LogisticRegression(solver='liblinear')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression(solver='liblinear')
LogisticRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=LogisticRegression(solver='liblinear'))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=LogisticRegression(solver='liblinear'))
LogisticRegression(solver='liblinear')
LogisticRegression(solver='liblinear')
OneVsRestClassifier(estimator=LogisticRegression(solver='liblinear'))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression(solver='liblinear')
OneVsOneClassifier(estimator=LogisticRegression(solver='liblinear'))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsOneClassifier(estimator=LogisticRegression(solver='liblinear'))
LogisticRegression(solver='liblinear')
LogisticRegression(solver='liblinear')
OneVsOneClassifier(estimator=LogisticRegression(solver='liblinear'))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
| \n", + " | \n",
+ " \n",
+ " estimator\n",
+ " estimator: estimator object A regressor or a classifier that implements :term:`fit`. When a classifier is passed, :term:`decision_function` will be used in priority and it will fallback to :term:`predict_proba` if it is not available. When a regressor is passed, :term:`predict` is used.\n", + " \n", + " | \n",
+ " LogisticRegre...r='liblinear') | \n", + "
| \n", + " | \n",
+ " \n",
+ " n_jobs\n",
+ " n_jobs: int, default=None The number of jobs to use for the computation: the `n_classes * ( n_classes - 1) / 2` OVO problems are computed in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary for more details. | \n",
+ " None | \n", + "
LogisticRegression(solver='liblinear')
DecisionTreeClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeClassifier()
DecisionTreeClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=DecisionTreeClassifier())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=DecisionTreeClassifier())
DecisionTreeClassifier()
DecisionTreeClassifier()
OneVsRestClassifier(estimator=DecisionTreeClassifier())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeClassifier()
OneVsOneClassifier(estimator=DecisionTreeClassifier())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsOneClassifier(estimator=DecisionTreeClassifier())
DecisionTreeClassifier()
DecisionTreeClassifier()
OneVsOneClassifier(estimator=DecisionTreeClassifier())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
| \n", + " | \n",
+ " \n",
+ " estimator\n",
+ " estimator: estimator object A regressor or a classifier that implements :term:`fit`. When a classifier is passed, :term:`decision_function` will be used in priority and it will fallback to :term:`predict_proba` if it is not available. When a regressor is passed, :term:`predict` is used.\n", + " \n", + " | \n",
+ " DecisionTreeClassifier() | \n", + "
| \n", + " | \n",
+ " \n",
+ " n_jobs\n",
+ " n_jobs: int, default=None The number of jobs to use for the computation: the `n_classes * ( n_classes - 1) / 2` OVO problems are computed in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary for more details. | \n",
+ " None | \n", + "
DecisionTreeClassifier()
RandomForestClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier()
RandomForestClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=RandomForestClassifier())In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier()
MLPClassifier(hidden_layer_sizes=30, max_iter=600)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
MLPClassifier(hidden_layer_sizes=30, max_iter=600)
MLPClassifier(hidden_layer_sizes=30, max_iter=600)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=MLPClassifier(hidden_layer_sizes=30,\n", - " max_iter=600))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=MLPClassifier(hidden_layer_sizes=30,\n", - " max_iter=600))
MLPClassifier(hidden_layer_sizes=30, max_iter=600)
MLPClassifier(hidden_layer_sizes=30, max_iter=600)
OneVsRestClassifier(estimator=MLPClassifier(hidden_layer_sizes=30,\n", + " max_iter=600))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
MLPClassifier(hidden_layer_sizes=30, max_iter=600)
OneVsRestClassifier(estimator=LogisticRegression(max_iter=1500))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
OneVsRestClassifier(estimator=LogisticRegression(max_iter=1500))
LogisticRegression(max_iter=1500)
LogisticRegression(max_iter=1500)
OneVsRestClassifier(estimator=LogisticRegression(max_iter=1500))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression(max_iter=1500)
RandomForestClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier()
RandomForestClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
RandomForestClassifier()
RandomForestClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
StackingClassifier(estimators=[('ovrlr',\n",
- " LogisticRegression(solver='liblinear')),\n",
- " ('rf', RandomForestClassifier())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. StackingClassifier(estimators=[('ovrlr',\n",
- " LogisticRegression(solver='liblinear')),\n",
- " ('rf', RandomForestClassifier())])LogisticRegression(solver='liblinear')
RandomForestClassifier()
LogisticRegression()
StackingClassifier(estimators=[('ovrlr', LogisticRegression()),\n",
+ " ('rf', RandomForestClassifier())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.