Skip to content

[Bug]: GPT-OSS-120B Eagle-v2 High concurrency perf drop #31014

@shyeh25

Description

@shyeh25

Your current environment

The output of python collect_env.py
Your output of `python collect_env.py` here

🐛 Describe the bug

Only in B200 machine.

The regression is caused by #29624.

I use commit:75eb302a as baseline.

In commit 75eb302,

============ Serving Benchmark Result ============
Successful requests: 2560
Benchmark duration (s): 1597.51
Total input tokens: 2621440
Total generated tokens: 20971520
Request throughput (req/s): 1.60
Output token throughput (tok/s): 13127.61
Total Token throughput (tok/s): 14768.56
---------------Time to First Token----------------
Mean TTFT (ms): 902.42
Median TTFT (ms): 230.73
P99 TTFT (ms): 6494.69
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 36.55
Median TPOT (ms): 37.21
P99 TPOT (ms): 51.62
---------------Inter-token Latency----------------
Mean ITL (ms): 749.75
Median ITL (ms): 780.64
P99 ITL (ms): 1314.17

In commit 75eb302 and revert #29624.
============ Serving Benchmark Result ============
Successful requests: 2560
Benchmark duration (s): 1268.58
Total input tokens: 2621440
Total generated tokens: 20971520
Request throughput (req/s): 2.02
Output token throughput (tok/s): 16531.44
Total Token throughput (tok/s): 18597.87
---------------Time to First Token----------------
Mean TTFT (ms): 935.92
Median TTFT (ms): 229.24
P99 TTFT (ms): 6617.85
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 28.76
Median TPOT (ms): 29.07
P99 TPOT (ms): 43.97
---------------Inter-token Latency----------------
Mean ITL (ms): 599.24
Median ITL (ms): 577.93
P99 ITL (ms): 1128.54

#29624 Output throughput drop from 16531 to 13127 (20%).

Repro command
export VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8=1
server-side:
python3 -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 8087 --model openai/gpt-oss-120b --tokenizer openai/gpt-oss-120b --dtype auto --kv-cache-dtype fp8 --tensor-parallel-size 1 --pipeline-parallel-size 1 --data-parallel-size 1 --swap-space 16 --max-num-seqs 1024 --trust-remote-code --max-model-len 9226 --gpu-memory-utilization 0.9 --max-num-batched-tokens 8192 --no-enable-prefix-caching --async-scheduling --stream-interval 20 --compilation_config.pass_config.fuse_allreduce_rms true --compilation_config.pass_config.eliminate_noops true --compilation_config.max_cudagraph_capture_size 2048 --speculative_config.method eagle3 --speculative_config.model nvidia/gpt-oss-120b-Eagle3-v2 --speculative_config.num_speculative_tokens 3

client-side:
python3 benchmark_serving.py --backend vllm --host 0.0.0.0 --port 8087 --model openai/gpt-oss-120b --num-prompts 2560 --trust-remote-code --ignore-eos --max-concurrency 512 --random-input-len 1024 --random-output-len 8192 --random-range-ratio 1.0 --use-chat-template --dataset-name random --save-result --result-filename benchmark_serving_results.json

Note: benchmark_serving.py is from the following repo.
git clone https://github.com/kimbochen/bench_serving.git
pip install pandas datasets --break-system-packages

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions