-
-
Notifications
You must be signed in to change notification settings - Fork 12.1k
Description
Your current environment
==============================
System Info
==============================
OS : Ubuntu 24.04.2 LTS (x86_64)
GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version : 18.1.3 (1ubuntu1)
CMake version : version 4.2.0
Libc version : glibc-2.39
==============================
PyTorch Info
==============================
PyTorch version : 2.9.0+cu129
Is debug build : False
CUDA used to build PyTorch : 12.9
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.3 (main, Nov 6 2025, 13:44:16) [GCC 13.3.0] (64-bit runtime)
Python platform : Linux-6.14.0-35-generic-x86_64-with-glibc2.39
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.9.41
CUDA_MODULE_LOADING set to :
GPU models and configuration : GPU 0: NVIDIA RTX 6000 Ada Generation
Nvidia driver version : 570.133.07
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i9-14900K
CPU family: 6
Model: 183
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 1
CPU(s) scaling MHz: 53%
CPU max MHz: 6000.0000
CPU min MHz: 800.0000
BogoMIPS: 6374.40
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 896 KiB (24 instances)
L1i cache: 1.3 MiB (24 instances)
L2 cache: 32 MiB (12 instances)
L3 cache: 36 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Ghostwrite: Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Mitigation; Clear Register File
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsa: Not affected
Vulnerability Tsx async abort: Not affected
Vulnerability Vmscape: Mitigation; IBPB before exit to userspace
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.5.3
[pip3] mypy==1.18.2
[pip3] mypy-boto3-s3==1.42.10
[pip3] mypy_extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.9.1.4
[pip3] nvidia-cuda-cupti-cu12==12.9.79
[pip3] nvidia-cuda-nvrtc-cu12==12.9.86
[pip3] nvidia-cuda-runtime-cu12==12.9.79
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.16.0
[pip3] nvidia-cufft-cu12==11.4.1.4
[pip3] nvidia-cufile-cu12==1.14.1.1
[pip3] nvidia-curand-cu12==10.3.10.19
[pip3] nvidia-cusolver-cu12==11.7.5.82
[pip3] nvidia-cusparse-cu12==12.5.10.65
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.3
[pip3] nvidia-ml-py==13.580.65
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.9.86
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.9.79
[pip3] pytest-mypy==1.0.1
[pip3] pyzmq==26.4.0
[pip3] torch==2.9.0+cu129
[pip3] torchaudio==2.9.0+cu129
[pip3] torchvision==0.24.0+cu129
[pip3] transformers==4.57.1
[pip3] triton==3.5.0
[pip3] tritonclient==2.62.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.12.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-31 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.9 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566 brand=unknown,driver>=570,driver<571 brand=grid,driver>=570,driver<571 brand=tesla,driver>=570,driver<571 brand=nvidia,driver>=570,driver<571 brand=quadro,driver>=570,driver<571 brand=quadrortx,driver>=570,driver<571 brand=nvidiartx,driver>=570,driver<571 brand=vapps,driver>=570,driver<571 brand=vpc,driver>=570,driver<571 brand=vcs,driver>=570,driver<571 brand=vws,driver>=570,driver<571 brand=cloudgaming,driver>=570,driver<571
NCCL_VERSION=2.26.5-1
NVIDIA_DRIVER_CAPABILITIES=video,compute,utility
NVIDIA_PRODUCT_NAME=CUDA
CUDA_DEVICE_ORDER=PCI_BUS_ID
CUDA_VERSION=12.9.0
LD_LIBRARY_PATH=/opt/vllm/tools/ep_kernels/ep_kernels_workspace/nvshmem_install/lib:/opt/nvidia/nvda_nixl/lib/x86_64-linux-gnu:/opt/nvidia/nvda_nixl/lib/x86_64-linux-gnu/plugins:/usr/local/ucx/lib:/usr/local/ucx/lib/ucx:/usr/local/cuda/lib64
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
🐛 Describe the bug
Reproduced with the following command (v.0.12.0). Note that we never saw this issue in v0.11.0:
vllm serve Qwen/Qwen3-0.6B \
--host 127.0.0.1 --port 18000 \
--gpu-memory-utilization 0.24 \
--enforce-eager \
--no-enable-prefix-caching \
--max-num-seqs 2 \
--kv-offloading-backend lmcache \
--kv-offloading-size 1 \
--disable-hybrid-kv-cache-manager```
When launching with LMCache, somewhere, you'll see the message:(EngineCore_DP0 pid=116047) ... LMCache INFO: Updated config local_cpu from vLLM extra config: True ...
(EngineCore_DP0 pid=116047) ... LMCache INFO: Updated config max_local_cpu_size from vLLM extra config: 1.0 ...
(EngineCore_DP0 pid=116047) ... LMCache ERROR: PrometheusLogger instance already created withdifferent metadata. This should not happen except in test (observability.py:1325:lmcache.observability)
(EngineCore_DP0 pid=116047) ... LMCache INFO: lmcache lookup client connect to rank 0 with socket path /tmp/engine_cd5f58b8-d734-4e5b-b08a-068f6edf2bde_service_lookup_lmcache_rpc_port_0 ...
(EngineCore_DP0 pid=116047) ... LMCache INFO: LMCache initialized for role KVConnectorRole.SCHEDULER ... metadata: None ...
### Before submitting a new issue...
- [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.