1qMEdOxSrys5Xab+pp7JS2uLlgFPzb131lPQntfqWBay7f2/TAJ+VLHMfZCD5GUaiy7EijSMxWu6jFS0bttF5tlGcreBzvf++GB4IGHbFftoTd7IHMj+InOLsicFFFq7gdqa9Om59kiR8K5VTGa5vybx+J0A2Vc3eU8TfS3y589B2sMn/vK7xR/Ng62wZgFEce7VRfRVhfpWPkarZqkXyZY/6S3jj0PJWonFyddAz03HsKxHLnmjFC4fL5fbWVCWvF96LTA2bo5B43sECzkQsq/P18qkFtB6bvxemTsZ31xvZNtkOKLTWnbvz/190XuKjExV7Q3nyeNh3P0ZrKKVKRGwbuqA9qab4mAGFic95wiAyNRIo8/+gbt9uCOgJmcFFQhZe/WJ63a1nknkbVLvNnUPjM+FOhwAGcvgIMCKHB72tUam60R2trk5cnec3REHuDnZXHfqzvYPpUYIbNH/ffcTnbs8FPMzYW1gFIB/w4nb2hjJ2N1rXTfbg6Na37mzU3fmth1329aeOzdUFkdqhUZDMTcQ1qszdWcHB26rN3K///Dj3O7hQAAOGKSn3P2Qe+bFD7iNzkjW9sp4y90+2HUfdfd190fuhAeWfVVp/cn0qDn2OAU5a44qYFOXcJwEgHOzRQng2O/LzUUN0CmOuX75WqlYf5k+Q01Ap66xbBuwXQV0lpXhrWImEK7TEsddZzSxe1X1XosCnHXdd011O1XRBHLt7678ocAqc1cJmwIbBnrqdL1ZCAEO2Z28oDvImUwNCJPABPAgqWPCmsuGPNBhemn3s/UKug6x8LzEJAj7IclyRc1FlojLayU2qMLSucQ22H2sDE5iVlN/koGUklzOggo1FEjHyy2p8/eqJGv5PsIgeXBT2QCU0ja/jtbm2fa3qQpbj5M3gq0LCyrysGNgDRXEzDcGzcEZDQzUSU+BlZVKwvXs6mhTZJliXS33bdzXzgeyMrA3ADhnewfByprbgMVBQPaGMa+NN+S4Amy8CcHZ3qGAhLMD31NnoqYCMI4GsIEcTVk/J0wKDABuO7frnnT+EenDs9U7lPEPJn13fbzhrh5uiIwOIAcyuD956G6Rtc120aNGzUTE4rk7c/3hxD32zsvuyu6WG8Fs4u6R61/ui4Kxew4ASecPGdrjti5L/53z/b1wvXHc0bTrfu/S493VvQ23c2lbHdng1ObPH9vdv3/e/d6Dj3M7B0N3cO0mcFc7jbXFKchZY+RPrpsS23ZNMo9OT1/HsKyT0SmN3xSLHL9tEnwjGIJF2JsqlqUN0FlXDUtVwtsGKLUFU23nYX86DqCzLrDRhp3JAU5btq5NndYqttZNv6fsvBddr3BvmCRQxpFGn7FeDgwMDAfA5iAOPUCJBd6xKaM+pdbXL0+3BAg93vfLCaBIhlZAJMDF9BrJWYgcSBWBianVAYtkk201NPD7iPxOE1Uepyq5DtbJBTODAJq8g1xe10ITBT1L+3AgZXfyfjy5bEu4HCmnSOtguL8FQzl4scYBTTK8/FhgNGydE40QSk5mciwDuARY0ITA3AuWtckjt92OJg/ib1xpzaymEqmcjWxPbmpQAsJSs2PqsMgu9oILmvajOZgNQkPbnm/mCQABCdnueCgAAvMBwLln86qADDEaMPMgONsZb7jrE+yjsjc2Fr16sCGfhc2+Asc7hrtuY+uyO9jou+3+OXf/3lm3c6i1K4ONsYAeMDaP3b7mzg323VZ3JPOHY9v7dy+6+3fOiZzs+s6mGwzQKFTHvX5t0032+647nIiLmhuiSe9MetxglfvDscz1zrPX3ZX+lru0P3DDp1wTpgmvo+7n+v6GG/Qm7oPOPORu6++63enQvWfnTnd9NHQ7o6GsjVy+jnMX7rruzmwcus3+yN2zdU0ketcnGyL7Q80O5HeXSy4nJy1O5Wpri1OQs8ZosnGeS9z9H69FwM4qcVx1MqtK4NYBsOqtrdfPTqwzCU97zsxaAZ2SUUX+czWASY+3LDNj57YsuKtjdm50v5xloo7tyM0Y2tyXi6zBIs1Km6STy9YVtgXBYY3EJa2rIEeeSusawvBWxmCtwkwNRXR+aeL9/sk5ATpkZfY9ALCJJ9meSaGmhQCglOwGFzPTqZ5gRseNtTj2NZlnDXtga3yqaj1Kc4kubWb/DGCU+ufkJgRxHlo3Io1RDeDJt8vDWkXnjJKV3PG3VALGvNyLcWin75m6vL4prJFd+4qamzoGp4ltkm2C5XgqwyPA4T0lrEtlT50cKLP+Jt4ruN/gNgdmAqCFkkcwOgfgVfx5gSHBnC4M90QmRkADcMR7AGAG+wHkAIjgfTYHBUhC/Q1rb4bdcThmrzcTdkYA07gnzVPvPLfjLgz33ZPPXJLj4Rj37Z93Vw833f6k7x7Z23bX9zbEVW1yaegmZyfusN9303FPzQf6+hmBmcB0v+c6Bz1p9oneOLPNsTszOHTnBwcCRC7t9Nye23SbZw/cxuahMEAyz2nXbXZHcp+8f++ie2h/W7bHNX3ahYeEpcLcLmzsu4vDPZGnXRzg6xiNcRTwjYbiAjee3AQoZ4r7YrqGMU7jFOSsMQYdFG/WN1mzSUpI5k1CXnJFOgrAUdfss1n2NS+HWgewyo/dNPZ66n3K51nn8lVm6I5OXpUnmCWgw5/t61X9bKqlaavX5pQtpddzH5+ExqDLAIxSo1Y2RT1qt74qVqdUi1YX+TVcVqpWbiybMjvb+LMkzl8zN+3M3O5s4nZmY7cLB6j8kJ1yQfjVmT6Fvtg9dJtuYtig+JSbT9K1d04nApsKhy2CiqQ3DdfHj4OvYCK0AD8tqMf3qJ9gQ0/L3KC2xybHJSYkSchlzjo+XwO7VQIl9f14YlKeu5LZ8duAgSpWis1LLQiKPysbQmauBNRobJCuzzzDgzlaZs6CVAIcAkJ7rPzcpF7HyOYsoLbH4/fRVKDCmMDUZaX1RgDZ0c4ZgUQea4H+OPwHiRlqcwjwweBcGOy5i4PdpDEuangQlI6RuWGQxQFIgvwLAEUaah5si+TtfH9f5iJubhMU+c/ck25/xN27fVkAEOLBA+1D9b7rF92DV8+6MYANmJortFnX3Hqy13e9633Xf/yOnP/hzkDqZGAuoFixK9+jwee1ww13eX/LPXJ9W6wUew8O3PR9Q/fI+anbfuI1d9uZXXfP9jV3fbIp9TV3blwP1/axm1fd+d6erBPi4dEZ9/DBWT2fzT1ZH8wdawFmCmYFZ4YqdzuNWyNOQc4RRFNS0qaB5jqiDtCUwEcdg3LUDRtLx26zjqX9VmWscslhCVBEEJQyLfP711/PZedadT1yUFZOJrsVDWhXk/Otk705Cie4o4g6tmQRJuU44ijc6NbZq2neNETtn7c7eGI7cb0uHMNMjUywpLYJr0+SZzN36Hru0uT/3951gEtSVenT1enlCTCBYQJRgkRFctoFBUQEYUGC5KAwJEWWsOQg0cVdlkVlEXAXBGRJiyRBEFEkCSJpCJJhGJj4cqe7339unapb1dXd1e/1m3mv3/2/r+dNV7z31q3q89c55z9ZmpIc4BdJuYRDSSVFKF0jXAx6z7ANGbuGYVpNMcwMZUIYG/rExUopmDheS3q6GsKhaJw4XmO/SsTE9EQFjHaDNHnqdIYwgklcAgpznoS/FoKAZ8AM0QqcO6Iqki/w4Hs3JITN89B4eWHIXHfzn7x2yzo9Jjq0TjxKrmSyCEG4Mt5hhbxqIW5eHozxe1MpV6dSbpDp8dFt8SWnAZ/oORxiBS8Mh6cxWfG9OPC8aE9P6Pnten2EzAhEKc0M0xTvCLwhON+HvROZ+Ehy/4SWflq1M8eCBjjWonwbfdQzgclILg8Pj6ISVNVAaFsKVCgkKDGox1cTGYgHKCrkktTeMUg5vHRYlCbVWtIqah15amnLUUfLIM3pXEx/+XimrnGz8gBLR+PYkzv6aXJrH7cLpG5qehllnTwtyHWxgADmA641iOHiQht9PtjBhG1qazeH36Hdb/RO5z51pgZp/cmfcu6R099Lz9Aohw1XaxgsyWkgYIRVMsyXd5hYpXNWrCkzAiFaQ+1zXFW6cPtr9a1Se6p5Pyoti+shiRPmU8u7Vq3N5cSispfNJGxhaeB66qo0MvcmLkYjwYmTAxOuq1PvfWVKccdBNQ9JrfZX6sNw6grVamOttgvR6XTS1KJKLFLgtVHyMlhhzQy5JCpiP7xRlpDABFELa0whBC64P+/j1t5B4jj3Czk97LHRRMfrr/kmXkiNqfjmehxMT4MZtsX7GQQhyntj5rVogz0ZLaPsEhJRXRPlszKZ7AiYBTDNdvr5OwnP62J6ZUTJDNeHQwnFi0T6TT/WM8lx1d206p1BFNFON++GCYwRyhcMJ9Q5NpzQ78mMS1sLvnKeSyo1Ddby3bJNON8q2P/qc7WSuloUseEwtSpENYr0mDV1xAuEOYe8nCX5NvZGmOREQtRAOqZke/zcNEee41pEIF/U3kgmOkJqlCELjaJTnJCPgpn6//BwLC228P+zqSLN6lpC01qWebV1Pu3vpKW5FlqwtJMGejPsbUEIWroF16FIud4MJQoOJdxjQ3UtkSHKYdmyDPV+1kIEYoP94M2BqEGmyPLOaOvri6ZyDk7XhH5afeIi7iPajVwjhJwJkIuzIN/FHit4bjAvBxNF+iQ3gdsJTM72MQHsK6Y5hA3AceR4UJ/LD/oqiKMWluQ0DJbkLCeYRveKIDzLU1ygERhqiE493qmw4Txcb5UQmpEIOfSLpFYnZJUQJe9stjksKVxeXHLFh4nVJtXLvziniThEohKJaITASCO8rUPxPsXP+6lEbsJzTeee6f/7dZagvAaZaS+UzR0r1LRJc/6O/91RiloSRS4g+lmxhSYnB726O0VDMUtCjBDoJfVhvOWut8b0CIgHx8zNKQv3Mgx60/sTznExSY38X0QEypTSIkLQzBwUaUuY1Egh07gwZaQFQjYCy0LETUwJk5gkQ2TJ67dHYCXnCtu6hUyNkLOqymxufowZEigkSVT3dAFopyxcTc4dbL/03/QU+iF1UZB+mPLhpqfE3C5AJgMeQJl/muDAkIdQgAlPkjlR4pAyKIaxqhhEL1wPDzxnWlJZb1dCOGxCkxkpDAriIyFtUC3DKwOEq/XndXga8m9wC8HDI6QB+TwIJ0MuSzoFzySxhDQNpqiIXBveyCFnMEGJXIKKbSVKpUoc6pYHocknoLiOhlCptUjJ1gIlU0VKJkssUw2hApZ8dhTlM0Va1pal2W2L2OMCDw2EA7RwR5I9ON2FFl33xx1nkB32ziQUCyJgPCX3SEgeiA0wNbOM1y9IWLN3PMFe7XGMSmQnfm2T+Lk59ebiVDumSWSivCBxPSPlb8yDhn49xmgwZ6a2oS1hanGFGcKeG3yvlEcUtX2l7aIwVGIWbawOnXQEBRFKK0SWeTjwiaU/Z7ShW4odgjcUD049+0UhPHZxSEyc8Y4i6FHzIxz6KaS8zDPF0tFQvRIShBAn9zuMGx7vIucegOgACF1DKBs2yagie3r82ib465MCfjvvJZ3rcCcOm/NqzJjz0/XKhLoDT4a5jImPYfRqj0dQQEHClvRxQWAqj7/sg7ZI26RGjpyfiVnEPe+HZ/nr4IUxDXfJHzIT5MWg15LJwWPmKc3rzfo0elsKhZxBSsI9Ltcx8qXARSnNFH8wx4S9SwbB8PojBK3Mw68lwpkEilCDIZQgNXR8j5nviZP6N1EwC8WCEpjhY9Wkp81xEKAfMNhBXgA21EuYjW6YGnK9XDECbIdj9xczTEY4HA/enkSJk+9FtMAcL+wLtORbmLjgnhAPEQhPMeUwwRkspOjvi1ai95KTWHkNYWsIUYMIAT4E74wbmqY+boU6O6XzCVIpRUiLcfIODcxv0zdPMUGpXnh4+BJTCQ+/j1uoVCRCpNtARnHNHMclR/muPLcF/cJ49FKW+lzluLbkIE1I9bNM9me5DupMDeh6P+5cgOqa6T2FgAP6vVK6m7eT+YO6RDIWoxp8wwwzekFuunEOS3IsGoahJIZXIzhxw++iluG4lcjDcDw4UaFpQy1gWg+5aXR+TJSiWnibcq9UtZyt6OMPZYyGOrdGUw6MSZore8bKc6MaoSTXaK9brbyjocA3N6OJcFSOm0nwy4QUvJAmWQ4PgjYU2pw8dZf0G+z5hTaWLF41tczNz3DPZ3oajNCzcFK6FI0M5+TAiDKLh5pKXqLAFQhNc4lOVH2aWnk2sk0wR8fwHARC5cSDWB5mZ57TRFT9GUmuN41n8aLIMtOjBdrCCfvuMpFF9q4lntGhpHvTO2SKKZh9FoITTdrc/dzfBKntw/WNQsVe/TwrkBH/GCaBFZEKzBFde0b3FW3SYY9JL9QsnB8T7lNwmfFCzPBELSu0Un8p7ZIQP5erK93P3goeRyY4uh0gODqkDfViHCoxiUvwtmn3/0yCQIgSae8YAOrXQG0MHhx4c3R0VIK9K4ODafbW9GWLtLSvhQqocQMCWnR4aBNSt0en5FDJUZxipJKKkgMJSuQdcvIJSndrcpObpKgE6eiUouKkgq5xWUqQ01KgTFueHKdEkzv6qDUFUYFeDisTIQEIXQtZRD4OvF1zWhcGxhPLBLg2bc4gtTkpGlCD1JIo6Bw5t34Q1ncmRz/JUQpeteE9x4e7f7PAkpwVgKHkYIx0W4aSE1PLGK2VVF9PuFy9YxXl2QGijPZaRlYlVDLchxoGKOMVNI5reV3inStOGFQlgzNKirreczQihG95SXg3muCYf8OobOTXJjpxPZ+NUGoLE51GecpqSVdX8uhJe+LcpxmCYSqGuN72s2K7t35KstfNI9GGMO/DITEoJKg9NA57MFz1MlHSSpSoJZFn0sQV613jV+/je4D4jbNXByg6BMqUbjZzY6JIkEA8KpWKl0peiQlNAqLHycsRcmWZA14bo75LWCIbb829seYxgDdJe0DgXQv2QRMR2cf3ovjrA3CJSUAVLaBQFiQt4XEScgMwUaEEZUMhhuJRCnsCdP2eJL/998+n2yDeHX3Nfe+c6b0x84tMmHNECA/OB4IDUoJinH4xzxKTk7Zknq8PQs4G3Wvj5SohJM09Ntb3Kl2/RsQFQGj42jhF9txInk+RhQd00c4JLYO0lEUFUlTsS7PEc24wRcm2vA4ty6VILU1rgpNU7LmBsABYDvNA1MBphWc0RaqrQCqFkLoElQYhGe1QopggBY6VUlwzJ9uWp87WAerIDvL5uzKD7GFBX7PuX4wFQtMgB81jXkrpFwn4jTTymGTe5EtprqeD64Z1CHXD/annj6JOp5/nRr9bG8hifMCSnAai0cnWYwmmIVwP0Yna31zWCIyEml21cLU4eUFxlOGq5WmMtNpdrXMtDyGASt6yaude0d4cNrxjTKlq8t5xir8OFY2Sph7OuYMKgPWFNAafLZWvdVHyb9xj440uDLtcIkkZAnnxPTEgPJ3OgFeLx4RpSAWP7xqpBinS7dMeurLjeCTLN5CjcmXMHB5zmXiVwseT4+hQLMwdiDAEiVIY4XXVincWI0LZ4J+RELZwjRrsoYUJdC6TGU4X1Q4zTMysYcT7uF4b9AtkSTw0Zlu5GGtEX81QN5N8aFKj+HqJ7LcX3qb0r5CQw3CoWpQnS49DeR5OFMEx55H2/vjiA/2lTEUxBD3PDELjGv2pkh4b3c+SR3IGuPinPi8Ijq6Lk+ICmR3pHJOKickBLWcO0lRIeV6cQsFhLw6TGZSYQe4N+gdRAZS9SepinsitQS4NoebNgEPUWmBRAfbmoPAnWpRzdI2cQoKH2Rl0CM3CNigWCoW2gUKa2tI5WinTy/0SrxjIY7+rTCj1cCQsjz1orucK3h3zdhPyA3LOJMfJh4QvcOePAZLDrrNh/o6NkqiGFQ1LchoIbaiE49lHzxvmuB6GsDES9w16vUQn7G1Z3sp0lUKsKhfNrD0ecb1K9Xh74hr49SDqmHGNzeG2oR7DtpKXLdyWKON3uN6GOCQj7N2odU4zH0faH553QSGIcmJQ7djhNjeyFs9wxjMsy+7/v/IxqxWmrVwstZxigHRmkP/GtYl0Pg6Q94xZh5aUWtl4kposer1WCYPhtGpqsWv8GrLTCFFDUr13/fwQMtOgDYeKCRExQ97MUCrdj2AtHtOQl/3CtWI4ad/IEwkb/+Z3+b8IHYh6mj9mUohShBgkRwVv03U9F19OG6/ydd97S1k2MM08CE2i/BBA7rOZp+TmEZkhYXpbCoYUGvdCuB9CfOCZCJMTtBkJ/TgvtztJlFZakS1ZgRxpb0dwPMw6OOEwtbDoRNh7Y9bDMYmSVqsz8zl14nwKtZ3gjaEELSu00ORMr6d0hyZjv/aUFtOQa7Uk3wrdOS1S4Cbb4/8DBBJTZLLgeYicImWSDstFQ1hg8eJ2rneTcIt2gtSogsMeHXjTQGDSkweovU0rn3VDMCCXZM+M6iiSkypRtjVP/b0pKoL8MMQ9lyAn51BmaYL6u0rs1Vm6oIN6mCglac3Zn3JfxFOqC5umOP9GxhSS2kJ6de2bPHtpZI7BewOPm8y7TKLA17olkSvLeYPIwagH/65YktMILL/XweMU1XJDhgIxikzjKG474ki4DvftcZT8bRyMJjJYzbiKynWp5030iuxntbZGh6lVS3iu3m9ZX+/4NBJh2eY4kGsczgOphwBoSQh9fwYJWSlCSrqcsIVD+/SnemhaZaN/dNxXUUIZQ9k/WnBDlNLwxl88Nw51Og61Qzqa3wzrD0LXBDAQ4dXhuH3SxhH+SoiLxPfrECw/x8ZMTDcBggHPghAh09iWN+6+50fLPpvHNEOr9D76O0KZJN/E3N7rRyjPxMztMUmSua1JmMQIDBv84qkw1dBkf7QJhAbGpazzxkGleD2TRrfdMh7hccD/QXBgoGL9gEt2AI8kEWSpNVHB+XBe5PjoWjgGwTGEA2Q/Tcr0dcD+Swut/LevlOVlElZn5gHJuXHtMTdgUOsk9+iCn7iW+NSCeIJMYsJjoBwucomQSiY4LDJQ5FwcfAAp6on+IpwLAgNyHKiHIY+FFclcpTH5iAw198lBCJlDA4UU15NZ2N9GvbksLVrUQaUlOmctkS5Spj1P2a5Bap3czx4brmuTKVImU6D2TI6mtPfQF6YtoHVW+4TWW/Mj2nCtD2i9mfNptZUW0Zprf0KrTFtCnRP6iQaSlP44S86AQ6WUonynIqcvSYleXdR3pUk9fIxNJ3/E54bgAIqYAlIHSOZ0WzJHnckB6khB3w33tO6nXKspqW6amVlEE5N9tFKyhyYk+5jg8DyAypp7L+j7egx4clYALrnkEvrKV75CnZ2dNHXqVNprr71o3rx5kdsqpWi33XajRCJBd999d2Dd+++/T7vvvju1tbXxcU499VQqFFbcmFtPzihA3Dfb0d6FqFCmiPCKOlW89HGGRs6Gk9Mz0qSgspemXmN4aGIDQ7km9bQlznyo9b3eORtHhGF5F/M0Q5nienWGO2fN8wS9mn74GYJ59PpaqmrB8RRBAjl2PfdapZyqqPy0kSZF9TwbwrlpcdoGiWkvfIjDVhKIrmG1NeTFcCkPLggqYT4u2YFB7XoO2JBVvpE9MdmvcxjqkGIOkx+T3OgwLlWmyGaSk6gim0DYg2PCFDOIkp4WslHmVYk4jhT1LCtk6YapgSSw9wjPZ8dd7q4DARGPiD+v3OR/T+JZCziIB4cllF1PDq6bnyJPZd4duS7+9XPHw83/QUtyCRAtfTwvbwMhWZSmnmKLR1bwtl8LJJj3hysfLp6vKtddVOE8z5VbO8gkMbqNwfu93NPjEx7MXxj5pnfDC/tzVdtkrJnAQf7ZJTwgSQ4GCdFmJTc0D3LRbi4OlkkRUEhHIweHp3tLiZys9shA/hkjhr8o2AmZashHd7UO0MqtvdSVHuAaNH05nT8E0gQM5NKswDZ1Qjdv2z8xTXnx6jiKldYGW0ucu9M1uY9mdi3lY6Evg64wiJ/vpa8Z1OY0AdQkU4+H8giuL+uuQy5lOxlTT17cUOQbEyi598hwUKft9Pvf/57mzp3LRAek5Mwzz6Svfe1r9Oqrr1J7u5/DCPzkJz9hghNGsVhkgjN9+nT605/+RJ988gkdcsghlE6n6Uc/+hGtCFiS00BUIhf1FBKtlAxfj4EYJ/woOj5+aOFYUccdSyIN5QU8y8dhON4Ik8wMtx+12lGr3s1InDduuFscolPPOFUqvhvlvaklLT1UD6ZZ/yZ8bFNBTcYmnZA3+6VY900UmQy3tVq7q6nsRV+v2oSpkYgjSFErdC+KEAbmGSfS41ohh0PnTEmRT4SqAWZ4FaA9CggaCrYpLCwgiApPM4lM2PMSRS6kpo0ZasXKUF6Oi+H5CRUo9WrlmAU1XQNc6v/4hT6DHh+TzOgaN7rQp6wza8oIUfK310Y2yAL6K6Fq4oHi8DB3LHJungsTHgmvk3ovbjFWTS5AiIIEpS0RTCL3rz22kTAmnJt8+eGi9tawIpkRngcDvy+RccnVgF9Yk8Um/DEqVSpW6s0Z/+00J8SLVDeT6HLVOblW+ny6b2y4u2RLe2XgySlSRypHrU5Oz0un4CXda0U33X8Qod58lr0f8NDIchAdhLrhO2SgpX9CcthD4vYBRCaVLVIpDTLnPssgE81K3Pp4E9v7KZPSnpUPlk3k3J3+gQxHVBVzSVLdaVZTw/6ltiJ92JuhdGueJnT2k9PZR4uWdlDps6w+fHuBJq7US1tOf5dr/kj+Dfoi7eRrprToAD6mcp0opMm4Sl/ypOetlgcPhg4C7A11n88Dbr7SqMYKCFd78MEHA99vvPFG9sQ8//zztP3223vLX3zxRfrxj39Mzz33HK2yyiqBfR5++GEmRY888ghNmzaNNtlkE7rwwgvptNNOo/POO48ymWANqOUBS3JGCGEZ41rJ76aSVq08hFpv7Ct5KqLV/huLoRKlWh6NuAIGoxUrqu3DJTojEWpW7ZiVVPHqGb9wTk61kLWR8mBUupeXh0dreC8pKj9D5NjDHau43pzws9NvGwWuqxeuZoYMhq45jhRuNRMWL14fb4d9NTJtcOO9v87dkXA1zxj3Qr6cirk3uh1+0rQJnctjhs6Vh6EFjhVxOQIqY66BbRYgNQ12PqdBWPw2B3NPdMiYrnUD7xaMTXjATINe+gKvFBMsN5zMbIu0h2v2sDGqC1J67VbIH9Ihal6YGf9GaRKp84FcZTWXYIAIiJqZ1MTxipcmooUWxGgGUkiYd8O9wh4DnXulPXjSRpPkOqZUuOGJMVXaPHLr5ihJDol5rdKkPUdot5Yc1x4YJMnD6McyhKbpgpdugVpXIllIGAx2eDiEBOQTSZaC9rw8Qna8UEXfkxVQ3ys5/IF6WsJJUAGEBTLRKPZJCUokS5TKFFliumcgQ33dLVz7RndFcc5OYsCh9LIk18vBMCsHBXAcyuUcGsgUaGJbP3V29lNfCuPWRitN6abZXUtoenZZUB7cywFL6tpSsjxi4sscKSJUUhGPneyj88LcPDLX8+PPbb08X6V+UTNi2bJlge/ZbJY/tbB06VL+O3nyZG9ZX18fHXjggXTNNdewtyaMp556ijbccEMmOIJddtmFjj32WHrllVdo0003peWNMUBpNS6++GLaeuutOc5v4sSJsfZB3OA555zDbLO1tZV23nlnevPNNwPbLFq0iA466CDq6uri4x555JHU09Mz7PaGjfZ6wpIqGRjVjhH1hjZO3s5IqXRVip+vBDFkpEBm1Kcx7Yrn5WqUF6caKl3PkcjjGsq6eoqjhrcJ545F1eWphWrXvpIXR2AavCIIEOXFGW6uSNT5REK6mmdi6BLtlXN0TFTO0Sm/FlGfuPlUZg5TrVy/SttVOo9ZLNe8H2A2m2MevrZRpNYcDb/4p5aXDntlwtvBeO1VGW2QGtLO2osAr0SwcKXk8GhFNE2OTELCCfASguN6IfQxxdtYqpj3EciRCSiklZMtNtJdw1GEBXSRzRDxdtvn147xj6tDhXRxT/EGsafGIDboC4+xSui8GVdyGe1Drg1Ik+TTSO4Nwt2wTOSZxdjXx3E8Dwzn9hh1UMwxkfCkKGU4IUVcSNLJeUpbUljS9Nxpb0LlnAEhYmg/+oj+Sp6OqLCZ1wnrRb5YiIl53UygfxgD9H3ldA9/Jqb7vLkRBs7LuSnJAfo810G9hSy3KZMssDcHamkQE8C+yM9ZKdvDf0F4sB4haj25LPUMZvlFfzZdoJW7emjGxKU0dXI3dU3ooyRq2oAn55KU/6yFli5uo75lLboQaKpETqpIzuIMpT9LU3pp0iv2yerS/Q4X93T6Hepd3EoLu9tpWkc3bTzjY9ryK/No+1XepjU7Pmdvms570t4qs39Yhv5NSvVyX/HBMigg8ifZ7//f0Z44XBvJA/O8haG5r/PlymXVRyNUqdSQDzBr1iyaMGGC90HuTS2USiU6+eSTaZtttqENNtjAW/7973+f7fA999wzcr/58+cHCA4g37FuRWDMeHJyuRztu+++tNVWW9H1118fa5/LL7+c/v3f/51uuukmWn311enss89mVgl3WkuLroANgoO4wd/+9reUz+fp8MMPp2OOOYZuueWWhqirxfVG1HqDah6DUcPoN98Y1/s2v5E5NUBcglJru0Z4c+J4yZoFjfQaLI+wt/rf6ptJ2vXNi5GQK48TcjbS161WP8winENtj5/14VT19FRXdqt/HgTl1eWtefW+c8HJMrl3wF0GcuSSIv2GXpMWk+DIW/dlqsU36E2PDx/HLxIKg1neGvNx3SKhJokJSxzLm2jTIxDl1YkqKirLvfVueFqgnexV8NXOzL/mscRzIsh4uQ0inuC3T6tZaXKgpZ59dTq/P1qdi4V83RAt1DORc5iJ+F4fDc+TjJkcVxf4NAmdEF3l1/WB2ISD+kX6WulwONlOCGIEEea8Dt9zxsUnJU/ILHpq1tlxw8RE9Sss7W2KLFSCGONa+EJP0LBXMJxL1VfMUG8ho8PSXJU3MxwNpAdCBLreTIaQgg+PzLLBFg43A9qzOZaVRo0aECOQoEwpQcl0USuklTRpKSbSlChAIS1BpWySSlk9q1jJGk6rJLGwALhmsVXxdroujkMt2TxNb+1mLxVyjOCBwjXDfBByKFLaZt6NJ81tECCBr9qnCYv21olggb7mPF6G/Hh47o+ncLUPPviAX+IL4nhxkJvz8ssv05NPPuktu/fee+l3v/sdvfDCCzSWMGZIzvnnn+/FCcb14iA56qyzzvJY5y9/+UtmlVCD2H///em1117jOMRnn32WNttsM97m6quvpq9//et05ZVX0owZM4bU1ihp1lrGeb0yvpUM/oAHgGU9a98oI1GPo2KbaqDSOJnSy2MxbC1spA81FGuoqFZZfiQw3ONWqi0UdY5w0dR6clQaBfHexBUUiC7aWR8REn9CvaiVDxRHtjuuNHX0+vjPuIrLIu+Z4HjgfXb5/u5fWQAxAkOAAEaVtH/AzeVAfg68FlOT3fw22FNqMmroIHQGy0CCxBhnD5Pr/RFp5zApYiMMIs5uErkYy1Lzxiv46HqEWgghYu5baiPkzczH0Yn9Or8H7fcT9TUJkP4hyEcgUrvon9T80WFgutaKGN2c2+DuL2poUlVeYKqjeW/pub0gOL7JYRIbEKZwPpJenqJCIigJLW0Le3DMHBicF9eihNIECjLMrbwOKmQdScfz5vC4qGCOEP4f8JrB3jdIB+YCe3ScfEBVTYqWChE0xRaC7VSUdmu1oHilQEhgQH6bEjw2UIVDfyVPB2pj8M4MSAia0uFpLZk8rdq6lBbm2riY5uJcmyeJ3ZIscPFN/B/qbKiZA3zc3UU9A1lKJUtULCWohDo5CRT7JGLu4N4zqb4ElXIJKrhCHsWsXg+CAylpypQoO2GABnsznM8zYUIfrTP5M/ZMwYM2OdXrktwgIYGXRsikd31dmRaTxAtRXVJsCy3394N3UMavksAG/JLjCV1dXQGSUwvHH3883XffffTEE0/QzJkzveUgOG+//XZZJNU+++xD2223HT3++OMcwvbMM88E1n/66af8Nyq8bXlgzJCcevHOO++wewwhagK46rbYYguOGwTJwV9cMCE4ALZ3HIeefvpp+ta3vhV57MHBQf6EYx4rhZGMlBFbyeAX0sIGQZlhWDmkpNF5NkPJd6hGBiptY1HtGoz8m6uhvpWvfsz4Xpry89dPZOIS/WCtDtNrESQ45fLR5rpSrNyd8H7DaXel8y6PnK44L1rC5xlKuKYQP3h38qoYWSwUnh0AyeoQoZJwM97fNfLFgGpxCmw06faUaEGxkyY6fR7B0UnP2pCF6R+WaTbf9pdLD+ske1O5y3xDLR6McAgbrnZOZJsNUhNObvdU24zTChEJK69J6BeOnUkE33brECzdN58Yuga9+wZe1NEEMDoH0WdHiJtL7EO5PyjoqMmdw2TGy1sx3t5LwjwM/ZLLUHW/3SR8t31CcEwPGo4NQxoGNtrXnW/hWjK6quJRkQAAKR9JREFU5owmL7ofOocG+8oYefWLPI+hf3yvMKdSnmfPa2+FHC1pt982XylNzjHondP3JDLxcccH49LqQApaizus1raQ3uqdwt6cjFOgqVntMQH56imgIGiSCark6UBlbZIjktQOLR1s4WKcA1BZy6VoAN4b8CXUyMk5npAA8m4SpQQV2vzJhCEodRa5sCer2kFiui1PMyctoZkzl7oeGb9gLK5Vd7GF2wbShXA1vtaOJpOeSlp4bppExfBi+rlz4n2EQmIhQML9a2KGEo+BGjkAXKcVCvSOlPCAUopOOOEEuuuuu5iwIPrJxOmnn05HHXVUYBnyb6666iraY489+DsirZBasmDBAhYtABAlBZK1/vrr04pA05Icif+Lig+UdfgrF0KQSqU40apa/CBiGsWzVA31GPdhQ0IITPjHPsqoiTII/HCOeOEj9ba/tuFp5rTU/8a5mpHT6PycRpGBOORreXtwqp1/JNoQ9/i15LOjCltG3RPLcwzDczrq/yaqJe9Xm3Nhb+xw2jmUENRytcEgAYmTqxXeLu65oo8TUeC00qHd8YKKnUlAEbISFivgZfieQEy/U6asNjnZR92U9ZTYUINDoMOwfLKijVI/x0MMS3iD9Pn89ksuTyWltXCYWrh2Dox67VHCddFen0p5BjD8JHfGNNB1wUQ5vhBqnbMjREES/jkxPgEPgBuKhlCwUtrzfOlju+FoRliV1KIxQ9PMvBvpGwx4n0wGldME7DVihSyHBl2FNanxw/kWJV24Ncp7gpyOvhTCu7I0UEzTx/0T+fzw6kxK93p5HQExAuSBmdfMCKGTa4f/iyR4+JqZoYjigcBoyvwIwxRf8K67q74GYrBSupe3QVFMITw4znod871zgThg3ZJ8G/eVi4kihI1dMsS1d6RIKEiOafyn0kUaHExqMYH+JGEzBe+M2xzlKFIZIpVWpFA3J+/welZgcxSlWwrsRcLxEZYGtCXznFuDdpkhgxJeJ8IAkqMloYuV8qPkepgeOBlLcx17QFWCcpy9F9zHHOtRDX5OlZYryZk7dy6nadxzzz1cK0dsYDgHkNMOT0yUN2b27NkeIYLkNMjMwQcfzOkiOAaiqXDsOGFyI4EVmoEFZgit7Wqf119/nUYbzjjjDFaekA9iHmshzptJSbA1Q7NMxClQWClOfrgEZ7hhPiMVJjQcNLpYZT0CCaPFCxWeb40UPBguInMsIgQ9yu+TMRJ3PQyEc2SqJf/Xm2NXjxhDnOKyca6Hr5AWvJ6Vnnn1PNOSxn1uilDg08IfreolRpgYmBAlEKN9otMfKRstoWNeu1yC453bVcgyP7pN+pyyTXmby+vimOFxYUhITtgDITk6EkolCHtzTEECISM6fCoYQmS2VeSizXHxSIaX9I2aLCn+mMUvTcIjRIBzK0qa9OCD/8uYynaSmyPHRps5eZ+Lg6K4p/YIifeHw+AowSFRML7h8UAbF+XbaFG+nXoKLZ6ymmkIR46x4fXT188nW+Fr4JEwyS0xFNskOV5//HGR40sCfaDODl+PBJMXkJiF+XbqR2iWK6yAtoMoYh36BoLD5MbNxeGaOPDsFPVHwiHhbUMNHLQxkdSkBd1J9TiU/TxJTiHB3hqQG3h1KKs9hCqDejpomKJ0a4FaW3LUlsnTxMyAFy4G5TfxpCG8TmSi9dxxi++64g0yL2R8A3k3bn5NFDkM3LOGjLrk9ZjjZ85Pi3Jce+21bM/uuOOOLNYln9tuu43iIplMcqgb/sKr853vfIfr5FxwwQW0orBCPTmnnHIKHXbYYVW3WWONNYZ0bGGciAc0tbzxHdrdsg3caiZQBAmKa9XiB+NK8IVVw6q96a8nfKfSfkMlEqanJzpXIJo4xfH0xHvjPToM/pFEI0nNUL0xlTx+XmhjaLv6ZJtrtykcXmmGJIaT2avNQ3NdJeW18mXDFayoHeYZVRS1POk9PgGrNP5xRQNkPOslOGHUU/8oDumptO9QnoFly9zTlJRbS4PzYlAQtFzlT4D1bShwiS+udkxeKfqo2EmrpZeyl6fPUAGTcCIoOvmFJt2kdzcEDuulBk+YrJghUdjCU2kLCQ5o2WpTThfL9bameEGYfJjnDIZP+XLJ8P+YoT8c8uXlk/jHEENbaumYgglemJeICrjGvdSMQbhSuD1hA1PyReRcGDNJTtc5KCwH4REbaQ/G0BRY8NurjwXPAMiC6a3ocPNwCoMOe3Q4V8dp9cLZQBbCgKdGCIlIW5sGukBIl3n9KsH0JASLlfoEblmxlUkehANwHhAa1MNBng0IDIBxgqcEWAxyk2sPem8k38gt/gllDc61cdcP5l31vYJuDwgOO30gfNCqwzlLabgrFROdBP7PDssEJVsLvH02m6dpXd00o30ZdaYGuL2mh8XMwQIhQ/5WmCTjPtLzyZd8lnpAUflM5v8DsuRuzpjUU4IyoORHCQHWKL/Oow2qpEgNM1wN4WcjuX2lfebMmUP3338/jRasUJIzZcoU/owE4D4DUXn00Uc9UoPcGeTaQLMbANNcsmQJFzv68pe/7CVXQT4PuTuNxEgQnLjrq6FaUcFGKFDVCpWrV2J6vKEaeRgqCYl6Kx7HaxLVjjgCAbJdtfbi/Ly+gj0dbmP4WCNBbMxzV18fJDT1ejFGYq4PxXsDDFU6fbjeMx67UCjicJ5rpvpeMNStnHw6bo5EmgmMooxCiUh4b3TYTYCseGFIIjgghq0rGx2xvpLRa4aqeYUw3fwd8bqYJMVUdDM9OmYBUL+GTDTB8YqOVpDS1ef1Va/Em2Mm0+v++aTD9DhIboV/rqB3xPM0hcmOa+yzbHRRjF7FnpdUhMCAp7YmMtA8Jn67YOzCsyFGsJASJ6moMzVIvUWMsSaiCAHTRVt1qFRYLY1DqlDEl6+l9k6E5bvl/OG+meFq/vUq98iZBIfD91wSBmU0eKC64XFCfo1BCgGorGH7ZYUWJi74mOu5L04pkAfDXq5CiskNe88KSd4GIWtFhJ9lipRMFZnEFN/spFJriUotrnYswtkcRc4HrVSYVKDC5BK1pfJ8nUBqQUyFLKKwqcwJHutSiomQ1y43n6YFNNnR19ScL+a85ppMESIOvkCDkF99zbRoR5BUR0l4j1rwb8Bww9XGUH9HEGMmJ+f9999nDwv+FotFrroKrLXWWtTR0cH/X3fddTlfBoIBCHWDzvdFF11Ea6+9tichDcW0vfbai7dfb731aNddd6Wjjz6afvrTn7KENJQlIEowVGW1SsZdNaOwGuoJP4lr2AwlUXm4qHSsOOIE45XgRGGkwsnqzZuq1I5a+Uhx85XCCBOcuLkc1Y7TaCyPMLkoAYNYHo4hjVXlgsONFAJB/sxw9q81j3UOj19QE0RGPEhefR1XMWpAPDGJEi0stVGb000tLoHJcS11IxzNVRULeml0WJEHQ3ZYECY+cgy0NO2+fQ62PzqfR68TYo1ii/7baq9IpgvOXTHeeocNPl1LxK/3EqeWiBATs04Q5+yEiI2Xk2MWoowgO0iUx0cTpwSlnCJ/N9/u45plDSU5s3CkbKPD1HTIm3gVmOQ4kGguMmkQAod1IBIiVw3VNcm1MtXaWGCAPXxuuBkLH6SY8ITzckQVzywOyvLUUqiVlf9cAuTORfirZOxQnFPCuBCetmCw0w3n80kMjgkJaSnmCmI4UHSvfYjkgISUVIG681nqz7kqdgUUEHXYq1MsONTROUg9/To6JYGEHFeAILl2NxV6kYzj6lggXSnvUHHGAIercTvyGcplU1RM5tl74o93wahJ5feJSTFSeaRoLUElDqTO0WTS84xqQQmsl/yaqBA0uUYCM9RN1PKitrMYHxgzJAdFPVHvRiCVUx977DGOIQTmzZvnVWkF/vmf/5l6e3u57g08Nttuuy1LRkuNHODmm29mYrPTTjuxqhrk8FBbZzQbprWU0EZj/kslxDE6x6ps9HD71CjxhUa9HY+LeuXQ60FcglPpnohMYje2CyO8fjTdW41qS72iBDq3pb57crjzvRFgQsMkJiKEEGpRrnELg5Pf6lORPih00vRkD7U5RQ55A/KhPKFwWJZvzBn1dgLKcUFDzTOGjUKjJkSCo3rfNLkKGHSSCxLINdJGZiXvUnl4kDZENZnxVd+8trk5N2Y7RHlNjE0zxA+kT84f9HiE1AUl3Ek5lHK9G4AXKuZ6CWDEIjFf/h9sW/TzhyW6HU0OBCBT8PxI23FElvZ2PQKmSphZ3yWttFfM9Ch5fw1iDU+hObbhtnGb+B5xjXtHh/1hXJj8GeFnMjZYDr8I2oV8GxETkG28tuD/CP1L5Slf1MU7Yfk5TolJDnuMBtOU69biD1BKS6UK5IBspYpUKjoc5sbnzCeplNbkKJ0tUDaTp9Z0nj00k1J9ZX0Kk0WEEXpwRSnMmjlQ6wvcM+g3K/75Yg4miQ6HCHo5PO78CpMcHd45+m2JFRGu1qxIKDsSwwbC4KBAsfiNNair01f1iSvNXAvxDZDy89bKt6mFsGEykoZItfC4ZiE5cZTB4oxxvXk4jQppDJ87brjacGF6CxpV4LSemjqVi18uP5EDnVMSP6wsbghf3LBUczt4X4aTs1ULw80vNOeJeG38dTo3R/tM/PA1LB9QWA7Dj6hXpai71ML5KFxR3a2qvmXr+7w+Z4Qiydt6eHtMaWc2wiFt63pYqgkHVCI04tkx6+1E5bZwSBDKHpatiw5bq4QoL454MOTcLAlcatFeBDdfSQDSIUpZ/jGDpELGAV4X7I9cE86bgAdGPBKU4NovyJnhT7LAngIksetke00woI4mdYa6i6081n3FrA5Dcw1+7C9v8QM5MYbHC9tw212vjBAb2QfhXnJdRR1sQrKfvTntzmBkaGIgxM8QhZAClmZbRImO871cbxT6gFwbhKWZBIfb7uUyJdiL019Ic/4NABIIYuIYH5AgSEbnCkkOV8O2sIMLECP4rJULfqKIJ5PazgIl2wrU0aHDy1rSBWrPDHrnR80deIgmZfpYkhv5QbhuUzLdrGbHqnBuboz0/fNCJ1+38D0QfhFgEiOz5pI37pGh1TpETXuE/LpHMt5mPtdAT4HO3eIRfiFeT/2Y5WlL7kh7UioRvK/qRUHl6XG6Z1T2c3lizHhyRjOEJy7rifrRj1ZsiWuo6R/h6qov0cfUP+D+suETHDnOSBAds5/hsWkuguMbYeXrBI0J3ZPz1TOH4szTYBui+9H4a6bnnRivUYZ92KitfKTabZOUcNne/B4n0b7RKO9PeZ5Jte2r9znuyxZ/LNJumFf88MP65sNQ6lmUPzfku/xNcClNITl6Hgl5FM8BauWUqID8EFWghOqjgVIL9SF5m4lPku5dtiZt1/oWvxEOvpHXsq+a6GgDHIFNBQ510/cf3shHeXckuV7GSYxD/SbaJAxSDFQb2T45wpzE/3Vmij8GMLzF05HyxAX0uqjQQ7f2T5j4KkWDxviyAlgp77alECAwjquixd4JQzkseDy9PFeC8Y1xLFEJngiEqxmJ9ThSAWIBToHyTpEGEemURH0WHVznIFQMXjb3GuZKOSqqIhWKRKWi9obwsdw6QHocRMlPUSqh80c428UpUpG9cMitL7GHCkdlAQMhElyTpsgJ9q2OrhPThtwV5KmQFkMw86nMMD6+xkxwtHcIIWSYbzgfQiL11QP5cai/BJW1BA0W89SmllGhkPWIGMhPr0vguG8lh/ryRP15hLMpJjjoFSumCcnhnBiifBHqckVSpQKpokOFYoKKRYeSbQPssSmhRk4pwV4ep1ikUn+Br0shnaeefn2NsK4/STSQIup2WmigJU+T0n3k0CAVC/2USPYxScG8x/UD8SiwAMIg5VAnJ0TCu9l7g/ZqL51+HSHbuCIdLskXkiPCBMHQShBpqVfl3z+aUGpvEM/d3tHv6SjAl6gacAwLS3Iage7ubv4750vv2illYWFhYWFhYTHK7TZ4TUYTMpkMC2Y9Ob8x6mTTp0/nY45n2HC1BgBqbB9//DEXUILgwVgC3KOzZs3iWj/j2aVZC3ac7FjZOWXvv9EO+5yy42TnVHXAgwOCA3Ep5GGPNgwMDFAu1xiZ60wmE8hBH4+w4WoNAG6UmTNn0lgGCI4lOXac7Jyy995ohn1O2XGy88nee8PFaPPgmAApGe/EpJEYfTTWwsLCwsLCwsLCwsJiGLAkx8LCwsLCwsLCwsKiqWBJzjhHNpulc889l/9a2HGyc8ree6MR9jllx8nOJ3vvWVjUCys8YGFhYWFhYWFhYWHRVLCeHAsLCwsLCwsLCwuLpoIlORYWFhYWFhYWFhYWTQVLciwsLCwsLCwsLCwsmgqW5FhYWFhYWFhYWFhYNBUsyWlyXHzxxbT11ltTW1sbTZw4MXZF4HPOOYdWWWUVam1tpZ133pnefPPNwDaLFi2igw46iIvz4bhHHnkk9fT00FhGvX169913KZFIRH5+/etfe9tFrb/11ltprGIo137HHXcsG4Pvfe97gW3ef/992n333XmuTp06lU499VQqFAo0llHvWGH7E044gdZZZx2+92bPnk0nnngiLV26NLDdWJ9T11xzDa222mpc9G6LLbagZ555pur2uJ/WXXdd3n7DDTek+++/v+5n1lhFPWN13XXX0XbbbUeTJk3iD8YhvP1hhx1WNnd23XVXGk/jdOONN5aNQbgAY7POqXrGKeq5jQ+e080+nyyaBMqiqXHOOeeof/3Xf1U/+MEP1IQJE2Ltc+mll/K2d999t/rrX/+qvvnNb6rVV19d9ff3e9vsuuuuauONN1Z//vOf1R/+8Ae11lprqQMOOECNZdTbp0KhoD755JPA5/zzz1cdHR2qu7vb2w632Q033BDYzhzLsYahXPsddthBHX300YExWLp0aWAsN9hgA7XzzjurF154Qd1///1q5ZVXVmeccYYay6h3rP72t7+pvffeW917773qrbfeUo8++qhae+211T777BPYbizPqVtvvVVlMhn1i1/8Qr3yyis8LyZOnKg+/fTTyO3/+Mc/qmQyqS6//HL16quvqrPOOkul02keq3qeWWMR9Y7VgQceqK655hq+h1577TV12GGH8bh8+OGH3jaHHnooz0tz7ixatEiNp3HCvdPV1RUYg/nz5we2acY5Ve84LVy4MDBGL7/8Mt+LGL9mnk8WzQNLcsYJ8FCKQ3JKpZKaPn26uuKKK7xlS5YsUdlsVv3qV7/i7zA0YGQ9++yz3jYPPPCASiQS6qOPPlJjEY3q0yabbKKOOOKIwDIc96677lLNgKGOE0jOSSedVHE9SI3jOAFD49prr2VDZHBwUI3nOXX77bezYZLP55tiTm2++eZq7ty53vdisahmzJihLrnkksjt99tvP7X77rsHlm2xxRbqu9/9buxn1lhFvWMVBl4edHZ2qptuuilglO65556qmVDvONX6PWzWOTXc+XTVVVfxfOrp6Wnq+WTRPLDhahYBvPPOOzR//nx2zQsmTJjAbu2nnnqKv+MvQm8222wzbxts7zgOPf3002NyRBvRp+eff55efPFFDkkKY+7cubTyyivT5ptvTr/4xS84FGK8jdPNN9/MY7DBBhvQGWecQX19fYHjIgxp2rRp3rJddtmFli1bRq+88gqNRTTqPkGoGsLdUqnUmJ9TuVyO7xPz+YLxwHd5voSB5eb2Mjdk+zjPrLGIoYxVGLjH8vk8TZ48ObD88ccf55BQhEUee+yxtHDhQhpv44Sw0Tlz5tCsWbNozz33DDxnmnFONWI+XX/99bT//vtTe3t7084ni+ZC8FfTYtwDD3bANDblu6zDXzzQAhMpleIfUtlmrKERfcIPwHrrrcc5UCYuuOAC+sd//EfONXn44YfpuOOO4x9Y5FqMl3E68MAD2aCYMWMGvfTSS3TaaafRvHnz6M477/SOGzXnZN14nVOff/45XXjhhXTMMcc0xZxCf4rFYuS1fv311yP3qTQ3zOeRLKu0zVjEUMYqDNxnuOdMwxb5EnvvvTetvvrq9Pbbb9OZZ55Ju+22Gxu6yWSSxsM4wRjHi4GNNtqIXyJceeWV/NwG0Zk5c2ZTzqnhzifk7rz88sv8O2ei2eaTRXPBkpwxiNNPP50uu+yyqtu89tprnKg73hF3rIaL/v5+uuWWW+jss88uW2cu23TTTam3t5euuOKKUWWQjvQ4mUY6PDZI5t1pp534R3HNNdeksYTlNafgxUKC7/rrr0/nnXfemJtTFisWl156KYtR4C27mVSPN/HmvQhDH/cgtsM9OR6w1VZb8UcAgoMXVD/72c/4pYJFOUBuMF/gOTZh55PFaIYlOWMQp5xyCiuaVMMaa6wxpGNPnz6d/3766adsiArwfZNNNvG2WbBgQWA/qGBBGUr2H2tjNdw+3XHHHRwacsghh9TcFiEP+CEdHBykbDZL42mczDEA3nrrLTawsG9Y5QdzDhiPc6q7u5vfkHZ2dtJdd91F6XR6zM2pKCC8Dm935doK8L3SmGB5te3jPLPGIoYyVgJ4JkByHnnkESYxteYqzoV7cSySnOGMkwD3F14WYAyadU4NZ5zwEgWEGR7kWhjr88miybCik4IsRqfwwJVXXuktgwpWlPDAc889523z0EMPNYXwwFD7hMT6sAJWJVx00UVq0qRJaiyiUdf+ySef5ONAtcgUHjBVfn72s5+x8MDAwIAaT2OF+23LLbfkOdXb29t0cwrJz8cff3wg+XnVVVetKjzwjW98I7Bsq622KhMeqPbMGquod6yAyy67jO+bp556KtY5PvjgA56T99xzjxpP4xQWaFhnnXXU97///aaeU0MdJ9gP6Pvnn38+LuaTRfPAkpwmx3vvvcdyoiJtjP/jY0oc4+F+5513BqQzISuJh9RLL73EyilREtKbbrqpevrpp9lghcxtM0hIV+sTZFgxVlhv4s033+SHOpSzwoAU8HXXXcdyt9juP//zP1VbWxtLe4+XcYIU8gUXXMDG/jvvvMPzao011lDbb799mYT01772NfXiiy+qBx98UE2ZMqUpJKTrGSsYUlAO23DDDXncTFlWjFEzzCnI2MJguvHGG5kIHnPMMfy8EWW9gw8+WJ1++ukBCelUKsUGJ2SRzz333EgJ6VrPrLGIescK4wAlvjvuuCMwd+R5j78//OEPmQDhXnzkkUfUl770JZ6XY/VlwlDGCb+HeOHw9ttvq+eff17tv//+qqWlhWWVm3lO1TtOgm233VZ9+9vfLlverPPJonlgSU6TA/KOeJsc/jz22GNlNTcEeIt19tlnq2nTpvEDcaeddlLz5s0r08+HsQbihLeGhx9+eIA4jUXU6hMe4uGxA2CIz5o1i9+KhQHiA1lpHLO9vZ1rpvz0pz+N3LZZx+n9999nQjN58mSeT6gVc+qppwbq5ADvvvuu2m233VRrayvXyDnllFMCssnjYazwN+p+xQfbNsucuvrqq9Xs2bPZIMfbZdQREsCDhedWWEb7C1/4Am//xS9+Uf3mN78JrI/zzBqrqGes5syZEzl3QAyBvr4+fpGAFwggitgetVLCNWKafZxOPvlkb1vMma9//evqL3/5y7iYU/Xee6+//jrPoYcffrjsWM08nyyaAwn8s6JD5iwsLCwsLCwsLCwsLBoFWyfHwsLCwsLCwsLCwqKpYEmOhYWFhYWFhYWFhUVTwZIcCwsLCwsLCwsLC4umgiU5FhYWFhYWFhYWFhZNBUtyLCwsLCwsLCwsLCyaCpbkWFhYWFhYWFhYWFg0FSzJsbCwsLCwsLCwsLBoKliSY2FhYWFhYWFhscLxxBNP0B577EEzZsygRCJBd999d93HQPnHK6+8kr7whS9QNpulVVddlS6++OIRaa/F6IYlORYWFuMOO+64I5188skjeo7HH3+cf6SXLFkyoucZD9dntdVWo5/85Cc0GiHXGZ+99tprWMd69913vWNtsskmDWujhcVYQW9vL2288cZ0zTXXDPkYJ510Ev3Xf/0XE53XX3+d7r33Xtp8880b2k6LsYHUim6AhYWFxfLGnXfeSel0uqFGOYxS0xDfeuut6ZNPPqEJEyY07DzjFc8++yy1t7c39JiHHXYYE9ChvCmOwrx582jq1KnDOsasWbN4zsA4e+SRRxrSLguLsYTddtuNP5UwODhI//Iv/0K/+tWv+P7dYIMN6LLLLuNnMPDaa6/RtddeSy+//DKts846vGz11Vdfbu23GF2wnhwLC4umQS6Xi7Xd5MmTqbOzc0TbkslkaPr06fxW3iI6pKRQKMQamilTplBbW9uoHkYQnIkTJw7rGMlkkudMR0dHw9plYdFMOP744+mpp56iW2+9lV566SXad999adddd6U333yT1//f//0frbHGGnTfffcxuYEX+KijjqJFixat6KZbrABYkmNhYTEqgTdz+EHDB96QlVdemc4++2w2jgX4AbvwwgvpkEMOoa6uLjrmmGN4+f/+7//SF7/4RY7HxjY//vGPq4ZD4e3gD3/4Q47dhsdgiy224DAkE3/84x95PxjbkyZNol122YUWL17MHoHf//739G//9m9eqBHCjqLC1Wq1C8t+9KMf0RFHHMEkbPbs2fTzn/881nj98pe/ZONYfuyB4447jtZdd13q6+uruT/G4LTTTmNvAtq31lpr0fXXX++tRx8R8oF1q6yyCp1++ukBkoL9TzzxRDb2W1paaNttt2UPjEDG44EHHqAvf/nLfJwnn3ySw1Nw/dB2HDc8JjIuppcMx0E4yre+9S2+HmuvvTaHpAiKxSIdeeSRbOS0trbyG11cH8F5551HN910E91zzz3eNZPr/cEHH9B+++3HhAVkeM899+TrWS8wV0444QSeZ5gv06ZNo+uuu477e/jhh/P1xRhjPCwsLGrj/fffpxtuuIF+/etf03bbbUdrrrkmP7fxrMFy4O9//zu99957vA2eiTfeeCM9//zz9E//9E92iMcjlIWFhcUoxA477KA6OjrUSSedpF5//XX1P//zP6qtrU39/Oc/97aZM2eO6urqUldeeaV66623+PPcc88px3HUBRdcoObNm6duuOEG1drayn/NY+O4gqOOOkptvfXW6oknnuBjXHHFFSqbzao33niD17/wwgv8/dhjj1Uvvviievnll9XVV1+tPvvsM7VkyRK11VZbqaOPPlp98skn/CkUCuqxxx4DG1OLFy/mY8RpF/ozefJkdc0116g333xTXXLJJbwP+h8H++67r/rKV76i8vm8uu+++1Q6nebzxsF+++2nZs2ape6880719ttvq0ceeUTdeuutvO7DDz/ksT/uuOPUa6+9pu666y618sorq3PPPdfb/8QTT1QzZsxQ999/v3rllVfUoYceqiZNmqQWLlzI62U8NtpoI/Xwww/zOGMdxnT27Nl8vpdeekl94xvfUJ2dnYHrg3G56qqrvO84zsyZM9Utt9zC44RzY67IuXK5nDrnnHPUs88+q/7+9797c+e2227j9d3d3dzfXXfd1btmg4ODvN96662njjjiCG7Lq6++qg488EC1zjrr8PoohK+zOcfQjwsvvJDnEf4mk0m122678RzGMvR9pZVWUr29vYF9Ma4bb7xxrOtmYdGswH2FZ40AzzQsa29vD3xSqRTfzwCew9gGz1jB888/z8viPkctmgeW5FhYWIxKwEiEwVkqlbxlp512Gi8zjd+99torsB+M0q9+9auBZaeeeqpaf/31A8cWI/q9995j4/Ojjz4K7LPTTjupM844g/9/wAEHqG222aZqW02jPMr4jdMu9Oc73/mO9x19nzp1qrr22mtVHCxatIiNfxjP06ZNUxdffHGs/WAQoK2//e1vI9efeeaZbOib1wJEDMSiWCyqnp4eJlQ333yztx6EAaTn8ssvD4zH3Xff7W0DspHJZNTtt9/uLQNRAfmrRXLOOuss7zvOj2UPPPBAxT7OnTtX7bPPPt53kLA999wzsM1///d/l/UT5Abteeihh+omOdtuu633HcQXBtnBBx/sLQO5wr5PPfVUYF9LciwsykkOXrrgWQ2ygpcb5gf3EoCXGyA9Jvr6+vhYeLliMb5gw9UsLCxGLbbccstATstWW23F4VgIRxJsttlmgX2QeLrNNtsEluF7eD/B3/72N14OuVGETMkH4Vlvv/02b/Piiy/STjvtNKy+xG3XRhtt5P0ffUeOxoIFC2KdA2FRCDFD4i1CORBSFgfoH/JBdthhh4ptx9ib1wJt7+npoQ8//JDHKZ/PB/oHYQeEt2FfE+b1wn7Io0J4oAAhYpIwXA3mOCHEEOGK5jhBnQlhccjnwfVE2B/CXarhr3/9K7311lscSibzAO0ZGBjw5kI9MNuI8V1ppZVoww039JYhhA2Ie30tLMYzNt10U35W4n5BqKf5wXMSwDMIYbTm/frGG2/w3zlz5qywtlusGFh1NQsLizGN4apuwVCHAYq4bfw1IQngyOtYXgirvoFYlEqluupMoB9Q6UL+RxyBheXZv0appFUbJyQlI1Yf+T0gZxiDK664gp5++umacwHE6Oabby5bB7LUiDaay4Q01nN9LSyaGbgH8aJB8M477/BLGLxswIuogw46iHP4cG+D9Hz22Wf06KOP8guF3XffnXbeeWf60pe+xHmNyOPDvTV37lz66le/yvtbjC9YT46FhcWoRdgo/fOf/8xJ5mEyYmK99dZjkQAT+I4fuKj94rwdxA8ofkirKalFeYmG066h4E9/+hPLqUJhCAQNog1xAO8CjAF4ryq1HYpGpugD2g7yMHPmTPYaYQzM/sGzA+GB9ddfv+J5sR+MfvM6Q8xB3rwOFWgHJLwhvIDri2sZ9sREXTMYR/CsQTwhPBesFLiFxcjjueee43sWH+AHP/gB//+cc87h7xAYAMk55ZRT2OOL2lR4zkCkBXAch59/EKrZfvvtmfjg+YUXHxbjD5bkWFhYjFogvAg/cqhBgroIV199NRd6qwb8+IGQQHUNxjJUtP7jP/6D3+xHwXw7iPo5eHP4zDPP0CWXXEK/+c1veJszzjiDf0hhNEO2FAXmEBL2+eefe+pfMNShwoVlUW/m621Xveju7qaDDz6YFc5QZwLeiNtuu43uuOOOmvui/Yceeii//UTdGIwB1MZuv/12Xo9+Q3UMamHoO1TJzj33XL42MCrgnTn22GPp1FNPpQcffJBeffVVOvroo1nVDSpnlQAihvXY73e/+x3XtoBaHY45HIAIw1h66KGHeKyhymcqvUmfcS0xt3DNQMowD2AcQVHtD3/4gzcOGFOE5VlYWIwsoEro5osHPlBJA/BS5Pzzz+d7E6GuH3/8MT+3zTDQGTNmsJIlnonz589nYgRPkMX4gyU5FhYWoxYgHv39/ZzbgZADEByRia4EvI2HcY43dygUhzeAF1xwARvPlVDr7SCI0MMPP8w5G2gLQqBg6KdSOuIXRAXeGHgtENYUlfsxlHbVA4wNyAYkqAH86OP/3/3ud+mjjz6quT9IG2RWRXYaJAXhbgCkte+//34mf6hG/r3vfY/JyVlnneXtf+mll9I+++zDRAt9RcgJSAbyhKoBYWSQg91jjz041ARysAgZGw7Q57333pu+/e1vc77PwoULuV8m0D9ca+QI4ZrB+wM5aoT74bpjf7wBRj+Rk4OcHwsLCwuLsYME1AdWdCMsLCwsot7obbLJJoH6KI0CSAqEBC666CI78BbDAjw9//AP/8BhdsMtBmrW8YFHDbkIFhYWFhZDg/XkWFhYjBugYCXCmF555RUuymlh0SggN+mAAw4Y1jHgAUQIn3jjLCwsLCyGDquuZmFhMW6A6vIIS/vmN7855ipgw/CtZPwi3At9qwTklyBPp5qikcXQgHA4iBWYanxDBXIJxHuTzWbtJbGwsLAYBmy4moWFhcUYwKJFi/hTSQIaeTOVgLymank5UA+zsLCwsLBoJliSY2FhYWFhYWFhYWHRVLA5ORYWFhYWFhYWFhYWTQVLciwsLCwsLCwsLCwsmgqW5FhYWFhYWFhYWFhYNBUsybGwsLCwsLCwsLCwaCpYkmNhYWFhYWFhYWFh0VSwJMfCwsLCwsLCwsLCoqlgSY6FhYWFhYWFhYWFBTUT/h+VBkgLriML9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10, 5))\n", "example_netcdf[\"surface_temperature\"].plot()" @@ -137,7 +765,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "PlanetaryComputerExamples", "language": "python", "name": "python3" }, @@ -151,7 +779,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.11" + "version": "3.13.2" } }, "nbformat": 4,